

FP7-ICT / FET-OPEN – 309129 / i-RISC

D6.1

Report on Reliability Aware Synthesis and LDPC Decoders Built with

Unreliable Components

Editor: Sorin Cotofana (TUD)

Deliverable nature: Public

Due date (DoW): January 31, 2015

Extended due date: March 31, 2015

Delivery date: April 20, 2015

Version 1.0

Total number of pages: 110

Reviewed by: i-RISC members

Keywords: LDPC, Stochastic Decoder, Gallager-B, Gradient Descent Bit Flipping
(GDBF), Probabilistic GDBF, Min-Sum (MS), Self-Corrected MS, Finite
Alphabet Iterative Decoder (FAID), Fault-Tolerance, Voltage Scaling, Fault
Injection, Error Profile Characterization.

Abstract

This deliverable presents an overview of the work carried out in relation to Work Package 6 (WP6)

during the second year of the i-RISC project. The first part of the deliverable reports on the

implementation of a reliability aware synthesis tool and its evaluation on a set of benchmark circuits

(Task 6.3). In particular, we propose an integrated design flow, which combines all the up to date

developed i-RISC custom tools together with widely used tools in the circuit design industry. The

second part of the deliverable reports on the fault tolerance assessment of state-of-the-art and i-

RISC proposed LDPC decoders (Task 6.1). A number of seven LDPC decoders are implemented in

VHDL/Verilog and are exposed to external aggression via voltage scaling or simulated fault injection.

The error correction performance of the implemented decoders is evaluated for different aggression

profiles, substantiating their fault-tolerance capabilities and the resulting benefits in terms of energy

consumption and throughput.

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 2 of (110) © i-RISC

List of Authors

Participant Author E-Mail

CEA Valentin Savin valentin.savin@cea.fr

ENSEA David Declercq declercq@ensea.fr

Fakhreddine Ghaffari fakhreddine.ghaffari@ensea.fr

Khoa Le le.khoa@ensea.fr

TU-Delft Nicoleta Cucu-Laurenciu N.CucuLaurenciu@tudelft.nl

Thomas Marconi T.Marconi@tudelft.nl

Sorin Cotofana S.D.Cotofana@tudelft.nl

UPT Alexandru Amaricai amaricai@cs.upt.ro

 Dan Dutescu dan.dutescu@student.upt.ro

 Ioana Mot ioana.mot@student.upt.ro

UCC Satish Kumar sagrand@ue.ucc.ie

 Bo Yang bo.yang@umail.ucc.ie

 Emanuel Popovici E.Popovici@ucc.ie

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 3 of (110)

Table of Contents

List of Dissemination Activities .. 5

List of Figures .. 6

List of Tables ... 10

Abbreviations ... 11

1. Executive Summary ... 14

2. Implementation of the i-RISC Reliability-Aware Synthesis Tool 17

2.1. Introduction .. 17

2.2. The Tool Chain – Complete CAD Framework ... 18

2.2.1. Circuit Representation and Modification ... 19

2.2.2. Gate Level Logic Simulation .. 20

2.2.3. Reliability Estimation and Analysis ... 21

2.2.4. Multi Objective Optimization ... 22

2.2.5. Fault Tolerant Graph Augmentation .. 23

2.3. A Case Study ... 24

2.4. Conclusion .. 25

3. Evaluation of LDPC Decoders in Fault Inducing Environments 26

3.1. Introduction .. 26

3.2. Voltage Scaling Evaluation Framework .. 27

3.3. Fault Injection Evaluation Framework ... 31

3.3.1. Fault Simulation Framework .. 32

3.3.2. Decoder Basic Block Error Profile Characterization .. 33

3.3.3. Fault Map Generation .. 45

3.4. Utilized LDPC Codes .. 49

3.4.1. Protograph Based LDPC Construction .. 49

3.4.2. i-RISC Set of Matrices ... 50

3.5. Decoder Architecture, Organization, and Implementation ... 51

3.5.1. Min-Sum (MS) ... 51

3.5.2. Self-Correcting Min-Sum (SCMS) .. 55

3.5.3. Finite Alphabet Iterative Decoder (FAID) ... 56

3.5.4. Stochastic Decoder (SD) ... 57

3.5.5. Gradient Descent Bit-Flipping (GDBF) and Probabilistic GDBF (PGDBF)... 62

3.5.6. Gallager-B with Extended Alphabet (GB) ... 68

3.6. Performance Evaluation and Comparison .. 75

3.6.1. Voltage Scaling ... 75

3.6.2. Fault Injection ... 96

3.7. Conclusion .. 104

4. General Conclusions and Next Steps ... 106

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 4 of (110) © i-RISC

Appendix 1: Quasi-Cyclic Description of the LDPC Codes ... 110

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 5 of (110)

List of Dissemination Activities

Published Papers

[P1] O. Boncalo, A. Amaricai, A. Hera, and V. Savin, “Cost Efficient FPGA Layered LDPC Decoder with

Serial AP-LLR Processing”, International Conference on Field Programmable Logic and Applications

(FPL), Munich, Germany, September 2014.

[P2] T. Marconi, C Spagnol, E Popovici, and S.D. Cotofana, "Towards Energy Effective LDPC Decoding

by Exploiting Channel Noise Variability", 22nd IFIP/IEEE International Conference on Very Large Scale

Integration (VLSI-SoC 2014), Playa del Carmen, Mexico, 6-8 October 2014.

[P3] K. Le, D. Declercq, F. Ghaffari, C. Spagnol, E. Popovici, P. Ivanis, and B. Vasic, “Efficient

Realization of Probabilistic Gradient Descent Bit Flipping Decoders”, IEEE International Symposium on

Circuits and Systems (ISCAS), Lisbon, Portugal, May 2015.

[P4] T. Marconi and S.D. Cotofana, “Dynamic Bitstream Length Scaling Energy Effective Stochastic

LDPC Decoding”, 25th edition of ACM's Great Lakes VLSI Symposium (GLSVLSI), Pittsburgh,

Pennsylvania, USA, May 2015.

[P5], N. Cucu-Laurenciu and S.D. Cotofana, “Low Cost and Energy, Thermal Noise Driven, Probability
Modulated Random Number Generator”, IEEE International Symposium on Circuits and Systems
(ISCAS), Lisbon, Portugal, May 2015.

Submitted Papers

[S1] S. Grandhi, Bo Yang, C. Spagnol, E. Popovici, S.D. Cotofana, "A Systematic Approach for

Combinational Circuit Reliability Estimation", Digital System Design (DSD), 2015.

[S2] O. Boncalo, A. Amaricai, "Memory efficient FPGA implementation for flooded LDPC decoder",

Field Programmable Logic and Applications (FPL), 2015.

In Preparation

2 papers reporting our findings on LDPC decoder evaluation by means of voltage scaling and

simulated fault injection, respectively.

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 6 of (110) © i-RISC

List of Figures

Figure 2-1: Reliability Aware Synthesis Tool Sub-Branches .. 18

Figure 2-2: Reliability Aware Synthesis Tool - The Complete Framework .. 19

Figure 2-3: Different Formats of Circuit Representation .. 20

Figure 2-4: Timing and Power Analysis Flow ... 21

Figure 2-5: Reliability Computation and Analysis Flow ... 22

Figure 2-6: Reliability Aware Logic Optimization Tool Flow .. 23

Figure 2-7: CPE based Graph Augmentation ... 23

Figure 3-1: Experimental Hardware Platform ... 28

Figure 3-2: Top Level Representation of the LDPC Testbed .. 28

Figure 3-3: Simulated Fault Injection Framework ... 32

Figure 3-4: Saboteur Insertion in Combinational Logic ... 33

Figure 3-5: Fault Tolerance Aware Design Flow at RTL/gate Abstraction Level 34

Figure 3-6: SC Propagation Delay PDF ... 35

Figure 3-7: Output Propagation Delay IG PDF ... 36

Figure 3-8: Output Propagation Delay IG CDF ... 36

Figure 3-9: Circuit POs Delay CDFs .. 37

Figure 3-10: MS Decoder CNU Combinational Stage 1 ... 38

Figure 3-11: MS Decoder CNU Combinational Stage 2 ... 38

Figure 3-12: MS Decoder CNU Combinational Stage 3 ... 38

Figure 3-13: MS Decoder VNU Combinational Stage 1 ... 39

Figure 3-14: MS Decoder VNU Combinational Stage 2 ... 39

Figure 3-15: MS Decoder VNU Combinational Stage 3 ... 39

Figure 3-16: MS Decoder VNU Combinational Stage 4 ... 39

Figure 3-17: MS Decoder Barrel Shifter .. 39

Figure 3-18: MS Decoder Memory Block .. 39

Figure 3-19: SCMS Decoder VNU Combinational Stage 1 ... 40

Figure 3-20: SCMS Decoder VNU Combinational Stage 2 ... 40

Figure 3-21: SCMS Decoder VNU Combinational Stage 3 ... 40

Figure 3-22: SCMS Decoder VNU Combinational Stage 4 ... 40

Figure 3-23: SCMS Decoder VNU Combinational Stage 5 ... 40

Figure 3-24: FAID Decoder VNU Combinational Stage 1 ... 41

Figure 3-25: FAID Decoder VNU Combinational Stage 2 ... 41

Figure 3-26: FAID Decoder VNU LUT ... 41

Figure 3-27: FAID Decoder VNU Out Stage ... 41

Figure 3-28: SD Decoder VNU Combinational Stage ... 41

Figure 3-29: SD Decoder CNU Combinational Stage ... 41

Figure 3-30: SD Decoder RNG .. 42

Figure 3-31: Number of Active Fault Locations in Processing Units.. 46

Figure 3-32: Ratio between Active Fault Locations and Total Number of Sabotaged Wires in

Considered Blocks ... 47

Figure 3-33: Average Probability of Errors in the Considered Blocks (Logarithmic Scale) 47

Figure 3-34: Average Number of per Iteration Injected Faults (Logarithmic Scale) 48

Figure 3-35: Average Number of per Iteration Injected Faults (Zoom - Linear Plot) 48

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 7 of (110)

Figure 3-36: Protographs for (𝑑𝑣 = 12, 𝑑𝑐 = 24) and (𝑑𝑣 = 12, 𝑑𝑐 = 48) LDPC Codes 51

Figure 3-37: Flooded MS Architecture .. 53

Figure 3-38: Flooded SCMS Architecture .. 55

Figure 3-39: Architecture of a Fully Parallel Stochastic LDPC Decoder ... 57

Figure 3-40: Probability to Stochastic Converter (P2SB) ... 58

Figure 3-41: The 𝑉𝑁𝑛, 𝑚 Module .. 59

Figure 3-42: The PCHD Module ... 60

Figure 3-43: The 𝐶𝑁𝑚, 𝑛 Module .. 61

Figure 3-44: The Parity Check 𝑐𝑚 Module .. 61

Figure 3-45: Global Architecture of PGDBF Compared to the Original GBDF 62

Figure 3-46: Architecture of VNU in PGDBF .. 65

Figure 3-47: Architecture of Intrinsic-Valued Random Generator .. 66

Figure 3-48: The Multiplication Coefficient K as a Function of the BSC Crossover 67

Figure 3-49: Input Data Format ... 69

Figure 3-50: Block Diagram Representation of the Gallager-B Decoder ... 70

Figure 3-51: Bit Node Block Diagram .. 72

Figure 3-52: Bit Node Architecture ... 73

Figure 3-53: Block A Implementation .. 73

Figure 3-54: Block B Implementation .. 74

Figure 3-55: Check Node Block Diagram ... 74

Figure 3-56: Check Node Architecture .. 75

Figure 3-57: BER of Stochastic Decoder under BSC ... 78

Figure 3-58: FER of Stochastic Decoder under BSC ... 78

Figure 3-59: Average Number of Iterations of Stochastic Decoder under BSC 78

Figure 3-60: Energy/Bit Normalized to BER of Stochastic Decoder under BSC 78

Figure 3-61: Energy/Bit Normalized to FER of Stochastic Decoder under BSC 78

Figure 3-62: Throughput Normalized to BER of Stochastic Decoder under BSC 79

Figure 3-63: Throughput Normalized to FER of Stochastic Decoder under BSC 79

Figure 3-64: BER of Gallager B Decoder under BSC ... 80

Figure 3-65: FER of Gallager B Decoder under BSC ... 80

Figure 3-66: Average Number of Iterations of Gallager B Decoder under BSC 80

Figure 3-67: Energy/Bit Normalized to BER of Gallager B Decoder under BSC 80

Figure 3-68: Energy/Bit Normalized to FER of Gallager B Decoder under BSC 80

Figure 3-69: Throughput Normalized to BER of Gallager B Decoder under BSC 81

Figure 3-70: Throughput Normalized to FER of Gallager B Decoder under BSC 81

Figure 3-71: BER of GDBF Decoder under BSC .. 81

Figure 3-72: FER of GDBF Decoder under BSC .. 81

Figure 3-73: Average Number of Iterations of GDBF Decoder under BSC .. 82

Figure 3-74: Energy/Bit Normalized to BER of GDBF Decoder under BSC .. 82

Figure 3-75: Energy/Bit Normalized to FER of GDBF Decoder under BSC ... 82

Figure 3-76: Throughput Normalized to BER of GDBF Decoder under BSC .. 82

Figure 3-77: Throughput Normalized to FER of GDBF Decoder under BSC ... 82

Figure 3-78: BER of PGDBF Decoder under BSC .. 83

Figure 3-79: FER of PGDBF Decoder under BSC .. 83

Figure 3-80: Average Number of Iterations of PGDBF Decoder under BSC .. 83

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 8 of (110) © i-RISC

Figure 3-81: Energy/Bit Normalized to BER of PGDBF Decoder under BSC .. 84

Figure 3-82: Energy/Bit Normalized to FER of PGDBF Decoder under BSC... 84

Figure 3-83: Throughput Normalized to BER of PGDBF Decoder under BSC .. 84

Figure 3-84: Throughput Normalized to FER of PGDBF Decoder under BSC .. 84

Figure 3-85: BER of MS Decoder under BSC .. 85

Figure 3-86: FER of MS Decoder under BSC .. 85

Figure 3-87: Average Number of Iterations of MS Decoder under BSC .. 85

Figure 3-88: Energy/Bit Normalized to BER of MS Decoder under BSC .. 86

Figure 3-89: Energy/Bit Normalized to FER of MS Decoder under BSC .. 86

Figure 3-90: Throughput Normalized to BER of MS Decoder under BSC .. 86

Figure 3-91: Throughput Normalized to FER of MS Decoder under BSC .. 86

Figure 3-92: BER of MSnoET Decoder under BSC .. 86

Figure 3-93: FER of MSnoET Decoder under BSC .. 86

Figure 3-94: Energy/Bit Normalized to BER of MSnoET Decoder under BSC .. 87

Figure 3-95: Energy/Bit Normalized to FER of MSnoET Decoder under BSC .. 87

Figure 3-96: Throughput Normalized to BER of MSnoET Decoder under BSC 87

Figure 3-97: Throughput Normalized to FER of MSnoET Decoder under BSC 87

Figure 3-98: BER of SCMS Decoder under BSC .. 88

Figure 3-99: FER of SCMS Decoder under BSC .. 88

Figure 3-100: Average Number of Iterations of SCMS Decoder under BSC .. 88

Figure 3-101: Energy/Bit Normalized to BER of SCMS Decoder under BSC .. 89

Figure 3-102: Energy/Bit Normalized to FER of SCMS Decoder under BSC .. 89

Figure 3-103: Throughput Normalized to BER of SCMS Decoder under BSC .. 89

Figure 3-104: Throughput Normalized to FER of SCMS Decoder under BSC .. 89

Figure 3-105: BER of SCMSnoET Decoder under BSC .. 89

Figure 3-106: FER of SCMSnoET Decoder under BSC .. 89

Figure 3-107: Energy/Bit Normalized to BER of SCMSnoET Decoder under BSC 90

Figure 3-108: Energy/Bit Normalized to FER of SCMSnoET Decoder under BSC 90

Figure 3-109: Throughput Normalized to BER of SCMSnoET Decoder under BSC 90

Figure 3-110: Throughput Normalized to FER of SCMSnoET Decoder under BSC 90

Figure 3-111: BER of FAID Decoder under BSC ... 91

Figure 3-112: FER of FAID Decoder under BSC .. 91

Figure 3-113: Average Number of Iterations of FAID Decoder under BSC.. 92

Figure 3-114: Energy/Bit Normalized to BER of FAID Decoder under BSC .. 92

Figure 3-115: Energy/Bit Normalized to FER of FAID Decoder under BSC .. 92

Figure 3-116: Throughput normalized to BER of FAID Decoder under BSC .. 92

Figure 3-117: Throughput Normalized to FER of FAID Decoder under BSC .. 92

Figure 3-118: BER of FAIDnoET Decoder under BSC ... 93

Figure 3-119: FER of FAIDnoET Decoder under BSC .. 93

Figure 3-120: Energy/Bit Normalized to BER of FAIDnoET Decoder under BSC 93

Figure 3-121: Energy/Bit Normalized to FER of FAIDnoET Decoder under BSC 93

Figure 3-122: Throughput Normalized to BER of FAIDnoET Decoder under BSC 93

Figure 3-123: Throughput Normalized to FER of FAIDnoET Decoder under BSC 93

Figure 3-124: Average Number of Iterations for Faulty MS under BI-AWGN 96

Figure 3-125: BER for Faulty MS under BI-AWGN ... 97

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 9 of (110)

Figure 3-126: FER for Faulty MS under BI-AWGN ... 97

Figure 3-127: Average Number of Iterations for Faulty SCMS under BI-AWGN with Errors Injected in

the Two Additional Memories ... 97

Figure 3-128: BER for Faulty SCMS under BI-AWGN with Errors Injected in the Two Additional

Memories .. 98

Figure 3-129: FER for Faulty SCMS under BI-AWGN with Errors Injected in the Two Additional

Memories .. 98

Figure 3-130: Average Number of Iterations for Faulty SCMS under BI-AWGN with No Errors Injected

in the Two Additional Memories ... 98

Figure 3-131: BER for Faulty SCMS under BI-AWGN with No Errors Injected in the Two Additional

Memories .. 99

Figure 3-132: FER for Faulty SCMS under BI-AWGN with No Errors Injected in the Two Additional

Memories .. 99

Figure 3-133: Average Number of Iterations for Faulty MS under BSC .. 100

Figure 3-134: BER for Faulty MS under BSC .. 100

Figure 3-135: FER for Faulty MS under BSC ... 100

Figure 3-136: Average Number of Iterations for Faulty SCMS under BSC with Errors Injected in All

Memories .. 101

Figure 3-137: BER for Faulty SCMS under BSC with Errors Injected in All Memories 101

Figure 3-138: FER for Faulty SCMS under BSC with Errors Injected in All Memories 101

Figure 3-139: Average Number of Iterations for Faulty SCMS under BSC with No Errors Injected in the

Two Additional Memories ... 102

Figure 3-140: BER for Faulty SCMS under BSC with No Errors Injected in the Two Additional Memories

 ... 102

Figure 3-141: FER for Faulty SCMS under BSC with No Errors Injected in the Two Additional Memories

 ... 102

Figure 3-142: Average Number of Iterations for Faulty FAID under BSC .. 103

Figure 3-143: BER for Faulty FAID under BSC .. 103

Figure 3-144: FER for Faulty FAID under BSC .. 103

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 10 of (110) © i-RISC

List of Tables

Table 1-1: WP6 Gantt Diagram .. 14

Table 2-1: Case Study - C6288 Reliability Evaluation .. 24

Table 3-1: Decoder Common Interface Port Description .. 30

Table 3-2: SC Propagation Delay IG Distribution Parameters ... 35

Table 3-3: FAID Decoder .. 42

Table 3-4: MS Decoder .. 43

Table 3-5: SCMS Decoder .. 44

Table 3-6: SD Decoder ... 44

Table 3-7: Failure Probabilities for Analyzed Decoders for Different Clock Frequencies 45

Table 3-8: Average Values of Failure Probabilities for Considered Components in the Analyzed

Decoders .. 46

Table 3-9: Different Types of Protograph for (𝑑𝑣 = 3, 𝑑𝑐 = 6) LDPC Codes 49

Table 3-10: Employed Set of LDPC Codes.. 50

Table 3-11: MS VNU Ports List ... 54

Table 3-12: MS CNU Ports List ... 54

Table 3-13: SCMS VNU Ports List ... 56

Table 3-14: P2SB Module Ports Description ... 58

Table 3-15: 𝑉𝑁𝑛, 𝑚 Module Ports Description ... 59

Table 3-16: PCHD Module Ports Description .. 61

Table 3-17: Probabilistic Gradient Descent Bit-Flipping Algorithm ... 64

Table 3-18: VNU Module Ports Description .. 64

Table 3-19: IVRG Module Ports Description .. 67

Table 3-20: Hardware and Throughput Estimation for PGDBF with Different RG Implementations and

for Offset Min-Sum .. 68

Table 3-21: Alphabet Format .. 69

Table 3-22: Gallager-B with Extended Alphabet Decoding Algorithm .. 69

Table 3-23: LDPC Decoder Ports Description .. 71

Table 3-24: LDPC Decoder Design Parameters .. 71

Table 3-25: Bit Node Port Description ... 72

Table 3-26: Check Node Ports Description .. 74

Table 3-27: FPGA Resources Utilization and Maximum Clock Frequency of Implemented Hardware

Decoders .. 76

Table 3-28: PPR and PDR Metrics for the Decoders under Test (Voltage Scaling Scenario) 95

Table 3-29: Uncertainty Intervals for 𝑉pp and 𝑉pd Estimates ... 95

Table 3-30: Energy Savings of Evaluated Decoders Operating at 𝑉pp (@BER = 10 − 4) 95

Table 3-31: PPR and PDR Metrics for the Decoders under Test (SFI Scenario) 104

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 11 of (110)

Abbreviations

AIG And-Inverter Graph

AP-LLR A-Posteriori LLR

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BF Bit Flipping

BI-AWGN Binary Input - Additive White Gaussian Noise (channel)

BLIF Berkeley Logic Interchange Format

BN Bit Node

BPSK Binary Phase Shift Keying

BRAM Block Random Access Memory

BS Barrel Shifter

BSC Binary Symmetric Channel

C2 Two’s Complement

CAD Computer Aided Design

CDF Cumulative Distribution Function

CMOS Complementary Metal Oxide Semiconductor

CN Check Node

CNFET Carbon Nanotube Field-Effect-Transistor

CNU Check Node processing Unit

CPE Codeword Prediction Encoder

DDR Double Data Rate

DDR3 Double Data Rate type 3

DFF D Flip-Flop

DSR Degradation Stochastic Resonance

ECC Error Correcting Codes

EDA Electronic Design Automation

EM Edge Memory

ET Early Termination

EXIT EXtrinsic Information Transfer

FAID Finite Alphabet Iterative Decoder

FER Frame Error Rate

FPGA Field Programmable Gate Array

FSS Frequency Scaling Sensitivity

GDBF Gradient Descent Bit Flipping

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 12 of (110) © i-RISC

IC Integrated Circuit

I2C Inter-Integrated Circuit

INV Inverter

IVRG Intrinsic-Valued Random Generator

JTAG Joint Test Action Group

KDV Knock Down Voltage

LDPC Low Density Parity Check

LFSR Linear Feedback Shift Register

LHCA Linear Hybrid Cellular Automata

LLR Log-Likelihood Ratio

MC Monitoring and Controller

MOSFET Metal Oxide Semiconductor Field Effect Transistor

MS Min-Sum

MSB Most Significant Bit

NAND2 2-input NAND

PDF Probability Density Function

PEG Progressive Edge Growth

PCC Parity Check Circuit

PCHD a-Posteriori Counter update and Hard Decision

PDR Performance Degradation Region

PGDBF Probabilistic Gradient Descent Bit Flipping

PLA Programmable Logic Array

PMBus Power Management Bus

PO(s) Primary Output(s)

PPR Performance Preservation Region

P2SB Probabilistic-to-Stochastic Bitstream

PVT Process, Voltage and Temperature

QC Quasi-Cyclic

RC Random Connector

RG Random Generator

RTL Register Transfer Language

SAIF Switching Activity Interchange Format

SB Stochastic Bitstream

SC Standard Cell

SCMS Self-Corrected Min-Sum

SD Stochastic Decoder

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 13 of (110)

SDF Standard Delay Format

SFI Simulated Fault Injection

SM Sign Magnitude

SNR Signal to Noise Ratio

TRNG True Random Number Generator

UART Universal Asynchronous Receiver / Transmitter

USB Universal Serial Bus

VLSI Very Large Scale Integration

VN Variable Node

VNU Variable Node processing Unit

VSS Voltage Scaling Sensitivity

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 14 of (110) © i-RISC

1. Executive Summary

This deliverable is concerned with Work Package 6 (WP6) and addresses as main avenues: (i) the

implementation of reliable LDPC decoders and storage/transport in order to substantiate the validity

of the fault tolerance techniques previously investigated and proposed in the context of the i-RISC

project, and (ii) reliability aware synthesis tools to enable the reliability driven design and

optimization of circuits built from prohibitively unreliable emerging nano-devices.

This deliverable constitutes a first step towards a global proof of concept for the i-RISC techniques

viability and summarizes the main research activities conducted during the second year of the i-RISC

project, in accordance with the WP6 tasks, specifically:

 Task 6.1 - Implementation of LDPC Decoders. This task is dedicated to the implementation

and benchmarking of several candidate reliability enhanced LDPC decoders proposed in WP3,

with respect to their performance as well as their ability to effectively deal with the circuit

fault-induced probabilistic behavior.

 Task 6.2 - Implementation Reliable Storage/Transport. Building upon the utilization of the

constrained coding techniques proposed in WP4 to enable reliable intra/inter chip data

transport, the implementation of the reliable bus connections is initiated. This task also

targets initiating the implementation of a memory storage architecture, following the WP4

findings concerning reliable memory designs, which can tolerate both spatially and

temporally correlated errors.

 Task 6.3 - Reliability-Aware Synthesis Tool. This task is concerned with an EDA tool suite

that combines custom, proposed tools, and established industrial tools to enable a reliability

driven synthesis process of logic circuits.

 Task 6.4 - Implementation of i-RISC processing cores. A simple processor core, implemented

in the current technology node, which exhibits increased susceptibility to faults and

environmental variations, is envisaged as a synergistic demonstrator for the i-RISC fault-

tolerant computing, storage, and transport concepts.

Table 1-1 presents the Gantt diagram associated to the time distribution of the WP6 tasks that were

addressed (Task 6.1) and initiated (Task 6.2, Task 6.3, and Task 6.4) during the period M13-M24.

Table 1-1: WP6 Gantt Diagram

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Deliverables D 1.1

n

n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Deliverables D 2.1 D 2.2 D 2.3

Milestones M 1 M 3

n n n

n

n n

n

n n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Deliverables D 3.1 D 3.2 D 3.3

Milestones M 2 M 4

n n

n

n n

n

n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Deliverables D 4.1 D 4.2 D 4.3

Milestones M 5 M 8

n

n n

n n

n n

n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Deliverables D 5.1 D 5.2 D 5.3

Milestones M 6 M 9

n

n

n n

n n

n n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Deliverables D 6.1 D 6.2

Milestones M 7 M 10

n

n n

n n

n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Deliverables D 7.1 D 7.2 D 7.3

n n n

n n n

n n n

WP7: DISSEMINATION

T
a

sk
s

T7.1: Dissemination

T7.2: Workshops

T7.3: Joint Collaborative Task

WP6: PROOF OF CONCEPT

T
a

sk
s

T6.1: Implementation of LDPC decoders

T6.2: Implementation reliable storage/ transport

T6.3: Reliability aware synthesis tool

T6.4: Implementation i-RISC processing cores

WP5: FAULT TOLERANT FUNCT SYNTHESIS

T
a

sk
s

T5.1: Data structures for fault tolerant synthesis

T5.2: Design Flow for fault tolerant synthesis

T5.3: Error-coding driven graph augmentation

T5.4: Multi-objective optimisation

T5.5: Boole-Shannon limit for noisy circuits

WP4: FAULT TOLERANT STORAGE/TRANSP.

T
a

sk
s

T4.1: Taylor-Kuznetsov / structured LDPC

T4.2: Multi-bit flipping decoders

T4.3: Design of fast iterative decoders

T4.4: Fault tolerance for correlated error models

T4.5: On-chip reliable data transport

T2.5: Energy models for sub-powered circuits

WP3: FAULT TOLERANT ERROR CORRECTION

T
a

sk
s

T3.1: MS/FAID decoders under faulty gates

T3.2: Stochastic decoder under faulty gates

T3.3: Long-term protection under faulty HW

T3.4: Practical fault tolerant encoding

T3.5: Fault-tolerant RM and Polar-codes

WP1: MANAGEMENT

T
a

sk
s T1.1: Coordination

T1.2: Administrative/Financial Management

WP2: FAULT MODELS / ENERGY MEASURES

T
a

sk
s

T2.1: SPICE analysis for sub-powered circuits

T2.2: Fault models for uncorrelated errors

T2.3: Fault models for correlated errors

T2.4: Higher abstraction levels & fault inject.

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 15 of (110)

The main contributions presented in this deliverable relate to Task 6.1 and Task 6.3 as follows.

Task 6.1 - Implementation of LDPC Decoders

We implemented at Register Transfer Level (RTL) in VHDL/Verilog, debugged, and mapped on a Xilinx

Virtex-7 FPGA several state-of-the-art and reliability enhanced LDPC decoders proposed in the WP3

framework for a codeword length N=1296 and R=0.5 as follows: Min-Sum (MS), Self-Corrected Min-

Sum (SCMS), Finite Alphabet Iterative Decoder (FAID), Stochastic Decoder (SD), Gradient Descent Bit

Flipping (GDBF), Probabilistic GDBF (PGDBF), and Gallager B with Extended Alphabet (GB).

We developed an experimental hardware platform that allows us to simulate the decoder exposure

to environmental aggression factors, e.g., temperature, and cosmic radiation, by diminishing the

power supply voltage Vdd under its nominal value, which may results in timing faults. In this way we

can modulate the fault presence rate by means of the Vdd value, i.e., the lower the Vdd value the

higher the fault rate, but we cannot control the fault occurrence location on the decoder real estate.

We developed a hybrid fault injection HDL/C++ simulation framework that allows for decoder

simulation in the presence of errors (flipped bits), which location and density are derived according

to decoder architectural and implementation details. Related to this we also introduced a

methodology to create a fault map meant to guide the fault injection process, which is reflecting the

contribution of the internal organization of each decoder basic building block to the fault error rate

at its outputs.

We evaluated the implemented decoders under both scenarios, i.e., voltage scaling and fault

injection, over different technology and environmental aggression profiles and quantified their figure

of merit in terms of: (i) decoding performance, specifically Frame Error Rate (FER) and Bit Error Rate

(BER), (ii) average number of iterations, (iii) throughput (Mb/s) normalized to BER/FER, and (vi)

energy/bit (pJ/bit) normalized to BER/FER.

We introduced two additional metrics: Voltage Scaling Sensitivity (VSS) and Frequency Scaling

Sensitivity (FSS), which are meant to capture the way a decoder reacts to voltage and frequency

scaling, respectively. VSS provides inside on: (i) the decoder potential to save energy while still

delivering its expected performance and (ii) how much performance one can still get in situations

when the energy source is confined. FSS provides inside on: (i) the decoder potential to operate at

increased clock frequency while providing its expected performance and (ii) how much overclocking

one can still resort to if channel conditions permit.

We presented a thorough analysis of the voltage scaling and simulated fault injection results which

confirm the fault-tolerance capabilities of the i-RISC proposed decoders and serve as guideline for

the selection of a proof-of-concept fault-tolerant decoder class (which exhibits the best trade-off in

terms of performance and ability to tolerate/mask faults). In particular our experiments indicate that

voltage scaling may result in energy savings between 45% and 67%, while preserving decoder’s

nominal throughput and error correction performance. Based on simulated fault injection results, the

decoder potential to increase throughput by means of overclocking is also estimated to be between

77% and 150%, while preserving the nominal error correction performance.

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 16 of (110) © i-RISC

Task 6.3 - Reliability-Aware Synthesis Tool

A novel CAD framework is proposed that improves the circuit reliability by re-designing the Boolean

network such that reliability is enhanced with little overhead in terms of area, delay, and/or power.

In this line of thought a novel set of tools have been developed targeting various levels of abstraction

within the VLSI design cycle.

An integrated design flow comprising of industry and academic tools is proposed. Design compiler

from Synopsys is used to synthesize a high level description of a circuit specified in Verilog. The

resulting gate level netlist is then translated into an AIG data structure, which is then

analyzed/optimized/manipulated within the i-RISC custom tool built as a wrapper around the open

source tool ‘ABC’.

One of the keys for developing an efficient optimization tool is the availability of accurate reliability

information as well as efficient/fast algorithms for computing the reliability of logic functions

representing partial solutions during the optimization process. A probabilistic and simulation based

methodology were developed. Rewriting based local transformation techniques are employed to

improve the circuit reliability at little overhead of area. Further, a novel fault tolerant logic

augmentation technique is proposed. The resulting optimized netlist is then technology mapped and

analyzed using standard industry tools from Synopsys for delay, area and power.

We also presented a reliability improvement case study on the MCNC benchmark circuit ‘C6288’,

which demonstrates that both the optimization algorithm as well as the fault tolerant techniques can

contribute to a significant circuit reliability improvement.

Such a flow makes use of a number of state of the art tools within Synopsys complementing them

with the custom i-RISC tools for ultra-low power and reliable circuit design.

We note that given that the WP4 investigations in reliable data storage and transport are still in early

stages a proof of concept in this direction is not yet at hand. Thus while we already initiated Task 6.2

related activities the reporting of the results will be done in Deliverable D6.2.

Finally, we'd like to stress out that even though the deliverable could not be finalized in time its

objectives have been reached and the late delivery doesn't have any negative effect on the other i-

RISC activities. On the contrary, by solving the faced technical hurdles, which is one of the reasons

behind the delayed delivery, we created better technical premises and smoothed the way towards

the successful completion of the final i-RISC proof of concept. We note that apart of a number of

unexpected technical challenges, which usually occur during such a complex design effort, the

experiment preparation and execution were very much time consuming, thus substantially

contributed to the late delivery.

The deliverable is organized as follows: Section 2 is dedicated to the EDA reliability-aware synthesis

tool. Section 3 is concerned with the implementation and evaluation of the i-RISC LDPC decoders in

faulty environments. Finally, in view of our findings, we draw some conclusions in Section 4.

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 17 of (110)

2. Implementation of the i-RISC Reliability-Aware Synthesis Tool

Abstract: The aim of this task is to propose a novel systematic and integrated methodology to

address and improve combinational circuit reliability measured in terms of Soft Error Rate (SER). In

this line of reasoning, as part of the i-RISC project, a novel set of tools were developed targeting

various abstraction levels within the Very Large Scale Integration (VLSI) design cycle. The proposed

logic optimization Computer Aided Design (CAD) framework makes use of rewriting techniques,

which at their turn employs local transformations. The main idea behind our proposal is to replace

parts of the circuit with functionally equivalent but more reliable logically equivalent counterparts.

Further, we have developed a number of logic augmentation techniques to improve the circuit fault

tolerance. Last but not least we also introduced the following reliability estimation approaches: (i) a

simulation based technique, which estimates the circuit reliability via gate-level fault injection and (ii)

a fundamentally novel analytical technique which is building upon the conditional probability theory.

2.1. Introduction

Traditional logic synthesis methodologies and EDA tools are centred on fulfilling timing, power, and

area constraints or on achieving acceptable trade-offs among those [Pedram96] [Mehrotra11].

However, as the Complementary Metal-Oxide-Semiconductor (CMOS) technology entered the

nanometer era, such an approach cannot cover any longer all the relevant design aspects.

Technology scaling has precipitated higher operating speeds, lower operating voltages, and lower

operating noise margins; all of which contribute to reduced switching energies, allowing legitimate

logic signals to be readily overwhelmed by single-event-induced charge-collection transients

[Dodd03]. Nanotechnology specific issues, e.g., power supply voltage (Vdd) reduction, higher impact

of process parameter and temperature variations, result in increased device failure rates, making

CMOS Integrated Circuits (ICs) less reliable [Borkar05] [Constantinescu03].

As power usage is proportional to the square of voltage, operating at very low voltages offers

potential for large power savings [Kaeslin08] [Vittoz14]. For example, if a circuit is operated at 0.1 𝑉

instead of a process nominal 1 𝑉, an 100 × power saving is potentially achievable. However this

means that the supply voltage is significantly below the transistor threshold voltage and it is well

known that in this weak inversion regime, MOSFET transistors exhibit high voltage gain but very low

currents. There are many possible ways in which a sub threshold circuit may become unreliable. The

simplest is of course due to noise, made worse by leakage induced noise. Stuck at “0” or “1”, or

similar persistent faults can occur due to process variations [Borkar05], either statically or

dynamically (dependant on temperature and voltage), which are inherent due to the fact that silicon

doping is a stochastic process, and in small process geometries a very small number of dopant atoms

can be present in a MOSFET transistor channel (10𝑠 to 100𝑠). This means that the stochastic process

doesn’t necessarily average out, leading to nearby MOSFETs having very different electrical

properties and by implication switching behaviour.

Another unreliability mechanism is the unpredictable timing. In [Chen14], it was indicated that sub-

powered gate arrival times follow inverse Gaussian distributions, with a long calculation completion

time tail. In a practical system, a gate chain has a cartain allowed slack, and if individual gate

completion times chance this may be exceded and errors may occur. Even a small error probability at

the level of individual gates might result in a large error probability at the circuit final outputs

[Choudhury10]. We nothe that this tendency is not CMOS specific, as even the most promising post

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 18 of (110) © i-RISC

silicon devices, e.g., Carbon Nanotube Field-Effect Transistors (CNFETs) that are considered to

eventually replace CMOS, suffer from various amounts of statistical variation in device behaviour,

potentially leading to a lack of reliability. As a result, reliability is turning out into a major design

metric sharing equal importance with the other existing design metrics. Consequently, design time

reliability assessment and optimization is becoming a mandatory IC design flow step which targets

the reliability improvement for circuits/systems built with unreliable components.

In this section, all the techniques and methodologies that were developed over the past two years

and assembled together into a single package are presented. As depicted in Figure 2-1, the reliability

aware synthesis tool comprises three major components. We have developed a multiple set of

reliability computation engines that would estimate the probable circuit output error with varying

degrees of accuracy and speed. A multiple set of logic optimization techniques has been developed

which pre-dominantly operate at gate level. Furthermore, to achieve extra added value, we have

embarked on developing a number of logic augmentation techniques to improve the circuit fault

tolerance.

Figure 2-1: Reliability Aware Synthesis Tool Sub-Branches

2.2. The Tool Chain – Complete CAD Framework

The design flow consists of several academic tools developed in-house within the i-RISC project scope

that are integrated alongside several industrial tools. This integration would be extremely beneficial

in the implementation of the final proof of concept. The complete design flow is presented in Figure

2-2 and it outlines the digital circuit design path from the Register Transfer Language (RTL) level to

the final error resilient technology mapped gate-level netlists followed by reliability, power, delay,

and area reports. Some of the important flow steps are as follows:

Step 1: Convert the circuit description into its corresponding And-Inverter Graph (AIG).

Step 2: Run Reliability driven logic optimization tools to synthesize gate level netlists.

Step 3: Perform Reliability Analysis to compute the achieved improvement in terms of error

resilience. Reliability details of every node in the network are stored into the output file.

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 19 of (110)

Figure 2-2: Reliability Aware Synthesis Tool - The Complete Framework

Step 4: Perform Gate level simulations to collect switching activity details. These are saved in the

standard Switching Activity Interchange Format (SAIF) format.

Step 5: Using netlists from Step 1 and 2 and switching reports from Step 4, invoke Synopsys Design

Compiler to perform the power, area, and timing analysis. Subsequently, perform comparative

studies to evaluate the savings/overhead corresponding to the new netlists.

Step 6: Implement an LDPC encoding scheme on top of the reliability optimized netlist. The structure

of the parity circuitry to augment the optimized circuit is determined based on its functionality.

Step 7: Convert the netlists {combinational circuit, parity circuitry, and the LDPC decoder} into the

internal proprietary format understood by the Codeword Prediction Encoder (CPE) simulator.

Step 8: Invoke the CPE simulator to perform encoding and decoding simulations and generate

reports comprising FER/BER analysis, critical node count, etc.

2.2.1. Circuit Representation and Modification

Over the years, a number of academic EDA tools [Yanushkevich05] [Sentovich92] [Wu05] have been

proposed in the literature. These open source tools provide a programming environment and a solid

platform for research in logic synthesis, power estimation and power optimisation as well as for

implementing new developments into them. ABC [Brayton10] is a logic synthesis and verification

tool which performs scalable logic optimisation based on AIGs [Mishchenko06]. In all of these

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 20 of (110) © i-RISC

academic tools, data structures and algorithms largely determine the tool efficiency in providing

support for implementing new capabilities. As reported in Deliverable D5.1 [i-RISC/D5.1], we have

decided to use AIG as the data structure and ‘abc’ as the platform to develop and implement all the

reliability related algorithms.

The tool accepts any high level description to generate the netlists of a generic function. It can take

any function description in, e.g., BLIF, VHDL, Verilog, PLA, convert it into the ".eqn" intermediate

format and then generate its corresponding AIG representation as described in Figure 2-3. We note

that during the process of modifying the circuit representation from one format to another it is

imperative to maintain the logical equivalence of the original and new circuits, which is guarantied by

adopting different kinds of formal verification techniques.

Figure 2-3: Different Formats of Circuit Representation

2.2.2. Gate Level Logic Simulation

As depicted in Figure 2-4, RTL simulations are performed using VCS [SYNTOOL], a commercial tool

from the Synopsys EDA vendor. The logic description is optimized and then synthesized to a gate-

level netlists by employing the internal reliability optimization tool. Formal verification is performed

in Synopsys Formality [SYNTOOL], ensuring the equivalence between the RTL description and the

resulting gate-level netlists. Reports generated by the synthesis tool detail the silicon area consumed

by the logic design. Timing reports are generated using Synopsys Primetime [SYNTOOL] determining

the longest paths and the maximum clock frequency. Primetime also generates Standard Delay

Format (SDF) [SDF04] data containing delay information for annotation onto the netlists during gate-

level simulation. The primary goal of constructing this flow was to perform power analysis on the

pre-placement netlist using commercial tools. Switching probability information is recorded by VCS

during simulation as SAIF [SYNSAIF]. SAIF is used during power analysis to obtain realistic power

figures for the simulated scenario.

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 21 of (110)

Figure 2-4: Timing and Power Analysis Flow

2.2.3. Reliability Estimation and Analysis

Reliability analysis of logic circuits deals with the computation of the impact that gate errors might

have on circuit Primary Outputs (PO’s). Generally speaking a pure reliability analysis based on HSPICE

Monte Carlo simulations is not feasible real life circuits due to its prohibitive computation time and

excessive resource requirements. Several analytical approaches were previously proposed

[Choudhury09]. As we represent circuits in the AIG format, a novel algorithm based on probability

principles is developed, with the prime focus being AND and INVERTER gates. Two different

methodologies, simulation based approach and the probabilistic error gate model based approach

have been devised. Figure 2-5 depicts the complete flow of the reliability analysis tool.

The circuit under test is passed onto both the probabilistic and simulation based reliability

computation algorithms. The probabilistic based methodology emulates all the gates with the

probabilistic error models and based on input switching activity, static probability, and gate error

values, it computes the expected reliability of the output node. The simulation-based algorithm

appends all the gates with extra XOR gates to randomly toggle the output value there, by inserting an

error. We use a Mersenne twister to generate highly random test patterns, which we utilize to

compute the final output reliability values. The final output reports from both these models are

compared to define the accuracy of the probabilistic gate error model. Though very accurate, the

simulation methodology is very expensive in terms of execution time, which might preclude its

utilization on large circuits. Hence, it is finally a tradeoff between accuracy and speed when it comes

to choosing one of these two algorithms.

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 22 of (110) © i-RISC

Figure 2-5: Reliability Computation and Analysis Flow

2.2.4. Multi Objective Optimization

Logic optimization and synthesis is the process of taking in a higher level circuit representation and

translating it into hardware. We have proposed two different methodologies that were thoroughly

articulated in Deliverable D5.2 [i-RISC/D5.2], both based on the rewriting technique. Figure 2-6

describes the multiobjective optimization tool. From the under optimization circuit, which can be for

example a reference MCNC benchmark circuit, the output error probabilities of two netlists are

initially computed: (i) default circuit without any optimization and (ii) circuit optimized by the best

’abc’ synthesis algorithm. It is not always necessary that the second configuration has higher

reliability. The synthesis algorithms in ’abc’ (or in general) are mainly targeting delay reduction which

can affect adversely the reliability. After selecting the initial circuit configuration, we apply the

developed optimisation methodology transformation rules, we perform Boolean matching to pick

the matching rule. The one which provides the highest reliability improvement is selected based on

the results of the reliability evaluation function. Further, this process continues until no more rules

can be applied on this node, that can improve the circuit reliability. We perform similar set of

operations on all the nodes in the circuit. Using this method of optimisation, the number of inputs

and outputs of a particular logic function is not modified. The logic network describing the function is

updated during each iteration of the optimisation algorithm. The delay/area optimised initial logic

network is transformed iteratively for improved reliability (delay/area driven reliability optimisation).

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 23 of (110)

Figure 2-6: Reliability Aware Logic Optimization Tool Flow

2.2.5. Fault Tolerant Graph Augmentation

The aim of fault tolerant techniques is to systematically encode the input function under

consideration. The focus is not on altering logic but on augmenting it to add redundancy. In this

instance, additional logic network is added to the original network describing the function which

results in the an increase number of outputs for the resulting network.

Figure 2-7: CPE based Graph Augmentation

By using Error Correcting Codes (ECC) based architectures redundant logic is added to enable

retrieving the correct output thereby improving the combinatorial circuit reliability. This approach

takes the input function netlist and translates it into an AND Invert set of equations for further

manipulation and analysis of the number of gates and longest path modifications. The logic network

annotation is informed by a particular ECC scheme. The two classes of logic functions identified in

our study are linear or non-linear functions. The resulting annotated logic network is then decoded

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 24 of (110) © i-RISC

using an additional logic network associated to the chosen ECC. Based on where we perform

decoding, we can have the following scenarios:

 Symmetric: encoding and decoding processes are on chip, and hence affected by same faulty

conditions;

o iRISC developed LDPC decoder architectures are valid candidates for the ECC

schemes.

 Asymmetric: the decoding process is performed offline and hence it is assumed that it is not

affected by faults.

o Allows the use of generic ECC.

The complete methodology of Codeword Protection Encoding (CPE) is detailed in Deliverable D5.2 [i-

RISC/D5.2] and the CPE based graph augmentation flow is depicted in Figure 2-7.

2.3. A Case Study

In this section, the potential practical implications of the proposed reliability aware synthesis tool are

evaluated. The total improvement achieved in terms of circuit reliability is evaluated by performing a

set of simulations. The proposed reliability aware synthesis algorithm is applied on the MCNC

benchmark circuit ‘C6288’, which implements a 32-input 32-output logic function. Simulation results

comparing the average circuit output errors corresponding to the original, the optimized

configuration, and the CPE based approach obtained from our tool for different technologies, i.e.,

basic gate error probability, are reported in Table 2-1. The individual gate error is given in column 1,

while column 2 and 3 presents the output error probability of the original and the optimized circuit,

respectively. Column 4 list the reliability improvement in % achieved by means of the optimization

procedure. Columns 5(6), 7(8), and 9(10) summarize the output error probability and the error

probability improvement achieved by employing the CPE approach, for different gate Critical

Threshold (CT) values.

Table 2-1: Case Study - C6288 Reliability Evaluation

Gate_Err Original Optimized %Imp
CPE

CT==00 %Imp CT==05 %Imp CT==10 %Imp

0.10 0.48 0.47 0.63 0.48 -1.39 0.44 7.96 0.46 2.29

0.05 0.46 0.46 0.22 0.48 -4.24 0.39 14.63 0.41 11.45

0.02 0.45 0.44 2.01 0.46 -1.92 0.31 30.65 0.34 23.51

0.01 0.42 0.42 0.94 0.45 -7.17 0.28 33.00 0.31 26.75

0.01 0.36 0.37 4.20 0.42 -18.26 0.17 53.31 0.25 28.68

0.00 0.25 0.26 1.99 0.34 -37.33 0.06 76.86 0.14 46.06

0.00 0.17 0.16 5.42 0.29 -72.05 0.02 89.56 0.04 76.13

0.00 0.09 0.10 14.88 0.19 -120.35 0.00 94.71 0.02 75.40

0.00 0.04 0.04 4.04 0.07 -57.20 0.00 97.31 0.01 87.83

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 25 of (110)

0.00 0.02 0.02 7.91 0.03 -55.25 0.00 97.01 0.00 84.53

0.00 0.01 0.01 7.72 0.02 -94.50 0.00 97.72 0.00 89.43

0.00 0.00 0.00 15.70 0.01 -71.85 0.00 98.08 0.00 88.57

0.00 0.00 0.00 5.56 0.00 -43.15 0.00 98.03 0.00 90.70

From the table, it is clear that significant SER reduction can be achieved (at the expense of negligible

area overhead) by employing the optimisation algorithms (columns 2, 3, 4). A very good reliability

performance is observed in case of CPE implementation for large CT values. But the current

limitations with the CPE are the large extra gate count due to the parity circuit and the number of

gates that have to be safeguarded (represented by CT in %).

2.4. Conclusion

In this section, we summarized the activities related to the development of the reliability aware

synthesis tool. We proposed an integrated design flow, which combines all the up to date developed

i-RISC custom tools together with widely used tools in the circuit design industry. We also presented

a case study, which demonstrates that both the optimization algorithm as well as the fault tolerant

techniques can contribute to a significant circuit reliability improvement. While the tools are

integrated in a complete flow with proven functionality, there a number of issues, which still need to

be addressed. Going forward, this flow will be used:

 To improve upon the initial work of the reliability computation techniques and the graph

optimization algorithms.

 To systematically optimize the circuits to improve reliability within a multi-objective

optimization framework.

 To validate and to characterize the circuits proposed as part of proof of concept within i-

RISC.

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 26 of (110) © i-RISC

3. Evaluation of LDPC Decoders in Fault Inducing Environments

Abstract: A desideratum of computing circuits built out of current technology nodes unreliable

devices is fault tolerance. A circuit, which is robust to environmental aggression (e.g., supply voltage

variation, temperature, and cosmic radiation), enables an improved dependability profile and

potentially extended useful lifetime expectancy. Moreover it provides a certain noise immunity,

which one may trade for energy consumption by means of power supply scaling. In this section we

perform a fault tolerance assessment of state-of-the-art and i-RISC proposed LDPC decoders

introduced in WP3. In particular we evaluate Min-Sum (MS), Self-Corrected Min-Sum (SCMS), Finite

Alphabet Iterative Decoder (FAID), Stochastic, Gradient Descent Bit Flipping (GDBF), Probabilistic

GDBF (PGDBF), and Gallager B decoders for a codeword length N=1296 and R=0.5 as described in

Section 3.4.2. All decoders are implemented in VHDL/Verilog and are exposed to external aggression

via two approaches, which emulate in different ways in-field real-life scenarios, namely voltage

scaling and judicious fault injection. The decoder performance expressed in terms of Bit-Error-Rate

(BER), Frame-Error-Rate (FER), energy consumption/bit, throughput, average number of iterations,

maximum operation frequency, area, is evaluated for each LDPC decoder architecture, over different

scenarios (i.e., different CMOS process and voltage corners, communication channel types, i.e.,

Binary Symmetric Channel (BSC) and Additive White Gaussian Noise (AWGN) channel). Based on

performance and reliability profile of the comprising basic building blocks, the considered decoders

architectures are compared, towards substantiating a fault-tolerant proof-of-concept LDPC decoder

architecture.

3.1. Introduction

Nowadays, the shrinking of transistor sizes has reached a level where it is extremely difficult, if not

impossible, to provide reliable transistors that can properly work all the time without experiencing

faults. In this condition, building reliable chips out of unreliable transistors has been a major topic in

the cutting edge VLSI research where the reliability is the main issue. Therefore, the evaluation of

reliable systems in the presence of faulty components is critically important. In this section, we

evaluate state of the art LDPC decoders built out of unreliable components. Different methods to

evaluate faulty LDPC decoders exist, and C-simulation based evaluations where reported in [i-

RISC/D3.1] and [i-RISC/D3.2] for simple theoretical error models. In this section we target real

hardware based evaluations. Given that LDPC decoder ASIC design and fabrication is out of the i-RISC

project scope we rely on FPGA based fast prototyping. We implement at Register Transfer Level

(RTL) in VHDL/Verilog, debug and map on a Xilinx Virtex-7 FPGA seven types of LDPC decoders, i.e.,

Min-Sum (MS), Self-Corrected Min-Sum (SCMS), Finite Alphabet Iterative Decoder (FAID), Stochastic,

Gradient Descent Bit Flipping (GDBF), Probabilistic GDBF (PGDBF), and Gallager B, for a codeword

length N=1296 and R=0.5. To have realistic results, we develop an experimental hardware platform

(described in Section 3.2), which allows for decoder evaluations under different channel conditions

and timing faults induced by diminishing the power supply voltage Vdd under its nominal value. In

this way we can modulate the fault presence rate by means of the Vdd value, i.e., the lower the Vdd

value the higher the fault rate. The voltage scaling method is quite effective in inducing timing faults

all over the circuit but does not provide us the means to control their occurrence location on the

decoder real estate. Given that in real life situations fault density and location are related to

architectural and implementation details we also performed a specific fault injection as described in

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 27 of (110)

Section 3.3. In this endeavor we create a fault map reflecting the contribution of the internal

organization of each basic building blocks to the fault error rate of its outputs. As augmenting the

FPGA decoder implementation with fault injection specific extra circuitry results in a large area

overhead and the FPGA fault injection process is very slow we decide to make use of simulated fault

injection by means of a mixed simulation environment. In this way we can still fully control the fault

location, according to the fault map reflecting the reliability of each internal decoder component,

and collect performance data faster than by means of a hardware only fault injection approach.

The implemented decoders are evaluated in both scenarios in terms of: (i) decoding performance,

specifically Frame Error Rate (FER) and Bit Error Rate (BER), (ii) average number of iterations, (iii)

throughput (Mb/s) normalized to BER/FER, (vi) energy/bit (pJ/bit) normalized to BER/FER.

For the voltage scaling we introduce an additional metric the Voltage Scaling Sensitivity (VSS), which

is meant to capture the way a decoder reacts to the voltage scaling process and provides inside on:

(i) the decoder potential to save energy while providing its expected performance and (ii) how much

performance one can still get in situations when the energy source is confined. Our experiments

suggest that voltage scaling may result in energy savings between 45% and 67%, while preserving

the nominal throughput and error correction performance.

Similarly, for the second scenario, we introduce the Frequency Scaling Sensitivity (FSS) metric, which

provides inside on: (i) the decoder potential to increase throughput by means of overclocking, while

providing its expected performance and (ii) how much overclocking one can still resort to if channel

conditions permit. In this case our experiments indicate that decoder overclocking may result in

throughput increase between 77% and 150%, while preserving the nominal error correction

performance.

3.2. Voltage Scaling Evaluation Framework

To facilitate the real hardware based LDPC decoder evaluation, we develop an experimental

hardware platform [Marconi15] that consists of a laptop and a Xilinx VC707 board as depicted in

Figure 3-1. The laptop is dedicated to the following activities:

 Designing the hardware platform targeting Xilinx Virtex-7 FPGA: XC7VX485TFFG1761-2 inside

the Xilinx board and generating the bitstream files.

 Downloading the bitstream files for FPGA hardware and the software files for the MicroBlaze

through the USB JTAG interface.

 Monitoring/capturing the number of iterations and decoding outcomes, FER, and BER

through the USB UART.

 Measuring Energy/bit using the Fusion Digital Power Designer from Texas Instrument

through Texas Instrument USB Interface adapter by reading PMBus, and accessing Power

Supply Monitor and Controller inside the board.

To build the evaluation hardware support, i.e., the AWGN/BSC channel emulator, the Binary Phase

Shift Keying (BPSK) modulator, any other functionality for evaluation purpose, and the decoders, the

Xilinx board is utilized. The MicroBlaze processor, resident on the Virtex-7 FPGA fabric, in

collaboration with the LDPC Monitoring and Controller (MC) module mainly acts as the evaluation

hardware support by accessing software and data stored in FPGA memory (BRAM) and external

DDR3 memory. MC monitors the decoding outcome and conveys quantized probabilities or Log-

Likelihood Ratios (LLRs) from the MicroBlaze to the evaluated decoder. The two possible outcomes of

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 28 of (110) © i-RISC

the decoding process are: (i) “success” and (ii) “give up”. If all decoder check nodes are satisfied, the

outcome is “success”. In the case that not all check nodes can be satisfied after the maximum

number of iterations, the system reports “give up”. The MicroBlaze processor utilizes these

outcomes for computing the statistical results of the experiments, i.e., BER, FER, and average number

of decoding iterations. The laptop displays the experimental results received from FPGA board

through USB UART interface.

Figure 3-1: Experimental Hardware Platform

The current platform provides these features: (i) it is configurable for various LDPC decoders (e.g.,

MS, SCMS, FAID, Stochastic), (ii) allows for easy integration of any evaluated decoders due to a

common interface approach, (iii) provides voltage scaling support and enable power/energy

measurement due to its ability to access directly the PMBus of Power Supply Monitor and Controller

through the I2C interface, and (iv) can evaluate decoders under both AWGN and BSC channels.

Figure 3-2: Top Level Representation of the LDPC Testbed

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 29 of (110)

Figure 3-2 presents organization of the testbed we utilize to evaluate the performance of the FPGA

implemented LDPC decoders, which contains the following blocks:

 Binary Source: Generates the source bit-stream (information word).

 LDPC encoder: Generates the encoded bit-stream (codeword).

 Channel: Emulates the transmission channel (either BSC or Bi-AWGN channel).

 Detection: Computes the quantized LLR or probability values. We note that the number of

quantization bits depends on the LDPC decoder, as follows:

 1-bit LLR quantization for Gallager-B, GDBF, and PGDBF,

 3-bit LLR quantization for FAID,

 4-bit LLR quantization for MS and SCMS,

 6-bit probability quantization for Stochastic.

 LDPC decoder: Implements the LDPC decoding; supported decoders are Stochastic, Gallager-

B, GDBF, PGDBF, FAID, MS, and SCMS.

 Statistics: Computes BER/FER and the average number of decoding iterations.

All testbed blocks except the LDPC decoder are implemented in C and are executed on the

MicroBlaze. The LDPC decoders are implemented on the Virtex-7 FPGA. The decoders under test are

evaluated in terms of: (i) decoding performance, specifically FER and BER, (ii) average number of

iterations, (iii) throughput (Mb/s) normalized to BER/FER, and (iv) energy/bit (pJ/bit) normalized to

BER/FER.

Moreover, specially tailored for voltage scaling based evaluation of LDPC decoders we introduce a

new metric called Voltage Scaling Sensitivity (VSS), which is meant to capture the way a decoder

reacts to the voltage scaling process. To this end we propose to capture two aspects:

 Performance Preservation Region (PPR), i.e., the voltage interval starting down from the

nominal Vdd value in which the decoder preserves its performance, i.e., PPR = Vdd − Vpp,

where Vpp is the power supply value at each performance degradation starts occurring.

 Performance Degradation Region (PDR), i.e., the voltage interval starting down from Vpp

value in which the decoder performance degrades but it still provides some useful results,

i.e., PDR = Vpp − Vpd, where Vpd is the power supply value at which the decoder is not

functional any longer (FER gets almost 1).

PPR tells us about the decoder potential to save energy while providing its expected performance.

This is the region in which one can save energy by means of voltage scaling if channel conditions

permit. PDR tells us about how much performance one can still get in situations when the energy

source is confined. This operation region is meant for situations when the system is in energy

shortage but given that some minimum service is required it should not be shut down if still

possible.

We note that both PPR and PDR values depend on the channel conditions thus we can compare only

the decoders operating on the same channel type per each SNR/crossover probability value.

Additionally, when determining the Vpp and Vpd values based on the voltage scaling based evaluation

results we should recall that FER/BER figures are obtained by means of Monte Carlo simulations and

we have to treat them as such.

Thus the Vpp and Vpd calculations have to be done in a way that takes into consideration this aspect

and in a coherent way for all decoders. Given that small FER/BER differences may not hold true or

even worse change the sign between different simulation runs we should go for a certain uncertainty

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 30 of (110) © i-RISC

interval, let us say the performance is still nominal within an x% margin and the decoder stops

functioning if FER in an y% vicinity of 1. Details on the Vpp and Vpd calculations are provided in

Section 3.6.1.

We should note that while VSS can provide great inside into the decoder behavior one couldn’t draw

any generally valuable conclusion by comparing decoders in terms of PPR and PDR only. They put

things into the right prospective for the evaluated FPGA decoder implementations under scrutiny but

the ranking may not hold true for ASIC or on different decoder designs.

To facilitate the easy integration of different decoder types into the evaluation framework we define

a common decoder entity described in Table 3-1.

Table 3-1: Decoder Common Interface Port Description

Port Name In/Out Size [bits] Function

clk I 1 clock signal

rst I 1 reset active high

start I 1 ‘1’ to start decoding

load_data_in I 1 ‘1’ to load load_data_in(n_value)

n_value I 11 a current bit position

data_in I 6 soft messages

max_iter I 11 the maximum number of interations

done O 1 ‘1’ -> decoding is done

give_up O 1 ‘1’ -> the decoder gives up

data_out O 1296 the decoded codeword

iteration O 11 the number of iterations

Similar to [Marconi14], the voltage scaling and power/energy measurement are performed by

accessing directly the PMBus of Power Supply Monitor and Controller through the I2C interface. The

MicroBlaze communicates with the evaluated decoders via the proposed common interface as

follows:

1. The MicroBlaze sets the maximum number of iterations to the max_iter input.

2. The MicroBlaze resets the decoder by applying a pulse ‘1’ to the rst input.

3. The MicroBlaze puts serially the quantized soft messages (i.e., LLRs or probabilities) in

data_in input. Every time the evaluated decoder receives a pulse ‘1’ at the load_data_in

input initiated by the MicroBlaze, the decoder needs to fetch the data to the specific bit of

the messages to its internal memory addressed by the n_value input coming from the

MicroBlaze.

4. The decoder starts decoding when it receives a pulse ‘1’ at start input initiated by the

MicroBlaze.

5. After the decoding is done, the decoder sends (i) the done signal by putting ‘1’ at the done

input, (ii) the decoding outcome to the give_up output (i.e., ‘1’ if the decoder gives up,

otherwise ‘0’), (iii) the number of iterations to iteration output, and (iv) the decoded

codeword to data_out output.

6. The information from step 5 is utilized by the MicroBlaze to compute the statistical results of

the experiment (i.e., BER, FER, average number of decoding iterations, energy/bit, and

throughput).

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 31 of (110)

3.3. Fault Injection Evaluation Framework

As explained in Section 3.1 Simulated Fault Injection (SFI) presents the advantage of better

observability and fault insertion selective control when compared with voltage scaling, which creates

time errors all over the circuit. SFI based methods allow to alter specific locations in the decoder,

while other blocks may still exhibit a correct behavior. Thus, SFI can be also utilized to determine

which decoder components have the most significant impact on their reliability.

Regarding the SFI methodology, we employ a multi-level evaluation procedure for Register Transfer

Level (RTL) descriptions, similar to the one described in Deliverable D2.2 [i-RISC/D2.2]. In the first

phase, reliability measures are derived for each and every decoder building block. These measures

are computed by using standard cell statistical timing characterization and Probability Density

Function (PDF) propagation. The second phase consists in applying saboteur based SFI on the LDPC

decoder RTL description. By employing this type of hierarchical analysis, we aim to combine the

accuracy of circuit-level analysis with the low simulation overhead characteristic to RTL based

evaluations.

Regarding the fault locations, we decided to only alter data path element outputs, and to let control

units, as well as input-output interfaces error-free. This relates to the fact that injecting faults into

the control unit can create severe disruptions in the LDPC decoder’s data flow, such as

reading/writing messages from/to incorrect memory addresses or routing messages to the

inappropriate processing units, which might make the decoder unable to perform the LDPC decoding

algorithms. We note that this is a realistic assumption as in real-life designs it is rather common to

take design measures in order to make controllers more robust that data-paths.

The decoders under test are evaluated in terms of decoding performance, specifically FER and BER,

and average number of iterations. Moreover, similar to the voltage-scaling scenario, we introduce a

new metric called Frequency Scaling Sensitivity (FSS), which is meant to capture the way a decoder

reacts to the frequency scaling process. To this end we capture the following aspects:

 Performance Preservation Region (PPR), i.e., the timing interval starting down from the

nominal Tclk value in which the decoder preserves its performance, i.e., PPR = Tclk − Tpp,

where Tpp is the clock period value at each performance degradation starts occurring.

 Performance Degradation Region (PDR), i.e., the timing interval starting down from Tpp

value in which the decoder performance degrades but it still provides some useful results,

i.e., PDR = Tpp − Tpd, where Tpd is the clock period value at which the decoder is not

functional any longer (FER gets almost 1).

PPR tells us about the decoder potential to increase clock frequency while providing its expected

performance. This is the region in which one can increase throughput by means of overclocking,

without any degradation of the decoding performance. PDR tells us about how much overclocking

one can still resort to if channel conditions permit. Tpp and Tpd calculations are further detailed in

Section 3.6.1.8. While FSS can provide great inside into the decoder behavior, we note however that

Tpp and Tpd values are determined based on simulated fault injection and not by actual overclocking

of the design, and therefore we have to treat them as such.

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 32 of (110) © i-RISC

3.3.1. Fault Simulation Framework

Our main goal is the evaluation of the faulty decoders’ error correction capability (measured in Bit

Error Rate (BER) and Frame Error Rate (FER)) under different channel parameters (Signal-to-Noise

Ratio (SNR) for Binary Additive White Gaussian Noise (BI-AWGN) channel model and crossover

probability for Binary Symmetric Channel (BSC) channel model), rather than the failure rate with

respect to the correct LDPC decoder implementation. In order to perform this type of analysis we

developed a dedicated System Verilog framework. We perform the hardware simulations using

Modelsim 10.02.c commercial HDL simulator, while the DPI-C interface is utilized in order to perform

RTL Verilog/VHDL description – transmission chain C++ model co-simulations.

Figure 3-3: Simulated Fault Injection Framework

The SFI framework is described in Figure 3-3 and consists of:

1. Transmission chain C++ model – it is used to generate the appropriate input data frames for

different channel noise models and parameters, compare the decoder output with the

correct codewords, and compute the BER and FER figures.

2. System Verilog wrapper and interface – it has the role to extract the inputs frameworks

generated by the C++ decoder simulator and feed them to the RTL LDPC decoder description,

as well as to capture the output of the RTL description of the LDPC decoder and transmit it to

the C++ simulator.

3. Fault Injected RTL description of LDPC decoders.

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 33 of (110)

Figure 3-4: Saboteur Insertion in Combinational Logic

The chosen fault injection methodology is based on probabilistic saboteurs as indicated in Figure 3-4.

Given that we are mainly targeting timing faults, which manifest only at output transitions, the

employed saboteurs use a switch detection signal and a random number generator (Verilog $random

system call). The latter is required to generate probabilistic faults. Regarding the sabotaged modules,

we alter the outputs of combinational components and of memory blocks in the evaluated decoders.

3.3.2. Decoder Basic Block Error Profile Characterization

This section is concerned with the error profile characterization of the basic building blocks utilized to

construct the LDPC deciders under investigation. The main goal it to derive the error profile block

Primary Outputs (POs), which further serves as guidance mean for judiciously performing fault

injection. In this endeavor we assume that decoder basic blocks are implemented by means of a

standard cell CMOS technology and derive their POs error profiles and their direct implications on

performing fault injection, by traversing the following steps:

 Perform standard cells statistical timing characterization when exposing them to process and

voltage variations.

 Identify the worst propagation path for each PO by means of timing analysis.

 Derive each PO delay distribution (statistical moments) based on the timing profile of the

afferent path standard cells constituents.

 Assess each PO error profile for based on its delay distribution.

By following this procedure we present the simulation results obtained for the main combinational

and sequential logic blocks for four varieties of LDPC decoders: Min-Sum (MS) decoder, Self-

Corrected Min-Sum (SCMS) decoder, Finite Alphabet Iterative Decoder (FAID), and Stochastic

Decoder (SD).

Our approach relies on the RTL/gate abstraction level fault tolerance aware design flow illustrated in

Figure 3-5. We note that in the reign of silicon structures fundamental randomness, a device

operation is better described as a stochastic process. For process and voltage variations likely to be

encountered by a given circuit during run-time, a circuit path delay is a random variable and

therefore a primary objective to enable error profiling and further fault-tolerance analysis, is to

compute this random variation characteristics (e.g., distribution, statistical moments). To this end,

first a Standard Cells (SCs) library is augmented with appropriate delay statistical characteristics. A

circuit specified at the RTL level for instance, is synthesized using the library SCs.

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 34 of (110) © i-RISC

Figure 3-5: Fault Tolerance Aware Design Flow at RTL/gate Abstraction Level

A static timing analysis is subsequently performed to determine the worst timing path for each

primary output of the circuit. A primary output delay statistics can then derived based on the delay

statistics of the SCs composing the primary output path. Based on the delay statistics, the probability

profile for the output to be in an erroneous logic state easily follows. The error profile for each circuit

primary output is of interest, as it enables to judiciously inject faults in the circuit for subsequent

circuit fault-tolerance aware optimizations.

3.3.2.1. Standard cells statistical timing characterization

The first step in the flow depicted in Figure 3-5, consists in the statistical timing characterization of

the standard cells in a technology library. Specifically, each standard cell is augmented with its

propagation delay probability distribution over different process and voltage corners, according to

the methodology presented in Deliverable D2.1 [i-RISC/D2.1].

Generally speaking, each standard cell operating in sub-threshold regime is exposed to normally

distributed process (e.g., the cell comprising CMOS transistors oxide thickness and threshold voltage)

and voltage (e.g., the supply voltage) variations. For each sampling set of process and voltage

variation data, the cell propagation delay is derived as a mean between the measured rising and

falling propagation delays which correspond to the two possible output switching situations, i.e., the

output undergoing transition from logic “1” to logic “0”, and viceversa. The set of cell propagation

delay values obtained for all process and voltage corner cases, is found to exhibit the same

Probability Density Function (PDF) trend for all standard cells, namely, it follows an Inverse Gaussian

(IG) distribution [i-RISC/D2.1].

The set of standard cells we utilize in this section is comprised of 45nm CMOS {NAND2, INV, DFF}

cells (corresponding to a NAND gate, an inverter gate, and a D flip-flop, respectively), with driving

strength X1. Instead of the commonly employed set of logic gates, i.e., NOT, AND, OR, XOR, NAND,

NOR, XNOR, we opted for the universal NAND gates as they best serve the purpose of our

 SC logic gates

library
 PVT corners

 SC with statistic delay

characterization

 Function library

HDL

Timing

analysis

Fault

injection

 POs error

profile

Fault tolerance

constraints

 Fault & error

models

RTL synthesis

Place & Route

Statistical timing characterization Fault tolerance aware design and validation flow

POs – circuit Primary Outputs

SC – Standard Cells

PVT – Process, Voltage and Temperature

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 35 of (110)

investigations, but also due to their salient features such as modularity, regularity, and logic flexibility

to perform a variety of logic functions, as well as their potential in RTL circuit optimization, which

may lead to a faster and/or more compact circuit.

Figure 3-6: SC Propagation Delay PDF

Figure 3-6 depicts the obtained propagation delay Probability Density Function (PDF), which is given

by an Inverse Gaussian distribution with the parameters summarized in Table 3-2, for each standard

cell in our library.

Table 3-2: SC Propagation Delay IG Distribution Parameters

Standard Cell
IG parameters

Mean 𝝁 [10−11] Shape 𝝀 [10−10]

INV 5.3 9.5

NAND2 7.1 9.5

DFF 35 40.3

3.3.2.2. Circuit primary outputs error profile characterization

As graphically illustrated in Figure 3-5, the second step is first concerned with the error profile

characterization for each primary output of a given circuit, based on: (i) each of its primary outputs

worst timing path and (ii) the SCs propagation delay PDFs obtained at the previous step described in

Section 3.3.2.1.

For a given circuit, specified at RTL level for instance, logic synthesis is first performed using a

commercial tool, e.g., Synopsys DC compiler, Cadence RTL Encounter, and the circuit is mapped into

the {NAND2, INV, DFF} standard cells. A static timing analysis is then carried out in order to

determine for each circuit PO its worst timing path, i.e., the longest sensitizable path from a primary

input to the primary output under consideration.

For illustrative reason, we employ as discussion vehicle a sole primary output of a certain circuit: the

output corresponding to the circuit timing critical path (under the assumption that the circuit has a

single critical path). The delay profile of the output can then be derived by a linear superposition of

the individual path SC constituents delay profiles [i-RISC/D2.1]. For instance, for a critical path being

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 36 of (110) © i-RISC

composed of 2 INV cells and 3 NAND2 cells, the mean 𝜇𝑜 and shape 𝜆𝑜 parameters of the IG output

propagation delay distribution are approximated as:

{
𝜇𝑜 = 2 ∙ 𝜇𝐼𝑁𝑉 + 3 ∙ 𝜇𝑁𝐴𝑁𝐷2

𝜆𝑜 = 2 ∙ 𝜆𝐼𝑁𝑉 + 3 ∙ 𝜆𝑁𝐴𝑁𝐷2

The Probability Density Function (PDF) and Cumulative Distribution Function (CDF) associated to the

output propagation delay are depicted in Figure 3-7 and Figure 3-8, respectively, for the critical path

output case discussed above.

Note that (CDF) and PDF of a random variable – the output propagation delay in this case – can be

derived from one another by means of integration and differentiation. In the sequel we opt for CDF,

as it conveys more straightforwardly the probability figures for subsequent derivation of the output

delay error profile. Given the IG statistical moments of the output delay random variable, the

probability of the delay to have a value less than or equal to a certain value 𝜏𝑝𝐿, can be

straightforwardly determined from the associated CDF. The direct implication is that based on a CDF,

a timing error profile can be easily deduced, for given path delay constraints. Specifically, the

probability 𝐶𝐷𝐹(𝜏𝑝𝐿) that a 𝜏𝑝𝐿 timing constraint is satisfied (i.e., the output path delay is smaller

than 𝜏𝑝𝐿) reflects the probability of the output signal to be in error. A smaller CDF probability for a

delay constraint implies a higher probability that the output signal is in erroneous logic state. The

inverse proportional relation between the output delay CDF probability and the output signal error

probability is graphically illustrated in Figure 3-8 by the CDF curve gradient color (from red – higher

error probability, to green – lower error probability).

Figure 3-7: Output Propagation Delay IG PDF Figure 3-8: Output Propagation Delay IG CDF

The error profile of each circuit PO serves further as guidance mean for the fault injection

techniques. For instance, in Figure 3-8, for 𝜏𝑝 ∈ [0, 𝜏𝑝𝐿) the output signal probability to be in an

erroneous state is very high, which implies that in this case the path exhibits an increased degree of

susceptibility to faults and errors, and thus this situation should be avoided in the context of fault

injection scenarios. Following the same line of reasoning, for 𝜏𝑝 > 𝜏𝑝𝐻 the output signal error

probability is very low, which implies that the path in this situation is reliable over process and

voltage variations, and thus its suitability for fault tolerance related analysis and optimization is

precluded. Hence, the interval of interest for judicious fault injection is given by 𝜏𝑝 ∈ [𝜏𝑝𝐿 , 𝜏𝑝𝐻].

𝑃𝐷𝐹(𝜏𝑝𝐿)Δ = 𝑃(𝜏𝑝𝐿 < 𝜏𝑝 ≤ 𝜏𝑝𝐿 + Δ) 𝐶𝐷𝐹(𝜏𝑝𝐿) = 𝑃(𝜏𝑝 ≤ 𝜏𝑝𝐿)

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 37 of (110)

Figure 3-9: Circuit POs Delay CDFs

Figure 3-9 reflects the error profile of a circuit with three primary outputs, denoted by 𝑂1, 𝑂2, and

𝑂3, which has a maximum delay (clock period) equal to 𝜏𝑐𝑙𝑘. Based on the POs error profiles the

circuit fault tolerance status can be assessed for varying propagation delays (as a results of

faults/errors), which may or may not satisfy the maximum clock constraint. For each sample value 𝜏,

it can be deduced from the POs error profiles which are the best suited outputs for fault injection – in

this case, it can be observed in Figure 3-9, that 𝑂2 is better suited for fault injection, as 𝑂3 and 𝑂1

have a low and respectively a high error probability, and thus shall be disregarded for fault injection.

Thus, based on POs error profiles, for its given maximum clock period 𝜏𝑐𝑙𝑘, the most suitable output

for fault injection can be selected.

Using the above methodology, the basic building blocks of four LDPC decoders are characterized in

the following subsection.

3.3.2.3. Error profile simulation results for LDPC decoders

Four LDPC decoder architectures specified at RTL level are considered, namely: MS, SCMS, FAID, and

SD. Note that all decoders are synchronous and mainly divided into the following logic blocks:

Variable Node processing Unit (VNU), Check Node processing Unit (CNU), barrel shifter, memory

blocks, and finite state machine for the control signals. The decoders’ architecture synopsis and the

ports description are presented in detail in Section 3.5.

Blocks, which are proprietary to decoder architecture, e.g., VNU, are individually characterized for

each decoder. For convenience, the logic blocks which are common to all decoders, i.e., the CNU

block, the barrel shifter and the memory blocks, will have their error profile results presented only

once – in the MS decoder.

For each decoder architecture statistical delay and error profile figures are presented in a

hierarchical manner, i.e., block-wise, for each output. Specifically, we analyze the following:

 For the MS decoder: 3 combinational stages of the CNU logic, 4 combinational stages of the

VNU logic, barrel shifter, and memory block.

 For the SCMS decoder: 5 combinational stages of the VNU unit.

 For the FAID decoder: 3 combinational stages and LUT of the VNU logic.

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 38 of (110) © i-RISC

 For the SD decoder: 1 combinational stage CNU, 1 combinational stage VNU, and Random

Number Generator (RNG) comparator.

For each basic building block of the considered decoders, all output signals are characterized with

respect to their error profile over voltage and CMOS process variations and their afferent CDF is

obtained. Table 3-3 to Table 3-6 summarize the worst timing path constituent standard cells for each

output signal. Using the statistical characterization of the standard cells over processes and voltage

variations, the CDF curve for each output is derived, according to the method described above.

Figure 3-10 to Figure 3-30 depict the CDF curves for each output, decoder building block wise.

Based on these CDF curves, the outputs more prone to a faulty behavior provide the guidelines for

performing a judicious fault injection, as presented in Section 3.3.3.

Figure 3-10: MS Decoder CNU Combinational Stage 1 Figure 3-11: MS Decoder CNU Combinational Stage 2

Figure 3-12: MS Decoder CNU Combinational Stage 3

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 39 of (110)

Figure 3-13: MS Decoder VNU Combinational Stage 1 Figure 3-14: MS Decoder VNU Combinational Stage 2

Figure 3-15: MS Decoder VNU Combinational Stage 3 Figure 3-16: MS Decoder VNU Combinational Stage 4

Figure 3-17: MS Decoder Barrel Shifter Figure 3-18: MS Decoder Memory Block

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 40 of (110) © i-RISC

Figure 3-19: SCMS Decoder VNU Combinational Stage
1

Figure 3-20: SCMS Decoder VNU Combinational Stage
2

Figure 3-21: SCMS Decoder VNU Combinational Stage
3

Figure 3-22: SCMS Decoder VNU Combinational Stage
4

Figure 3-23: SCMS Decoder VNU Combinational Stage 5

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 41 of (110)

Figure 3-24: FAID Decoder VNU Combinational Stage 1 Figure 3-25: FAID Decoder VNU Combinational Stage 2

Figure 3-26: FAID Decoder VNU LUT Figure 3-27: FAID Decoder VNU Out Stage

Figure 3-28: SD Decoder VNU Combinational Stage Figure 3-29: SD Decoder CNU Combinational Stage

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 42 of (110) © i-RISC

Figure 3-30: SD Decoder RNG

Table 3-3: FAID Decoder

FAID Decoder Output signal # INV # NAND2 Legend

FAID VNU combinational Stage 1

 beta_c2[0] 4 6

 beta_c2[1] 5 9

 beta_c2[2] 4 8

FAID VNU Combinational Stage 2

 gama_mac_nxt[5] 3 13

 gama_mac_nxt[4] 3 11

 gama_mac_nxt[3] 3 9

 gama_mac_nxt[2] 3 7

 gama_mac_nxt[1] 3 6

 gama_mac_nxt[0] 2 3

FAID VNU LUT

 alfa_out_lut[0] 7 8

 alfa_out_lut[1] 8 9

 alfa_out_lut[2] 5 6

SCMS VNU Out Stage

 alfa_out_nxt[2:0] 3 4

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 43 of (110)

Table 3-4: MS Decoder

MS Decoder Output signal # INV # NAND2 #DFF Legend

MS CNU combinational stage 1

 sign_alfa_nxt 2 - -

 alfa_sat_sm[2] 3 5 -

 alfa_sat_sm[1:0] 2 3 -

MS CNU combinational stage 2

 sign_beta_nxt[5:0] 4 8 -

 min2_nxt[2:0] 4 8 -

 min1_nxt[2:0] 5 15 -

 index_comp_nxt[2:0] 4 8 -

MS CNU combinational stage 3

 sign_beta_nxt_out[5:4]

[1:0] 4 5 -

 sign_beta_nxt_out[3:2] 3 5 -

 sign_beta_nxt_out[1:0] 4 5 -

MS VNU Combinational Stage 1

 beta_c2[3],[1] 5 9 -

 beta_c2[2] 6 10 -

 beta_c2[0] 4 6 -

MS VNU Combinational Stage 2

 gama_mac_nxt[6:5] 4 12 -

 gama_mac_nxt[4] 4 10 -

 gama_mac_nxt[3] 3 9 -

 gama_mac_nxt[2] 3 7 -

 gama_mac_nxt[1] 3 6 -

 gama_mac_nxt[0] 2 4 -

MS VNU Combinational Stage 3

 gama_res_nxt[6:0] 1 2 -

MS Decoder VNU Combinational Stage 4

 alfa_sat[3] 3 8 -

 alfa_sat[2:0] 5 13 -

MS Decoder Barrel Shifter

 shifter_output_case2 (*) 1 12 -

 shifter_output_case1 (*) 1 10 -

MS Decoder Memory Block

 mem_out 4 3 1

(*) The signal shifter_output_case1 corresponds to the following bits of the shifter output signal:
0,1,2,3,4,5,6,7,8,9,11,13,14,15,16,17,18,19,20,21,22,23,24,25,26,28,29,30,32,33,35,36,37,38,39

,40,41,42,43,44,45,46,47,48,49,50,51,52,53 while the signal shifter_output_case2 corresponds to the following
bits of the shifter output signal: 10,12,34,27,31.

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 44 of (110) © i-RISC

Table 3-5: SCMS Decoder

SCMS Decoder Output signal # INV # NAND2 Legend

SCMS VNU combinational stage 1

 beta_c2[3],[1] 5 9

 beta_c2[2] 6 10

 beta_c2[0] 4 6

SCMS VNU Combinational Stage 2

 gama_mac_nxt[6:5] 4 12

 gama_mac_nxt[4] 4 10

 gama_mac_nxt[3] 3 9

 gama_mac_nxt[2] 3 7

 gama_mac_nxt[1] 3 6

 gama_mac_nxt[0] 2 4

SCMS VNU Combinational Stage 3

 gama_res_nxt[6:0] 1 2

SCMS VNU Combinational Stage 4

 alfa_sat[3] 5 17

 alfa_sat[2:0] 6 21

 erasure_nxt 5 16

SCMS VNU Combinational Stage 5

 alfa_out_nxt[3:0] 3 4

 erasure_out_nxt 3 3

 alfa_sign_out_nxt 5 4

Table 3-6: SD Decoder

SD Decoder Output signal # INV # NAND2 Legend

SD VNU combinational Stage

 F 5 10

 U_init_out 3 4

 F_and_init_out 1 3

SD CNU Combinational Stage

 cnu_out 3 6

SD RNG

 F 2 11

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 45 of (110)

3.3.3. Fault Map Generation

We recall that the SFI based evaluation purpose is to analyze the LDPC decoder error correction

capability under timing violations, which are due to the overclocking at very low supply voltages. To

this end we introduced saboteurs at the outputs of any combinational component located between

two registers (a pipeline stage) and at the memory blocks outputs. To let saboteurs capture as

accurate as possible real life situations we have now to deduce their error probabilities setting based

on the CDFs derived in the previous section.

We note that the LDPC decoders have been designed for a single clock domain. Therefore,

combinational stages with lower latencies are expected to present lower failure probability when

compared with stages with higher latencies for a given clock period. Furthermore, as indicated by the

CDFs for each stage presented in Figure 3-10 to Figure 3-30 the error probabilities of individual

outputs for a specific combinational stage differ due to the different latency from the input to that

particular output. Thus, the failure probabilities for each output of each stage for a given clock period

can be extracted from the CDFs in the Figures. By considering this type of error distribution and

probability, dependent on clock frequency, we simulate in an accurate and realistic way the timing

error occurrence across the entire design.

Table 3-7: Failure Probabilities for Analyzed Decoders for Different Clock Frequencies

Clock Period
(ns)

Min-Sum Self-Corrected Min-Sum FAID

Min* Max Min* Max Min* Max

5.50 1.06E-09 1.06E-09 1.07E-09 1.07E-09 1.06E-09 1.06E-09

4.00 3.46E-09 2.92E-06 2.92E-06 5.78E-09 3.46E-09 2.92E-06

2.50 2.53E-09 5.04E-03 5.04E-03 2.53E-09 2.53E-09 5.04E-03

2.20 2.72E-09 1.93E-02 1.93E-02 2.72E-09 2.72E-09 1.93E-02

1.90 1.43E-08 6.73E-02 6.73E-02 1.43E-08 1.43E-08 6.73E-02

1.70 2.40E-07 1.43E-01 1.43E-01 4.02E-09 2.40E-07 1.43E-01

 * non-zero

Table 3-7 presents the minimum and the maximum failure probabilities for the 3 decoders evaluated

by means of simulated fault injection. We note that even though the Stochastic Decoder basic

building blocks have been evaluated (see Figure 3-28 to Figure 3-30) we could not complete its SFI

based evaluation due to technical hurdles in its integration in the HDL/C++ co-simulation framework

and due to time shortage (SFI experiments are extremely time consuming even we carried

experiments in parallel on 6 workstations). Table 3-8 summarize the average failure probabilities for

the components used in the 3 evaluated decoders, i.e., MS, SCMS, and FAID, as derived for the CDFs

of each combinational stage and memory block outputs, for different clock frequency values.

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 46 of (110) © i-RISC

Table 3-8: Average Values of Failure Probabilities for Considered Components in the Analyzed Decoders

Clock
Period

(ns)
Memories

Barrel
Shifters

VNU MS
VNU

SCMS
VNU
FAID

CNU
MS/SCMS

CNU FAID

5.50 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.28E-10 9.70E-11

4.00 0.00E+00 0.00E+00 3.14E-08 2.47E-08 2.26E-09 3.51E-07 2.66E-07

2.50 9.64E-07 2.79E-06 1.92E-04 1.51E-04 4.61E-05 6.05E-04 4.58E-04

2.20 1.28E-05 2.71E-05 9.94E-04 7.81E-04 3.12E-04 2.33E-03 1.76E-03

1.90 1.60E-04 2.62E-04 4.80E-03 3.77E-03 1.98E-03 8.13E-03 6.18E-03

1.70 8.28E-04 1.17E-03 1.30E-02 1.02E-02 6.48E-03 1.75E-02 1.33E-02

For the considered technology and supply voltage, we have performed simulations corresponding to

clock periods from 5.5ns down to 1.7ns, which correspond to error probabilities higher than 10−9.

As expected increasing the clock frequency leads to an increase in output failure probabilities but this

failure rate increase is not uniform across the circuit, as combinational stages with higher latency will

have higher failure rates.

Figure 3-31 depicts the number of active fault locations (signals with a non-zero error probability) for

the processing units of the analyzed LDPC decoders. It can be observed that this number increases

with the decrease in the considered clock period. The figure indicates that for a clock period of 𝟐ns,

the MS decoder CNU has the highest number of active fault locations, while its VNU has the lowest.

Figure 3-31: Number of Active Fault Locations in Processing Units

Figure 3-32 depicts the ratio between the per-block number of active fault locations (signals subject

to fault insertion by means of saboteurs) and the total number of sabotaged wired.

0

5

10

15

20

25

1,01,52,02,53,03,54,04,55,05,5

N
u

m
b

er
 o

f
Fa

u
lt

 L
o

ca
ti

o
n

s

tclk (ns)

CNU_MS

CNU_FAID

VNU_MS

VNU_SCMS

VNU_FAID

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 47 of (110)

One can conclude from the figure that: (i) FAID and MS/SCMS CNUs experience errors with a

probability higher than 10−9 for a clock period of 5.5ns or lower, (ii) MS/SCMS VNUs errors appear

for a clock period of 5ns or lower while for FAID VNU they appear for a clock periods of 4.5ns or

lower, and (iii) for barrel shifters, errors with a probability higher than 10−9 start to occur at a clock

period of 3.7ns. We also note that for a clock period of 3.9ns, all modules have more than half of

their sabotaged wires affected by probabilistic errors with occurrence probability higher than 10−9.

Figure 3-32: Ratio between Active Fault Locations and Total Number of Sabotaged Wires in Considered Blocks

Figure 3-33 depicts the per block average error probability on a logarithmic scale. This figure

indicates that FAID VNU has a lower average error probability with respect to the MS and SCMS VNU

for the same clock period. In particular, for a clock period of 1.9ns the average error probability for

FAID VNU is almost half with respect to the MS and SCMS VNU. We can also observe that CNU units

present the highest average error probability while memory blocks, followed by barrel shifters, have

one order of magnitude lower error probabilities than the processing units.

Figure 3-33: Average Probability of Errors in the Considered Blocks (Logarithmic Scale)

0

20

40

60

80

100

1,01,52,02,53,03,54,04,55,05,5

N
o

rm
al

iz
ed

 N
u

m
b

er
 o

f
Fa

u
lt

Lo

ca
ti

o
n

s
(%

)

tclk (ns)

MEM

BS

CNU_MS

CNU_FAID

VNU_MS

VNU_SCMS

VNU_FAID

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1,01,52,02,53,03,54,04,55,05,5

A
ve

ra
ge

 E
rr

o
r

In
je

ct
io

n

P
ro

b
ab

ili
ty

tclk (ns)

MEM

BS

CNU_MS

CNU_FAID

VNU_MS

VNU_SCMS

VNU_FAID

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 48 of (110) © i-RISC

Figure 3-34 depicts the estimated number of per iteration fault locations, which might be activated in

the entire decoder on a logarithmical scale. Figure 3-35 depicts the estimated number of possible per

iteration active fault locations in the entire decoder, for clock periods between 𝟏. 𝟗ns and 𝟐. 𝟓ns.

These two figures indicate that the FAID decoder has significant less active faults per iteration with

respect to MS and SCMS decoders. For example, for a clock period of 𝟏. 𝟗ns, the number of active

faults in FAID decoder is half of the active faults to be injected in MS or SCMS decoder.

Figure 3-34: Average Number of per Iteration Injected Faults (Logarithmic Scale)

Figure 3-35: Average Number of per Iteration Injected Faults (Zoom - Linear Plot)

The generated fault maps provide the timing probabilistic faults, which take into account the

architectural and implementation details of the analyzed decoders. Based on these maps, we can

observe the error conditions under which the decoders will show decoding performance

degradation. In our experiments we consider various clock periods, starting from 5.5ns (when errors

start occurring in the processing units), 3.1ns (when errors appear in the memories), then 2.5ns,

2.2ns, 1.9ns and 1.7ns, the last values corresponding to the region where the average number of

injected faults per iterations start increasing at a higher pace (as one can observe in Figure 3-35).

1E-06

1E-04

1E-02

1E+00

1E+02

1E+04

1,01,52,02,53,03,54,04,55,05,5

A
ve

ra
ge

 N
u

m
b

er
 o

f
In

je
ct

ed

Fa
u

lt
s

P
er

 It
er

tclk (ns)

MS

SCMS

FAID

0

100

200

300

400

500

1,71,81,92,02,12,22,32,42,5

A
ve

ra
ge

 N
u

m
b

er
 o

f
In

je
ct

ed

Fa
u

lt
s

P
er

 It
er

tclk (ns)

MS

SCMS

FAID

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 49 of (110)

3.4. Utilized LDPC Codes

In this section we describe the codes that sit behind the LDPC decoders implemented and evaluated

in this deliverable. Before presenting them into details we introduce an LDPC construction

methodology.

3.4.1. Protograph Based LDPC Construction

First introduced by [Thorpe03], a binary protograph is defined as a small bipartite graph from which

a larger graph is obtained by a so-called “copy-and-permute” procedure. The procedure can be

summarized as follows:

 Copy step: first, the protograph is copied L times to obtain L replicas. L is arbitrary defined to

achieve the targeted codeword length.

 Permute step: then, the edges of the individual replicas are permuted among the replicas to

obtain a single but larger graph, but under some restrictions in order to obtain an LDPC code

with good enough error correction performance.

Finally, the permuted edge connections specify the non-zeros entries of the parity-check matrix

associated with the resulting graph.

The protograph itself is generally described using its adjacency matrix HB also called base matrix

[Liva06]. A protograph is then a (𝑀𝑏 , 𝑁𝑏) matrix filled with integer values, which represent the

number of edges between the i-th check node 𝐶𝑖 of the protograph and the j-th variable node 𝑉𝑗.

Note that using this representation enables to consider parallel edges, i.e., two nodes (a variable

node and a check node) can be connected with more than one edge. These parallel edges however

must be eliminated when building the larger graph using the copy-and-permute procedure to yield to

a suitable representation of the code using a parity-check matrix.

In fact, the code ensemble defined by the protograph can be viewed as a structured sub-ensemble of

the Low-Density Parity-Check (LDPC) code ensemble defined using the equivalent edge distribution.

As an example, we consider the regular (𝑑𝑣 = 3, 𝑑𝑐 = 6) LDPC code ensemble (variable nodes with

degree 2 and check nodes with degree 4). The two following adjacency matrices are associated with

a particular structured sub-ensemble of the regular (𝑑𝑣 = 3, 𝑑𝑐 = 6) LDPC code ensemble:

2 1 0 3 1 1 1 1 1 1

1 2 3 0 1 1 1 1 1 1

 1 1 1 1 1 1

Table 3-9: Different Types of Protograph for (𝑑𝑣 = 3, 𝑑𝑐 = 6) LDPC Codes

Throughout the rest of this section, we denote by type-I protograph a protograph which contains

only ‘0’ and ‘1’, and by type-II protograph, a protograph which could contain values greater than ‘1’.

Usually, the protograph or the base matrix is issued from some previous optimization procedures

based on density evolution [Thorpe03] or on a multidimensional EXIT chart analysis [Liva06].

Once the protograph (or equivalently the base matrix) has been selected, one aims at building a

larger graph. The optimum way of selecting the permutations among the different replicas of the

protograph is still an open issue, and one has to rely on heuristics and sub-optimum procedures. To

simplify both the encoding and decoding storage, it is convenient to choose circulant permutations:

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 50 of (110) © i-RISC

the final parity-check matrix H of the LDPC code is described as an (M, N) array of (L, L) (weight-one)

circulant permutation matrices or (L, L) zeros matrices. The assignment of the circulants should be

done carefully to avoid short cycles and it can be done using an instance of the Progressive-Edge-

Growth (PEG) algorithm [Hu05] sometimes referred to as circulant-PEG or lift-PEG [Venkiah08]. We

will employ in the rest of this section the following lifted graphs/codes definition:

The operation consisting in replacing each non-zero entry with value d in the protograph base-matrix

by a set of d non-overlapping circulant matrices is called “lifting”. The order of the lift L corresponds

to the size of the circulant matrices.

3.4.2. i-RISC Set of Matrices

For best performance in the error floor region, the Tanner graph should have the best possible

topological properties in terms of cycles. That is, one should aim at the maximum possible girth, and

minimum multiplicity of the number of cycles with minimum length. This is important because the

trapping sets topologies are obtained by combination of several cycles, so the larger the cycles, the

larger are the trapping sets [Liva06]. In the i-RISC project, we have adapted the Random-PEG

algorithm proposed in [Venkiah08] in order to perform the lifting operation. This instance of the PEG

algorithm is called Lift-PEG algorithm and it can be briefly described as follows:

For each non-zero entry in the protograph from column 1 to column 𝑁𝑏, choose the circulant, which

maximizes the “local” girth of the graph and minimizes the number of small cycles created. The

computation of the “local” girth and multiplicity is done with the help of the computation tree.

The principle of the Random-PEG algorithm is kept, but applied block by block, for each (L, L)

circulant. To keep the complexity of the hardware decoder implementations within implementable

bounds, a constant codeword length has been chosen, N=1296 coded bits, for two different rates,

R=0.5 and R=0.75. Also, in order to verify the robustness of the proposed fault-tolerant decoders on

different coding situations, 3 kinds of LDPC families have been proposed. The set of 6 codes

considered in the project is presented in Table 3-10.

Table 3-10: Employed Set of LDPC Codes

The corresponding protographs have therefore size (12, 24), for the rate R=1/2, and (12, 48), for the

rate R=3/4 as presented in Figure 3-36 and the corresponding matrices are described in Appendix 1.

The LDPC codes have all good properties in terms of girth, as they all have girth g=8, which means

that the size of the minimum cycle is 8. This last property ensures good error correction performance

for the designed LDPC codes.

Code Rate R Regular 𝒅𝒗 = 𝟑 Regular 𝒅𝒗 = 𝟒 Irregular

 𝑵 𝑴 𝑳 𝑵 𝑴 𝑳 𝑵 𝑴 𝑳

R=1/2 1296 648 54 1296 648 54 1296 648 54

R=3/4 1296 324 27 1296 324 27 1296 324 27

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 51 of (110)

We note however that in view of the fact that both voltage scaling and SFI experiments are very

expensive in terms of execution time we had to limit our evaluations to LDPC decoders

corresponding to R = 1/2, dv = 3, N = 1296, M = 648, L = 54.

Figure 3-36: Protographs for (𝑑𝑣 = 12, 𝑑𝑐 = 24) and (𝑑𝑣 = 12, 𝑑𝑐 = 48) LDPC Codes

3.5. Decoder Architecture, Organization, and Implementation

In this section we describe the LDPC decoders we investigate by means of voltage scaling and fault

injection from the hardware prospective. We give special attention to implementation relevant

aspects by we also briefly discuss their basic operation principle when required for understanding

architectural and implementation decisions.

3.5.1. Min-Sum (MS)

Min-Sum decoding has been thoroughly investigated in WP3 [i-RISC/D3.1], where its robustness to

simple theoretical error models has been assessed both analytically and by C simulations.

In flooded min-sum decoding is performed according to the Tanner graph associated to the 𝐻 matrix:

the Check Node Units (CNU) compute the check node messages (denoted as 𝛽) based on the

messages received from the Variable Node Units (VNU) (denoted as 𝛼); these updated 𝛽 messages

are passed back to the VNUs, which will update 𝛼 messages. The flooded MS decoding has as inputs

the channel LLR messages, and consists of the following steps:

1. Initialization
i i

2. Check Node Update , , ,

()\

sgn() minz i z j z j

j H z i

3. Variable Node Update
,

()\

z i i j

j H z i

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 52 of (110) © i-RISC

4. A-posteriori Update
()

i i j

j H z

Steps 2-4 are repeated until a codeword is found or the maximum number of iterations is reached. As

indicated by the description above the MS algorithm has low hardware complexity as it mainly

consists of additions and comparisons on a small number of bits.

The fully parallel flooded decoder represents the faithful implementation of the Tanner graph. It has

a number of VNUs/CNUs equal to the number of columns/rows in the parity check matrix. It has the

advantage of very high throughput but has a very high implementation cost, mainly due to the

interconnection network [Stimming12] [Chandrasetty12]. Serialization is used in order to reduce the

decoder cost at the expense of throughput. Because serial solutions have a limited number of

processing units, messages are temporarily stored in memories. Several approaches of implementing

such flooded architecture have been presented in [Chen11] [Park14].

We implemented an MS decoder developed for Quasi-Cyclic (QC) LDPC codes, which include the

codes presented in Section 3.4, and has a number of processing units (both VNU and CNU) equal to

the size of the circulant matrix (54). At both individual CNU and VNU level, messages are processed

serial while the rows and the columns of the 𝐵 matrix are processed in a serial manner. Due to the

serialization, at both processing unit level, and at the 𝐵 matrix level, the developed flooded decoder

uses memories for message storage.

3.5.1.1. Decoder General Description

The architecture of the flooded Min-Sum (MS) LDPC decoder is depicted in Figure 3-37. It consists of

the following modules:

1. Input Log Likelihood Ratio (LLR) memory – this memory stores the channel messages, which

will be used in the decoding process for variable node computations; the memory word size

is equal to input LLR quantization (4 bits) multiplied by circulant size (54 for the given code);

the depth of the memory is equal to the number of columns in the 𝐵 matrix.

2. Variable Node Unit (VNU) block – it contains a number equal to the circulant size (54 for the

analyzed QC-LDPC code) individual units; the 54 VNUs compute the corresponding variable-

to-check messages (α) for a column in the 𝐵 matrix, as well as the A-Posteriori LLR (AP-LLR).

3. Variable-to-check message memory – it stores the 𝛼 messages, which will be used in the

check node computations; the memory word size is equal to the 𝛼 message size (4 bits)

multiplied by the circulant size (54 × 4); the depth of this memory is equal to variable node

degree multiplied by the number of columns in the 𝐵 matrix (3 × 24).

4. Variable-to-check message Barrel Shifter (BS) – it provides the corresponding interconnection

scheme between the VNU outputs to check node unit inputs; it has 6 multiplexer (MUX)

levels and a number of circulant size multiplied by 𝛼 word size (54 × 4) MUXes per level.

5. Check Node Unit (CNU) block – it contains a circulant size individual check node units; the 54

units compute the corresponding check-to-variable messages (𝛽) for a row in the 𝐵 matrix.

6. Check-to-variable message memory – it stores the 𝛽 messages, which will be used in the

variable node computations; the 𝛽 message is stored in a compressed form; the size of the

compressed 𝛽 message is 15 bits; the memory word size is equal to circulant size multiplied

by compressed 𝛽 message size (54 × 15), while the memory depth is equal to the number of

rows in the 𝐵 matrix (12).

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 53 of (110)

Figure 3-37: Flooded MS Architecture

7. Check-to-variable message BS – it provides the corresponding interconnection scheme

between the CNU outputs to VNU inputs; it has 6 multiplexer (MUX) levels and a number of

circulant size multiplied by compressed 𝛽 word size (54 × 15) MUXes per level.

8. Hard-decision buffer and early-termination circuit – after each iteration it evaluates the

parity check equations based on the signs of AP-LLR computed within the VNUs;

furthermore, it provides the output of the decoder.

9. Control unit – it has the role of providing the appropriate sequence of operations during the

decoding process; it provides: (i) the addresses for the 3 memories; (ii) the shift amounts for

the 2 BS, (iii) the indexes of the 𝛽 messages (iv) the corresponding control signals for both

processing units (VNUs and CNUs) and the memories (read and write enables).

The 𝛽 messages have been compressed in order to reduce the number of memory locations. Six 𝛽

messages corresponding to a row in 𝐻 matrix (6 × 4 bits/message = 24 bits) are compressed in the

following way: 3 bits are used for the absolute value of the first minimum, 3 bits for the absolute

value of the second minimum, 3 bits for the index of the first minimum, and 6 bits for the 6 𝛽

messages’ signs. Thus, 15 bits are required for the 𝛽 messages corresponding to a row in the 𝐻

matrix.

3.5.1.2. Decoder Modules Description

In order to reduce the number of memory read/write ports and to reduce the BS number

serialization has been applied to both VNU and CNU. Thus, the 3 𝛽 messages corresponding to a VNU

and the 6 𝛼 messages corresponding to a CNU are read in 3 (for VNU) /6 (for CNU) consecutive clock

cycles. Therefore, both the VNU module and the CNU module have one port for the input message

and one port for the output message.

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 54 of (110) © i-RISC

VNU Module: The VNU consists of 4 combinational stages, which perform the following operations:

 The first stage performs the conversion of 𝛽 messages from the compressed form to the

uncompressed Two’s Complement (C2) representation; the corresponding beta to a VNU is

computed as follows:

 The second stage performs the computation of the AP-LLR, using a 6-bit accumulator.

 The third stage is used for synchronization purposes and performs a freeze on the result of

the AP-LLR.

 The fourth stage computes the α message by subtraction the corresponding 𝛽 message from

the AP-LLR; in order to subtract the correct 𝛽 message, a FIFO buffer is used for the C2

version of 𝛽; in order to reduce size of the variable-to-check message memory, the 6-bit 𝛼

message obtained after the subtraction is reduced to 4 bits by applying a saturation.

The VNU outputs the 3 𝛼 messages corresponding to a column in the 𝐻 matrix in a serial manner, in

3 consecutive clock cycles. Table 3-11 presents the VNU port description.

Table 3-11: MS VNU Ports List

Port name In/Out Size [bits] Function

beta_in I 15 Compressed β message input

beta_index_in I 3 Index of the current processed β message

gama_in I 4 Input LLR

start_proc_in I 1 Control signal – start a new VNU operation

hard_dec_out O 1 Hard decision output

alfa_out O 4 Output α message

end_proc_out O 1 Status signal

CNU Module: The CNU consists of 3 combinational stages, which perform the following operations:

 The first stage performs the conversion of input 𝛼 messages from C2 representation to Sign-

Magnitude (SM) representation;

 The second stage performs the comparisons with previous absolute vales of the first and

second minima, as well as the computation of the index for the first minimum;

 The third stage performs updates on the 6 𝛽 messages signs.

The CNU has as input port the 𝛼 message (4 bits) and it outputs a single compressed 𝛽 message (15

bits) corresponding to the 6 𝛽 messages of a row in the 𝐻 matrix. Table 3-12 presents the CNU port

list.

Table 3-12: MS CNU Ports List

Port name In/Out Size [bits] Function

alfa_in I 4 Input α message

start_proc_in I 1 Control signal – start a new VNU operation

beta_out O 15 Compressed β message output

end_proc_out O 1 Status signal

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 55 of (110)

3.5.2. Self-Correcting Min-Sum (SCMS)

Self-Corrected Min-Sum (SCMS) has been proposed by [Savin08] and targets the improvement of the

LDPC error correction capability, mainly in the error floor region. It has been proven to be the most

reliable MS based algorithm in Deliverable 3.1 [i-RISC/D3.1]. With respect to the MS algorithm, SCMS

has a modified variable node update: if the new 𝛼 message has a different sign than the previous 𝛼

message, it is erased. In order to implement the variable node update for the SCMS, two more bits

are required for each 𝛼 message update: the sign of the previous α message and the erasure bit. The

erasure bit is used in order to avoid two consecutive erasures on the same 𝛼 message.

3.5.2.1. Differences With Respect to MS Decoder

The architecture of the flooded Self-Corrected Min-Sum (SCMS) LDPC decoder is depicted in Figure

3-38. With respect to the MS implementation the following differences are in place:

1. VNU is modified in order to perform the self-correction (𝛼 message erasure) operation; two

more 1-bit inputs and 1-bit outputs are added, which correspond to the previous sign of 𝛼

message and the erasure bit; a fifth combinational stage is added to the VNU; this stage

performs the self-correction.

2. The erasure bits and the signs of the previous 𝛼 messages are stored in two separate

memories with a word size equal to the circulant size (54), and a depth equal to the number

of columns multiplied by variable node degree (24 × 3); thus, the SCMS decoder has

increased memory requirements with respect to MS.

These two differences require the modification of the control unit in order to generate the

corresponding read and write addresses for the erasure bit memory and the previous 𝛼 messages’

signs memory.

Figure 3-38: Flooded SCMS Architecture

The SCMS VNU list of ports for is summarized in Table 3-13.

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 56 of (110) © i-RISC

Table 3-13: SCMS VNU Ports List

Port name In/Out Size [bits] Function

beta_in I 15 Compressed 𝛽 message input

beta_index_in I 3 Index of the current processed 𝛽 message

gama_in I 4 Input LLR

alfa_sign_in I 1 Previous 𝛼 message sign

erasure_in I 1 Erasure bit in

start_proc_in I 1 Control signal – start a new VNU operation

hard_dec_out O 1 Hard decision output

alfa_out O 4 Output α message

end_proc_out O 1 Status signal

alfa_sign_out O 1 Previous 𝛼 message sign

erasure_out O 1 Erasure bit in

3.5.3. Finite Alphabet Iterative Decoder (FAID)

FAID algorithm [Planjery10] uses a different variable node update than MS based algorithms. The 𝛼

message updates are performed using dedicated Look-Up Tables (LUT) for the input 𝛽 messages and

the input LLR value. The main FAID advantage relates to the utilization of 3 bits only for the

quantization of both 𝛼 and 𝛽 messages – 3 bits. Another advantage is that the VNU LUT can be

optimized such as to improve FAID robustness to faulty hardware as suggested in Deliverable 3.2 [i-

RISC/D3.2]. We note however that FAID decoders can only be utilized over Binary Symmetric

Channels and only for regular LDPC codes with variable node degree 3 or 4. Regarding the CNU, the

𝛽 messages are computed in the same way as in the MS algorithm. The FAID decoder data flow is the

same as in the one of the MS decoder.

3.5.3.1. Differences With Respect to MS Decoder

The FAID decoder has the same architecture as the MS decoder. Furthermore, the flooded FAID

decoder has the same data flow as the MS decoder presented in Section 3.5.1. This leads to both

decoders having identical control units. The differences between the FAID and MS decoders are:

 Different VNUs – the FAID VNU consists of 3 LUTs which are used to compute the 𝛼

messages; the input 𝛽 messages are read from memory in a serial manner (one message per

clock cycle); the 𝛼 messages are outputted also in a serial manner; two buffers are used: one

to store the input 𝛽 messages and one to store the newly computed 𝛼 messages; the 𝛽

buffer provides inputs for the 3 LUTs; the inputs for the α buffer are provided by the outputs

of the 3 LUTS.

 Differences due to different quantization – the 𝛼 and 𝛽 message memories have smaller

memory word size (54 × 3 for 𝛼 message memory and 54 × 13 for 𝛽 message memory),

while the two BS have smaller number of MUXes per level (54 × 3 for 𝛼 read BS and 54 × 13

for 𝛽 read BS).

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 57 of (110)

3.5.4. Stochastic Decoder (SD)

In stochastic LDPC decoding, the channel probabilities are converted into randomly generated binary

bit streams, called Bernoulli sequences [Gaines69] [Poppelbaum67] [Ribeiro67]. In a Bernoulli

sequence, each comprising bit is generated independently of the other bits, and it is equal to 1 with a

probability equal to the to be transformed channel probability. For instance, a stochastic stream of

10 bits with 5 comprising bits being equal to 1, encodes a channel probability of 5/10 = 0.5. This

number representation has two main advantages: (i) arithmetic computations can be done with low

complexity hardware and (ii) has intrinsic high fault tolerant capability. This representation allows for

the evaluation of complex arithmetic operations by using simple logic gates. For instance, we can use

an AND gate to implement a multiplication. Moreover, by relying on an identically-weight

representation, Stochastic Bitstreams (SB) which are the de facto data representation for Stochastic

Computing (SC) are more error tolerant by construction, e.g., flipping one bit at position n of an SB

with length 𝐿𝑠 causes only an 1/𝐿𝑠 difference irrespective of the 𝑛 value while the same bit flip in a

traditional binary representation creates a 2𝑛−1 difference.

3.5.4.1. Decoder General Description

A general fully parallel implementation of an Edge Memory (EM) [Tehrani08] stochastic LDPC

decoder is depicted in Figure 3-39.

Figure 3-39: Architecture of a Fully Parallel Stochastic LDPC Decoder

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 58 of (110) © i-RISC

Each channel probability 𝑝𝑛 represented as a q-bit binary number is first converted to a Stochastic

Bitstream (SB) 𝑦𝑛 via a Probability to Stochastic Bitstream converter (P2SB) module. Each Bit Node

(BN) module consists of: (i) 𝑁𝑐𝑐𝑛 units of Variable Node 𝑉𝑁𝑛,𝑚 module to generate 𝛼𝑛,𝑚 ∈ {0,1},

message to be sent from 𝐵𝑁𝑛 to 𝐶𝑁𝑚 where 𝑁𝑐𝑐𝑛 is the number of connected Check Nodes (CNs),

and (ii) one A Posteriori Counter Update and Hard Decision (PCHD) module to generate hard value bit

𝑥𝑛 for Early Termination (ET) and decoding output. Each 𝐶𝑁𝑚 in Figure 3-39 consists of 𝑁𝑐𝑏𝑛 units of

𝐶𝑁𝑚,𝑛 module where 𝑁𝑐𝑏𝑛 is the number of connected BNs. The output hard value bits are then used

by the Parity Check Circuit (PCC) to verify the parity constraints. Edges messages in form of SBs are

exchanged iteratively between BNs and CNs, until either a codeword is found, or the maximum

number of iterations is reached. The random numbers for P2SBs and 𝑉𝑁𝑛,𝑚 modules are fed by the

z-bit True Random Number Generator (TRNG) module via the Random Connector (RC) module. The

TRNG and RC are needed by (i) the P2SB modules for generating random SBs with controllable

probabilities of being “1” and (ii) the 𝑉𝑁𝑛,𝑚 modules for randomly choosing a bit from EMs when the

incoming messages are not in agreement.

The SD decoder VHDL code is produced by a specially developed in-house tool we designed for the

automatic generation of LDPC decoder fully parallel IP cores starting from: (i) an 𝐻 matrix, regular or

irregular, 𝐻 = (ℎ𝑚,𝑛)𝑚=1,…,𝑀
𝑛=1,…,𝑁

, which is a binary matrix with 𝑀 rows and 𝑁 columns, (ii) the number

of bits q to represent the probabilities of channel messages, and (iii) the EM number of bits Σ.

3.5.4.2. Decoder Modules Description

Probability to Stochastic Bitstream converter (P2SB): The implementation of the P2SB unit is based on

a 𝑞-bit comparator, and its block scheme is graphically illustrated in Figure 3-40. The P2SB module

generates an output bit which is equal to logic “1” with a probability given by the 𝑞-bit quantized

channel probability.

Figure 3-40: Probability to Stochastic Converter (P2SB)

𝑝𝑛 is a vector of q-bit quantized probability of bit 𝑛 to be equal to logic “1”. To randomly generate

the bit 𝑦𝑛 with a probability of being “1” equal to
𝑝𝑛

2𝑞, we need to give first a q-bit random number 𝑟𝑛 ,

randomly generated by TRNG and RC modules, as an input to each P2SB module. The output bit of

the P2SB module, 𝑦𝑛 , is “1” when 𝑝𝑛 > 𝑟𝑛 and “0” otherwise.

The module ports description is summarized in Table 3-14.

Table 3-14: P2SB Module Ports Description

Port Name In/Out Size [bits] Function

p I 𝑞 Probability

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 59 of (110)

r I 𝑞 Random number

y O 1 SB

VN Module: The block scheme of the variable node processing for variable node 𝑉𝑁𝑛 module is

presented in Figure 3-41.

Figure 3-41: The 𝑉𝑁𝑛,𝑚 Module

The initialization of 𝑉𝑁𝑛,𝑚 module is done by giving logic “1” to the init_control input. During the

initialization, (i) 𝛼𝑛,𝑚 is loaded with the Most Significant Bit (MSB) of the channel probability 𝑝𝑛 (i.e.,

𝛼𝑛,𝑚 = 𝑥𝑛) and (ii) the EM is filled with a Σ-bit SB of 𝑦𝑛 from the P2SB.

The main function of 𝑉𝑁𝑛,𝑚 module is to check the agreement of messages (in form of SBs) from the

channel and from all the CNs connected to 𝑉𝑁𝑛, excluding the message from the check-node 𝐶𝑁𝑚

(i.e., 𝑦𝑛 = 𝛽𝑚′,𝑛 ∀𝑚′ ∈ 𝐻(𝑛)\𝑚 where 𝐻(𝑛) = {𝑚 | ℎ𝑚,𝑛 = 1} is a set of check-nodes connected to

the variable node 𝑉𝑁𝑛, and 𝛽𝑚,𝑛 ∈ {0,1} is a message sent from 𝐶𝑁𝑚 to 𝑉𝑁𝑛). If the messages have

an identical logic value, the 𝑉𝑁𝑛,𝑚 module (i) passes the common value to its output F (i.e., 𝛼𝑛,𝑚 =

𝑦𝑛) and (ii) stores the value in the EM inside the module by a single bit shifting operation. However,

when the messages are not in agreement, the 𝑉𝑁𝑛,𝑚 module selects randomly one bit from the EM

addressed by the address_in input and passes this single bit to its output F (i.e., 𝛼𝑛,𝑚 =

𝐸𝑀(address_in)). The address_in input is fed by the z-bit TRNG module via the RC module.

The ports description is presented in Table 3-15.

Table 3-15: 𝑉𝑁𝑛,𝑚 Module Ports Description

Port Name In/Out Size [bits] Function

𝑦𝑛 I 1 SB from the channel with probability 𝑝𝑛

𝛽𝑚′,𝑛 I 𝑑𝑣 − 1 Messages from all check nodes connected to
𝑉𝑁𝑛,𝑚, excluding the message from check node

𝐶𝑁𝑚

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 60 of (110) © i-RISC

clock I 1 Clock signal

reset I 1 Reset active high

enable I 1 “1” -> enable the 𝑉𝑁𝑛,𝑚 module

init_control I 1 “1” -> initialize the 𝑉𝑁𝑛,𝑚 module

MSB of 𝑝𝑛 I 1 MSB of channel probability 𝑝𝑛

address_in I log2Σ Edge memory address for selecting 1-bit of data

𝛼𝑛,𝑚 O 1 Message from 𝑉𝑁𝑛,𝑚 to be sent to check node 𝐶𝑁𝑚

TRNG Module:

The TRNG is designed using Linear Hybrid Cellular Automata (LHCA) [Cattell95] [XilinxTRNG]. The

connections from the RC inputs to its output are randomly predetermined at design time by our

VHDL generator tool in such a way that each 𝑟𝑛 for feeding the P2SB modules and each 𝑎𝑘 for

selecting random bit of EM has no common bit within itself (i.e., 𝑟𝑛(0) ≠ 𝑟𝑛(1) ≠ 𝑟𝑛(2) … ≠

𝑟𝑛(𝑞 − 1) and 𝑎𝑛(0) ≠ 𝑎𝑛(1) ≠ 𝑎𝑛(2) … ≠ 𝑎𝑛(log2 𝛴 − 1)). In this way, correlations among the 𝑞

random bits of 𝑟𝑛 and the log2Σ random bits of 𝛼𝑘 are avoided.

PCHD Module:

Figure 3-42 depicts the PCHD𝑛 module block scheme.

Figure 3-42: The PCHD Module

The module has a saturated signed counter called as 𝛾𝑛 for bit n. During initialization state when the

init_control input is “1”, (i) the counter is filled with a value based on the MSB of its corresponding

channel probability 𝑝𝑛 (which is connected to its hv input) and (ii) the hard bit value is set to the

MSB. The counter is initialized to +1 when the MSB is one (i.e., 𝑥𝑛 = 1) and −1 otherwise. If the

bit_in input is “1”, the counter is increased by 1; otherwise, it is decreased by 1. The bit_in(0) is

connected to the output bit of the corresponding P2SB 𝑦𝑛 for counting the number of zero and one

of SB messages from the channel. The other bits of the bit_in input (i.e., bit_in(1) to bit_in(dv) for a

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 61 of (110)

regular LDPC code with variable node degree 𝑑𝑣) are designed for counting messages from all

connected CNs (i.e., 𝛽𝑚,𝑛, ∀𝑚 ∈ 𝐻(𝑛)) in the same manner. The hard value bit is determined by the

number stored in the counter. If the stored value is positive, the hard value bit is set to one (i.e.,

𝑥𝑛 = 1), otherwise it is set to zero.

The module ports are described in Table 3-16.

Table 3-16: PCHD Module Ports Description

Ports Name In/Out Size [bits] Function

𝑦𝑛 I 1 SB from the channel with probability 𝑝𝑛

𝛽𝑚,𝑛 I 𝑑𝑣 Messages from all check nodes connected to 𝑉𝑁𝑛

reset I 1 Reset active high

enable I 1 “1” -> enable the PCHD module

init_control I 1 “1” -> initialize

MSB of 𝑝𝑛 I 1 MSB of channel probability 𝑝𝑛

clock I 1 Clock signal

𝑥𝑛 O 1 Hard value

CN and PCC Module:

Each check node 𝐶𝑁𝑚,𝑛 is implemented using a XOR gate as depicted in Figure 3-43.

Figure 3-43: The 𝐶𝑁𝑚,𝑛 Module Figure 3-44: The Parity Check 𝑐𝑚 Module

The inputs of the 𝐶𝑁𝑚,𝑛 module are messages from all corresponding connected BNs except from

𝐵𝑁𝑛 (i.e., 𝛼𝑛′,𝑚 ∀𝑛′ ∈ 𝐻(𝑚)\𝑛 where 𝐻(𝑚) = {𝑛 | ℎ𝑚,𝑛 = 1}, which is a set of VNs connected to

the 𝐶𝑁𝑚,𝑛). The inputs of the module are messages from BNs and its output 𝛽𝑚,𝑛 is passed back to

connected BNs. This iterative message passing process stops either when all parity check constraints

are satisfied determined by PCC or when the pre-determined maximum number of iterations is

surpassed. The PCC module is built using 𝑁𝑝𝑐𝑐 units of XORs where 𝑁𝑝𝑐𝑐 is the number of parity

check constraints. The inputs of the parity check 𝑚, 𝑐𝑚, in Figure 3-44 are from PCHDs of BNs

connected to 𝐶𝑁𝑚. In our experiment, we use a regular (1296, 648) LDPC code with these

parameters: 𝑑𝑣 = 3, 𝑑𝑐 = 6, 𝑞 = 6, 𝛴 = 16, 𝑧 = 210.

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 62 of (110) © i-RISC

3.5.5. Gradient Descent Bit-Flipping (GDBF) and Probabilistic GDBF (PGDBF)

The Gradient Descent Bit Flipping (GDBF) and Probabilistic GDBF (PGDBF) are both hard decision, Bit

Flipping (BF)-based, algorithms used in iterative LDPC decoders. Due to their simple computation

units, bit flipping decoders significantly reduce the hardware resources needed for implementation.

The shortcoming of this simplification is a significant performance loss compared to Belief

Propagation (BP) decoders and theirs variants Min-Sum (MS), Normalized MS etc.

The GDBF algorithm is derived from gradient descent formulation and its theory consists in finding

the best suitable bit (or group of bits) to be flipped in the Variable Nodes processing in order to

maximize a predefined objective function. GDBF algorithm shows error correction performance far

better than other BF variants and very close to normalized MS algorithm. The Probabilistic GDBF

(PGDBF) is inspired from both GDBF algorithm and the Probabilistic BF algorithm. PGDBF has a better

performance than the original GDBF. Instead of flipping all bits satisfying the gradient descent

condition, PGDBF takes the flipping decision according to a probabilistic value.

3.5.5.1. Decoder General Description

The top-level architecture of the decoder is presented in Figure 3-45. This architecture differs from

the generic LDPC decoder architecture in several aspects: (i) it contains a global block that takes

inputs from all VNUs (the Lambdas) and computes the maximum, and (ii) embeds binary random

generators.

Figure 3-45: Global Architecture of PGDBF Compared to the Original GBDF

Several implementations of the PGDBF decoder for LDPC codes are proposed: a conventional

implementation of the random generator through LFSR (Linear Feedback Shift Registers) as a first

design, and a new approach [Le15] using binary sequences that are produced by the LDPC decoder,

named IVRG, as second design.

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 63 of (110)

The LFSR approach can be seen as a distributed Random Generator (RG) due to the fact that it is

implemented inside every VN unit. The complexity of the interconnection network depends on the

type and size of LDPC code used as well as on the chosen level of parallelism.

These aspects have been widely discussed in the literature [Darabiha08] and are not discussed here.

Implementation of the RG will be discussed in Section 3.5.5.3.

An LDPC code is a linear block code defined by a sparse parity-check matrix 𝐻 with size of (𝑀, 𝑁),

where 𝑁 > 𝑀. A codeword is a vector 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑁) ∈ {0, 1}𝑁 which satisfies 𝐻 ∙ 𝑥𝑇 = 0,

where 𝑥𝑇 denotes the transposed vector of 𝑥.

We denote by 𝑦 = (𝑦1 , 𝑦2, . . . , 𝑦𝑁) ∈ {0,1}𝑁 the output of a Binary Symmetric Channel (BSC), in

which the bits of the transmitted codeword 𝑥 have been flipped with crossover probability 𝑝0. The

decoders presented here are dedicated for BSC channel.

Let 𝑁(𝑣(𝑖)) denote the set of CNs connected to the VN 𝑣(𝑖), with connection degree 𝑑𝑣(𝑖). Let also

define 𝑁(𝑐(𝑗)) as the set of VNs connected to the CN 𝑐(𝑗), with connection degree 𝑑𝑐(𝑗).

In Bit Flipping (BF) decoders, the value of variable nodes can change over the iterations, and we

denote here by 𝑣(𝑘)(𝑖) the value of the variable node at the k-th iteration. We correspondingly

denote by 𝑐(𝑘)(𝑗) the value of the parity checks at iteration k. The CN calculation in BF algorithms is

defined by checking whether the parity check is satisfied or not. It can be written as: 𝑐(𝑘)(𝑗) =

 𝑋𝑂𝑅𝑣(𝑖)∈𝑁(𝑐(𝑗))𝑣(𝑘−1)(𝑖), (XOR is the bit-wise Exclusive-OR operation). In the case of gradient

descent BF algorithms, a function called inversion function, is defined for each VN unit, and used to

evaluate that the value 𝑣(𝑘)(𝑖) should be flipped or not.

The original GDBF is designed for the Additive White Gaussian Noise (AWGN) channel and the

inversion function is defined as in (3-1). In GDBF [Wadayama10], only the VN having the smallest

inversion function’s value will be flipped, and sent for the next iteration.

Λ𝑣(𝑖)
(𝑘)

= (1 − 2𝑣(𝑖)(𝑘))𝛾𝑖 + ∑ (1 − 2𝑐(𝑗)(𝑘))

𝑐(𝑗)∈𝑁(𝑣(𝑖))

 (3-1)

where 𝛾𝑖 is the received value from AWGN channel. In [Rasheed14], the authors proposed an

inversion function to apply GDBF algorithm for the Binary Symmetric Channel (BSC). The inversion

function for BSC is modified, and the bits having the maximum value of Δ𝑣(𝑖)
(𝑘)

 in (3-2) are flipped.

Δ𝑣(𝑖)
(𝑘)

= 𝑣(𝑖)(𝑘) 𝑋𝑂𝑅𝑦𝑖 + ∑ (𝑐(𝑗)(𝑘))

𝑐(𝑗)∈𝑁(𝑣(𝑖))

 (3-2)

In [Rasheed14], the inversion function’s value is an integer and varies from 0 to 𝑑𝑣(𝑖) + 1. Due to the

integer representation of inversion function, many bits can be flipped in the same iteration. This fact

may induce a negative impact on the convergence of the algorithm as the analysis of [Rasheed14]

shows. To avoid this effect, the PGDBF has been proposed with the idea that, instead of flipping all

the bits with maximum inversion function value, only a random fraction of those bits are flipped. The

random fraction is fixed by a pre-defined probability 𝑝𝑖
(𝑘), which could be different for each VN and

each iteration. The PGDBF algorithm is explained in Table 3-17.

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 64 of (110) © i-RISC

Table 3-17: Probabilistic Gradient Descent Bit-Flipping Algorithm

Initialization 𝒗𝒊
(𝒊𝒏𝒊𝒕)

 ← 𝑦𝑖 , 𝑖 ∈ [1, 𝑁]

𝒔𝒚𝒏𝒅𝒓𝒐𝒎𝒆 = 𝑯 ∙ 𝒗(𝒊𝒏𝒊𝒕)

While 𝒔𝒚𝒏𝒅𝒓𝒐𝒎𝒆 ≠ 𝟎 𝒂𝒏𝒅 𝒌 < 𝑰𝒎𝒂𝒙 𝒅𝒐

∀𝒊 ∈ [1, 𝑁]

Δ𝑣(𝑖)
(𝑘)

= 𝑣(𝑖)(𝑘) 𝑋𝑂𝑅𝑦𝑖 + ∑ 𝑿𝑶𝑹𝑣𝑢∈𝑁(𝑐(𝑗)) 𝑣𝑢
(𝑘)

𝑐(𝑗)∈𝑁(𝑣(𝑖))

𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 = 𝒎𝒂𝒙 (Δ𝑣(𝑖)
(𝑘)

)

𝒊𝒇 Δ𝑣(𝑖)
(𝑘)

 = 𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 𝒕𝒉𝒆𝒏

 𝒊𝒇 R𝑖
(𝑘)

 = 𝟏 𝒕𝒉𝒆𝒏

 x𝑖
(𝑘)

 = 𝑵𝑶𝑻 (𝑣(𝑖)(𝑘)); {𝒑(R𝑖
(𝑘)

 = 𝟏) = 𝒑𝒊
(𝒌)

}

 𝒆𝒏𝒅 𝒊𝒇

 𝒆𝒏𝒅 𝒊𝒇

𝒔𝒚𝒏𝒅𝒓𝒐𝒎𝒆 = 𝑯 ∙ 𝒗(𝒌)

𝒌 = 𝒌 + 𝟏

end While

Outputs: 𝒗(𝒌)

3.5.5.2. Decoder Modules Description

For the hardware implementation, it can be seen that the non-probabilistic GDBF and PGDBF have

the same structure for the Check Node (CN) units and also for the maximum-finder module.

The maximum-finder (which deliver Threshold signal in Figure 3-46) is in charge of finding the

maximum value of inversion functions. In this work, we follow the conventional method, which uses

the binary comparator tree to implement the maximum-finder. Figure 3-46 shows the VN units of

PGDBF. In this architecture, an extra block, which generates sequences of random bits, denoted as

𝑅𝑖
(𝑘) in algorithm 1 (signal "ran" in Figure 3-46), are needed. Those blocks are the main difference

between PGDBF and non-probabilistic GDBF and are required in order to improve the error

correction performance.

In [Rasheed14], it is also shown that the optimum probability mass function for the random binary

sequence is p′ = 0.9. Two solutions for the analysis and design of random generators having a fixed

value of p′ are presented in the next section.

Table 3-18 presents the ports description of VNU module.

Table 3-18: VNU Module Ports Description

Port Name In/Out Size [bits] Function

Ena I 1 Enable VNU

Clk I 1 Clock signal

Data_load I 1 Data from channel will be loaded to
internal register if data_load='0'

Receive_data I 1 Data from channel

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 65 of (110)

C2V I 3 inputs from CNU

threshold I 3 Threshold from maximum finder mdule

ran_in I 1 Random number from random generator

sum_out O 3 Energy function output

VNU_out O 1 Output bit flipped or not

Figure 3-46: Architecture of VNU in PGDBF

3.5.5.3. Analysis and Design of Random Binary Generators

a) LFSR random generator

The first design proposed is based on Linear Feedback Shift Registers (LFSR), with controlled

probability of getting zero or ones, we consider for inclusion in each instantiated VNU. We make use

of LFSR with maximum length feedback polynomial to generate an integer number, and the

generated number is compared with a threshold to decide if the new bit in the random sequence

should be a 0 (higher than threshold) or 1 (lower than threshold). Two aspects are of interest when

designing a variable threshold random binary sequence generator: first the period of the random

sequence, second the granularity with which the threshold can be programmed.

Ena

clk

Data_load

Data_in

Threshold

3

3

C2V

Output

VNUK

D-FF (reg1)

MUX

Data_in

0 1

D

MUX 0 1

MAJ

3 C2V
3

o

D

Q

D-FF (reg2) Q

Data_in

Data_load

Data_load

Ena clk

ran p(ran=1)=p

Threshold

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 66 of (110) © i-RISC

b) Intrinsic-Value Random Generator (IVRG)

A new approach is presented in this section. This approach reduces the cost of generating random

binary sequences by means of substituting all local Random Binary Sequence Generators (one per

VNU) by a global one. We name this new method Intrinsic-Value Random Generator (IVRG), which

makes use of the value of the CNs inside decoder as inputs. In an LDPC iterative decoder, the values

of the CNs depend both on the BSC crossover probability 𝑝0, the degree of check nodes 𝑑𝑐 and the

iteration number. Typically, the number of CN which are unsatisfied (value = ‘1’) is large during the

first iterations, while it becomes smaller as the iteration number increases. We denote by

𝑝(𝑐𝑗
(𝑘)

= 1) = 𝐹(𝑝0, 𝑘, 𝑑𝑐) the probability that a CN is unsatisfied, as a function of the three

mentioned parameters.

In this work, we will use only the CN values produced at the first iteration 𝑘 = 0 in order to

generate sequences of random bits.

At the first iteration, the probability mass function is given by:

𝑝(𝑐𝑗
(0)

= 1) = 𝐹(𝑝0, 0, 𝑑𝑐) =
1

2
−

1

2
(1 − 2𝑝0)𝑑𝑐.

The results in [Rasheed14] have showed that the optimal value of 𝑝(𝑐𝑗
(0)

= 1) for the Tanner code

(155, 64) is around 0.9, and the range of crossover probability is from 10−3 to around 3 ∙ 10−2 .

In order to control the random generator probability 𝑝0, we propose to use a function 𝐺 of the CN

values 𝐺(𝑐𝑗1
(0)

, 𝑐𝑗2
(0)

, . .), 𝑗1, 𝑗2 ∈ [1, 𝑀] that controls the desired probability 𝑝′. We briefly describe

the function G as follows:

Let 𝑐𝑗1 and 𝑐𝑗2 be two binary random variables with 𝑝(𝑐𝑗1 = 1) = 𝑝(𝑐𝑗2 = 1) = 𝑝, it can be proved

that 𝑝(𝑐𝑗1𝑶𝑹 𝑐𝑗2 = 1) = 2𝑝 + 𝑝2 > 𝑝 and 𝑝(𝑐𝑗1𝑨𝑵𝑫 𝑐𝑗2 = 1) = 𝑝2 < 𝑝.

More specifically:

𝑝(𝑐𝑗1 = 1) = 𝑝(𝑐𝑗2 = 1) = 𝑝 =
1

2
−

1

2
(1 − 2𝑝0)𝑑𝑐, 𝑝(𝑐𝑗1𝑿𝑶𝑹 𝑐𝑗2 = 1) =

1

2
−

1

2
(1 − 2𝑝0)2𝑑𝑐.

Using these transformations of probability, and a function 𝐺 implemented as described in Figure

3-47, we can transform the CN output sequence into a longer binary pseudo-random sequence with

a desired probability 𝑝′.

Figure 3-47: Architecture of Intrinsic-Valued Random Generator

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 67 of (110)

Let define 𝑝′ = 𝐶 ∙ 𝑝0 where 𝑝0 is the probability of the first iteration CN value equal to ‘1’. The

multiplication coefficient 𝐶 is a function of 𝑝0 with the condition is 𝑝′= 0.1 as in the Figure 3-48. This

figure shows the values of multiplication coefficients 𝐶 and its approximation using 4 levels, which

represent 4 levels of noise in BSC channel (4 levels of crossover probability).

The Table 3-19 presents the port description of the IVRG module.

Table 3-19: IVRG Module Ports Description

Port Name In/Out Size [bits] Function

Ena I 1 Enable VNU

Clk I 1 Clock signal

Init I 1 Initial step for loading data from CNU

Data_in I 93 Input from CNU

Crossover I 2 Crossover value: level of noise

Ran_out O 155 Random value: 0 or 1 for each VNU

The larger number of levels the more precision in output probability it offers. The BSC noise level is

represented as in 2-bit Noise-Level in the final architecture. The CN’s first iteration values are stored

in the chain of Flip-Flops at the initialization phase. They will be rotated at each iteration. They are

also assigned to be the inputs of the selectable-OR gates (Figure 3-47) through the random

connection network.

As an example, if the BSC crossover probability is 0.01, from Figure 3-47, multiplication coefficient C

is 2, the output of OR gates will be bitwise-OR results of 2 from 4 inputs. As expected, the desired

probability is around 0.1 and the results, which is depicted as a scatter plot in Figure 3-48, which

indicates that the output sequences have the probability to be 1 very close to the expected value. On

this figure, the blue curve is an approximation that has been used in the FPGA implementation.

Figure 3-48: The Multiplication Coefficient K as a Function of the BSC Crossover

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

1

2

3

4

5

6

7

8

9

10

12

Crossover Probability (po)

m
u
lt
ip

lic
a
ti
o
n
 c

o
e
ff

ic
ie

n
ts

Figure 2

p'= 0.1

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 68 of (110) © i-RISC

We have first made the synthesis of the different solutions for the case of a small LDPC code that has

been proposed in the literature [Tanner01]: a regular, quasi-cyclic LDPC code with regular connection

degrees 𝑑𝑣 = 3 and 𝑑𝑐 = 5, with codeword length 𝑁 = 155, called the Tanner code.

Table 3-20 shows the hardware resources needed to implement the two different PGDBF structures.

As benchmarks, the resources for the non-probabilistic GDBF and 6 bits Min-Sum decoder are shown

as well. The maximum frequency and the estimated throughput have been obtained from an

implementation using FPGA Xilinx Virtex 6 of 40nm technology, after place and route.

We can notice that the IVRG-PGDBF needs an additional 92 1-bit registers (9.7% overhead)

compared to the non-probabilistic while the LFSR-PGDBF needs 8215 1-bit registers overhead

(868.4% overhead). This large overhead emphasizes the advantage of IVRG over LFSR in terms of

implementation.

Comparing the Slice LUTs required, the IVRGPGDBF requires 261 more slices than the non-

probabilistic (12.1%) and this number for LFSR-PGDBF is 1394 (64.8%).

The extra complexity brought by the RG implementation has moreover a negligible impact on the

obtained throughput (less than 2%) in all PGDBF implementations. We can also see that the offset

min-sum decoder is far more complex than the BF type decoders, and cannot compete in terms of

decoding speed.

Table 3-20: Hardware and Throughput Estimation for PGDBF with Different RG Implementations and for Offset

Min-Sum

 1-bit Register Slice LUTs Fmax (Mhz) Throughput (Mbps)

GDBF 946 2151 132.721 4114.3

IVRG-based PGDBF 1038 2412 132.721 4114.3

LFSR-based PGDBF 9161 3545 135.56 4202.36

Offset Min-Sum (6bits) 13694 15350 237.185 197.5

3.5.6. Gallager-B with Extended Alphabet (GB)

The Gallager B decoder was described by Robert Gallager in his doctoral dissertation at the MIT

[Gallager62]. This is a hard decision decoder that manipulates bits, not probabilities. This decoder

has several advantages insofar as it requires little resources and does not use a MAC (Multipliy and

Accumulate) unit. We implemented a parallel Gallager-B LDPC decoder with extended alphabet,

which is a hard decision Message Passing (MP) decoder. The Gallager B decoder operates on the bit

flipping principle, i.e., it changes bits in order to validate all the parity check. The block diagram of

the decoder core architecture is depicted in Figure 3-50.

In the following we introduce the notation we utilise later on in the section:

 𝑣𝑛 : variable node (bit node) 𝑛

 𝑐𝑚 : check node 𝑚

 𝑥 : corrected information

 𝑦 : vector containing the data

 𝛼𝑚,𝑛 : message sent by the bit node n to check node 𝑚

 𝛽𝑚,𝑛 : message from check node 𝑚 to bit node 𝑛

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 69 of (110)

 𝛾𝑛 : a priori information vector

 �̃�𝑛 : a posteriori information

 𝑠𝑛 : subtotal whose formula is given by the following

 𝑠𝑚,𝑛 : subtotal whose formula is given by the following

 𝐻(𝑐𝑚) : all neighbour variable nodes of check node 𝑐𝑚

 𝐻(𝑣𝑛) : all neighbour check nodes of variable node 𝑣𝑛

 𝐻(𝑐𝑚)\{𝑣𝑛}: 𝐻(𝑐𝑚) except for 𝑣𝑛

 𝐻(𝑣𝑛)\{𝑐𝑚}: 𝐻(𝑣𝑛) except for 𝑐𝑚

 𝑡 : qualified majority threshold value

The extended alphabet is used in the implementation of this Gallager-B decoder, which means we

use {−1, 𝑥, +1} alphabet. When there is no qualified majority of votes, meaning |𝑠𝑚,𝑛| < 𝑡, a

variable-to-check message (𝛼𝑚,𝑛) will take on the value 0 (instead of replacing the initial 𝛾𝑛 value)

[Savin14]. To implement this feature, using two bits message was preferred to the use of a 3 states

implementation. Therefore, each message is composed of two bits whose MSB codes the sign while

the LSB codes the presence of mistaken information as indicated in Figure 3-49.

Msg bit Extended

codeword

input

Error

indicator

Figure 3-49: Input Data Format

Thus the alphabet used in the design is summarized in Table 3-21:

Table 3-21: Alphabet Format

Alphabet Msg format

+1 01

-1 11

x x0

The extended alphabet version of Gallager-B decoding algorithm is presented in Table 3-22.

Table 3-22: Gallager-B with Extended Alphabet Decoding Algorithm

Input: 𝑦 = (𝑦1, … , 𝑦𝑁) ∈ {0,1}𝑁

Output: �̂� = (�̂�1, … , �̂�𝑁) ∈ {0,1}𝑁

Initialization

𝒇𝒐𝒓 𝒂𝒍𝒍 {𝑣𝑛}𝑛=1,…,𝑁 𝒅𝒐 𝛾𝑛 = 1 − 2𝑦𝑛

𝒇𝒐𝒓 𝒂𝒍𝒍 {𝑣𝑛}𝑛=1,…,𝑁 𝑎𝑛𝑑 𝑐𝑚 ∈ 𝐻(𝑣𝑛) 𝒅𝒐 𝛼𝑚,𝑛 = 𝛾𝑛

Iteration Loop

𝒇𝒐𝒓 𝒂𝒍𝒍 {𝑐𝑚}𝑚=1,…,𝑀 𝑎𝑛𝑑 𝑣𝑛 ∈ 𝐻(𝑐𝑚) 𝒅𝒐

𝛽𝑚,𝑛 = {

x, 𝑖𝑓 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑖𝑠 x

∏ 𝛼𝑚,𝑛′

𝑣𝑛′∈𝐻(𝑐𝑚)∖{ 𝑣𝑛 }

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝒇𝒐𝒓 𝒂𝒍𝒍 {𝑣𝑛}𝑛=1,…,𝑁 𝑎𝑛𝑑 𝑐𝑚 ∈ 𝐻(𝑣𝑛) 𝒅𝒐

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 70 of (110) © i-RISC

𝑠𝑚,𝑛 = 𝛾𝑛 + ∑ 𝛽𝑚′ , 𝑛

𝑐𝑚′∈𝐻 (𝑣𝑛)∖ {𝑐𝑚 }

𝛽𝑚′ ,𝑛≠x

𝛼𝑚,𝑛 = {

x, 𝑖𝑓 𝑠𝑚,𝑛 = x

𝛾𝑛 , 𝑖𝑓 |𝑠𝑚,𝑛| < 𝑡

[𝑠𝑖𝑔𝑛(𝑠𝑚,𝑛), 1], 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝒇𝒐𝒓 𝒂𝒍𝒍 {𝑣𝑛}𝑛=1,…,𝑁 𝒅𝒐

𝑠𝑛 = 𝛾𝑛 + ∑ 𝛽𝑚,𝑛

𝑐𝑚∈𝐻 (𝑣𝑛)

𝛽𝑚,𝑛≠x

�̃�𝑛 = {
𝛾𝑛 , 𝑖𝑓 𝑠𝑛 = 0

[𝑠𝑖𝑔𝑛(𝑠𝑛), 1], 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝒇𝒐𝒓 𝒂𝒍𝒍 {𝑣𝑛}𝑛=1,…,𝑁 𝒅𝒐

�̂� = (1 − �̃�𝒏)/2

𝒊𝒇 �̂� 𝑖𝑠 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑 𝒕𝒉𝒆𝒏 𝑒𝑥𝑖𝑡 𝑡ℎ𝑒 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑜𝑝

End Iteration Loop

Figure 3-50 captures the block diagram of the decoder core. As suggested in the figure, the decoder

core is composed of bit nodes block, check nodes block connected by the interconnection network

𝛼𝑚,𝑛 and 𝛽𝑚,𝑛. Both of the bit nodes and check nodes are parallel structured, therefor the size of

datain and dataout is 2×NB_COLUMN.

Figure 3-50: Block Diagram Representation of the Gallager-B Decoder

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 71 of (110)

Table 3-23 summarizes the functionality and usage of the ports.

Table 3-23: LDPC Decoder Ports Description

Port I/O Size Description

enable in 1 Control signal to enable the iteration process when

data is ready. High level active

threshold in 3 The threshold value

datain in 2× NB_COLUMN Codeword parallel input with the extended

alphabet (leave to “1”)

done out 1 When active indicates all parity check equations

are verified

dataout out 2× NB_COLUMN The processed code word with the extended

alphabet (0 for correct, 1 for error)

Table 3-24 captures all the important parameters involved in the design of the Gallager-B LDPC decoder.

Table 3-24: LDPC Decoder Design Parameters

Parameter Description

NB_ROW Number of rows in the H matrix, also represents the

number of check nodes

NB_COLUMN Number of columns in the H matrix, also represents

the number of bit nodes

NB_ONE Number of “1”s in the H matrix

N Number of “1”s in a particular column, also

represents the number of neighbour check nodes of

a particular bit node

M Number of “1”s in a particular row, also represents

the number of neighbour bit nodes of a particular

check node

SIZE_SUM The maximum size of a bit node sum computation

could require (size of sn and sm,n)

3.5.6.1. Bit Node Implementation

The block diagram of a bit node is depicted in Figure 3-51, which is one of the NB_COLUMN bit nodes

in the bit nodes block stated above. Bit node calculates the bit-to-check messages 𝛼𝑚,𝑛 using the a

priori gamma message 𝛾𝑛 and the extrinsic messages 𝛽𝑚′,𝑛, and also calculates the a posterior

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 72 of (110) © i-RISC

gamma message �̃�𝑛 using the a priori gamma message 𝛾𝑛 and all messages 𝛽𝑚,𝑛 from its N neighbour

check nodes. Therefore input gamma priori needs 2 bits while the check message in needs 2×N bits.

Figure 3-51: Bit Node Block Diagram

A summary of all ports information is shown in Table 3-25.

Table 3-25: Bit Node Port Description

Port I/O Size Description

enable in 1 Control signal to enable the iteration process

when data is ready. High level active

threshold in 3 The threshold value

gamma_priori in 2 Codeword parallel input with the extended

alphabet (leave to “1”)

check_message_in in 2×N Message received from check node m, where N is

the number of neighbour check nodes

gamma_post out 2 Gamma posterior output

check_message_out out 2×N Message sent from bit node to check node,

where N is the number of neighbour check nodes

We will now study the implementation of the bit node. The main difficulty was to consider the

extended alphabet bit. No parity equations will be validated if they contain information “x”. To solve

this issue, each computing unit (including addition and subtraction blocks) processes only the

message bit with the extended bit being “1”. To make the implementation simpler, it first calculates

the sum 𝑠𝑛 because it is then possible to calculate with only one additional subtracting the 𝛽𝑚,𝑛

message to obtain the sum 𝑠𝑚,𝑛. Bit Node implementation details are presented in Figure 3-52.

Bit Node

enable

threshold

gamma

priori

gamma

post

check

message

out
check

message

in

re
se

t

cl
o

ck

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 73 of (110)

Figure 3-52: Bit Node Architecture

The block A representation is captured in Figure 3-53. A block calculates the 𝛼𝑚,𝑛 message to be sent

to the check node. First we exclude the problem of bit error by placing a condition on the input, if the

value is 0, it returns erroneous output “x”, in which case the sign bit is not important and its value is

by default set to 0 (positive). Then we compare the absolute value of 𝑠𝑛 with the threshold value 𝑡, if

𝑠𝑛 is smaller than the threshold, it returns 𝛾𝑛, otherwise a concatenation of the sign of 𝑠𝑚,𝑛 and an

error bit set to “1” is returned.

Figure 3-53: Block A Implementation

The architecture of B Block is depicted in Figure 3-54 . For B block only one multiplexer is used. We

first compare the 𝑠𝑛 with the zero vector. Then we got the sign of the sum in the same manner as

above by converting the sum of the "sign-magnitude" format. If the result is zero it returns 𝛾𝑛,

otherwise it returns a concatenation of the sign and a valid error bit.

C2

C6

C12

γpri γpost

-

-

-

β2,n

β6,n

β12,n

B

A

A

A

sm,n

sm,n

sm,n

C2

C6

C12

α2,n

α6,n

α12,n

sn

abssm,n

threshold

x

sign

}
1

0

αm,n
MUX

1

0

MUX

0

1

< 1

= 1

γpri

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 74 of (110) © i-RISC

Figure 3-54: Block B Implementation

3.5.6.2. Check Node Implementation

The block diagram of one check node is depicted in Figure 3-55 (the total number of check-nodes is

equal to NB_ROW. Each check node calculates the check-to-bit message 𝛽𝑚,𝑛 from the bit-to-check

messages 𝛼𝑚,𝑛 received from its M neighbour bit nodes. Therefore both of the bit message in and

out are of size 2×M.

Figure 3-55: Check Node Block Diagram

The port description is captured in .

Table 3-26.

Table 3-26: Check Node Ports Description

Port I/O Size Description

enable in 1 Control signal to enable the iteration process

when data is ready. High level active

bit_message_in in 2×M Message received from bit node n, where M is

the number of neighbour bit nodes

check_node_out out 1 When active indicates all equation are verified,

high level active

bit_message_out out 2×M Message sent from check node to bit node,

where M is the number of neighbour bit nodes

sn sign

MUX

0

1

0

= 1

γpost
γpri

Check Node

enable
check

node out

bit

message

out

bit

message

in

re
se

t

cl
o

ck

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 75 of (110)

Check node is a series of multiplications between bit nodes messages. The multiplication is

equivalent to an XOR for the chosen alphabet. However, we must take into account the extended

alphabet. To do so we add an AND. This way all error bits must be “1” (no errors) to return a ”1”,

otherwise the error bit of check-to-variable message will be “0”, hence the returned message will be

“x”. A further part was added in practice to allow checking if all parity equations were verified, then

without unnecessary calculation, if the check_node_out returns “0” which means all equations were

checked to be satisfied, the iteration process will be terminated and “1” otherwise. The

implementation detail of bit node is presented in Figure 3-56.

Figure 3-56: Check Node Architecture

3.6. Performance Evaluation and Comparison

This section reports on the performance evaluation of the implemented decoders, for both Voltage

Scaling and Simulated Fault Injection scenarios.

3.6.1. Voltage Scaling

To evaluate LDPC decoders under voltage scaling, we physically implemented the following 10

decoders on Xilinx Virtex-7 FPGA: XC7VX485TFFG1761-2 inside the Xilinx VC707 board: SD, GB, GDBF,

PGDBF, MS, SCMS, FAID, MSnoET, SCMSnoET, and FAIDnoET. Implementation details for the former

six decoders have been provided in Section 3.5. MSnoET, SCMSnoET, and FAIDnoET decoders are

variants of the MS, SCMS, and FAID decoders, respectively, without the Early Termination (ET) circuit.

In [i-RISC/D3.1] it has been demonstrated that an error-free (i.e., not subject to timing errors) ET

circuit may greatly improve the decoder’s error correction capability on the error-floor region. Here,

we investigate the impact of the ET circuit on the error correction performance, when it is submitted

to the same aggression profile than the rest of the decoder. Using similar arguments to those in [i-

RISC/D3.1, Section 1.7.2], it is expected that the decoding error probability on the error-floor region

will be lower-bounded by the error probability of the ET circuit output.

To get inside on the complexity of the implemented designs we summarize the FPGA resources

utilization and maximum clock frequency for all the evaluated decoders in Table 3-27. One can

observe in the table that all designs, except GDBF and PGDBF, can operate at a maximum clock

b2

b5

b9

MSB

LSB

MSB

LSB

MSB

MSB
MSB

MSB

LSB
LSB

LSB
LSB

b2

b5

b9

MSB

LSB

MSB

LSB

MSB

LSB

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 76 of (110) © i-RISC

frequency around 200MHz and that MS, SCMS, and FAID, utilize BRAM blocks (embedded RAM FPGA

resources), while the others are solely realized by means of Flip-Flops and LUTs.

Table 3-27: FPGA Resources Utilization and Maximum Clock Frequency of Implemented Hardware Decoders

Decoders FFs LUTs BRAMs Max. Clock Freq. [MHz]

SD 81015 47260 0 194.286

GB 23577 28152 0 185.791

GDBF 7365 14283 0 132.520

PGDBF 8016 16061 0 123.093

MS 16608 14147 20 198.373

MSnoET 15296 13354 20 196.299

SCMS 16948 15855 21 195.442

SCMSnoET 15705 13819 22 196.299

FAID 14814 15176 15 195.525

FAIDnoET 13569 12848 16 195.221

All decoders are evaluated in terms of: Bit Error Rate (BER), Frame Error Rate (FER), average number

of decoding iterations, throughput, and energy/bit. The throughput (𝑇) and energy/bit (𝐸) are

computed by:

𝑇 =
𝑁

𝐼 ∙ 𝑛cc ∙ 𝑡clk
 and 𝐸 =

𝐼 ∙ 𝑛cc ∙ 𝑡clk ∙ 𝑃

𝑁
,

where 𝑁 is the code-length, 𝐼 is the average number of decoding iterations, 𝑛cc is the number of

clock-cycles per iteration, 𝑡clk is the clock period, and 𝑃 is the consumed power.

We note that the above throughput and energy formulae are derived by considering all coded bits,

independently of whether or not they have been successfully decoded by the decoder. To account

for the decoder performance, so that to have a fair comparison between different decoders and

different aggression profiles, the throughput and energy/bit are further normalized to either BER or

FER, as follows:

𝑇BER = 𝑇 ∙ (1 − BER), 𝑇FER = 𝑇 ∙ (1 − FER)

𝐸BER = 𝐸 (1 − BER)⁄ , 𝐸FER = 𝐸 (1 − FER)⁄

Normalizing to BER amounts to computing the throughput and energy by only considering the

successfully decoded bits. However, in case a frame is in error – which can be detected by syndrome

computation or by using a Cyclic Redundancy Check (CRC) code – one cannot know which bits are in

error and which are correct. In such a case, communication systems implementing retransmission

protocols usually discard the entire frame and ask for retransmission. Hence, normalizing to FER

amounts to computing the throughput and energy by considering the bits within successfully

decoded frames only and it is better tailored to the communication system prospective.

In order to reduce the number of simulations, all the decoders have been evaluated for the Binary

Symmetric Channel (BSC) only. It is worth mentioning that GB, GDBF, PGDBF, and FAID are hard-

decision decoders, i.e., they operate on data that take only on 0 and 1 values. Using them over a

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 77 of (110)

channel other than BSC would require the channel output to be quantized to 1 bit, which would

actually turn the channel into a BSC.

SD, MS, and SCMS decoders are soft-decision decoders, i.e., their inputs may take on a wider range of

values, and thus are quantized on a higher number of bits. The MS and SCMS decoder inputs are 4-

bit signed integers, representing quantized Log-Likelihood Ratio (LLR) values. The binary output of

the BSC channel is fed to either −4 or +4 (output 0 is fed to +4, while output 1 is fed to −4). The

impact of the channel value (in this case 4) on the MS decoder performance has been investigated in

[i-RISC/D3.1] (the SCMS decoder is insensitive to the choice of the channel value). Here, we use a

channel value of 4, which yields good performance in both the waterfall and the error-floor region.

The inputs of the SD decoder are 6-bit unsigned integers, representing quantized probability values.

The binary output of the BSC channel is fed to either 8 or 55 (output 0 is fed to +8, while output 1 is

fed to +55), corresponding to the noise-dependent scaling method introduced in [Tehrani06].

In the sequel we present the result of our voltage scaling experiment experiments in a decoder wise

fashion. For each decoder we present it figure of merit in terms of the previously mentioned metrics

and comment on the results.

3.6.1.1. Stochastic Decoder

The results of voltage scaling experiments of the stochastic decoder under the BSC channel are

presented in Figure 3-57 to Figure 3-63. The maximum number of iterations is set to 1000. One can

observe in these figures that:

 The decoder starts experiencing the impact of voltage scaling at 0.82V and it goes to an

almost flat FER (i.e., FER = 1) at 0.78V after the decoder tries its best, decoding to its

maximum number of iterations. This suggests that it takes 0.18𝑉 starting from nominal 𝑉dd

until the decoder reaches its critical point when it starts experiencing timing errors, and

0.04V from its critical point until it is completely knocked down.

 The average number of decoding iterations is increasing with decreasing supply voltage,

which is consistent with the BER/FER degradation. However, for supply voltage values below

0.79V the number of decoding iterations is getting below the maximum, while the FER is

almost flat equal to 1. This indicates that the ET circuit is affected by timing errors, making

the decoder stop while it shouldn’t.

 Decreasing the supply voltage from 1V to 0.82V enables a reduction of 50% in terms of

energy per bit (normalized to BER) with almost the same decoding performance without any

degradation of throughput.

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 78 of (110) © i-RISC

Figure 3-57: BER of Stochastic Decoder under BSC Figure 3-58: FER of Stochastic Decoder under BSC

Figure 3-59: Average Number of Iterations of Stochastic Decoder under BSC

Figure 3-60: Energy/Bit Normalized to BER of
Stochastic Decoder under BSC

Figure 3-61: Energy/Bit Normalized to FER of
Stochastic Decoder under BSC

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 79 of (110)

Figure 3-62: Throughput Normalized to BER of

Stochastic Decoder under BSC
Figure 3-63: Throughput Normalized to FER of

Stochastic Decoder under BSC

3.6.1.2. Gallager-B Decoder

Figure 3-64 to Figure 3-70 present the results of voltage scaling experiments on the Gallager B

decoder under the BSC channel. The maximum number of iterations is set to 100. One can observe in

these figures that:

 The impact of voltage scaling to the decoding performance is visible starting from 0.722V

and it turns the decoder to its lowest decoding performance at 0.711V shown by its almost

flat FER (i.e., FER = 1).

 67% of the nominal energy (normalized to BER) can be saved when by reducing the supply

voltage from 1𝑉 to 0.725V while maintaining almost the same decoding performance

without any degradation of throughput.

 Surprisingly, the average number of decoding iterations doesn’t vary with the supply voltage

value. Even for flat FER = 1, the average number of decoding iterations is virtually the same

as for nominal voltage and the BER presents a rather low error-floor (1E-3 or below) when

compared to the FER performance. This seems to indicate that the processing units of the

decoder (including the ET) are not or only negligible affected by timing errors, but the

offloaded data might not be the one on which the ET has been checked. Such a behavior

could be explained by a malfunctioning control unit, which seems to be affected by timing

errors well before the decoder processing units. A malfunctioning control unit could indeed

result in overwriting the hard-decision (output) buffer of the decoder, after the ET condition

has been fulfilled.

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 80 of (110) © i-RISC

Figure 3-64: BER of Gallager B Decoder under BSC Figure 3-65: FER of Gallager B Decoder under BSC

Figure 3-66: Average Number of Iterations of Gallager B Decoder under BSC

Figure 3-67: Energy/Bit Normalized to BER of Gallager B
Decoder under BSC

Figure 3-68: Energy/Bit Normalized to FER of
Gallager B Decoder under BSC

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 81 of (110)

Figure 3-69: Throughput Normalized to BER of
Gallager B Decoder under BSC

Figure 3-70: Throughput Normalized to FER of Gallager
B Decoder under BSC

3.6.1.3. GDBF Decoder

The results of voltage scaling experiments of the GDBF decoder under the BSC channel are depicted

in Figure 3-71 to Figure 3-77. The maximum number of iterations is set to 100. One can observe in

these figures that:

 The decoder start to get affected by voltage scaling from 0.8V downwards and it decodes

almost no received frames (i.e., FER = 1) at 0.76V.

 Reducing the supply voltage from 1V to 0.81V improves energy efficiency by 60% while

almost the same decoding performance is achieved without any degradation of throughput.

 The average number of decoding iterations is virtually the same as for nominal voltage for all

voltage supply values, except for 0.76V when it suddenly increases to the maximum value.

This seems to indicate that the control unit gets affected by timing errors at relatively high

voltage supply (where the processing units are not or only negligible affected by timing

errors), followed then by the processing units that get severely affected by timing errors at

voltage supply equal to 0.76V.

Figure 3-71: BER of GDBF Decoder under BSC Figure 3-72: FER of GDBF Decoder under BSC

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 82 of (110) © i-RISC

Figure 3-73: Average Number of Iterations of GDBF Decoder under BSC

Figure 3-74: Energy/Bit Normalized to BER of GDBF
Decoder under BSC

Figure 3-75: Energy/Bit Normalized to FER of GDBF
Decoder under BSC

Figure 3-76: Throughput Normalized to BER of GDBF

Decoder under BSC
Figure 3-77: Throughput Normalized to FER of GDBF

Decoder under BSC

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 83 of (110)

3.6.1.4. PGDBF Decoder

Figure 3-78 to Figure 3-84 depicts the results of voltage scaling experiments of the PGDBF decoder

under the BSC channel. The maximum number of iterations is set to 100. One can observe in these

figures that:

 The decoding performance starts degrading at 0.85𝑉 due to voltage scaling and it goes to its

worst condition in which the FER is almost flat (i.e., FER = 1) at 0.76V.

 Energy efficiency is improved by 47% while keeping almost the same decoding performance

without any throughput degradation when we turn down the supply voltage from 1V to

0.85V.

 The average number of decoding iterations increases with decreasing supply voltage, which

is consistent with the BER/FER degradation. Hence, unlike the GDBF decoder, we deduce that

the BER/FER degradation is mainly due to timing errors affecting the processing units, and

not to malfunctioning control unit.

Figure 3-78: BER of PGDBF Decoder under BSC Figure 3-79: FER of PGDBF Decoder under BSC

Figure 3-80: Average Number of Iterations of PGDBF Decoder under BSC

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 84 of (110) © i-RISC

Figure 3-81: Energy/Bit Normalized to BER of PGDBF

Decoder under BSC
Figure 3-82: Energy/Bit Normalized to FER of PGDBF

Decoder under BSC

Figure 3-83: Throughput Normalized to BER of PGDBF

Decoder under BSC
Figure 3-84: Throughput Normalized to FER of PGDBF

Decoder under BSC

3.6.1.5. MS Decoder

Figure 3-85 to Figure 3-91 and Figure 3-92 to Figure 3-97 present the voltage scaling experiment

results for the MS decoder with and without early termination (i.e., the MSnoET decoder),

respectively, under the BSC channel. The maximum number of iterations is fixed at 30. One can

observe in these figures that:

MS decoder

 The voltage scaling degrades the decoding performance starting from 0.77V and it turns the

decoder to its lowest decoding performance at 0.75V shown by its almost flat FER = 1.

 The average number of decoding iterations is virtually the same as for any supply voltage

value, while both BER and FER exhibit a near-flat error-floor at low BSC crossover probability.

As discussed in Section 3.6.1.2, this indicates that the data offloaded by the decoder and the

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 85 of (110)

one on which the ET has been checked are different, which could be explained by a

malfunctioning control unit.

 The decoder consumes 53% less energy (normalized to BER) when it is operated at 0.77V,

when compared to 1V operation, while having the same decoding performance without any

degradation of throughput.

MSnoET decoder

 We note that the performance of the MSnoET decoder is virtually the same as in nominal

conditions, for any simulated supply voltage down to 0.725V. This indicates that the

processing units of the decoder are only slightly affected by timing errors. For voltage supply

values less than 0.725V the control unit stops working (no done signal is given to the

testbed), and therefore we could not continue the experiment. This confirms our guess that

the performance degradation of the MS decoder is due to the control unit, and is further

indicating that the control unit might fail to work properly due to the way the ET circuit is

integrated to the decoder.

 The decoder consumes about 58% less energy (normalized to BER) when it is operated at

0.725V compared to 1V, while having the same decoding performance without any

degradation of throughput.

Figure 3-85: BER of MS Decoder under BSC Figure 3-86: FER of MS Decoder under BSC

Figure 3-87: Average Number of Iterations of MS Decoder under BSC

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 86 of (110) © i-RISC

Figure 3-88: Energy/Bit Normalized to BER of MS

Decoder under BSC
Figure 3-89: Energy/Bit Normalized to FER of MS

Decoder under BSC

Figure 3-90: Throughput Normalized to BER of MS
Decoder under BSC

Figure 3-91: Throughput Normalized to FER of MS
Decoder under BSC

Figure 3-92: BER of MSnoET Decoder under BSC Figure 3-93: FER of MSnoET Decoder under BSC

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 87 of (110)

Figure 3-94: Energy/Bit Normalized to BER of MSnoET
Decoder under BSC

Figure 3-95: Energy/Bit Normalized to FER of MSnoET
Decoder under BSC

Figure 3-96: Throughput Normalized to BER of
MSnoET Decoder under BSC

Figure 3-97: Throughput Normalized to FER of
MSnoET Decoder under BSC

3.6.1.6. SCMS Decoder

Figure 3-98 to Figure 3-104 and Figure 3-105 to Figure 3-110 present the results of voltage scaling

experiments performed on the SCMS decoder with and without early termination (i.e., SCMSnoET),

respectively, under the BSC channel. The maximum number of iterations is fixed at 30. One can

observe in these figures that:

SCMS decoder

 The voltage scaling degrades the decoding performance starting from 0.771V and it turns

the decoder to its lowest decoding performance at 0.75V shown by its almost flat FER = 1.

 The average number of decoding iterations is virtually the same for any supply voltage value,

while both BER and FER exhibit a near-flat error-floor at low BSC crossover probability.

Similar to the MS decoder, this indicates that the data offloaded and the one on which the ET

is checked are different, which could be explained by a malfunctioning control unit.

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 88 of (110) © i-RISC

 The decoder consumes 54% less energy (normalized to BER) when it is operated at 0.78V

when compared to 1V operation, while having the same decoding performance without any

degradation of throughput.

SCMSnoET decoder

 The MSnoET decoder show virtually the same BER/FER performance at any supply voltage

between 1V and 0.79V, then it suddenly reaches flat FER = 1 at 0.78V. This degradation is

expected to be due to a malfunctioning control unit, although we do not have a clear

indication for this (except possibly the near-flat error floor of the BER curves, similar to the

behavior observed when we had strong indications of malfunctioning control unit).

 The decoder consumes about 50% less energy (normalized to BER) when it is operated at

0.79V compared to 1V, while having the same decoding performance without any

degradation of throughput.

Figure 3-98: BER of SCMS Decoder under BSC Figure 3-99: FER of SCMS Decoder under BSC

Figure 3-100: Average Number of Iterations of SCMS Decoder under BSC

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 89 of (110)

Figure 3-101: Energy/Bit Normalized to BER of SCMS

Decoder under BSC
Figure 3-102: Energy/Bit Normalized to FER of SCMS

Decoder under BSC

Figure 3-103: Throughput Normalized to BER of SCMS

Decoder under BSC
Figure 3-104: Throughput Normalized to FER of SCMS

Decoder under BSC

Figure 3-105: BER of SCMSnoET Decoder under BSC Figure 3-106: FER of SCMSnoET Decoder under BSC

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 90 of (110) © i-RISC

Figure 3-107: Energy/Bit Normalized to BER of

SCMSnoET Decoder under BSC
Figure 3-108: Energy/Bit Normalized to FER of

SCMSnoET Decoder under BSC

Figure 3-109: Throughput Normalized to BER of

SCMSnoET Decoder under BSC
Figure 3-110: Throughput Normalized to FER of

SCMSnoET Decoder under BSC

3.6.1.7. FAID Decoder

The results of voltage scaling experiments of the FAID decoder with and without (i.e., FAIDnoET)

early termination under the BSC channel in which its maximum number of iterations is set at 30 are

presented in Figure 3-111 to Figure 3-117 and in Figure 3-118 to Figure 3-123, respectively. One can

observe in these figures that:

FAID decoder

 The degradation of decoding performance caused by voltage scaling is visible starting from

0.76V and it continues degrading till its FER is flat = 1 at 0.74V.

 The average number of decoding iterations is increasing as supply voltage decreases from 1V

to 0.75V, which is consistent with the BEF/FER degradation. For supply voltage below 0.74V,

the average number of decoding iterations is way below its maximum value, although the

achieved FER is virtually flat equal to 1. This indicates that the ET termination circuit is

severely affected by timing errors, hence reporting a correct codeword and making the

decoder stop while it shouldn’t.

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 91 of (110)

 Although FAID architecture and implementation present many similarities with those of MS

and SCMS decoders, we note that for the FAID there is no clear evidence of any kind of

control unit failure.

 Turning down the supply voltage from 1V to 0.77V improves energy efficiency (normalized

to BER) by 58%, without almost any degradation of the decoding performance or of the

throughput.

FAIDnoET decoder

 The degradation of decoding performance caused by voltage scaling is visible starting from

0.79V and it continues degrading till its FER is flat = 1 at 0.76V.

 We also note that the decoding performance of the FAIDnoET decoder is degraded with

respect to that of the FAID decoder. This confirms the fact that – for properly working control

unit – the ET circuit may improve the decoder performance, as discussed in the first

paragraph of Section 3.6.1. The intuition behind goes as follows: when the number or timing

errors affecting the processing units is moderate, the decoder manages to handle them, so

that the bit error rate is maintained at a low level throughout the iterative process. The

number of bit errors from one iteration to another may vary (increase or decrease), but if the

bit error probability if low enough, the decoder will eventually reach an error free iteration

when the absence of errors is eventually detected by the ET circuit and the decoder stops.

When the ET circuit is not implemented, the decoder stops when it reaches the maximum

number of decoding iterations, while there is no particular reason for that the last iteration

to be error free.

Figure 3-111: BER of FAID Decoder under BSC Figure 3-112: FER of FAID Decoder under BSC

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 92 of (110) © i-RISC

Figure 3-113: Average Number of Iterations of FAID Decoder under BSC

Figure 3-114: Energy/Bit Normalized to BER of FAID

Decoder under BSC
Figure 3-115: Energy/Bit Normalized to FER of FAID

Decoder under BSC

Figure 3-116: Throughput normalized to BER of FAID
Decoder under BSC

Figure 3-117: Throughput Normalized to FER of FAID
Decoder under BSC

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 93 of (110)

Figure 3-118: BER of FAIDnoET Decoder under BSC Figure 3-119: FER of FAIDnoET Decoder under BSC

Figure 3-120: Energy/Bit Normalized to BER of

FAIDnoET Decoder under BSC
Figure 3-121: Energy/Bit Normalized to FER of

FAIDnoET Decoder under BSC

Figure 3-122: Throughput Normalized to BER of

FAIDnoET Decoder under BSC
Figure 3-123: Throughput Normalized to FER of

FAIDnoET Decoder under BSC

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 94 of (110) © i-RISC

3.6.1.8. Voltage Scaling Sensitivity (VSS)

In this section we summarize the evaluation results for the 10 decoders under test, from the VSS

metric perspective. In order to capture the way a decoder reacts to the voltage scaling process, the

Performance Preservation Region (PPR) and Performance Degradation Region (PDR) have been

introduced in Section 3.2. These regions are delimited by the Vpp and Vpd voltage values, which are

estimated based on the Monte-Carlo simulation results reported previously:

 Vpp = the lowest voltage value for which the FER is the same as for nominal Vdd

 Vpd = the highest voltage value for which the FER is flat, equal to 1

With the above notation, it follows that:

PPR = Vdd − Vpp and PDR = Vpp − Vpd

PPR measures the decoder potential to save energy while providing its expected performance while

PDR measures how much energy savings one can still get if the channel conditions permit.

Table 3-28 shows the PPR and PDR metrics for the decoders under test. Reported values for Vpp and

Vpd have been estimated by investigating the FER performance of each decoder for various supply

voltage values. The accuracy of the estimation depends on the increment/decrement between

supply voltage values for which the decoder has been evaluated. The uncertainty intervals and the

error margins for the Vpp and Vpd estimates are shown in Table 3-29.

The uncertainty intervals shown in Table 3-29 should be understood as follows (we include here the

explanation for the SD only, the same holds true for all the other decoders):

 Uncertainty interval for 𝑉pp (SD decoder):

 The achieved FER is (virtually) the same, for any supply voltage value starting from 1V

down to 0.82V. The next simulated supply voltage value is 0.815V – however, for this

supply voltage the FER presents a visible degradation

 Therefore, the Vpp value reported in Table 3-28 is 0.82V (smallest value without

degradation), while the actual value could be within the interval [0.815V – 0.82V]. The

error margin of the estimation is thus equal to 0.005V.

 Uncertainty interval for Vpd (SD decoder):

 The achieved FER is (virtually) flat equal to 1, for all supply voltage values up to 0.78V.

The next simulated supply voltage value is 0.785V – however, for this voltage value the

FER is no longer flat

 Therefore, the Vpd value reported in Table 3-28 is 0.78V (highest value with flat FER

 = 1), but the actual value could be within the interval [0.78V – 0.785V]. The error

margin of the estimation is thus equal to 0.005V.

Note that values highlighted in red in Table 3-29 are Vpp and Vpd reported in Table 3-28.

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 95 of (110)

Table 3-28: PPR and PDR Metrics for the Decoders under Test (Voltage Scaling Scenario)

(1) Errors in the Vpd– Vpp interval are most likely due to timing errors affecting processing units;

(2) Errors in the Vpp– Vdd interval are most likely due to malfunctioning controller, while processing units (including

ET) seem to work properly;

(3) Same performance as for nominal Vdd for any supply voltage value - in particular, the actual Vpp value is lower

than the displayed one.

Table 3-29: Uncertainty Intervals for 𝑉pp and 𝑉pd Estimates

Table 3-30 depicts the energy savings of the evaluated decoders when we operate them at Vpp

instead of nominal voltage. Energy savings are computed in terms of energy/bit normalized to BER,

and in order to have a fair comparison, they are evaluated for all decoders at the same BER = 10−4
.

The BSC crossover probability for which the decoders achieve the target BER = 10−4 is also reported

in the table. It can be seen that the energy savings vary between 45% and 67%. The GB decoder

presents the highest potential for energy savings, but it also exhibits the second worst error

correction performance. The best error correction performance is provided by the SCMS and

SCMSnoET decoders, while they allow for energy savings of about 50%.

Table 3-30: Energy Savings of Evaluated Decoders Operating at 𝑉pp (@BER = 10−4)

SD GB GDBF PGDBF MS MSnoET SCMS SCMSnoET FAID FAIDnoET

Vdd 1 1 1 1 1 1 1 1 1 1

Vpp 0,82 0,725 0,81 0,85 0,765 0,725 0,771 0,79 0,77 0,79

Vpd 0,78 0,711 0,76 0,76 0,75 N/A 0,75 0,78 0,74 0,76

PPR 0,18 0,275 0,19 0,15 0,235 0,275 0,229 0,21 0,23 0,21

PDR 0,04 0,014 0,05 0,09 0,015 N/A 0,021 0,01 0,03 0,03

Comments (1) (2) (2) (1) (2) (3) (2) (1) (1) (1)

SD GB GDBF PGDBF MS MSnoET SCMS SCMSnoET FAID FAIDnoET

Vpp [0,815-0,82] [0,722-0,725] [0,8-0,81] [0,84-0,85] [0,764-0,765] 0,725(*) [0,77-0,771] [0,78-0,79] [0,76-0,77] [0,78-0,79]

Vpd [0,78-0,785] [0,711-0,72] [0,76-0,765] [0,76-0,77] [0,75-0,76] N/A [0,75-0,76] [0,78-0,79] [0,74-0,75] [0,76-0,77]

0,005 0,003 0,01 0,01 0,001 N/A 0,001 0,01 0,01 0,01

0,005 0,009 0,005 0,01 0,01 N/A 0,01 0,01 0,01 0,01

(*) Lower supply voltages have not been simulated because the control unit stops working

errror

margins

SD GB GDBF PGDBF MS MSnoET SCMS SCMSnoET FAID FAIDnoET

Energy

savings
50 % 67 % 52 % 45 % 53 % 60 % 52 % 50 % 56 % 54 %

BSC crossover

probability
0,048 0,025 0,023 0,031 0,049 0,049 0,055 0,055 0,05 0,05

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 96 of (110) © i-RISC

3.6.2. Fault Injection

Simulated fault injection has been applied to the MS, SCMS, and FAID architectures described in

Sections 3.5.1, 3.5.2, and 3.5.3. The fault injection methodology, the error profile characterization

and the fault map generation are described in Section 3.3.2 and Section 3.3.3, respectively. In this

section, we are presenting the simulated fault injection results.

Decoders are evaluated in terms of BER, FER, and average number of decoding iterations. MS and

SCMS decoders are evaluated for both Binary Input Additive White Noise Gaussian (BI-AWGN) and

BSC channel models. As explained in Section 3.6.1, the FAID decoder operates on binary input data,

thus it is only evaluated for the BSC model.

3.6.2.1. Analysis of LDPC Decoders under BI-AWGN

The inputs of the MS and SCMS decoder are 4-bit signed integers, representing quantized Log-

Likelihood Ratio (LLR) values. A gain factor – referred to as channel scale factor in [i-RISC/D3.1] – is

first applied on the channel output, which is then quantized and fed to the decoder input. The

optimization of the channel scale factor has been addressed in [i-RISC/D3.1]. Here, we use a channel

scale factor equal to 3.5, which yields good performance in both the waterfall and the error-floor

region.

Figure 3-124, Figure 3-125, and Figure 3-126 depict the average number of iterations, the BER, and

the FER for faulty MS architecture for BI-AWGN. The figures indicate that the MS decoder has the

same decoding performance for a clock period of 3.1ns as a fault free decoder. The average error

rate for a decoder with a clock period of 3.1ns is of order 10−5, with a maximum of order 10−4. A

slight decoding performance degradation (of less than 0.1dB for a 10−5 BER) is observed when clock

frequency is increased to 400MHz (clock period of 2.5ns). The average error rate in this case is of

order 10−4, while the maximum error rate is of order 10−3. Therefore, average error rates of up to

10−4 in the decoder do not or only slightly affect the error correction capability. Significant decoding

performance degradation is observed for a clock period of 2.2ns, which corresponds to an average

error rate of 10−3. For a clock period of 1.9ns, the MS decoder cannot decode.

Figure 3-124: Average Number of Iterations for Faulty MS under BI-AWGN

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 97 of (110)

Figure 3-125: BER for Faulty MS under BI-AWGN Figure 3-126: FER for Faulty MS under BI-AWGN

Figure 3-127, Figure 3-128, and Figure 3-129 depict the average number of iterations, the BER, and

the FER for faulty SCMS architecture for BI-AWGN, when errors are injected in all memories

(including the memory for previous α message signs and the memory for erasure bits). The figures

indicate that the SCMS decoder has the same decoding performance for a clock period of 2.5ns as a

fault free decoder. For a clock period of 2.2ns, the SCMS decoder exhibits an error floor starting at

SNR 2.5dB (FER 4 × 10−3, BER 6 × 10−5). As for the MS decoder, for a clock period of 1.9ns,

the circuit has no error correction capability.

Figure 3-127: Average Number of Iterations for Faulty SCMS under BI-AWGN with Errors Injected in the Two
Additional Memories

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 98 of (110) © i-RISC

Figure 3-128: BER for Faulty SCMS under BI-AWGN
with Errors Injected in the Two Additional Memories

Figure 3-129: FER for Faulty SCMS under BI-AWGN
with Errors Injected in the Two Additional Memories

Figure 3-130, Figure 3-131, and Figure 3-132 depict the average number of iterations, the BER, and

the FER for faulty SCMS architecture for BI-AWGN, when errors are not injected in the two additional

memories (the memory for previous α message signs and the memory for erasure bits). When errors

do not affect the two memories, a small decoding performance decrease (of less than 0.1 dB) is

obtained for a clock period of 2.2 ns. With respect to the situation when these two memories are

injected with faults, the decoder does not longer exhibit the error floor phenomena at SNR 2.5dB.

Figure 3-130: Average Number of Iterations for Faulty SCMS under BI-AWGN with No Errors Injected in the Two
Additional Memories

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 99 of (110)

Figure 3-131: BER for Faulty SCMS under BI-AWGN
with No Errors Injected in the Two Additional

Memories

Figure 3-132: FER for Faulty SCMS under BI-AWGN
with No Errors Injected in the Two Additional

Memories

3.6.2.2. Analysis of MS, SCMS, and FAID Decoders under BSC

For MS and SCMS decoders under BSC, the channel scale factor is simply referred to as channel value

(see discussion from Section 3.6.1). The impact of the channel value on the robustness of the MS

decoder has been demonstrated analytically in [i-RISC/D3.1] for theoretical error models. Here, we

further highlight this phenomenon for realistic error models, by simulation the MS decoder with

channel values 3 and 4. The SCMS decoder is insensitive to the channel value choice hence it is

enough to simulate the SCMS decoder with a channel value equal of 3. Note also that the channel

value does not apply to the FAID, which operate on binary input data.

Figure 3-133, Figure 3-134, and Figure 3-135 depict the average number of iterations, the BER, and

the FER for faulty MS architecture. The results indicate a strong influence of the channel value for

the MS decoder. On one hand, a channel value of 4 will lead to a better error correction capability of

the decoder with respect to a channel value of 3. On the other hand, for a clock period of 2.2ns, the

decoding performance when applying a channel value of 4 is almost the same with the one of an

error-free decoder. Applying a channel value of 3, decoding performance degradation can be

observed for a clock period of 2.2ns with respect to the error-free decoder. For both values of the

channel value, for a clock period of 2.5ns or higher there is no performance loss in decoding, while

for a clock period of 1.9ns, the decoders do not decode.

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 100 of (110) © i-RISC

a) Channel Scale Factor 3 b) Channel Scale Factor 4

Figure 3-133: Average Number of Iterations for Faulty MS under BSC

a) Channel Scale Factor 3 b) Channel Scale Factor 4

Figure 3-134: BER for Faulty MS under BSC

a) Channel Scale Factor 3 b) Channel Scale Factor 4

Figure 3-135: FER for Faulty MS under BSC

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 101 of (110)

Figure 3-136, Figure 3-137, Figure 3-138, Figure 3-139, Figure 3-140, and Figure 3-141 depict the

average number of iterations, the BER, and the FER for faulty SCMS architecture under BSC with

errors injected in the two additional memories (the former 3) and no error injected in the additional

memories (the latter 3). A value of 3 has been considered for the channel value. The obtained results

are similar to the ones obtained for BI-AWGN. For the SCMS decoder with faulty previous 𝛼 sign

memory and faulty erasure memory, an error-floor type of behavior can be observed for a clock

period of 2.2ns. For the SCMS decoder with error free additional memories, the decoding

performance for the clock period of 2.2ns is similar to an error free decoder.

Figure 3-136: Average Number of Iterations for Faulty SCMS under BSC with Errors Injected in All Memories

Figure 3-137: BER for Faulty SCMS under BSC with
Errors Injected in All Memories

Figure 3-138: FER for Faulty SCMS under BSC with
Errors Injected in All Memories

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 102 of (110) © i-RISC

Figure 3-139: Average Number of Iterations for Faulty SCMS under BSC with No Errors Injected in the Two

Additional Memories

Figure 3-140: BER for Faulty SCMS under BSC with No
Errors Injected in the Two Additional Memories

Figure 3-141: FER for Faulty SCMS under BSC with No
Errors Injected in the Two Additional Memories

Figure 3-142, Figure 3-143, and Figure 3-144 depict the simulation results for the FAID decoders

under BSC channels. The FAID decoder presents no decoding performance degradation for clock

periods of 2.2ns or higher with respect to the error free decoder. Slight performance degradation is

observed for a clock period of 1.9ns. The FAID decoder cannot decode for clock periods of 1.7ns or

lower. With respect to the MS decoders, the FAID decoder can decode for the clock period of 1.9ns.

It must be noted that, as indicated in Figure 3-126, the expected number of activated faults in a FAID

decoder for the 1.9ns clock period is half compared to the MS and SCMS decoders.

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 103 of (110)

Figure 3-142: Average Number of Iterations for Faulty FAID under BSC

Figure 3-143: BER for Faulty FAID under BSC Figure 3-144: FER for Faulty FAID under BSC

3.6.2.3. Frequency Scaling Sensitivity

In this section we summarize the evaluation results for the decoders under test, from the FSS metric

perspective. In order to capture the way a decoder reacts to the voltage scaling process, the

Performance Preservation Region (PPR) and Performance Degradation Region (PDR) have been

introduced in Section 3.3. These regions are delimited by the Tpp and Tpd clock period values, which

are estimated based on the Monte-Carlo simulation results reported previously:

 Tpp = the lowest clock period for which the FER is the same as for nominal Tclk

 Tpd = the highest clock period for which the FER is flat, equal to 1

With the above notation, it follows that:

PPR = Tdd − Tpp and PDR = Tpp − Tpd

PPR measures the decoder potential to increase throughput by means of overclocking, while

providing its expected performance. PDR measures about how much overclocking one can still resort

to if channel conditions permit. While FSS analysis is very similar to the VSS analysis presented in

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 104 of (110) © i-RISC

Section 3.6.1.8, we note that Tpp and Tpd values are determined based on simulated fault injection

and not by actual overclocking of the design, and therefore we have to treat them as such.

Table 3-31 shows the PPR and PDR metrics for the decoders under test. Reported values for Tpp and

Tpd have been estimated by investigating the FER performance of each decoder for various clock

period values (similar to the methodology described in Section 3.6.1.8). For MS and SCMS decoders,

we may observe that the obtained Tpp values are slightly smaller for the BSC than the BI-AWGN,

which may indicate an increased robustness under BSC. The smaller Tpp value is obtained for

SCMS(*) and FAID decoders under BSC, and indicates a frequency (hence, throughput) increase by a

factor of 2.5, without any degradation of the error correction performance. Note that reducing the

clock period from nominal Tclk to Tpp corresponds to a throughput increase between 77% (for

Tpp = 3.1ns) and 150% (for Tpp = 2.2ns).

Table 3-31: PPR and PDR Metrics for the Decoders under Test (SFI Scenario)

3.7. Conclusion

A number of seven LDPC decoders have been implemented and evaluated under either voltage

scaling or fault injection scenario. Among them, four are hard-decision decoders (GB, GDBF, PGDBF,

and FAID) and only apply to the BSC channel model. The remaining three decoders (SD, MS, and

SCMS) are soft-decision decoders, and apply to both Bi-AWGN and BSC channel models.

Furthermore, three other MS, SCMS and FAID variants without Early Termination (ET) circuit have

been implemented, thus bringing the total number of evaluated decoders to ten.

Under voltage scaling scenario, the ten decoders have been evaluated for the BSC model. Evaluation

results have been reported in terms of error correction performance (BER and FER), average number

of decoding iterations, throughput, and energy/bit. It has been demonstrated that all decoders are

able to preserve their nominal error correction performance when supply voltage is scaled down to

some critical point, from which the error correction performance starts degrading. Informed by the

evaluation results in terms of BER, FER or average number of decoding iterations, we revealed two

main phenomena responsible for the error correction performance degradation. For SD, PGDBF,

FAID, and FAIDnoET decoders, the degradation of the error correction performance is most likely due

to timing errors affecting the decoder data processing units. For GB, GDBF, MS, SCMS, and SCMSnoET

decoders the error correction performance lost is primarily due to control unit, which fails to work

properly at low voltage supply. A particular case is represented by the MSnoET decoder, which

MS(c=3.5) SCMS(c=3.5) MS(c=3) MS(c=4) SCMS(c=3) SCMS(*) FAID

Tclk 5,5 5,5 5,5 5,5 5,5 5,5 5,5

Tpp 3,1 2,5 2,5 2,2 2,5 2,2 2,2

Tpd 1,9 1,9 1,9 1,9 1,9 1,9 1,7

PPR 2,4 3 3 3,3 3 3,3 3,3

PDR 1,2 0,6 0,6 0,3 0,6 0,3 0,5

(c=x) Channel scale factor or channel value used for BI-AWGN and BSC, respectively

(*) No errors injected in the two additional memories (SCMS specific)

BI-AWGN BSC

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 105 of (110)

preserves its nominal error correction performance until the control unit completely stops

functioning.

Concerning the ET circuit, we showed that it helps improving the error correction performance, in

case that the control unit works properly. This phenomenon has been highlighted for the FAID

decoder. However, the way the ET circuit is integrated to the MS and SCMS decoders seems to be

responsible for their control units’ failures, which in turn results in a decreased robustness of the MS

and SCMS decoders with respect to their no-ET counterparts.

In order to get an overall view of how different decoders react to the voltage scaling process, we

further introduced the Voltage Scale Sensitivity (VSS) metric and summarized the evaluation results

from its perspective. As a result, we measured the decoders potential to save energy while providing

their expected performance. We showed that voltage scaling may results in energy savings between

45% and 67%, while preserving the nominal throughput and error correction performance.

Given that voltage scaling creates timing faults all over the circuit it only partially reflect the real life

decoder exposure to environmental aggression factors. In such situations fault occurrence location

and rate (fault occurrence map) also relate to decoder architecture and implementation details. To

this end we introduced a fault map creation methodology and performed fault map guided

Simulation Fault Injection. In this way we selectively exposed decoder data path parts to errors and

observed MS, SCMS, and FAID behavior in this conditions. A fault free control has been considered

for the experiment. The three decoders have been evaluated in terms of BER, FER, and average

number of decoding iterations, under either the BSC (all decoders) or the BI-AWGN (MS and SCMS,

only) channel model. The primary conclusion of the SFI experiments is that all the decoders have the

ability to also correct errors in their data-path, not only those which appear in the transmission

channel. For all three decoders, increasing the clock frequency by a factor of 2 with respect to the

maximum supported by the error free decoder will lead to no error correction capability

degradation.

For BSC channel, we showed that the channel value has a strong influence on the MS decoder

performance: a channel value of 4 leads to better decoding performance and better fault tolerance

with respect to channel value of 3.

For both BSC and BI-AWGN channels, the errors in the two SCMS-specific memories (previous 𝛼 sign

and erasure bit memories) have a strong influence on the SCMS performance. For a clock period of

2.2ns (corresponding to a 10−4 error rate in memories), the SCMS decoder presents a high error

floor when the two memories are affected by faults. When the two SCMS-specific memories are

faulty free, similar performance as the error free decoder has been observed.

The simulations also indicate that the FAID decoder can support lower clock periods than the

MS/SCMS decoders. However, it must be taken into consideration that the FAID decoder has a lower

number of expected activated fault locations with respect to the MS based decoders.

Finally, we introduced the Frequency Scale Sensitivity (FSS) metric and summarized the evaluation

results from its perspective. As a result, based on simulated fault injection results, the decoder

potential to increase throughput by means of overclocking has been estimated to be between 77%

and 150%, while preserving the nominal error correction performance.

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 106 of (110) © i-RISC

4. General Conclusions and Next Steps

A novel integrated CAD flow targeting reliability heavy-multi objective logic synthesis has been

proposed in the first part of this Deliverable. We showed that a heterogeneous flow (using both

academic and industry tools) was necessary, including custom scripts and wrappers developed on top

of existing tools in order to facilitate the reliability analysis and optimization flow. To start with, a

detailed study of all the available set of data structures, their benefits and limitations, and the

associated open source EDA tools was done. We have developed multiple set of reliability

computation engines that would estimate the probable output error with varying degrees of

accuracies and speed. Multiple set of logic optimization techniques have been developed which pre-

dominantly work at gate level. Further, we have developed logic augmentation techniques to

improve the circuit fault tolerance. Going forward, this flow will be used to (i) improve upon the

initial work of the reliability computation techniques and the graph optimization algorithms, (ii)

optimize the circuits for improving reliability within a multi-objective optimization framework, and

(iii) validate and to characterize the circuits proposed as part of proof of concept within i-RISC.

In the second part of this Deliverable, reliable systems in the context of LDPC decoders built out of

unreliable components have been evaluated. A number of seven LDPC decoders (Stochastic,

Gallager-B, GDBF, PGDBF, MS, SCMS, and FAID) have been implemented in VHDL/Verilog and

exposed to external aggression via voltage scaling or simulated fault injection. To have the most

realistic results, a real experimental hardware platform has been developed to evaluate the LDPC

decoders implemented on a Xilinx Virtex-7 FPGA, providing voltage scaling support and enabling

power/energy measurement. For the fault injection simulation scheme, the error profile of the basic

building blocks of the LDPC decoders under investigation has first been characterized, and then used

as guidance mean for judiciously performing the fault injection.

The implemented decoders have been evaluated for different voltage scaling of fault injection

aggression profiles in terms of (i) error correction performance, specifically FER and BER, (ii) average

number of iterations, (iii) throughput (Mb/s), and (iv) energy/bit (pJ/bit). We further introduced the

Voltage Scaling Sensitivity and the Frequency Scaling Sensitivity metrics, so that to capture their

reaction to voltage and frequency scaling, and to determine their potential to save energy or to

increase throughput, while delivering their expected error correction performance. As a main

contribution of this Deliverable, the conducted experiments substantiated the fault-tolerance

capabilities of the LDPC decoders under test and the resulting benefits in terms of energy

consumption and throughput.

Having provided the implementation and the assessment of the fault-tolerance capabilities of a large

number of LDPC decoders, the first WP6 milestone (MS7 – Proof of concept: implementation and

validation of the LDPC decoder) has been reached. Going forward, the results obtained in this

Deliverable will be used to (i) assess the fault-tolerance capabilities and (ii) evaluate the energy

consumption and throughput figures of merit of the error-correction driven logic augmentation

techniques proposed in Work-Package 5 of i-RISC.

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 107 of (110)

References

[Aymerich12] N. Aymerich, S.D. Cotofana, and A. Rubio, “Degradation Stochastic Resonance (DSR) in Adaptive-

Averaging (AD-AVG) Architectures,” 12th IEEE Conference on Nanotechnology (IEEE-NANO), pp. 1–4, August

2012.

[Borkar05] S. Borkar, “Designing Reliable Systems from Unreliable Components: The Challenges of Transistor

Variability and Degradation,” IEEE Micro, vol. 25, no. 6, pp. 10–16, 2005.

[Brayton10] R. Brayton and A. Mishchenko, “Abc: An Academic Industrial-Strength Verification Tool,” 22nd

International Conference on Computer Aided Verification, pp. 24–40, 2010.

[Cattell95] K. Cattell, S. Zhang, “Minimal Cost One-Dimensional Linear Hybrid Cellular Automata of Degree

Through 500”, Journal of Electronic Testing: Theory and Applications 6, pp. 255-258, 1995.

[Chandrasetty12] V.A. Chandrasetty, S.M. Aziz, "An Area Efficient LDPC Decoder Using a Reduced Complexity

Min-Sum Algorithm", VLSI Journal on Integration, vol. 45, no. 2, pp. 141-148, 2012.

[Chen11] J. Chen, J. Kang, S. Lin, V. Akella, "Memory System Optimization for FPGA Based Implementation of

Quasi-Cyclic LDPC Codes Decoders", IEEE Transactions on Circuits and Systems I, vol. 59, no. 1, pp. 98-111,

2011.

[Chen14] J. Chen, C. Spagnol, S. Grandhi, E. Popovici, S.D. Cotofana, and A. Amaricai, "Linear Compositional

Delay Model for the Timing Analysis of Sub-Powered Combinational Circuits,", IEEE Computer Society Annual

Symposium on VLSI (ISVLSI), pp. 380-385, 9-11 July 2014.

[Choudhury09] M.R. Choudhury, and K. Mohanram, “Reliability Analysis of Logic Circuits.” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 3, pp. 392–405, 2009.

[Constantinescu03] C. Constantinescu, “Trends and Challenges in VLSI Circuit Reliability,” IEEE Micro, vol. 23,

no. 4, pp. 14–19, 2003.

[Darabiha08] A. Darabiha, A.C. Carusone, F.R. Kschischang, “Block-Interlaced LDPC Decoders With Reduced

Interconnect Complexity,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 55, no. 1, pp. 74–78,

January 2008.

[Dodd03] P. E. Dodd and L. W. Massengill, “Basic Mechanisms and Modelling of Single-Event Upset in Digital

Microelectronics,” IEEE Transactions on Nuclear Science, vol. 50, no. 3, pp. 583–602, June 2003.

[Gaines69] B. Gaines,” Advances in Information Systems Science”, New York: Plenum, 1969.

[Gallager62] R. G. Gallager, “Low-Density Parity-Check Codes”, IRE Transactions on Information Theory, vol. 8,

pp. 21–28, 1962.

[Gammaitoni98] L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, “Stochastic Resonance” Reviews of

Modern Physics , vol. 70, pp. 223–287, January 1998.

[Hu05] X.-Y. Hu, E. Eleftheriou and D.M. Arnold, “Regular and Irregular Progressive Edge-Growth Tanner

Graphs”, IEEE Transactions on Information Theory, vol. 51, no. 1, pp. 386-398, January 2005.

[i-RISC/D2.1] FP7-ICT/FET-OPEN/ i-RISC project, Deliverable 2.1 “Circuit Level Fault Models for Sub-Powered

CMOS Circuits for Uncorrelated and Correlated Errors”

Online: http://www.i-risc.eu/home/liblocal/docs/iRISC_Deliverables/i-RISC_D2.1.pdf

[i-RISC/D2.2] FP7-ICT/FET-OPEN/ i-RISC project, Deliverable 2.2 “Higher Abstraction Fault Models and Their

Simulation Methodology”

Online: http://www.i-risc.eu/home/liblocal/docs/iRISC_Deliverables/i-RISC_D2.2.pdf

[i-RISC/D3.1] FP7-ICT/FET-OPEN/ i-RISC project, Deliverable 3.1 “Fault Tolerant LDPC Encoding and Decoding”

Online: http://www.i-risc.eu/home/liblocal/docs/iRISC_Deliverables/i-RISC_D3.1.pdf

[i-RISC/D3.2] FP7-ICT/FET-OPEN/ i-RISC project, Deliverable 3.1 “Fault Tolerant LDPC Encoding and Decoding”

http://www.i-risc.eu/home/liblocal/docs/iRISC_Deliverables/i-RISC_D2.1.pdf
http://www.i-risc.eu/home/liblocal/docs/iRISC_Deliverables/i-RISC_D2.2.pdf
http://www.i-risc.eu/home/liblocal/docs/iRISC_Deliverables/i-RISC_D3.1.pdf

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 108 of (110) © i-RISC

Online: http://www.i-risc.eu/home/liblocal/docs/iRISC_Deliverables/i-RISC_D3.2.pdf

[i-RISC/D5.1] FP7-ICT/FET-OPEN/ i-RISC project, Deliverable 5.1, “Data Structures and Design Flow for Fault

Tolerant Circuit Synthesis”, January 2014.

Online: http://www.i-risc.eu/home/liblocal/docs/iRISC_Deliverables/i-RISC_D5.1.pdf

[i-RISC/D5.2] FP7-ICT/FET-OPEN/ i-RISC project, Deliverable 5.2, “Fault Tolerant Synthesis through Graph

Augmentation, Multi Objective Optimization and Boole Shannon limit”, January 2015.

Online: http://www.i-risc.eu/home/liblocal/docs/iRISC_Deliverables/i-RISC_D5.2.pdf

[Kaeslin08] H. Kaeslin, “Digital Integrated Circuit Design: From VLSI Architectures to CMOS Fabrication”, 1st ed.

New York, NY, USA: Cambridge University Press, 2008.

[Le15] K. Le, D. Declercq, F. Ghaffari, C. Spagnol, E. Popovici, P. Ivanis, B. Vasic, “Efficient Realization of

Probabilistic Gradient Descent Bit Flipping Decoders”, IEEE International Symposium on Circuits and Systems

(ISCAS), 24-27 May 2015.

[Liva06] G. Liva, S. Song, L. Lan, Y. Zhang, S. Lin, W. Ryan, “Design of LDPC Codes: A Survey and New Results,”

Journal of Communications Software and Systems, 2006.

[Marconi14] T. Marconi, C. Spagnol, E. Popovici and S.D. Cotofana,”Towards Energy Effective LDPC Decoding by

Exploiting Channel Noise Variability”, 22nd IFIP/IEEE International Conference on Very Large Scale Integration

(VLSI-SoC 2014), pp. 1-6, October 2014.

[Marconi15] T. Marconi and S.D. Cotofana, “Dynamic Bitstream Length Scaling Energy Effective Stochastic LDPC

Decoding”, 25th edition of ACM's Great Lakes VLSI Symposium (GLSVLSI), Pittsburgh, Pennsylvania, USA, May

2015.

[Mehrotra11] R. Mehrotra, T. English, M. Schellekens, S. Hollands, and E. Popovici, “Timing-Driven Power

Optimisation and Power-Driven Timing Optimisation of Combinational Circuits,” Journal of Low Power

Electronics, vol. 7, no. 3, pp. 364–380, 2011.

[Park14] Y.S. Park, D. Blaauw, D. Sylvester, and Z. Zhang, “Low-Power High-Throughput LDPC Decoder Using

Non-Refresh Embedded DRAM” IEEE Journal of Solid State Circuits, vol. 49, no. 3, pp. 783-794, 2014

[Pedram96] S. Iman and M. Pedram, “Pose: Power Optimization and Synthesis Environment,” 33rd Design

Automation Conference, pp. 21–26, 1996.

[Planjery10] S. Planjery, D. Declercq, S. Chilappagari, B. Vasic, "Multilevel Decoders Surpassing Belief

Propagation on the Binary Symmetric Channel", IEEE International Symposium On Information Theory (ISIT), pp.

769-773, 2010.

[Poppelbaum67] W.J. Poppelbaum, C. Afuso, and J.W. Esch., “Stochastic Computing Elements and Systems”,

ACM Fall Joint Computer Conference, AFIPS ’67 (Fall), pages 635–644, New York, NY, USA, November 14-16,

1967.

[Rasheed14] O.A. Rasheed, P. Ivanis and B. Vasic, “Fault-Tolerant Probabilistic Gradient-Descent Bit Flipping

Decoder”, IEEE Communications Letters, vol. 18, no. 9, pp. 1487–1490, September 2014.

[Ribeiro67] S.T. Ribeiro, “Random-Pulse Machines. Electronic Computers”, IEEE Transactions on Electronic

Computers, vol. 16, no.3, pp. 261–276, June 1967.

[Savin08] V. Savin, “Self-Corrected Min-Sum Decoding of LDPC Codes”, IEEE International Symposium On

Information Theory (ISIT), pp. 146-150, 2008.

[Savin14] V. Savin, “LDPC decoders”, in Channel coding: Theory, algorithms, and applications, D. Declercq, M.

Fossorier, and E. Biglieri editors, Academic Press Library in Mobile and Wireless Communications, Elsevier, June

2014.

[SDF04] IEEE. Delay and power calculation standards - Part 3: Standard Delay Format (SDF) for the electronic

design process (IEEE Std 1497-2004). IEEE, New York, 2004.

http://www.i-risc.eu/home/liblocal/docs/iRISC_Deliverables/i-RISC_D3.2.pdf
http://www.i-risc.eu/home/liblocal/docs/iRISC_Deliverables/i-RISC_D5.1.pdf
http://www.i-risc.eu/home/liblocal/docs/iRISC_Deliverables/i-RISC_D5.2.pdf

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

© i-RISC Page 109 of (110)

[Sentovich92] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. Stephan, R. K.

Brayton, and A. L. Sangiovanni-Vincentelli, “SIS: A System for Sequential Circuit Synthesis”, Technical Report

UCB/ERL M92/41, EECS Department, University of California, Berkeley, 1992.

[Stimming12] A.B. Stimming, A. Dollas, "FPGA-Based Design and Implementation of a Multi - GBPS LDPC

Decoder", 22nd Field Programmable Logic and Applications (FPL), pp. 262-269, 2012.

[SYNSAIF] Synopsys SAIF. Switching Activity Interchange Format.

Online: http://www.synopsys.com/partners/tapin/saif.html.

[SYNTOOL] Synopsys. Synopsys design platforms. http://www.synopsys.com/products/products.html.

[Tanner01] M. Tanner, D. Srkdhara, and T. Fuja, “A Class of Group-Structured LDPC Codes,” 2001

Online: citeseer.ist.psu.edu/tanner01class.html.

[Tehrani06] S.S. Tehrani, W.J. Gross, and S. Mannor, “Stochastic Decoding of LDPC Codes”, IEEE

Communications Letters, vol. 10, no. 10, pp. 716–718, 2006.

[Thorpe03] J. Thorpe, “Low-Density Parity-Check (LDPC) Codes Constructed from Protographs,” Jet Propulsion

Laboratory, InterPlanetary Network, Techical Report, August 2003.

[Venkiah08] A. Venkiah, D. Declercq and C. Poulliat, “Design of Cages with a Randomized Progressive Edge

Growth Algorithm”, IEEE Communications Letters, vol. 12(4), pp. 301-303, April 2008.

[Vittoz14] E. A. Vittoz, “Low-Power CMOS Circuits”, CRC Press, Nov 2005, chapter “Weak Inversion for

Ultimate Low-Power Logic”, pp. 1–18, 2005.

[Wadayama10] T. Wadayama, K. Nakamura, M. Yagita, Y. Funahashi, S. Usami and I. Takumi, “Gradient Descent

Bit Flipping Algorithms for Decoding LDPC Codes”, IEEE Transactions on Communications, vol. 58, no. 6, pp.

1610–1614, June 2010.

[Wu05] D. Wu and J. Zhu, “FBDD: A Folded Logic Synthesis System”, International Conference on ASIC (ASICON),

pp. 746–751, October 2005.

[XilinxTRNG] C. Baetoniu “High Speed True Random Number Generators in Xilinx FPGAs”

Online:

http://forums.xilinx.com/xlnx/attachments/xlnx/EDK/27322/1/HighSpeedTrueRandomNumberGeneratorsinXili

nxFPGAs.pdf

[Yanushkevich05] S. N. Yanushkevich, D. M. Miller, V. P. Shmerko and R. S. Stankovic, “Decision Diagram

Techniques for Micro- and Nanoelectronic Design Handbook”, CRS Press, pp. 429–445, 2006.

http://www.synopsys.com/partners/tapin/saif.html
http://www.synopsys.com/products/products.html
file:///C:/Users/nlc/AppData/Roaming/Microsoft/Word/citeseer.ist.psu.edu/tanner01class.html
http://forums.xilinx.com/xlnx/attachments/xlnx/EDK/27322/1/HighSpeedTrueRandomNumberGeneratorsinXilinxFPGAs.pdf
http://forums.xilinx.com/xlnx/attachments/xlnx/EDK/27322/1/HighSpeedTrueRandomNumberGeneratorsinXilinxFPGAs.pdf

D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components

Page 110 of (110) © i-RISC

Appendix 1: Quasi-Cyclic Description of the LDPC Codes

In this appendix, we describe the organization of the parity-check matrices for the LDPC codes utilized in the

project. For each non-zero entry in the protograph, the integer value indicated below corresponds to the index

of the first “1” in the circulant matrix. All the other “1”s of the circulant block are deduced by circular shift,

modulo L. A “-1” integer value indicates the zero blocks of the protograph. Only the regular LDPC matrices are

shown in this appendix.

LDPC Code : R=1/2, dv=3, N=1296, L=54

 49 -1 -1 -1 -1 43 -1 -1 -1 -1 50 -1 -1 -1 -1 2 -1 27 -1 -1 -1 -1 -1 49

 -1 -1 -1 10 41 -1 -1 -1 -1 52 -1 -1 32 -1 -1 -1 -1 -1 50 -1 50 -1 -1 -1

 -1 -1 20 -1 -1 -1 -1 20 -1 -1 -1 51 -1 10 -1 -1 47 -1 -1 -1 -1 -1 33 -1

 -1 24 -1 -1 -1 -1 22 -1 53 -1 -1 -1 -1 -1 31 -1 -1 -1 -1 18 -1 47 -1 -1

 10 -1 -1 -1 15 -1 -1 -1 -1 -1 2 -1 -1 -1 -1 50 -1 13 -1 -1 -1 -1 -1 53

 -1 -1 44 -1 -1 6 -1 -1 -1 -1 -1 29 -1 40 -1 -1 16 -1 -1 -1 13 -1 -1 -1

 -1 2 -1 -1 -1 -1 -1 13 41 -1 -1 -1 -1 -1 42 -1 -1 -1 -1 48 -1 49 -1 -1

 -1 -1 -1 36 -1 -1 24 -1 -1 50 -1 -1 12 -1 -1 -1 -1 -1 10 -1 -1 -1 48 -1

 -1 -1 47 -1 50 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 9 -1 7 -1 -1 -1 -1 -1 28

 -1 24 -1 -1 -1 -1 -1 51 -1 38 -1 -1 -1 -1 6 -1 -1 -1 -1 23 -1 16 -1 -1

 6 -1 -1 -1 -1 -1 5 -1 -1 -1 -1 13 -1 3 -1 -1 29 -1 -1 -1 16 -1 -1 -1

 -1 -1 -1 35 -1 16 -1 -1 37 -1 -1 -1 4 -1 -1 -1 -1 -1 24 -1 -1 -1 29 -1

LDPC Code : R=1/2, dv=4, N=1296, L=54

 11 -1 -1 -1 27 -1 -1 -1 33 16 -1 -1 -1 44 -1 -1 44 -1 8 -1 -1 -1 -1 0

 -1 25 -1 -1 -1 31 29 -1 -1 -1 29 -1 -1 -1 36 -1 -1 34 -1 15 -1 -1 17 -1

 -1 -1 44 4 -1 -1 -1 11 -1 -1 -1 2 50 -1 -1 52 -1 -1 -1 -1 30 33 -1 -1

 27 -1 -1 -1 34 -1 20 -1 -1 20 -1 -1 -1 13 -1 -1 27 -1 4 -1 -1 -1 -1 27

 -1 42 -1 22 -1 -1 -1 11 -1 -1 -1 44 -1 -1 4 14 -1 -1 -1 -1 45 17 -1 -1

 -1 -1 24 -1 -1 10 -1 -1 10 -1 18 -1 2 -1 -1 -1 -1 19 -1 38 -1 -1 31 -1

 -1 -1 40 -1 -1 35 -1 -1 31 19 -1 -1 3 -1 -1 42 -1 -1 -1 42 -1 -1 39 -1

 -1 29 -1 0 -1 -1 -1 29 -1 -1 5 -1 -1 -1 47 -1 -1 28 -1 -1 28 41 -1 -1

 9 -1 -1 -1 7 -1 20 -1 -1 -1 -1 1 -1 19 -1 -1 5 -1 25 -1 -1 -1 -1 41

 -1 -1 53 -1 -1 3 -1 -1 26 -1 3 -1 -1 -1 30 -1 -1 5 -1 35 -1 -1 44 -1

 -1 4 -1 -1 4 -1 -1 5 -1 -1 -1 13 42 -1 -1 50 -1 -1 -1 -1 36 38 -1 -1

 39 -1 -1 17 -1 -1 36 -1 -1 34 -1 -1 -1 46 -1 -1 12 -1 8 -1 -1 -1 -1 15

LDPC Code : R=3/4, dv=3, N=1296, L=27

 -1 -1 -1 9 9 -1 -1 -1 -1 -1 6 -1 -1 -1 -1 8 15 -1 -1 -1 -1 18 -1 -1 20 -1 -1 -1 -1 -1 18 -1 -1 12 -1 -1 18 -1 -1 -1 -1 -1 -1 1 19 -1 -1 -1

 7 -1 -1 -1 -1 1 -1 -1 -1 2 -1 -1 9 -1 -1 -1 -1 -1 -1 17 -1 -1 19 -1 -1 -1 26 -1 13 -1 -1 -1 1 -1 -1 -1 -1 -1 17 -1 -1 7 -1 -1 -1 17 -1 -1

 -1 10 -1 -1 -1 -1 -1 25 -1 -1 -1 4 -1 17 -1 -1 -1 16 -1 -1 14 -1 -1 -1 -1 15 -1 -1 -1 -1 -1 22 -1 -1 -1 1 -1 21 -1 -1 -1 -1 11 -1 -1 -1 -1 8

 -1 -1 22 -1 -1 -1 10 -1 24 -1 -1 -1 -1 -1 22 -1 -1 -1 5 -1 -1 -1 -1 15 -1 -1 -1 7 -1 14 -1 -1 -1 -1 24 -1 -1 -1 -1 9 2 -1 -1 -1 -1 -1 5 -1

 19 -1 -1 -1 -1 -1 -1 25 -1 -1 9 -1 17 -1 -1 -1 -1 -1 -1 8 17 -1 -1 -1 -1 24 -1 -1 18 -1 -1 -1 -1 -1 -1 9 -1 -1 11 -1 -1 8 -1 -1 -1 -1 -1 2

 -1 17 -1 -1 9 -1 -1 -1 -1 2 -1 -1 -1 -1 -1 25 12 -1 -1 -1 -1 -1 25 -1 -1 -1 12 -1 -1 -1 -1 15 -1 18 -1 -1 23 -1 -1 -1 -1 -1 1 -1 -1 22 -1 -1

 -1 -1 -1 10 -1 21 -1 -1 19 -1 -1 -1 -1 2 -1 -1 -1 3 -1 -1 -1 18 -1 -1 5 -1 -1 -1 -1 26 -1 -1 -1 -1 15 -1 -1 0 -1 -1 -1 -1 -1 24 7 -1 -1 -1

 -1 -1 11 -1 -1 -1 20 -1 -1 -1 -1 24 -1 -1 23 -1 -1 -1 22 -1 -1 -1 -1 0 -1 -1 -1 22 -1 -1 0 -1 9 -1 -1 -1 -1 -1 -1 5 20 -1 -1 -1 -1 -1 26 -1

 10 -1 -1 -1 20 -1 -1 -1 -1 -1 9 -1 -1 -1 -1 6 -1 -1 -1 19 -1 -1 7 -1 -1 -1 3 -1 6 -1 -1 -1 -1 -1 -1 23 -1 -1 15 -1 -1 24 -1 -1 -1 17 -1 -1

 -1 5 -1 -1 -1 -1 -1 15 -1 22 -1 -1 21 -1 -1 -1 6 -1 -1 -1 23 -1 -1 -1 7 -1 -1 -1 -1 -1 -1 19 -1 18 -1 -1 26 -1 -1 -1 5 -1 -1 -1 -1 -1 -1 4

 -1 -1 4 -1 -1 -1 16 -1 24 -1 -1 -1 -1 -1 24 -1 -1 -1 4 -1 -1 -1 -1 22 -1 -1 -1 22 -1 -1 4 -1 11 -1 -1 -1 -1 -1 -1 13 -1 -1 1 -1 -1 -1 6 -1

 -1 -1 -1 1 -1 20 -1 -1 -1 -1 -1 11 -1 5 -1 -1 -1 1 -1 -1 -1 7 -1 -1 -1 14 -1 -1 -1 20 -1 -1 -1 -1 5 -1 -1 8 -1 -1 -1 -1 -1 16 19 -1 -1 -1

LDPC Code : R=3/4, dv=4, N=1296, L=27

 -1 -1 0 -1 12 -1 -1 -1 0 22 -1 -1 1 -1 -1 -1 11 -1 23 -1 -1 -1 -1 21 1 -1 -1 -1 17 -1 -1 24 -1 0 -1 -1 -1 -1 2 -1 18 -1 11 -1 -1 -1 19 -1

 -1 14 -1 23 -1 -1 10 -1 -1 -1 26 -1 -1 -1 20 -1 -1 19 -1 -1 25 -1 21 -1 -1 19 -1 3 -1 -1 24 -1 -1 -1 -1 20 -1 26 -1 -1 -1 20 -1 -1 11 -1 -1 14

 16 -1 -1 -1 -1 25 -1 26 -1 -1 -1 7 -1 9 -1 18 -1 -1 -1 24 -1 19 -1 -1 -1 -1 25 -1 -1 13 -1 -1 11 -1 22 -1 18 -1 -1 13 -1 -1 -1 24 -1 9 -1 -1

 -1 -1 16 -1 25 -1 17 -1 -1 -1 14 -1 16 -1 -1 -1 -1 1 4 -1 -1 -1 12 -1 6 -1 -1 -1 21 -1 -1 26 -1 -1 -1 9 -1 9 -1 -1 11 -1 -1 -1 3 -1 18 -1

 -1 23 -1 -1 -1 15 -1 -1 6 25 -1 -1 -1 -1 23 1 -1 -1 -1 25 -1 -1 -1 20 -1 -1 9 0 -1 -1 23 -1 -1 20 -1 -1 -1 -1 13 -1 -1 3 25 -1 -1 -1 -1 18

 17 -1 -1 14 -1 -1 -1 18 -1 -1 -1 22 -1 18 -1 -1 25 -1 -1 -1 15 21 -1 -1 -1 6 -1 -1 -1 24 -1 -1 10 -1 5 -1 23 -1 -1 17 -1 -1 -1 3 -1 7 -1 -1

 -1 3 -1 -1 -1 9 3 -1 -1 -1 23 -1 -1 -1 0 -1 -1 17 -1 -1 10 22 -1 -1 -1 -1 0 24 -1 -1 -1 16 -1 -1 20 -1 22 -1 -1 3 -1 -1 -1 13 -1 -1 -1 24

 11 -1 -1 2 -1 -1 -1 0 -1 -1 -1 20 -1 26 -1 9 -1 -1 26 -1 -1 -1 23 -1 -1 11 -1 -1 -1 15 -1 -1 16 23 -1 -1 -1 2 -1 -1 24 -1 -1 -1 21 8 -1 -1

 -1 -1 21 -1 24 -1 -1 -1 18 15 -1 -1 18 -1 -1 -1 6 -1 -1 20 -1 -1 -1 23 17 -1 -1 -1 14 -1 16 -1 -1 -1 -1 3 -1 -1 13 -1 -1 17 14 -1 -1 -1 24 -1

 1 -1 -1 13 -1 -1 6 -1 -1 -1 -1 7 -1 15 -1 -1 -1 12 18 -1 -1 -1 4 -1 -1 -1 15 -1 -1 1 -1 22 -1 8 -1 -1 15 -1 -1 -1 24 -1 -1 -1 18 17 -1 -1

 -1 17 -1 -1 -1 19 -1 24 -1 -1 23 -1 -1 -1 11 2 -1 -1 -1 -1 9 25 -1 -1 -1 5 -1 9 -1 -1 -1 -1 18 -1 22 -1 -1 -1 8 10 -1 -1 -1 14 -1 -1 -1 16

 -1 -1 14 -1 18 -1 -1 -1 20 4 -1 -1 13 -1 -1 -1 19 -1 -1 0 -1 -1 -1 24 22 -1 -1 -1 24 -1 22 -1 -1 -1 -1 11 -1 23 -1 -1 -1 15 13 -1 -1 -1 8 -1

