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Abstract 

This deliverable presents an overview of the work carried out in relation to Work Package 6 (WP6) 

during the second year of the i-RISC project.  The first part of the deliverable reports on the 

implementation of a reliability aware synthesis tool and its evaluation on a set of benchmark circuits 

(Task 6.3). In particular, we propose an integrated design flow, which combines all the up to date 

developed i-RISC custom tools together with widely used tools in the circuit design industry. The 

second part of the deliverable reports on the fault tolerance assessment of state-of-the-art and i-

RISC proposed LDPC decoders (Task 6.1). A number of seven LDPC decoders are implemented in 

VHDL/Verilog and are exposed to external aggression via voltage scaling or simulated fault injection. 

The error correction performance of the implemented decoders is evaluated for different aggression 

profiles, substantiating their fault-tolerance capabilities and the resulting benefits in terms of energy 

consumption and throughput. 
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USB  Universal Serial Bus 

VLSI  Very Large Scale Integration 

VN  Variable Node 

VNU  Variable Node processing Unit 

VSS  Voltage Scaling Sensitivity 
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1. Executive Summary 

 

This deliverable is concerned with Work Package 6 (WP6) and addresses as main avenues: (i) the 

implementation of reliable LDPC decoders and storage/transport in order to substantiate the validity 

of the fault tolerance techniques previously investigated and proposed in the context of the i-RISC 

project, and (ii) reliability aware synthesis tools to enable the reliability driven design and 

optimization of circuits built from prohibitively unreliable emerging nano-devices. 

 

This deliverable constitutes a first step towards a global proof of concept for the i-RISC techniques 

viability and summarizes the main research activities conducted during the second year of the i-RISC 

project, in accordance with the WP6 tasks, specifically:  

 

 Task 6.1 - Implementation of LDPC Decoders. This task is dedicated to the implementation 

and benchmarking of several candidate reliability enhanced LDPC decoders proposed in WP3, 

with respect to their performance as well as their ability to effectively deal with the circuit 

fault-induced probabilistic behavior. 

 Task 6.2 - Implementation Reliable Storage/Transport. Building upon the utilization of the 

constrained coding techniques proposed in WP4 to enable reliable intra/inter chip data 

transport, the implementation of the reliable bus connections is initiated. This task also 

targets initiating the implementation of a memory storage architecture, following the WP4 

findings concerning reliable memory designs, which can tolerate both spatially and 

temporally correlated errors.  

 Task 6.3 - Reliability-Aware Synthesis Tool. This task is concerned with an EDA tool suite 

that combines custom, proposed tools, and established industrial tools to enable a reliability 

driven synthesis process of logic circuits.  

 Task 6.4 - Implementation of i-RISC processing cores. A simple processor core, implemented 

in the current technology node, which exhibits increased susceptibility to faults and 

environmental variations, is envisaged as a synergistic demonstrator for the i-RISC fault-

tolerant computing, storage, and transport concepts.  

Table 1-1 presents the Gantt diagram associated to the time distribution of the WP6 tasks that were 

addressed (Task 6.1) and initiated (Task 6.2, Task 6.3, and Task 6.4) during the period M13-M24.  

 

Table 1-1: WP6 Gantt Diagram 
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The main contributions presented in this deliverable relate to Task 6.1 and Task 6.3 as follows. 

Task 6.1 - Implementation of LDPC Decoders 

We implemented at Register Transfer Level (RTL) in VHDL/Verilog, debugged, and mapped on a Xilinx 

Virtex-7 FPGA several state-of-the-art and reliability enhanced LDPC decoders proposed in the WP3 

framework for a codeword length N=1296 and R=0.5 as follows: Min-Sum (MS), Self-Corrected Min-

Sum (SCMS), Finite Alphabet Iterative Decoder (FAID), Stochastic Decoder (SD), Gradient Descent Bit 

Flipping (GDBF), Probabilistic GDBF (PGDBF), and Gallager B with Extended Alphabet (GB). 

We developed an experimental hardware platform that allows us to simulate the decoder exposure 

to environmental aggression factors, e.g., temperature, and cosmic radiation, by diminishing the 

power supply voltage Vdd under its nominal value, which may results in timing faults.  In this way we 

can modulate the fault presence rate by means of the Vdd value, i.e., the lower the Vdd value the 

higher the fault rate, but we cannot control the fault occurrence location on the decoder real estate.  

We developed a hybrid fault injection HDL/C++ simulation framework that allows for decoder 

simulation in the presence of errors (flipped bits), which location and density are derived according 

to decoder architectural and implementation details. Related to this we also introduced a 

methodology to create a fault map meant to guide the fault injection process, which is reflecting the 

contribution of the internal organization of each decoder basic building block to the fault error rate 

at its outputs.  

We evaluated the implemented decoders under both scenarios, i.e., voltage scaling and fault 

injection, over different technology and environmental aggression profiles and quantified their figure 

of merit in terms of: (i) decoding performance, specifically Frame Error Rate (FER) and Bit Error Rate 

(BER), (ii) average number of iterations, (iii) throughput (Mb/s) normalized to BER/FER, and (vi) 

energy/bit (pJ/bit) normalized to BER/FER.   

We introduced two additional metrics: Voltage Scaling Sensitivity (VSS) and Frequency Scaling 

Sensitivity (FSS), which are meant to capture the way a decoder reacts to voltage and frequency 

scaling, respectively. VSS provides inside on: (i) the decoder potential to save energy while still 

delivering its expected performance and (ii) how much performance one can still get in situations 

when the energy source is confined. FSS provides inside on: (i) the decoder potential to operate at 

increased clock frequency while providing its expected performance and (ii) how much overclocking 

one can still resort to if channel conditions permit. 

We presented a thorough analysis of the voltage scaling and simulated fault injection results which 

confirm the fault-tolerance capabilities of the i-RISC proposed decoders and serve as guideline for 

the selection of a proof-of-concept fault-tolerant decoder class (which exhibits the best trade-off in 

terms of performance and ability to tolerate/mask faults). In particular our experiments indicate that 

voltage scaling may result in energy savings between 45% and 67%, while preserving decoder’s 

nominal throughput and error correction performance. Based on simulated fault injection results, the 

decoder potential to increase throughput by means of overclocking is also estimated to be between 

77% and 150%, while preserving the nominal error correction performance.  
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Task 6.3 - Reliability-Aware Synthesis Tool  

A novel CAD framework is proposed that improves the circuit reliability by re-designing the Boolean 

network such that reliability is enhanced with little overhead in terms of area, delay, and/or power. 

In this line of thought a novel set of tools have been developed targeting various levels of abstraction 

within the VLSI design cycle.  

An integrated design flow comprising of industry and academic tools is proposed. Design compiler 

from Synopsys is used to synthesize a high level description of a circuit specified in Verilog. The 

resulting gate level netlist is then translated into an AIG data structure, which is then 

analyzed/optimized/manipulated within the i-RISC custom tool built as a wrapper around the open 

source tool ‘ABC’.   

One of the keys for developing an efficient optimization tool is the availability of accurate reliability 

information as well as efficient/fast algorithms for computing the reliability of logic functions 

representing partial solutions during the optimization process. A probabilistic and simulation based 

methodology were developed. Rewriting based local transformation techniques are employed to 

improve the circuit reliability at little overhead of area. Further, a novel fault tolerant logic 

augmentation technique is proposed. The resulting optimized netlist is then technology mapped and 

analyzed using standard industry tools from Synopsys for delay, area and power.  

We also presented a reliability improvement case study on the MCNC benchmark circuit ‘C6288’, 

which demonstrates that both the optimization algorithm as well as the fault tolerant techniques can 

contribute to a significant circuit reliability improvement. 

Such a flow makes use of a number of state of the art tools within Synopsys complementing them 

with the custom i-RISC tools for ultra-low power and reliable circuit design.  

We note that given that the WP4 investigations in reliable data storage and transport are still in early 

stages a proof of concept in this direction is not yet at hand. Thus while we already initiated Task 6.2 

related activities the reporting of the results will be done in Deliverable D6.2. 

Finally, we'd like to stress out that even though the deliverable could not be finalized in time its 

objectives have been reached and the late delivery doesn't have any negative effect on the other i-

RISC activities. On the contrary, by solving the faced technical hurdles, which is one of the reasons 

behind the delayed delivery, we created better technical premises and smoothed the way towards 

the successful completion of the final i-RISC proof of concept. We note that apart of a number of 

unexpected technical challenges, which usually occur during such a complex design effort, the 

experiment preparation and execution were very much time consuming, thus substantially 

contributed to the late delivery.  

 

The deliverable is organized as follows: Section 2 is dedicated to the EDA reliability-aware synthesis 

tool. Section 3 is concerned with the implementation and evaluation of the i-RISC LDPC decoders in 

faulty environments. Finally, in view of our findings, we draw some conclusions in Section 4. 
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2. Implementation of the i-RISC Reliability-Aware Synthesis Tool 

Abstract: The aim of this task is to propose a novel systematic and integrated methodology to 

address and improve combinational circuit reliability measured in terms of Soft Error Rate (SER). In 

this line of reasoning, as part of the i-RISC project, a novel set of tools were developed targeting 

various abstraction levels within the Very Large Scale Integration (VLSI) design cycle. The proposed 

logic optimization Computer Aided Design (CAD) framework makes use of rewriting techniques, 

which at their turn employs local transformations. The main idea behind our proposal is to replace 

parts of the circuit with functionally equivalent but more reliable logically equivalent counterparts. 

Further, we have developed a number of logic augmentation techniques to improve the circuit fault 

tolerance. Last but not least we also introduced the following reliability estimation approaches: (i) a 

simulation based technique, which estimates the circuit reliability via gate-level fault injection and (ii) 

a fundamentally novel analytical technique which is building upon the conditional probability theory. 

2.1. Introduction 

Traditional logic synthesis methodologies and EDA tools are centred on fulfilling timing, power, and 

area constraints or on achieving acceptable trade-offs among those [Pedram96] [Mehrotra11]. 

However, as the Complementary Metal-Oxide-Semiconductor (CMOS) technology entered the 

nanometer era, such an approach cannot cover any longer all the relevant design aspects. 

Technology scaling has precipitated higher operating speeds, lower operating voltages, and lower 

operating noise margins; all of which contribute to reduced switching energies, allowing legitimate 

logic signals to be readily overwhelmed by single-event-induced charge-collection transients 

[Dodd03]. Nanotechnology specific issues, e.g., power supply voltage (Vdd) reduction, higher impact 

of process parameter and temperature variations, result in increased device failure rates, making 

CMOS Integrated Circuits (ICs) less reliable [Borkar05] [Constantinescu03].   

As power usage is proportional to the square of voltage, operating at very low voltages offers 

potential for large power savings [Kaeslin08] [Vittoz14]. For example, if a circuit is operated at 0.1 𝑉 

instead of a process nominal 1 𝑉, an 100 × power saving is potentially achievable. However this 

means that the supply voltage is significantly below the transistor threshold voltage and it is well 

known that in this weak inversion regime, MOSFET transistors exhibit high voltage gain but very low 

currents.  There are many possible ways in which a sub threshold circuit may become unreliable. The 

simplest is of course due to noise, made worse by leakage induced noise. Stuck at “0” or “1”, or 

similar persistent faults can occur due to process variations [Borkar05], either statically or 

dynamically (dependant on temperature and voltage), which are inherent due to the fact that silicon 

doping is a stochastic process, and in small process geometries a very small number of dopant atoms 

can be present in a MOSFET transistor channel (10𝑠 to 100𝑠). This means that the stochastic process 

doesn’t necessarily average out, leading to nearby MOSFETs having very different electrical 

properties and by implication switching behaviour. 

Another unreliability mechanism is the unpredictable timing. In [Chen14], it was indicated that sub-

powered gate arrival times follow inverse Gaussian distributions, with a long calculation completion 

time tail. In a practical system, a gate chain has a cartain allowed slack, and if individual gate 

completion times chance this may be exceded and errors may occur. Even a small error probability at 

the level of individual gates might result in a large error probability at the circuit final outputs 

[Choudhury10]. We nothe that this tendency is not CMOS specific, as even the most promising post 
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silicon devices, e.g., Carbon Nanotube Field-Effect Transistors (CNFETs) that are considered to 

eventually replace CMOS, suffer from various amounts of statistical variation in device behaviour, 

potentially leading to a lack of reliability. As a result, reliability is turning out into a major design 

metric sharing equal importance with the other existing design metrics. Consequently, design time 

reliability assessment and optimization is becoming a mandatory IC design flow step which targets 

the reliability improvement for circuits/systems built with unreliable components. 

In this section, all the techniques and methodologies that were developed over the past two years 

and assembled together into a single package are presented. As depicted in Figure 2-1, the reliability 

aware synthesis tool comprises three major components. We have developed a multiple set of 

reliability computation engines that would estimate the probable circuit output error with varying 

degrees of accuracy and speed. A multiple set of logic optimization techniques has been developed 

which pre-dominantly operate at gate level. Furthermore, to achieve extra added value, we have 

embarked on developing a number of logic augmentation techniques to improve the circuit fault 

tolerance.  

 

Figure 2-1: Reliability Aware Synthesis Tool Sub-Branches 

2.2. The Tool Chain – Complete CAD Framework 

The design flow consists of several academic tools developed in-house within the i-RISC project scope 

that are integrated alongside several industrial tools. This integration would be extremely beneficial 

in the implementation of the final proof of concept. The complete design flow is presented in Figure 

2-2 and it outlines the digital circuit design path from the Register Transfer Language (RTL) level to 

the final error resilient technology mapped gate-level netlists followed by reliability, power, delay, 

and area reports. Some of the important flow steps are as follows: 

Step 1: Convert the circuit description into its corresponding And-Inverter Graph (AIG). 

Step 2: Run Reliability driven logic optimization tools to synthesize gate level netlists. 

Step 3: Perform Reliability Analysis to compute the achieved improvement in terms of error 

resilience. Reliability details of every node in the network are stored into the output file.  
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Figure 2-2: Reliability Aware Synthesis Tool - The Complete Framework 

Step 4: Perform Gate level simulations to collect switching activity details. These are saved in the 

standard Switching Activity Interchange Format (SAIF) format. 

Step 5: Using netlists from Step 1 and 2 and switching reports from Step 4, invoke Synopsys Design 

Compiler to perform the power, area, and timing analysis. Subsequently, perform comparative 

studies to evaluate the savings/overhead corresponding to the new netlists. 

Step 6: Implement an LDPC encoding scheme on top of the reliability optimized netlist. The structure 

of the parity circuitry to augment the optimized circuit is determined based on its functionality. 

Step 7: Convert the netlists {combinational circuit, parity circuitry, and the LDPC decoder} into the 

internal proprietary format understood by the Codeword Prediction Encoder (CPE) simulator. 

Step 8: Invoke the CPE simulator to perform encoding and decoding simulations and generate 

reports comprising FER/BER analysis, critical node count, etc.    

2.2.1. Circuit Representation and Modification 

Over the years, a number of academic EDA tools [Yanushkevich05] [Sentovich92] [Wu05] have been 

proposed in the literature. These open source tools provide a programming environment and a solid 

platform for research in logic synthesis, power estimation and power optimisation as well as for 

implementing new developments into them. ABC [Brayton10] is a logic synthesis and verification 

tool which performs scalable logic optimisation based on AIGs [Mishchenko06]. In all of these 
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academic tools, data structures and algorithms largely determine the tool efficiency in providing 

support for implementing new capabilities. As reported in Deliverable D5.1 [i-RISC/D5.1], we have 

decided to use AIG as the data structure and ‘abc’ as the platform to develop and implement all the 

reliability related algorithms.  

The tool accepts any high level description to generate the netlists of a generic function. It can take 

any function description in, e.g., BLIF, VHDL, Verilog, PLA, convert it into the ".eqn" intermediate 

format and then generate its corresponding AIG representation as described in Figure 2-3. We note 

that during the process of modifying the circuit representation from one format to another it is 

imperative to maintain the logical equivalence of the original and new circuits, which is guarantied by 

adopting different kinds of formal verification techniques. 

 

Figure 2-3: Different Formats of Circuit Representation 

2.2.2. Gate Level Logic Simulation 

As depicted in Figure 2-4, RTL simulations are performed using VCS [SYNTOOL], a commercial tool 

from the Synopsys EDA vendor. The logic description is optimized and then synthesized to a gate-

level netlists by employing the internal reliability optimization tool. Formal verification is performed 

in Synopsys Formality [SYNTOOL], ensuring the equivalence between the RTL description and the 

resulting gate-level netlists. Reports generated by the synthesis tool detail the silicon area consumed 

by the logic design. Timing reports are generated using Synopsys Primetime [SYNTOOL] determining 

the longest paths and the maximum clock frequency. Primetime also generates Standard Delay 

Format (SDF) [SDF04] data containing delay information for annotation onto the netlists during gate-

level simulation. The primary goal of constructing this flow was to perform power analysis on the 

pre-placement netlist using commercial tools. Switching probability information is recorded by VCS 

during simulation as SAIF [SYNSAIF]. SAIF is used during power analysis to obtain realistic power 

figures for the simulated scenario.  
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Figure 2-4: Timing and Power Analysis Flow 

2.2.3. Reliability Estimation and Analysis 

Reliability analysis of logic circuits deals with the computation of the impact that gate errors might 

have on circuit Primary Outputs (PO’s). Generally speaking a pure reliability analysis based on HSPICE 

Monte Carlo simulations is not feasible real life circuits due to its prohibitive computation time and 

excessive resource requirements. Several analytical approaches were previously proposed 

[Choudhury09]. As we represent circuits in the AIG format, a novel algorithm based on probability 

principles is developed, with the prime focus being AND and INVERTER gates. Two different 

methodologies, simulation based approach and the probabilistic error gate model based approach 

have been devised. Figure 2-5 depicts the complete flow of the reliability analysis tool. 

The circuit under test is passed onto both the probabilistic and simulation based reliability 

computation algorithms. The probabilistic based methodology emulates all the gates with the 

probabilistic error models and based on input switching activity, static probability, and gate error 

values, it computes the expected reliability of the output node. The simulation-based algorithm 

appends all the gates with extra XOR gates to randomly toggle the output value there, by inserting an 

error. We use a Mersenne twister to generate highly random test patterns, which we utilize to 

compute the final output reliability values. The final output reports from both these models are 

compared to define the accuracy of the probabilistic gate error model. Though very accurate, the 

simulation methodology is very expensive in terms of execution time, which might preclude its 

utilization on large circuits. Hence, it is finally a tradeoff between accuracy and speed when it comes 

to choosing one of these two algorithms. 
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Figure 2-5: Reliability Computation and Analysis Flow 

2.2.4. Multi Objective Optimization 

Logic optimization and synthesis is the process of taking in a higher level circuit representation and 

translating it into hardware. We have proposed two different methodologies that were thoroughly 

articulated in Deliverable D5.2 [i-RISC/D5.2], both based on the rewriting technique. Figure 2-6 

describes the multiobjective optimization tool. From the under optimization circuit, which can be for 

example a reference MCNC benchmark circuit, the output error probabilities of two netlists are 

initially computed: (i) default circuit without any optimization and (ii) circuit optimized by the best 

’abc’ synthesis algorithm. It is not always necessary that the second configuration has higher 

reliability. The synthesis algorithms in ’abc’ (or in general) are mainly targeting delay reduction which 

can affect adversely the reliability. After selecting the initial circuit configuration, we apply the 

developed optimisation methodology transformation rules, we perform Boolean matching to pick 

the matching rule. The one which provides the highest reliability improvement is selected based on 

the results of the reliability evaluation function. Further, this process continues until no more rules 

can be applied on this node, that can improve the circuit reliability. We perform similar set of 

operations on all the nodes in the circuit. Using this method of optimisation, the number of inputs 

and outputs of a particular logic function is not modified. The logic network describing the function is 

updated during each iteration of the optimisation algorithm. The delay/area optimised initial logic 

network is transformed iteratively for improved reliability (delay/area driven reliability optimisation).  



D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components 

 

© i-RISC Page 23 of (110) 
 

 
Figure 2-6: Reliability Aware Logic Optimization Tool Flow 

2.2.5. Fault Tolerant Graph Augmentation 

The aim of fault tolerant techniques is to systematically encode the input function under 

consideration. The focus is not on altering logic but on augmenting it to add redundancy. In this 

instance, additional logic network is added to the original network describing the function which 

results in the an increase number of outputs for the resulting network. 

 

Figure 2-7: CPE based Graph Augmentation 

By using Error Correcting Codes (ECC) based architectures redundant logic is added to enable 

retrieving the correct output thereby improving the combinatorial circuit reliability. This approach 

takes the input function netlist and translates it into an AND Invert set of equations for further 

manipulation and analysis of the number of gates and longest path modifications. The logic network 

annotation is informed by a particular ECC scheme. The two classes of logic functions identified in 

our study are linear or non-linear functions. The resulting annotated logic network is then decoded 
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using an additional logic network associated to the chosen ECC. Based on where we perform 

decoding, we can have the following scenarios: 

 Symmetric: encoding and decoding processes are on chip, and hence affected by same faulty 

conditions;  

o iRISC developed LDPC decoder architectures are valid candidates for the ECC 

schemes. 

 Asymmetric:  the decoding process is performed offline and hence it is assumed that it is not 

affected by faults. 

o Allows the use of generic ECC.  

The complete methodology of Codeword Protection Encoding (CPE) is detailed in Deliverable D5.2 [i-

RISC/D5.2] and the CPE based graph augmentation flow is depicted in Figure 2-7.  

 

2.3. A Case Study  

In this section, the potential practical implications of the proposed reliability aware synthesis tool are 

evaluated. The total improvement achieved in terms of circuit reliability is evaluated by performing a 

set of simulations. The proposed reliability aware synthesis algorithm is applied on the MCNC 

benchmark circuit ‘C6288’, which implements a 32-input 32-output logic function. Simulation results 

comparing the average circuit output errors corresponding to the original, the optimized 

configuration, and the CPE based approach obtained from our tool for different technologies, i.e., 

basic gate error probability, are reported in Table 2-1. The individual gate error is given in column 1, 

while column 2 and 3 presents the output error probability of the original and the optimized circuit, 

respectively. Column 4 list the reliability improvement in % achieved by means of the optimization 

procedure. Columns 5(6), 7(8), and 9(10) summarize the output error probability and the error 

probability improvement achieved by employing the CPE approach, for different gate Critical 

Threshold (CT) values.   

 

Table 2-1: Case Study - C6288 Reliability Evaluation 

Gate_Err Original Optimized %Imp 
CPE 

CT==00 %Imp CT==05 %Imp CT==10 %Imp 

0.10 0.48 0.47 0.63 0.48 -1.39 0.44 7.96 0.46 2.29 

0.05 0.46 0.46 0.22 0.48 -4.24 0.39 14.63 0.41 11.45 

0.02 0.45 0.44 2.01 0.46 -1.92 0.31 30.65 0.34 23.51 

0.01 0.42 0.42 0.94 0.45 -7.17 0.28 33.00 0.31 26.75 

0.01 0.36 0.37 4.20 0.42 -18.26 0.17 53.31 0.25 28.68 

0.00 0.25 0.26 1.99 0.34 -37.33 0.06 76.86 0.14 46.06 

0.00 0.17 0.16 5.42 0.29 -72.05 0.02 89.56 0.04 76.13 

0.00 0.09 0.10 14.88 0.19 -120.35 0.00 94.71 0.02 75.40 

0.00 0.04 0.04 4.04 0.07 -57.20 0.00 97.31 0.01 87.83 



D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components 

 

© i-RISC Page 25 of (110) 
 

0.00 0.02 0.02 7.91 0.03 -55.25 0.00 97.01 0.00 84.53 

0.00 0.01 0.01 7.72 0.02 -94.50 0.00 97.72 0.00 89.43 

0.00 0.00 0.00 15.70 0.01 -71.85 0.00 98.08 0.00 88.57 

0.00 0.00 0.00 5.56 0.00 -43.15 0.00 98.03 0.00 90.70 

 

From the table, it is clear that significant SER reduction can be achieved (at the expense of negligible 

area overhead) by employing the optimisation algorithms (columns 2, 3, 4). A very good reliability 

performance is observed in case of CPE implementation for large CT values. But the current 

limitations with the CPE are the large extra gate count due to the parity circuit and the number of 

gates that have to be safeguarded (represented by CT in %). 

 

2.4. Conclusion 

In this section, we summarized the activities related to the development of the reliability aware 

synthesis tool. We proposed an integrated design flow, which combines all the up to date developed 

i-RISC custom tools together with widely used tools in the circuit design industry. We also presented 

a case study, which demonstrates that both the optimization algorithm as well as the fault tolerant 

techniques can contribute to a significant circuit reliability improvement. While the tools are 

integrated in a complete flow with proven functionality, there a number of issues, which still need to 

be addressed. Going forward, this flow will be used:  

 To improve upon the initial work of the reliability computation techniques and the graph 

optimization algorithms.  

 To systematically optimize the circuits to improve reliability within a multi-objective 

optimization framework. 

 To validate and to characterize the circuits proposed as part of proof of concept within i-

RISC. 
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3. Evaluation of LDPC Decoders in Fault Inducing Environments 

Abstract: A desideratum of computing circuits built out of current technology nodes unreliable 

devices is fault tolerance. A circuit, which is robust to environmental aggression (e.g., supply voltage 

variation, temperature, and cosmic radiation), enables an improved dependability profile and 

potentially extended useful lifetime expectancy. Moreover it provides a certain noise immunity, 

which one may trade for energy consumption by means of power supply scaling. In this section we 

perform a fault tolerance assessment of state-of-the-art and i-RISC proposed LDPC decoders 

introduced in WP3. In particular we evaluate Min-Sum (MS), Self-Corrected Min-Sum (SCMS), Finite 

Alphabet Iterative Decoder (FAID), Stochastic, Gradient Descent Bit Flipping (GDBF), Probabilistic 

GDBF (PGDBF), and Gallager B decoders for a codeword length N=1296 and R=0.5 as described in 

Section 3.4.2. All decoders are implemented in VHDL/Verilog and are exposed to external aggression 

via two approaches, which emulate in different ways in-field real-life scenarios, namely voltage 

scaling and judicious fault injection. The decoder performance expressed in terms of Bit-Error-Rate 

(BER), Frame-Error-Rate (FER), energy consumption/bit, throughput, average number of iterations, 

maximum operation frequency, area, is evaluated for each LDPC decoder architecture, over different 

scenarios (i.e., different CMOS process and voltage corners, communication channel types, i.e., 

Binary Symmetric Channel (BSC) and Additive White Gaussian Noise (AWGN) channel). Based on 

performance and reliability profile of the comprising basic building blocks, the considered decoders 

architectures are compared, towards substantiating a fault-tolerant proof-of-concept LDPC decoder 

architecture. 

3.1. Introduction 

Nowadays, the shrinking of transistor sizes has reached a level where it is extremely difficult, if not 

impossible, to provide reliable transistors that can properly work all the time without experiencing 

faults. In this condition, building reliable chips out of unreliable transistors has been a major topic in 

the cutting edge VLSI research where the reliability is the main issue. Therefore, the evaluation of 

reliable systems in the presence of faulty components is critically important. In this section, we 

evaluate state of the art LDPC decoders built out of unreliable components. Different methods to 

evaluate faulty LDPC decoders exist, and C-simulation based evaluations where reported in [i-

RISC/D3.1] and [i-RISC/D3.2] for simple theoretical error models. In this section we target real 

hardware based evaluations. Given that LDPC decoder ASIC design and fabrication is out of the i-RISC 

project scope we rely on FPGA based fast prototyping.  We implement at Register Transfer Level 

(RTL) in VHDL/Verilog, debug and map on a Xilinx Virtex-7 FPGA seven types of LDPC decoders, i.e., 

Min-Sum (MS), Self-Corrected Min-Sum (SCMS), Finite Alphabet Iterative Decoder (FAID), Stochastic, 

Gradient Descent Bit Flipping (GDBF), Probabilistic GDBF (PGDBF), and Gallager B, for a codeword 

length N=1296 and R=0.5. To have realistic results, we develop an experimental hardware platform 

(described in Section 3.2), which allows for decoder evaluations under different channel conditions 

and timing faults induced by diminishing the power supply voltage Vdd under its nominal value. In 

this way we can modulate the fault presence rate by means of the Vdd value, i.e., the lower the Vdd 

value the higher the fault rate. The voltage scaling method is quite effective in inducing timing faults 

all over the circuit but does not provide us the means to control their occurrence location on the 

decoder real estate. Given that in real life situations fault density and location are related to 

architectural and implementation details we also performed a specific fault injection as described in 
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Section 3.3. In this endeavor we create a fault map reflecting the contribution of the internal 

organization of each basic building blocks to the fault error rate of its outputs. As augmenting the 

FPGA decoder implementation with fault injection specific extra circuitry results in a large area 

overhead and the FPGA fault injection process is very slow we decide to make use of simulated fault 

injection by means of a mixed simulation environment.  In this way we can still fully control the fault 

location, according to the fault map reflecting the reliability of each internal decoder component, 

and collect performance data faster than by means of a hardware only fault injection approach.  

The implemented decoders are evaluated in both scenarios in terms of: (i) decoding performance, 

specifically Frame Error Rate (FER) and Bit Error Rate (BER), (ii) average number of iterations, (iii) 

throughput (Mb/s) normalized to BER/FER, (vi) energy/bit (pJ/bit) normalized to BER/FER.   

For the voltage scaling we introduce an additional metric the Voltage Scaling Sensitivity (VSS), which 

is meant to capture the way a decoder reacts to the voltage scaling process and provides inside on: 

(i) the decoder potential to save energy while providing its expected performance and (ii) how much 

performance one can still get in situations when the energy source is confined. Our experiments 

suggest that voltage scaling may result in energy savings between 45% and 67%, while preserving 

the nominal throughput and error correction performance.  

Similarly, for the second scenario, we introduce the Frequency Scaling Sensitivity (FSS) metric, which 

provides inside on: (i) the decoder potential to increase throughput by means of overclocking, while 

providing its expected performance and (ii) how much overclocking one can still resort to if channel 

conditions permit. In this case our experiments indicate that decoder overclocking may result in 

throughput increase between 77% and 150%, while preserving the nominal error correction 

performance. 

3.2. Voltage Scaling Evaluation Framework 

To facilitate the real hardware based LDPC decoder evaluation, we develop an experimental 

hardware platform [Marconi15] that consists of a laptop and a Xilinx VC707 board as depicted in 

Figure 3-1. The laptop is dedicated to the following activities:  

 Designing the hardware platform targeting Xilinx Virtex-7 FPGA: XC7VX485TFFG1761-2 inside 

the Xilinx board and generating the bitstream files.  

 Downloading the bitstream files for FPGA hardware and the software files for the MicroBlaze 

through the USB JTAG interface.  

 Monitoring/capturing the number of iterations and decoding outcomes, FER, and BER 

through the USB UART.  

 Measuring Energy/bit using the Fusion Digital Power Designer from Texas Instrument 

through Texas Instrument USB Interface adapter by reading PMBus, and accessing Power 

Supply Monitor and Controller inside the board.  

To build the evaluation hardware support, i.e., the AWGN/BSC channel emulator, the Binary Phase 

Shift Keying (BPSK) modulator, any other functionality for evaluation purpose, and the decoders, the 

Xilinx board is utilized. The MicroBlaze processor, resident on the Virtex-7 FPGA fabric, in 

collaboration with the LDPC Monitoring and Controller (MC) module mainly acts as the evaluation 

hardware support by accessing software and data stored in FPGA memory (BRAM) and external 

DDR3 memory. MC monitors the decoding outcome and conveys quantized probabilities or Log-

Likelihood Ratios (LLRs) from the MicroBlaze to the evaluated decoder. The two possible outcomes of 



D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components 

 

Page 28 of (110) © i-RISC 
 

the decoding process are: (i) “success” and (ii) “give up”. If all decoder check nodes are satisfied, the 

outcome is “success”. In the case that not all check nodes can be satisfied after the maximum 

number of iterations, the system reports “give up”. The MicroBlaze processor utilizes these 

outcomes for computing the statistical results of the experiments, i.e., BER, FER, and average number 

of decoding iterations. The laptop displays the experimental results received from FPGA board 

through USB UART interface. 

 

 

Figure 3-1: Experimental Hardware Platform 

The current platform provides these features: (i) it is configurable for various LDPC decoders (e.g., 

MS, SCMS, FAID, Stochastic), (ii) allows for easy integration of any evaluated decoders due to a 

common interface approach, (iii) provides voltage scaling support and enable power/energy 

measurement due to its ability to access directly the PMBus of Power Supply Monitor and Controller 

through the I2C interface, and (iv) can evaluate decoders under both AWGN and BSC channels.  

 

Figure 3-2: Top Level Representation of the LDPC Testbed 
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Figure 3-2 presents organization of the testbed we utilize to evaluate the performance of the FPGA 

implemented LDPC decoders, which contains the following blocks:  

 Binary Source: Generates the source bit-stream (information word). 

 LDPC encoder: Generates the encoded bit-stream (codeword). 

 Channel: Emulates the transmission channel (either BSC or Bi-AWGN channel). 

 Detection: Computes the quantized LLR or probability values. We note that the number of 

quantization bits depends on the LDPC decoder, as follows: 

 1-bit LLR quantization for Gallager-B, GDBF, and PGDBF, 

 3-bit LLR quantization for FAID, 

 4-bit LLR quantization for MS and SCMS, 

 6-bit probability quantization for Stochastic. 

 LDPC decoder: Implements the LDPC decoding; supported decoders are Stochastic, Gallager-

B, GDBF, PGDBF, FAID, MS, and SCMS. 

 Statistics: Computes BER/FER and the average number of decoding iterations.  

All testbed blocks except the LDPC decoder are implemented in C and are executed on the 

MicroBlaze. The LDPC decoders are implemented on the Virtex-7 FPGA. The decoders under test are 

evaluated in terms of: (i) decoding performance, specifically FER and BER, (ii) average number of 

iterations, (iii) throughput (Mb/s) normalized to BER/FER, and (iv) energy/bit (pJ/bit) normalized to 

BER/FER. 

Moreover, specially tailored for voltage scaling based evaluation of LDPC decoders we introduce a 

new metric called Voltage Scaling Sensitivity (VSS), which is meant to capture the way a decoder 

reacts to the voltage scaling process. To this end we propose to capture two aspects: 

 Performance Preservation Region (PPR), i.e., the voltage interval starting down from the 

nominal Vdd value in which the decoder preserves its performance, i.e., PPR = Vdd − Vpp, 

where Vpp is the power supply value at each performance degradation starts occurring. 

 Performance Degradation Region (PDR), i.e., the voltage interval starting down from Vpp 

value in which the decoder performance degrades but it still provides some useful results, 

i.e., PDR = Vpp − Vpd, where Vpd is the power supply value at which the decoder is not 

functional any longer (FER gets almost 1).  

PPR tells us about the decoder potential to save energy while providing its expected performance. 

This is the region in which one can save energy by means of voltage scaling if channel conditions 

permit.  PDR tells us about how much performance one can still get in situations when the energy 

source is confined. This operation region is meant for situations when the system is in energy 

shortage but given that some minimum service is required it should not be shut down if still 

possible.   

We note that both PPR and PDR values depend on the channel conditions thus we can compare only 

the decoders operating on the same channel type per each SNR/crossover probability value. 

Additionally, when determining the Vpp and Vpd values based on the voltage scaling based evaluation 

results we should recall that FER/BER figures are obtained by means of Monte Carlo simulations and 

we have to treat them as such.  

Thus the Vpp and Vpd calculations have to be done in a way that takes into consideration this aspect 

and in a coherent way for all decoders. Given that small FER/BER differences may not hold true or 

even worse change the sign between different simulation runs we should go for a certain uncertainty 



D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components 

 

Page 30 of (110) © i-RISC 
 

interval, let us say the performance is still nominal within an x% margin and the decoder stops 

functioning if FER in an y% vicinity of 1. Details on the Vpp and Vpd calculations are provided in 

Section 3.6.1. 

We should note that while VSS can provide great inside into the decoder behavior one couldn’t draw 

any generally valuable conclusion by comparing decoders in terms of PPR and PDR only. They put 

things into the right prospective for the evaluated FPGA decoder implementations under scrutiny but 

the ranking may not hold true for ASIC or on different decoder designs.    

To facilitate the easy integration of different decoder types into the evaluation framework we define 

a common decoder entity described in Table 3-1.  

Table 3-1: Decoder Common Interface Port Description 

Port Name In/Out Size [bits] Function 

clk I 1 clock signal 

rst I 1 reset active high 

start I 1 ‘1’ to start decoding 

load_data_in I 1 ‘1’ to load load_data_in(n_value) 

n_value I 11 a current bit position 

data_in I 6 soft messages 

max_iter I 11 the maximum number of interations 

done O 1 ‘1’ -> decoding is done 

give_up O 1 ‘1’ -> the decoder gives up 

data_out O 1296 the decoded codeword 

iteration O 11 the number of iterations 

 

Similar to [Marconi14], the voltage scaling and power/energy measurement are performed by 

accessing directly the PMBus of Power Supply Monitor and Controller through the I2C interface. The 

MicroBlaze communicates with the evaluated decoders via the proposed common interface as 

follows: 

1. The MicroBlaze sets the maximum number of iterations to the max_iter input. 

2. The MicroBlaze resets the decoder by applying a pulse ‘1’ to the rst input.  

3. The MicroBlaze puts serially the quantized soft messages (i.e., LLRs or probabilities) in 

data_in input. Every time the evaluated decoder receives a pulse ‘1’ at the load_data_in 

input initiated by the MicroBlaze, the decoder needs to fetch the data to the specific bit of 

the messages to its internal memory addressed by the n_value input coming from the 

MicroBlaze.  

4. The decoder starts decoding when it receives a pulse ‘1’ at start input initiated by the 

MicroBlaze. 

5. After the decoding is done, the decoder sends (i) the done signal by putting ‘1’ at the done 

input, (ii) the decoding outcome to the give_up output (i.e., ‘1’ if the decoder gives up, 

otherwise ‘0’), (iii) the number of iterations to iteration output, and (iv) the decoded 

codeword to data_out output.   

6. The information from step 5 is utilized by the MicroBlaze to compute the statistical results of 

the experiment (i.e., BER, FER, average number of decoding iterations, energy/bit, and 

throughput).   
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3.3. Fault Injection Evaluation Framework 

As explained in Section 3.1 Simulated Fault Injection (SFI) presents the advantage of better 

observability and fault insertion selective control when compared with voltage scaling, which creates 

time errors all over the circuit. SFI based methods allow to alter specific locations in the decoder, 

while other blocks may still exhibit a correct behavior. Thus, SFI can be also utilized to determine 

which decoder components have the most significant impact on their reliability.  

Regarding the SFI methodology, we employ a multi-level evaluation procedure for Register Transfer 

Level (RTL) descriptions, similar to the one described in Deliverable D2.2 [i-RISC/D2.2]. In the first 

phase, reliability measures are derived for each and every decoder building block. These measures 

are computed by using standard cell statistical timing characterization and Probability Density 

Function (PDF) propagation. The second phase consists in applying saboteur based SFI on the LDPC 

decoder RTL description. By employing this type of hierarchical analysis, we aim to combine the 

accuracy of circuit-level analysis with the low simulation overhead characteristic to RTL based 

evaluations.  

Regarding the fault locations, we decided to only alter data path element outputs, and to let control 

units, as well as input-output interfaces error-free. This relates to the fact that injecting faults into 

the control unit can create severe disruptions in the LDPC decoder’s data flow, such as 

reading/writing messages from/to incorrect memory addresses or routing messages to the 

inappropriate processing units, which might make the decoder unable to perform the LDPC decoding 

algorithms. We note that this is a realistic assumption as in real-life designs it is rather common to 

take design measures in order to make controllers more robust that data-paths.  

 

The decoders under test are evaluated in terms of decoding performance, specifically FER and BER, 

and average number of iterations. Moreover, similar to the voltage-scaling scenario, we introduce a 

new metric called Frequency Scaling Sensitivity (FSS), which is meant to capture the way a decoder 

reacts to the frequency scaling process. To this end we capture the following aspects: 

 Performance Preservation Region (PPR), i.e., the timing interval starting down from the 

nominal Tclk value in which the decoder preserves its performance, i.e., PPR =  Tclk  − Tpp, 

where Tpp is the clock period value at each performance degradation starts occurring. 

 Performance Degradation Region (PDR), i.e., the timing interval starting down from Tpp 

value in which the decoder performance degrades but it still provides some useful results, 

i.e., PDR =  Tpp  − Tpd, where Tpd is the clock period value at which the decoder is not 

functional any longer (FER gets almost 1).  

PPR tells us about the decoder potential to increase clock frequency while providing its expected 

performance. This is the region in which one can increase throughput by means of overclocking, 

without any degradation of the decoding performance.  PDR tells us about how much overclocking 

one can still resort to if channel conditions permit. Tpp and Tpd calculations are further detailed in 

Section 3.6.1.8. While FSS can provide great inside into the decoder behavior, we note however that 

Tpp and Tpd values are determined based on simulated fault injection and not by actual overclocking 

of the design, and therefore we have to treat them as such. 
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3.3.1. Fault Simulation Framework 

Our main goal is the evaluation of the faulty decoders’ error correction capability (measured in Bit 

Error Rate (BER) and Frame Error Rate (FER)) under different channel parameters (Signal-to-Noise 

Ratio (SNR) for Binary Additive White Gaussian Noise (BI-AWGN) channel model and crossover 

probability for Binary Symmetric Channel (BSC) channel model), rather than the failure rate with 

respect to the correct LDPC decoder implementation. In order to perform this type of analysis we 

developed a dedicated System Verilog framework. We perform the hardware simulations using 

Modelsim 10.02.c commercial HDL simulator, while the DPI-C interface is utilized in order to perform 

RTL Verilog/VHDL description – transmission chain C++ model co-simulations.  

 

 

Figure 3-3: Simulated Fault Injection Framework 

The SFI framework is described in Figure 3-3 and consists of: 

1. Transmission chain C++ model – it is used to generate the appropriate input data frames for 

different channel noise models and parameters, compare the decoder output with the 

correct codewords, and compute the BER and FER figures. 

2. System Verilog wrapper and interface – it has the role to extract the inputs frameworks 

generated by the C++ decoder simulator and feed them to the RTL LDPC decoder description, 

as well as to capture the output of the RTL description of the LDPC decoder and transmit it to 

the C++ simulator. 

3. Fault Injected RTL description of LDPC decoders. 
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Figure 3-4: Saboteur Insertion in Combinational Logic 

The chosen fault injection methodology is based on probabilistic saboteurs as indicated in Figure 3-4. 

Given that we are mainly targeting timing faults, which manifest only at output transitions, the 

employed saboteurs use a switch detection signal and a random number generator (Verilog $random 

system call). The latter is required to generate probabilistic faults. Regarding the sabotaged modules, 

we alter the outputs of combinational components and of memory blocks in the evaluated decoders. 

3.3.2. Decoder Basic Block Error Profile Characterization 

This section is concerned with the error profile characterization of the basic building blocks utilized to 

construct the LDPC deciders under investigation. The main goal it to derive the error profile block 

Primary Outputs (POs), which further serves as guidance mean for judiciously performing fault 

injection. In this endeavor we assume that decoder basic blocks are implemented by means of a 

standard cell CMOS technology and derive their POs error profiles and their direct implications on 

performing fault injection, by traversing the following steps:  

 Perform standard cells statistical timing characterization when exposing them to process and 

voltage variations.  

 Identify the worst propagation path for each PO by means of timing analysis. 

 Derive each PO delay distribution (statistical moments) based on the timing profile of the 

afferent path standard cells constituents.  

 Assess each PO error profile for based on its delay distribution. 

 

By following this procedure we present the simulation results obtained for the main combinational 

and sequential logic blocks for four varieties of LDPC decoders: Min-Sum (MS) decoder, Self-

Corrected Min-Sum (SCMS) decoder, Finite Alphabet Iterative Decoder (FAID), and Stochastic 

Decoder (SD).  

Our approach relies on the RTL/gate abstraction level fault tolerance aware design flow illustrated in 

Figure 3-5. We note that in the reign of silicon structures fundamental randomness, a device 

operation is better described as a stochastic process. For process and voltage variations likely to be 

encountered by a given circuit during run-time, a circuit path delay is a random variable and 

therefore a primary objective to enable error profiling and further fault-tolerance analysis, is to 

compute this random variation characteristics (e.g., distribution, statistical moments). To this end, 

first a Standard Cells (SCs) library is augmented with appropriate delay statistical characteristics. A 

circuit specified at the RTL level for instance, is synthesized using the library SCs.  
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Figure 3-5: Fault Tolerance Aware Design Flow at RTL/gate Abstraction Level 

A static timing analysis is subsequently performed to determine the worst timing path for each 

primary output of the circuit. A primary output delay statistics can then derived based on the delay 

statistics of the SCs composing the primary output path. Based on the delay statistics, the probability 

profile for the output to be in an erroneous logic state easily follows. The error profile for each circuit 

primary output is of interest, as it enables to judiciously inject faults in the circuit for subsequent 

circuit fault-tolerance aware optimizations. 

3.3.2.1. Standard cells statistical timing characterization 

The first step in the flow depicted in Figure 3-5, consists in the statistical timing characterization of 

the standard cells in a technology library. Specifically, each standard cell is augmented with its 

propagation delay probability distribution over different process and voltage corners, according to 

the methodology presented in Deliverable D2.1 [i-RISC/D2.1].  

Generally speaking, each standard cell operating in sub-threshold regime is exposed to normally 

distributed process (e.g., the cell comprising CMOS transistors oxide thickness and threshold voltage) 

and voltage (e.g., the supply voltage) variations. For each sampling set of process and voltage 

variation data, the cell propagation delay is derived as a mean between the measured rising and 

falling propagation delays which correspond to the two possible output switching situations, i.e., the 

output undergoing transition from logic “1” to logic “0”, and viceversa. The set of cell propagation 

delay values obtained for all process and voltage corner cases, is found to exhibit the same 

Probability Density Function (PDF) trend for all standard cells, namely, it follows an Inverse Gaussian 

(IG) distribution [i-RISC/D2.1].  

 

The set of standard cells we utilize in this section is comprised of 45nm CMOS {NAND2, INV, DFF} 

cells (corresponding to a NAND gate, an inverter gate, and a D flip-flop, respectively), with driving 

strength X1. Instead of the commonly employed set of logic gates, i.e., NOT, AND, OR, XOR, NAND, 

NOR, XNOR, we opted for the universal NAND gates as they best serve the purpose of our 
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investigations, but also due to their salient features such as modularity, regularity, and logic flexibility 

to perform a variety of logic functions, as well as their potential in RTL circuit optimization, which 

may lead to a faster and/or more compact circuit.  

 

Figure 3-6: SC Propagation Delay PDF 

Figure 3-6 depicts the obtained propagation delay Probability Density Function (PDF), which is given 

by an Inverse Gaussian distribution with the parameters summarized in Table 3-2, for each standard 

cell in our library. 

Table 3-2: SC Propagation Delay IG Distribution Parameters 

Standard Cell 
IG parameters 

Mean 𝝁    [10−11] Shape 𝝀    [10−10] 

INV 5.3 9.5 

NAND2 7.1 9.5 

DFF 35 40.3 

 

3.3.2.2. Circuit primary outputs error profile characterization 

As graphically illustrated in Figure 3-5, the second step is first concerned with the error profile 

characterization for each primary output of a given circuit, based on: (i) each of its primary outputs 

worst timing path and (ii) the SCs propagation delay PDFs obtained at the previous step described in 

Section 3.3.2.1.  

For a given circuit, specified at RTL level for instance, logic synthesis is first performed using a 

commercial tool, e.g., Synopsys DC compiler, Cadence RTL Encounter, and the circuit is mapped into 

the {NAND2, INV, DFF} standard cells. A static timing analysis is then carried out in order to 

determine for each circuit PO its worst timing path, i.e., the longest sensitizable path from a primary 

input to the primary output under consideration.  

For illustrative reason, we employ as discussion vehicle a sole primary output of a certain circuit: the 

output corresponding to the circuit timing critical path (under the assumption that the circuit has a 

single critical path). The delay profile of the output can then be derived by a linear superposition of 

the individual path SC constituents delay profiles [i-RISC/D2.1]. For instance, for a critical path being 
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composed of 2 INV cells and 3 NAND2 cells, the mean 𝜇𝑜 and shape 𝜆𝑜 parameters of the IG output 

propagation delay distribution are approximated as: 

{  
𝜇𝑜 = 2 ∙ 𝜇𝐼𝑁𝑉 + 3 ∙ 𝜇𝑁𝐴𝑁𝐷2

𝜆𝑜  = 2 ∙ 𝜆𝐼𝑁𝑉 + 3 ∙ 𝜆𝑁𝐴𝑁𝐷2
 

The Probability Density Function (PDF) and Cumulative Distribution Function (CDF) associated to the 

output propagation delay are depicted in Figure 3-7 and Figure 3-8, respectively, for the critical path 

output case discussed above.  

Note that (CDF) and PDF of a random variable – the output propagation delay in this case – can be 

derived from one another by means of integration and differentiation. In the sequel we opt for CDF, 

as it conveys more straightforwardly the probability figures for subsequent derivation of the output 

delay error profile. Given the IG statistical moments of the output delay random variable, the 

probability of the delay to have a value less than or equal to a certain value 𝜏𝑝𝐿, can be 

straightforwardly determined from the associated CDF. The direct implication is that based on a CDF, 

a timing error profile can be easily deduced, for given path delay constraints. Specifically, the 

probability 𝐶𝐷𝐹(𝜏𝑝𝐿) that a 𝜏𝑝𝐿 timing constraint is satisfied (i.e., the output path delay is smaller 

than 𝜏𝑝𝐿) reflects the probability of the output signal to be in error. A smaller CDF probability for a 

delay constraint implies a higher probability that the output signal is in erroneous logic state. The 

inverse proportional relation between the output delay CDF probability and the output signal error 

probability is graphically illustrated in Figure 3-8 by the CDF curve gradient color (from red – higher 

error probability, to green – lower error probability).    

  

Figure 3-7: Output Propagation Delay IG PDF Figure 3-8: Output Propagation Delay IG CDF 

 

The error profile of each circuit PO serves further as guidance mean for the fault injection 

techniques. For instance, in Figure 3-8, for 𝜏𝑝 ∈ [0, 𝜏𝑝𝐿) the output signal probability to be in an 

erroneous state is very high, which implies that in this case the path exhibits an increased degree of 

susceptibility to faults and errors, and thus this situation should be avoided in the context of fault 

injection scenarios. Following the same line of reasoning, for 𝜏𝑝 > 𝜏𝑝𝐻 the output signal error 

probability is very low, which implies that the path in this situation is reliable over process and 

voltage variations, and thus its suitability for fault tolerance related analysis and optimization is 

precluded. Hence, the interval of interest for judicious fault injection is given by 𝜏𝑝 ∈ [𝜏𝑝𝐿 , 𝜏𝑝𝐻].  

𝑃𝐷𝐹(𝜏𝑝𝐿)Δ = 𝑃(𝜏𝑝𝐿 < 𝜏𝑝 ≤ 𝜏𝑝𝐿 + Δ) 𝐶𝐷𝐹(𝜏𝑝𝐿) = 𝑃(𝜏𝑝 ≤ 𝜏𝑝𝐿) 
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Figure 3-9: Circuit POs Delay CDFs 

  

Figure 3-9 reflects the error profile of a circuit with three primary outputs, denoted by 𝑂1, 𝑂2, and 

𝑂3, which has a maximum delay (clock period) equal to 𝜏𝑐𝑙𝑘. Based on the POs error profiles the 

circuit fault tolerance status can be assessed for varying propagation delays (as a results of 

faults/errors), which may or may not satisfy the maximum clock constraint. For each sample value 𝜏, 

it can be deduced from the POs error profiles which are the best suited outputs for fault injection – in 

this case, it can be observed in Figure 3-9, that 𝑂2 is better suited for fault injection, as 𝑂3 and 𝑂1 

have a low and respectively a high error probability, and thus shall be disregarded for fault injection. 

Thus, based on POs error profiles, for its given maximum clock period 𝜏𝑐𝑙𝑘, the most suitable output 

for fault injection can be selected.  

Using the above methodology, the basic building blocks of four LDPC decoders are characterized in 

the following subsection. 

3.3.2.3. Error profile simulation results for LDPC decoders 

Four LDPC decoder architectures specified at RTL level are considered, namely: MS, SCMS, FAID, and 

SD. Note that all decoders are synchronous and mainly divided into the following logic blocks: 

Variable Node processing Unit (VNU), Check Node processing Unit (CNU), barrel shifter, memory 

blocks, and finite state machine for the control signals. The decoders’ architecture synopsis and the 

ports description are presented in detail in Section 3.5.  

Blocks, which are proprietary to decoder architecture, e.g., VNU, are individually characterized for 

each decoder. For convenience, the logic blocks which are common to all decoders, i.e., the CNU 

block, the barrel shifter and the memory blocks, will have their error profile results presented only 

once – in the MS decoder.  

For each decoder architecture statistical delay and error profile figures are presented in a 

hierarchical manner, i.e., block-wise, for each output. Specifically, we analyze the following:  

 For the MS decoder: 3 combinational stages of the CNU logic, 4 combinational stages of the 

VNU logic, barrel shifter, and memory block. 

 For the SCMS decoder: 5 combinational stages of the VNU unit. 

 For the FAID decoder: 3 combinational stages and LUT of the VNU logic. 
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 For the SD decoder: 1 combinational stage CNU, 1 combinational stage VNU, and Random 

Number Generator (RNG) comparator. 

 

For each basic building block of the considered decoders, all output signals are characterized with 

respect to their error profile over voltage and CMOS process variations and their afferent CDF is 

obtained. Table 3-3 to Table 3-6 summarize the worst timing path constituent standard cells for each 

output signal. Using the statistical characterization of the standard cells over processes and voltage 

variations, the CDF curve for each output is derived, according to the method described above. 

Figure 3-10 to Figure 3-30 depict the CDF curves for each output, decoder building block wise.  

Based on these CDF curves, the outputs more prone to a faulty behavior provide the guidelines for 

performing a judicious fault injection, as presented in Section 3.3.3. 

 

  

Figure 3-10: MS Decoder CNU Combinational Stage 1 Figure 3-11: MS Decoder CNU Combinational Stage 2 

 

Figure 3-12: MS Decoder CNU Combinational Stage 3 
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Figure 3-13: MS Decoder VNU Combinational Stage 1 Figure 3-14: MS Decoder VNU Combinational Stage 2 

  

Figure 3-15: MS Decoder VNU Combinational Stage 3 Figure 3-16: MS Decoder VNU Combinational Stage 4 

 

  

Figure 3-17: MS Decoder Barrel Shifter Figure 3-18: MS Decoder Memory Block 
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Figure 3-19: SCMS Decoder VNU Combinational Stage 
1 

Figure 3-20: SCMS Decoder VNU Combinational Stage 
2 

 

  

Figure 3-21: SCMS Decoder VNU Combinational Stage 
3 

Figure 3-22: SCMS Decoder VNU Combinational Stage 
4 

 

 

Figure 3-23: SCMS Decoder VNU Combinational Stage 5 
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Figure 3-24: FAID Decoder VNU Combinational Stage 1 Figure 3-25: FAID Decoder VNU Combinational Stage 2 

 

  

Figure 3-26: FAID Decoder VNU LUT Figure 3-27: FAID Decoder VNU Out Stage 

 

  

Figure 3-28: SD Decoder VNU Combinational Stage Figure 3-29: SD Decoder CNU Combinational Stage 
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Figure 3-30: SD Decoder RNG 

 

 

Table 3-3: FAID Decoder 

FAID Decoder Output signal  # INV # NAND2 Legend 

FAID  VNU combinational Stage 1 

 beta_c2[0]  4 6  

 beta_c2[1]  5 9  

 beta_c2[2]  4 8  

FAID VNU Combinational Stage 2 

 gama_mac_nxt[5]  3 13  

 gama_mac_nxt[4]  3 11  

 gama_mac_nxt[3]  3 9  

 gama_mac_nxt[2]  3 7  

 gama_mac_nxt[1]  3 6  

 gama_mac_nxt[0]  2 3  

FAID VNU LUT  

 alfa_out_lut[0]  7 8  

 alfa_out_lut[1]  8 9  

 alfa_out_lut[2]  5 6  

SCMS VNU Out Stage 

 alfa_out_nxt[2:0]  3 4  
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Table 3-4: MS Decoder 

MS Decoder Output signal # INV # NAND2 #DFF Legend 

MS CNU combinational stage 1 

 sign_alfa_nxt 2 - -  

 alfa_sat_sm[2] 3 5 -  

 alfa_sat_sm[1:0] 2 3 -  

MS CNU combinational stage 2 

 sign_beta_nxt[5:0] 4 8 -  

 min2_nxt[2:0] 4 8 -  

 min1_nxt[2:0] 5 15 -  

 index_comp_nxt[2:0] 4 8 -  

MS CNU combinational stage 3 

 sign_beta_nxt_out[5:4] 

[1:0] 4 5 -  

 sign_beta_nxt_out[3:2] 3 5 -  

 sign_beta_nxt_out[1:0] 4 5 -  

MS VNU Combinational Stage 1 

 beta_c2[3],[1] 5 9 -  

 beta_c2[2] 6 10 -  

 beta_c2[0] 4 6 -  

MS VNU Combinational Stage 2 

 gama_mac_nxt[6:5] 4 12 -  

 gama_mac_nxt[4] 4 10 -  

 gama_mac_nxt[3] 3 9 -  

 gama_mac_nxt[2] 3 7 -  

 gama_mac_nxt[1] 3 6 -  

 gama_mac_nxt[0] 2 4 -  

MS VNU Combinational Stage 3 

 gama_res_nxt[6:0] 1 2 -  

MS Decoder VNU Combinational Stage 4 

 alfa_sat[3] 3 8 -  

 alfa_sat[2:0] 5 13 -  

MS Decoder Barrel Shifter 

 shifter_output_case2 (*) 1 12 -  

 shifter_output_case1 (*) 1 10 -  

MS Decoder Memory Block 

 mem_out 4 3 1  

(*) The signal shifter_output_case1 corresponds to the following bits of the shifter output signal: 
0,1,2,3,4,5,6,7,8,9,11,13,14,15,16,17,18,19,20,21,22,23,24,25,26,28,29,30,32,33,35,36,37,38,39

,40,41,42,43,44,45,46,47,48,49,50,51,52,53 while the signal shifter_output_case2 corresponds to the following 
bits of the shifter output signal: 10,12,34,27,31. 
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Table 3-5: SCMS Decoder 

SCMS Decoder Output signal # INV # NAND2 Legend 

SCMS VNU combinational stage 1 

 beta_c2[3],[1] 5 9  

 beta_c2[2] 6 10  

 beta_c2[0] 4 6  

SCMS VNU Combinational Stage 2 

 gama_mac_nxt[6:5] 4 12  

 gama_mac_nxt[4] 4 10  

 gama_mac_nxt[3] 3 9  

 gama_mac_nxt[2] 3 7  

 gama_mac_nxt[1] 3 6  

 gama_mac_nxt[0] 2 4  

SCMS VNU Combinational Stage 3 

 gama_res_nxt[6:0] 1 2  

SCMS VNU Combinational Stage 4 

 alfa_sat[3] 5 17  

 alfa_sat[2:0] 6 21  

 erasure_nxt 5 16  

SCMS VNU Combinational Stage 5 

 alfa_out_nxt[3:0] 3 4  

 erasure_out_nxt 3 3  

 alfa_sign_out_nxt 5 4  

 

Table 3-6: SD Decoder 

SD Decoder Output signal # INV # NAND2 Legend 

SD VNU combinational Stage  

 F 5 10  

 U_init_out 3 4  

 F_and_init_out 1 3  

SD CNU Combinational Stage 

 cnu_out 3 6  

SD RNG 

 F 2 11  

 
 



D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components 

 

© i-RISC Page 45 of (110) 
 

3.3.3. Fault Map Generation 

We recall that the SFI based evaluation purpose is to analyze the LDPC decoder error correction 

capability under timing violations, which are due to the overclocking at very low supply voltages. To 

this end we introduced saboteurs at the outputs of any combinational component located between 

two registers (a pipeline stage) and at the memory blocks outputs. To let saboteurs capture as 

accurate as possible real life situations we have now to deduce their error probabilities setting based 

on the CDFs derived in the previous section. 

We note that the LDPC decoders have been designed for a single clock domain. Therefore, 

combinational stages with lower latencies are expected to present lower failure probability when 

compared with stages with higher latencies for a given clock period. Furthermore, as indicated by the 

CDFs for each stage presented in Figure 3-10 to Figure 3-30 the error probabilities of individual 

outputs for a specific combinational stage differ due to the different latency from the input to that 

particular output. Thus, the failure probabilities for each output of each stage for a given clock period 

can be extracted from the CDFs in the Figures. By considering this type of error distribution and 

probability, dependent on clock frequency, we simulate in an accurate and realistic way the timing 

error occurrence across the entire design.  

 

Table 3-7: Failure Probabilities for Analyzed Decoders for Different Clock Frequencies 

Clock Period 
(ns) 

Min-Sum Self-Corrected Min-Sum FAID 

Min* Max Min* Max Min* Max 

5.50 1.06E-09 1.06E-09 1.07E-09 1.07E-09 1.06E-09 1.06E-09 

4.00 3.46E-09 2.92E-06 2.92E-06 5.78E-09 3.46E-09 2.92E-06 

2.50 2.53E-09 5.04E-03 5.04E-03 2.53E-09 2.53E-09 5.04E-03 

2.20 2.72E-09 1.93E-02 1.93E-02 2.72E-09 2.72E-09 1.93E-02 

1.90 1.43E-08 6.73E-02 6.73E-02 1.43E-08 1.43E-08 6.73E-02 

1.70 2.40E-07 1.43E-01 1.43E-01 4.02E-09 2.40E-07 1.43E-01 

                   * non-zero 

  

 

Table 3-7 presents the minimum and the maximum failure probabilities for the 3 decoders evaluated 

by means of simulated fault injection. We note that even though the Stochastic Decoder basic 

building blocks have been evaluated (see Figure 3-28 to Figure 3-30) we could not complete its SFI 

based evaluation due to technical hurdles in its integration in the HDL/C++ co-simulation framework 

and due to time shortage (SFI experiments are extremely time consuming even we carried 

experiments in parallel on 6 workstations). Table 3-8 summarize the average failure probabilities for 

the components used in the 3 evaluated decoders, i.e., MS, SCMS, and FAID, as derived for the CDFs 

of each combinational stage and memory block outputs, for different clock frequency values.   
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Table 3-8: Average Values of Failure Probabilities for Considered Components in the Analyzed Decoders 

Clock 
Period 

(ns) 
Memories 

Barrel 
Shifters 

VNU MS 
VNU 

SCMS 
VNU 
FAID 

CNU 
MS/SCMS 

CNU FAID 

5.50 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.28E-10 9.70E-11 

4.00 0.00E+00 0.00E+00 3.14E-08 2.47E-08 2.26E-09 3.51E-07 2.66E-07 

2.50 9.64E-07 2.79E-06 1.92E-04 1.51E-04 4.61E-05 6.05E-04 4.58E-04 

2.20 1.28E-05 2.71E-05 9.94E-04 7.81E-04 3.12E-04 2.33E-03 1.76E-03 

1.90 1.60E-04 2.62E-04 4.80E-03 3.77E-03 1.98E-03 8.13E-03 6.18E-03 

1.70 8.28E-04 1.17E-03 1.30E-02 1.02E-02 6.48E-03 1.75E-02 1.33E-02 

 

For the considered technology and supply voltage, we have performed simulations corresponding to 

clock periods from 5.5ns down to 1.7ns, which correspond to error probabilities higher than 10−9.  

As expected increasing the clock frequency leads to an increase in output failure probabilities but this 

failure rate increase is not uniform across the circuit, as combinational stages with higher latency will 

have higher failure rates. 

Figure 3-31 depicts the number of active fault locations (signals with a non-zero error probability) for 

the processing units of the analyzed LDPC decoders. It can be observed that this number increases 

with the decrease in the considered clock period. The figure indicates that for a clock period of 𝟐ns, 

the MS decoder CNU has the highest number of active fault locations, while its VNU has the lowest. 

 

Figure 3-31: Number of Active Fault Locations in Processing Units 

Figure 3-32 depicts the ratio between the per-block number of active fault locations (signals subject 

to fault insertion by means of saboteurs) and the total number of sabotaged wired.  

0

5

10

15

20

25

1,01,52,02,53,03,54,04,55,05,5

N
u

m
b

er
 o

f 
Fa

u
lt

 L
o

ca
ti

o
n

s 

tclk (ns) 

CNU_MS

CNU_FAID

VNU_MS

VNU_SCMS

VNU_FAID



D6.1: Report on Reliability Aware Synthesis and LDPC Decoders Built with Unreliable Components 

 

© i-RISC Page 47 of (110) 
 

One can conclude from the figure that: (i) FAID and MS/SCMS CNUs experience errors with a 

probability higher than 10−9 for a clock period of 5.5ns or lower, (ii) MS/SCMS VNUs errors appear 

for a clock period of 5ns or lower while for FAID VNU they appear for a clock periods of 4.5ns or 

lower, and (iii) for barrel shifters, errors with a probability higher than 10−9 start to occur at a clock 

period of 3.7ns. We also note that for a clock period of 3.9ns, all modules have more than half of 

their sabotaged wires affected by probabilistic errors with occurrence probability higher than 10−9. 

 

Figure 3-32: Ratio between Active Fault Locations and Total Number of Sabotaged Wires in Considered Blocks 

Figure 3-33 depicts the per block average error probability on a logarithmic scale. This figure 

indicates that FAID VNU has a lower average error probability with respect to the MS and SCMS VNU 

for the same clock period. In particular, for a clock period of 1.9ns the average error probability for 

FAID VNU is almost half with respect to the MS and SCMS VNU. We can also observe that CNU units 

present the highest average error probability while memory blocks, followed by barrel shifters, have 

one order of magnitude lower error probabilities than the processing units.   

 
Figure 3-33: Average Probability of Errors in the Considered Blocks (Logarithmic Scale) 
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Figure 3-34 depicts the estimated number of per iteration fault locations, which might be activated in 

the entire decoder on a logarithmical scale. Figure 3-35 depicts the estimated number of possible per 

iteration active fault locations in the entire decoder, for clock periods between 𝟏. 𝟗ns and 𝟐. 𝟓ns. 

These two figures indicate that the FAID decoder has significant less active faults per iteration with 

respect to MS and SCMS decoders. For example, for a clock period of 𝟏. 𝟗ns, the number of active 

faults in FAID decoder is half of the active faults to be injected in MS or SCMS decoder. 

 
Figure 3-34: Average Number of per Iteration Injected Faults (Logarithmic Scale) 

 
Figure 3-35: Average Number of per Iteration Injected Faults (Zoom - Linear Plot) 

The generated fault maps provide the timing probabilistic faults, which take into account the 

architectural and implementation details of the analyzed decoders. Based on these maps, we can 

observe the error conditions under which the decoders will show decoding performance 

degradation. In our experiments we consider various clock periods, starting from 5.5ns (when errors 

start occurring in the processing units), 3.1ns (when errors appear in the memories), then 2.5ns, 

2.2ns, 1.9ns and 1.7ns, the last values corresponding to the region where the average number of 

injected faults per iterations start increasing at a higher pace (as one can observe in Figure 3-35). 
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3.4. Utilized LDPC Codes 

In this section we describe the codes that sit behind the LDPC decoders implemented and evaluated 

in this deliverable. Before presenting them into details we introduce an LDPC construction 

methodology. 

3.4.1. Protograph Based LDPC Construction 

First introduced by [Thorpe03], a binary protograph is defined as a small bipartite graph from which 

a larger graph is obtained by a so-called “copy-and-permute” procedure. The procedure can be 

summarized as follows: 

 Copy step: first, the protograph is copied L times to obtain L replicas. L is arbitrary defined to 

achieve the targeted codeword length. 

 Permute step: then, the edges of the individual replicas are permuted among the replicas to 

obtain a single but larger graph, but under some restrictions in order to obtain an LDPC code 

with good enough error correction performance.  

Finally, the permuted edge connections specify the non-zeros entries of the parity-check matrix 

associated with the resulting graph. 

The protograph itself is generally described using its adjacency matrix HB also called base matrix 

[Liva06]. A protograph is then a (𝑀𝑏 , 𝑁𝑏) matrix filled with integer values, which represent the 

number of edges between the i-th check node 𝐶𝑖 of the protograph and the j-th variable node 𝑉𝑗. 

Note that using this representation enables to consider parallel edges, i.e., two nodes (a variable 

node and a check node) can be connected with more than one edge. These parallel edges however 

must be eliminated when building the larger graph using the copy-and-permute procedure to yield to 

a suitable representation of the code using a parity-check matrix. 

In fact, the code ensemble defined by the protograph can be viewed as a structured sub-ensemble of 

the Low-Density Parity-Check (LDPC) code ensemble defined using the equivalent edge distribution. 

As an example, we consider the regular (𝑑𝑣 = 3, 𝑑𝑐 = 6) LDPC code ensemble (variable nodes with 

degree 2 and check nodes with degree 4). The two following adjacency matrices are associated with 

a particular structured sub-ensemble of the regular (𝑑𝑣 = 3, 𝑑𝑐 = 6) LDPC code ensemble: 

 

2 1 0 3          1 1 1 1 1 1 

1 2 3 0          1 1 1 1 1 1 

             1 1 1 1 1 1 

Table 3-9: Different Types of Protograph for (𝑑𝑣 = 3, 𝑑𝑐 = 6) LDPC Codes 

Throughout the rest of this section, we denote by type-I protograph a protograph which contains 

only ‘0’ and ‘1’, and by type-II protograph, a protograph which could contain values greater than ‘1’. 

Usually, the protograph or the base matrix is issued from some previous optimization procedures 

based on density evolution [Thorpe03] or on a multidimensional EXIT chart analysis [Liva06].  

Once the protograph (or equivalently the base matrix) has been selected, one aims at building a 

larger graph. The optimum way of selecting the permutations among the different replicas of the 

protograph is still an open issue, and one has to rely on heuristics and sub-optimum procedures. To 

simplify both the encoding and decoding storage, it is convenient to choose circulant permutations: 
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the final parity-check matrix H of the LDPC code is described as an (M, N) array of (L, L) (weight-one) 

circulant permutation matrices or (L, L) zeros matrices. The assignment of the circulants should be 

done carefully to avoid short cycles and it can be done using an instance of the Progressive-Edge-

Growth (PEG) algorithm [Hu05] sometimes referred to as circulant-PEG or lift-PEG [Venkiah08]. We 

will employ in the rest of this section the following lifted graphs/codes definition: 

The operation consisting in replacing each non-zero entry with value d in the protograph base-matrix 

by a set of d non-overlapping circulant matrices is called “lifting”. The order of the lift L corresponds 

to the size of the circulant matrices. 

 

3.4.2.  i-RISC Set of Matrices  

For best performance in the error floor region, the Tanner graph should have the best possible 

topological properties in terms of cycles. That is, one should aim at the maximum possible girth, and 

minimum multiplicity of the number of cycles with minimum length. This is important because the 

trapping sets topologies are obtained by combination of several cycles, so the larger the cycles, the 

larger are the trapping sets [Liva06].  In the i-RISC project, we have adapted the Random-PEG 

algorithm proposed in [Venkiah08] in order to perform the lifting operation. This instance of the PEG 

algorithm is called Lift-PEG algorithm and it can be briefly described as follows: 

For each non-zero entry in the protograph from column 1 to column 𝑁𝑏, choose the circulant, which 

maximizes the “local” girth of the graph and minimizes the number of small cycles created. The 

computation of the “local” girth and multiplicity is done with the help of the computation tree. 

The principle of the Random-PEG algorithm is kept, but applied block by block, for each (L, L) 

circulant. To keep the complexity of the hardware decoder implementations within implementable 

bounds, a constant codeword length has been chosen, N=1296 coded bits, for two different rates, 

R=0.5 and R=0.75. Also, in order to verify the robustness of the proposed fault-tolerant decoders on 

different coding situations, 3 kinds of LDPC families have been proposed. The set of 6 codes 

considered in the project is presented in Table 3-10. 

 

Table 3-10: Employed Set of LDPC Codes 

 

 

 

 

 

 

The corresponding protographs have therefore size (12, 24), for the rate R=1/2, and (12, 48), for the 

rate R=3/4 as presented in Figure 3-36 and the corresponding matrices are described in Appendix 1. 

The LDPC codes have all good properties in terms of girth, as they all have girth g=8, which means 

that the size of the minimum cycle is 8. This last property ensures good error correction performance 

for the designed LDPC codes.  

 

Code Rate R Regular 𝒅𝒗 = 𝟑 Regular 𝒅𝒗 = 𝟒 Irregular 

 𝑵 𝑴 𝑳 𝑵 𝑴 𝑳 𝑵 𝑴 𝑳 

R=1/2 1296 648 54 1296 648 54 1296 648 54 

R=3/4 1296 324 27 1296 324 27 1296 324 27 
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We note however that in view of the fact that both voltage scaling and SFI experiments are very 

expensive in terms of execution time we had to limit our evaluations to LDPC decoders 

corresponding to R = 1/2, dv = 3, N = 1296, M = 648, L = 54.  

 

 

Figure 3-36: Protographs for (𝑑𝑣 = 12, 𝑑𝑐 = 24) and (𝑑𝑣 = 12, 𝑑𝑐 = 48) LDPC Codes 

  

3.5. Decoder Architecture, Organization, and Implementation 

In this section we describe the LDPC decoders we investigate by means of voltage scaling and fault 

injection from the hardware prospective. We give special attention to implementation relevant 

aspects by we also briefly discuss their basic operation principle when required for understanding 

architectural and implementation decisions.  

3.5.1. Min-Sum (MS) 

Min-Sum decoding has been thoroughly investigated in WP3 [i-RISC/D3.1], where its robustness to 

simple theoretical error models has been assessed both analytically and by C simulations. 

In flooded min-sum decoding is performed according to the Tanner graph associated to the 𝐻 matrix: 

the Check Node Units (CNU) compute the check node messages (denoted as 𝛽) based on the 

messages received from the Variable Node Units (VNU) (denoted as 𝛼); these updated 𝛽 messages 

are passed back to the VNUs, which will update 𝛼 messages. The flooded MS decoding has as inputs 

the channel LLR messages, and consists of the following steps: 

1. Initialization                 
i i      

2. Check Node Update    , , ,

( )\

sgn( ) minz i z j z j

j H z i

  


 
  
 
    

3. Variable Node Update   
,

( )\

z i i j

j H z i
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4. A-posteriori Update   
( )

i i j

j H z

  


      

Steps 2-4 are repeated until a codeword is found or the maximum number of iterations is reached. As 

indicated by the description above the MS algorithm has low hardware complexity as it mainly 

consists of additions and comparisons on a small number of bits.   

The fully parallel flooded decoder represents the faithful implementation of the Tanner graph. It has 

a number of VNUs/CNUs equal to the number of columns/rows in the parity check matrix. It has the 

advantage of very high throughput but has a very high implementation cost, mainly due to the 

interconnection network [Stimming12] [Chandrasetty12]. Serialization is used in order to reduce the 

decoder cost at the expense of throughput. Because serial solutions have a limited number of 

processing units, messages are temporarily stored in memories. Several approaches of implementing 

such flooded architecture have been presented in [Chen11] [Park14]. 

We implemented an MS decoder developed for Quasi-Cyclic (QC) LDPC codes, which include the 

codes presented in Section 3.4, and has a number of processing units (both VNU and CNU) equal to 

the size of the circulant matrix (54). At both individual CNU and VNU level, messages are processed 

serial while the rows and the columns of the 𝐵 matrix are processed in a serial manner.  Due to the 

serialization, at both processing unit level, and at the 𝐵 matrix level, the developed flooded decoder 

uses memories for message storage. 

3.5.1.1. Decoder General Description 

The architecture of the flooded Min-Sum (MS) LDPC decoder is depicted in Figure 3-37. It consists of 

the following modules: 

1. Input Log Likelihood Ratio (LLR) memory – this memory stores the channel messages, which 

will be used in the decoding process for variable node computations; the memory word size 

is equal to input LLR quantization (4 bits) multiplied by circulant size (54 for the given code); 

the depth of the memory is equal to the number of columns in the 𝐵 matrix.   

2. Variable Node Unit (VNU) block – it contains a number equal to the circulant size (54 for the 

analyzed QC-LDPC code) individual units; the 54 VNUs compute the corresponding variable-

to-check messages (α) for a column in the 𝐵 matrix, as well as the A-Posteriori LLR (AP-LLR).  

3. Variable-to-check message memory – it stores the 𝛼 messages, which will be used in the 

check node computations; the memory word size is equal to the 𝛼 message size (4 bits) 

multiplied by the circulant size (54 × 4); the depth of this memory is equal to variable node 

degree multiplied by the number of columns in the 𝐵 matrix (3 × 24). 

4. Variable-to-check message Barrel Shifter (BS) – it provides the corresponding interconnection 

scheme between the VNU outputs to check node unit inputs; it has 6 multiplexer (MUX) 

levels and a number of circulant size multiplied by 𝛼 word size (54 × 4) MUXes per level. 

5. Check Node Unit (CNU) block – it contains a circulant size individual check node units; the 54 

units compute the corresponding check-to-variable messages (𝛽) for a row in the 𝐵 matrix. 

6. Check-to-variable message memory – it stores the 𝛽 messages, which will be used in the 

variable node computations; the 𝛽 message is stored in a compressed form; the size of the 

compressed 𝛽 message is 15 bits; the memory word size is equal to circulant size multiplied 

by compressed 𝛽 message size (54 × 15), while the memory depth is equal to the number of 

rows in the 𝐵 matrix (12). 
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Figure 3-37: Flooded MS Architecture 

7. Check-to-variable message BS – it provides the corresponding interconnection scheme 

between the CNU outputs to VNU inputs; it has 6 multiplexer (MUX) levels and a number of 

circulant size multiplied by compressed 𝛽 word size (54 × 15) MUXes per level. 

8. Hard-decision buffer and early-termination circuit – after each iteration it evaluates the 

parity check equations based on the signs of AP-LLR computed within the VNUs; 

furthermore, it provides the output of the decoder. 

9. Control unit – it has the role of providing the appropriate sequence of operations during the 

decoding process; it provides: (i) the addresses for the 3 memories; (ii) the shift amounts for 

the 2 BS, (iii) the indexes of the 𝛽 messages (iv) the corresponding control signals for both 

processing units (VNUs and CNUs) and the memories (read and write enables). 

The 𝛽 messages have been compressed in order to reduce the number of memory locations. Six 𝛽 

messages corresponding to a row in 𝐻 matrix (6 × 4 bits/message = 24 bits) are compressed in the 

following way: 3 bits are used for the absolute value of the first minimum, 3 bits for the absolute 

value of the second minimum, 3 bits for the index of the first minimum, and 6 bits for the 6 𝛽 

messages’ signs. Thus, 15 bits are required for the 𝛽 messages corresponding to a row in the 𝐻 

matrix.  

3.5.1.2. Decoder Modules Description 

In order to reduce the number of memory read/write ports and to reduce the BS number 

serialization has been applied to both VNU and CNU. Thus, the 3 𝛽 messages corresponding to a VNU 

and the 6 𝛼 messages corresponding to a CNU are read in 3 (for VNU) /6 (for CNU) consecutive clock 

cycles.  Therefore, both the VNU module and the CNU module have one port for the input message 

and one port for the output message. 
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VNU Module: The VNU consists of 4 combinational stages, which perform the following operations: 

 The first stage performs the conversion of 𝛽 messages from the compressed form to the 

uncompressed Two’s Complement (C2) representation; the corresponding beta to a VNU is 

computed as follows: 

 The second stage performs the computation of the AP-LLR, using a 6-bit accumulator. 

 The third stage is used for synchronization purposes and performs a freeze on the result of 

the AP-LLR. 

 The fourth stage computes the α message by subtraction the corresponding 𝛽 message from 

the AP-LLR; in order to subtract the correct 𝛽 message, a FIFO buffer is used for the C2 

version of 𝛽; in order to reduce size of the variable-to-check message memory, the 6-bit 𝛼 

message obtained after the subtraction is reduced to 4 bits by applying a saturation. 

The VNU outputs the 3 𝛼 messages corresponding to a column in the 𝐻 matrix in a serial manner, in 

3 consecutive clock cycles. Table 3-11 presents the VNU port description. 

 
Table 3-11: MS VNU Ports List 

Port name In/Out Size [bits] Function 

beta_in I 15 Compressed β message input 

beta_index_in I 3 Index of the current processed β message 

gama_in I 4 Input LLR 

start_proc_in I 1 Control signal – start a new VNU operation 

hard_dec_out O 1 Hard decision output 

alfa_out O 4 Output α message 

end_proc_out O 1 Status signal 

 

CNU Module: The CNU consists of 3 combinational stages, which perform the following operations: 

 The first stage performs the conversion of input 𝛼 messages from C2 representation to Sign-

Magnitude (SM) representation; 

 The second stage performs the comparisons with previous absolute vales of the first and 

second minima, as well as the computation of the index for the first minimum; 

 The third stage performs updates on the 6 𝛽 messages signs. 

The CNU has as input port the 𝛼 message (4 bits) and it outputs a single compressed 𝛽 message (15 

bits) corresponding to the 6 𝛽 messages of a row in the 𝐻 matrix. Table 3-12 presents the CNU port 

list. 

Table 3-12: MS CNU Ports List 

Port name In/Out Size [bits] Function 

alfa_in I 4 Input α message 

start_proc_in I 1 Control signal – start a new VNU operation 

beta_out O 15 Compressed β message output 

end_proc_out O 1 Status signal 
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3.5.2. Self-Correcting Min-Sum (SCMS) 

Self-Corrected Min-Sum (SCMS) has been proposed by [Savin08] and targets the improvement of the 

LDPC error correction capability, mainly in the error floor region. It has been proven to be the most 

reliable MS based algorithm in Deliverable 3.1 [i-RISC/D3.1].  With respect to the MS algorithm, SCMS 

has a modified variable node update: if the new 𝛼 message has a different sign than the previous 𝛼 

message, it is erased. In order to implement the variable node update for the SCMS, two more bits 

are required for each 𝛼 message update: the sign of the previous α message and the erasure bit. The 

erasure bit is used in order to avoid two consecutive erasures on the same 𝛼 message.   

3.5.2.1. Differences With Respect to MS Decoder 

The architecture of the flooded Self-Corrected Min-Sum (SCMS) LDPC decoder is depicted in Figure 

3-38. With respect to the MS implementation the following differences are in place: 

1. VNU is modified in order to perform the self-correction (𝛼 message erasure) operation; two 

more 1-bit inputs and 1-bit outputs are added, which correspond to the previous sign of 𝛼 

message and the erasure bit; a fifth combinational stage is added to the VNU; this stage 

performs the self-correction.   

2. The erasure bits and the signs of the previous 𝛼 messages are stored in two separate 

memories with a word size equal to the circulant size (54), and a depth equal to the number 

of columns multiplied by variable node degree (24 × 3); thus, the SCMS decoder has 

increased memory requirements with respect to MS.  

These two differences require the modification of the control unit in order to generate the 

corresponding read and write addresses for the erasure bit memory and the previous 𝛼 messages’ 

signs memory. 

 

Figure 3-38: Flooded SCMS Architecture 

The SCMS VNU list of ports for is summarized in Table 3-13. 
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Table 3-13: SCMS VNU Ports List 

Port name In/Out Size [bits] Function 

beta_in I 15 Compressed 𝛽 message input 

beta_index_in I 3 Index of the current processed 𝛽 message 

gama_in I 4 Input LLR 

alfa_sign_in I 1 Previous 𝛼 message sign 

erasure_in I 1 Erasure bit in 

start_proc_in I 1 Control signal – start a new VNU operation 

hard_dec_out O 1 Hard decision output 

alfa_out O 4 Output α message 

end_proc_out O 1 Status signal 

alfa_sign_out O 1 Previous 𝛼 message sign 

erasure_out O 1 Erasure bit in 

 

3.5.3. Finite Alphabet Iterative Decoder (FAID) 

FAID algorithm [Planjery10] uses a different variable node update than MS based algorithms. The 𝛼 

message updates are performed using dedicated Look-Up Tables (LUT) for the input 𝛽 messages and 

the input LLR value. The main FAID advantage relates to the utilization of 3 bits only for the 

quantization of both 𝛼 and 𝛽 messages – 3 bits. Another advantage is that the VNU LUT can be 

optimized such as to improve FAID robustness to faulty hardware as suggested in Deliverable 3.2 [i-

RISC/D3.2]. We note however that FAID decoders can only be utilized over Binary Symmetric 

Channels and only for regular LDPC codes with variable node degree 3 or 4.  Regarding the CNU, the 

𝛽 messages are computed in the same way as in the MS algorithm. The FAID decoder data flow is the 

same as in the one of the MS decoder.  

3.5.3.1. Differences With Respect to MS Decoder 

The FAID decoder has the same architecture as the MS decoder. Furthermore, the flooded FAID 

decoder has the same data flow as the MS decoder presented in Section 3.5.1. This leads to both 

decoders having identical control units. The differences between the FAID and MS decoders are: 

 Different VNUs – the FAID VNU consists of 3 LUTs which are used to compute the 𝛼 

messages; the input 𝛽 messages are read from memory in a serial manner (one message per 

clock cycle); the 𝛼 messages are outputted also in a serial manner; two buffers are used: one 

to store the input 𝛽 messages and one to store the newly computed 𝛼 messages; the 𝛽 

buffer provides inputs for the 3 LUTs; the inputs for the α buffer are provided by the outputs 

of the 3 LUTS. 

 Differences due to different quantization – the 𝛼 and 𝛽 message memories have smaller 

memory word size (54 × 3 for 𝛼 message memory and 54 × 13 for 𝛽 message memory), 

while the two BS have smaller number of MUXes per level (54 × 3 for 𝛼 read BS and 54 × 13 

for 𝛽 read BS). 
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3.5.4. Stochastic Decoder (SD) 

In stochastic LDPC decoding, the channel probabilities are converted into randomly generated binary 

bit streams, called Bernoulli sequences [Gaines69] [Poppelbaum67] [Ribeiro67]. In a Bernoulli 

sequence, each comprising bit is generated independently of the other bits, and it is equal to 1 with a 

probability equal to the to be transformed channel probability. For instance, a stochastic stream of 

10 bits with 5 comprising bits being equal to 1, encodes a channel probability of 5/10 =  0.5. This 

number representation has two main advantages: (i) arithmetic computations can be done with low 

complexity hardware and (ii) has intrinsic high fault tolerant capability. This representation allows for 

the evaluation of complex arithmetic operations by using simple logic gates. For instance, we can use 

an AND gate to implement a multiplication. Moreover, by relying on an identically-weight 

representation, Stochastic Bitstreams (SB) which are the de facto data representation for Stochastic 

Computing (SC) are more error tolerant by construction, e.g., flipping one bit at position n of an SB 

with length 𝐿𝑠 causes only an 1/𝐿𝑠 difference irrespective of the 𝑛 value while the same bit flip in a 

traditional binary representation creates a 2𝑛−1 difference.  

3.5.4.1. Decoder General Description 

A general fully parallel implementation of an Edge Memory (EM) [Tehrani08] stochastic LDPC 

decoder is depicted in Figure 3-39.  

 

Figure 3-39: Architecture of a Fully Parallel Stochastic LDPC Decoder 
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Each channel probability 𝑝𝑛 represented as a q-bit binary number is first converted to a Stochastic 

Bitstream (SB) 𝑦𝑛 via a Probability to Stochastic Bitstream converter (P2SB) module. Each Bit Node 

(BN) module consists of: (i) 𝑁𝑐𝑐𝑛 units of Variable Node 𝑉𝑁𝑛,𝑚 module to generate  𝛼𝑛,𝑚 ∈ {0,1}, 

message to be sent from 𝐵𝑁𝑛  to 𝐶𝑁𝑚 where 𝑁𝑐𝑐𝑛 is the number of connected Check Nodes (CNs),  

and (ii) one A Posteriori Counter Update and Hard Decision (PCHD) module to generate hard value bit 

𝑥𝑛 for Early Termination (ET) and decoding output. Each 𝐶𝑁𝑚 in Figure 3-39 consists of 𝑁𝑐𝑏𝑛 units of 

𝐶𝑁𝑚,𝑛 module where 𝑁𝑐𝑏𝑛 is the number of connected BNs. The output hard value bits are then used 

by the Parity Check Circuit (PCC) to verify the parity constraints. Edges messages in form of SBs are 

exchanged iteratively between BNs and CNs, until either a codeword is found, or the maximum 

number of iterations is reached. The random numbers for P2SBs and 𝑉𝑁𝑛,𝑚 modules are fed by the 

z-bit True Random Number Generator (TRNG) module via the Random Connector (RC) module. The 

TRNG and RC are needed by (i) the P2SB modules for generating random SBs with controllable 

probabilities of being “1” and (ii) the 𝑉𝑁𝑛,𝑚 modules for randomly choosing a bit from EMs when the 

incoming messages are not in agreement. 

The SD decoder VHDL code is produced by a specially developed in-house tool we designed for the 

automatic generation of LDPC decoder fully parallel IP cores starting from: (i) an 𝐻 matrix, regular or 

irregular, 𝐻 = (ℎ𝑚,𝑛)𝑚=1,…,𝑀
𝑛=1,…,𝑁

, which is a binary matrix with 𝑀 rows and 𝑁 columns, (ii) the number 

of bits q to represent the probabilities of channel messages, and (iii) the EM number of bits  Σ.  

3.5.4.2. Decoder Modules Description 

Probability to Stochastic Bitstream converter (P2SB): The implementation of the P2SB unit is based on 

a 𝑞-bit comparator, and its block scheme is graphically illustrated in Figure 3-40. The P2SB module 

generates an output bit which is equal to logic “1” with a probability given by the 𝑞-bit quantized 

channel probability.  

 

 

Figure 3-40: Probability to Stochastic Converter (P2SB) 

𝑝𝑛 is a vector of q-bit quantized probability of bit 𝑛 to be equal to logic “1”. To randomly generate 

the bit 𝑦𝑛 with a probability of being “1” equal to 
𝑝𝑛

2𝑞, we need to give first a q-bit random number 𝑟𝑛 , 

randomly generated by TRNG and RC modules, as an input to each P2SB module. The output bit of 

the P2SB module, 𝑦𝑛 , is “1” when 𝑝𝑛 > 𝑟𝑛 and “0” otherwise.  

The module ports description is summarized in Table 3-14. 

Table 3-14:  P2SB Module Ports Description 

Port Name In/Out Size [bits] Function 

p I 𝑞 Probability 
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r I 𝑞 Random number 

y O 1 SB 

 

VN Module: The block scheme of the variable node processing for variable node 𝑉𝑁𝑛 module is 

presented in Figure 3-41.  

 
Figure 3-41: The 𝑉𝑁𝑛,𝑚 Module 

The initialization of 𝑉𝑁𝑛,𝑚 module is done by giving logic “1” to the init_control input. During the 

initialization, (i) 𝛼𝑛,𝑚 is loaded with the Most Significant Bit (MSB) of the channel probability 𝑝𝑛 (i.e., 

𝛼𝑛,𝑚 = 𝑥𝑛) and (ii) the EM is filled with a Σ-bit SB of 𝑦𝑛 from the P2SB.  

The main function of 𝑉𝑁𝑛,𝑚 module is to check the agreement of messages (in form of SBs) from the 

channel and from all the CNs connected to 𝑉𝑁𝑛, excluding the message from the check-node 𝐶𝑁𝑚 

(i.e., 𝑦𝑛 =  𝛽𝑚′,𝑛 ∀𝑚′ ∈ 𝐻(𝑛)\𝑚 where 𝐻(𝑛) = {𝑚 | ℎ𝑚,𝑛 = 1} is a set of check-nodes connected to 

the variable node 𝑉𝑁𝑛,  and 𝛽𝑚,𝑛 ∈ {0,1} is a message sent from 𝐶𝑁𝑚 to 𝑉𝑁𝑛). If the messages have 

an identical logic value, the 𝑉𝑁𝑛,𝑚 module (i) passes the common value to its output F (i.e., 𝛼𝑛,𝑚 =

𝑦𝑛) and (ii) stores the value in the EM inside the module by a single bit shifting operation. However, 

when the messages are not in agreement, the 𝑉𝑁𝑛,𝑚 module selects randomly one bit from the EM 

addressed by the address_in input and passes this single bit to its output F (i.e., 𝛼𝑛,𝑚 =

𝐸𝑀(address_in)). The address_in input is fed by the z-bit TRNG module via the RC module. 

The ports description is presented in Table 3-15. 

 

Table 3-15: 𝑉𝑁𝑛,𝑚 Module Ports Description 

Port Name In/Out Size [bits] Function 

𝑦𝑛 I 1 SB from the channel with probability 𝑝𝑛  

𝛽𝑚′,𝑛 I 𝑑𝑣 − 1 Messages from all check nodes connected to 
𝑉𝑁𝑛,𝑚, excluding the message from check node 

𝐶𝑁𝑚 
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clock I 1 Clock signal 

reset I 1 Reset active high 

enable I 1 “1” -> enable the 𝑉𝑁𝑛,𝑚 module 

init_control I 1 “1” -> initialize the 𝑉𝑁𝑛,𝑚 module 

MSB of 𝑝𝑛 I 1 MSB of channel probability 𝑝𝑛 

address_in I log2Σ Edge memory address for selecting 1-bit of data 

𝛼𝑛,𝑚 O 1 Message from 𝑉𝑁𝑛,𝑚 to be sent to check node 𝐶𝑁𝑚 

 

TRNG Module: 

The TRNG is designed using Linear Hybrid Cellular Automata (LHCA) [Cattell95] [XilinxTRNG]. The 

connections from the RC inputs to its output are randomly predetermined at design time by our 

VHDL generator tool in such a way that each 𝑟𝑛 for feeding the P2SB modules and each 𝑎𝑘 for 

selecting random bit of EM has no common bit within itself (i.e., 𝑟𝑛(0) ≠  𝑟𝑛(1) ≠ 𝑟𝑛(2) … ≠

𝑟𝑛(𝑞 − 1) and 𝑎𝑛(0) ≠  𝑎𝑛(1) ≠ 𝑎𝑛(2) … ≠ 𝑎𝑛(log2 𝛴 − 1)). In this way, correlations among the 𝑞 

random bits of 𝑟𝑛 and the log2Σ random bits of 𝛼𝑘 are avoided. 

PCHD Module: 

Figure 3-42 depicts the PCHD𝑛 module block scheme. 

 

Figure 3-42: The PCHD Module 

The module has a saturated signed counter called as 𝛾𝑛 for bit n. During initialization state when the 

init_control input is “1”, (i) the counter is filled with a value based on the MSB of its corresponding 

channel probability 𝑝𝑛 (which is connected to its hv input) and (ii) the hard bit value is set to the 

MSB. The counter is initialized to +1 when the MSB is one (i.e., 𝑥𝑛 = 1) and −1 otherwise. If the 

bit_in input is “1”, the counter is increased by 1; otherwise, it is decreased by 1. The bit_in(0) is 

connected to the output bit of the corresponding P2SB 𝑦𝑛 for counting the number of zero and one 

of SB messages from the channel. The other bits of the bit_in input (i.e., bit_in(1) to bit_in(dv) for a 
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regular LDPC code with variable node degree 𝑑𝑣) are designed for counting messages from all 

connected CNs (i.e., 𝛽𝑚,𝑛, ∀𝑚 ∈ 𝐻(𝑛) ) in the same manner. The hard value bit is determined by the 

number stored in the counter. If the stored value is positive, the hard value bit is set to one (i.e.,  

𝑥𝑛 = 1), otherwise it is set to zero. 

 

The module ports are described in Table 3-16. 

Table 3-16: PCHD Module Ports Description 

Ports Name In/Out Size [bits] Function 

𝑦𝑛 I 1 SB from the channel with probability 𝑝𝑛 

𝛽𝑚,𝑛 I 𝑑𝑣 Messages from all check nodes connected to 𝑉𝑁𝑛 

reset I 1 Reset active high 

enable I 1 “1” -> enable the PCHD module 

init_control I 1 “1” -> initialize 

MSB of 𝑝𝑛 I 1 MSB of channel probability 𝑝𝑛 

clock I 1 Clock signal 

𝑥𝑛 O 1 Hard value 

 

CN and PCC Module: 

Each check node 𝐶𝑁𝑚,𝑛  is implemented using a XOR gate as depicted in Figure 3-43.  

  

Figure 3-43: The 𝐶𝑁𝑚,𝑛 Module Figure 3-44: The Parity Check 𝑐𝑚 Module 

 

The inputs of the 𝐶𝑁𝑚,𝑛 module are messages from all corresponding connected BNs except from 

𝐵𝑁𝑛 (i.e., 𝛼𝑛′,𝑚 ∀𝑛′ ∈ 𝐻(𝑚)\𝑛 where 𝐻(𝑚) = {𝑛 | ℎ𝑚,𝑛 = 1}, which is a set of VNs connected to 

the  𝐶𝑁𝑚,𝑛). The inputs of the module are messages from BNs and its output 𝛽𝑚,𝑛 is passed back to 

connected BNs. This iterative message passing process stops either when all parity check constraints 

are satisfied determined by PCC or when the pre-determined maximum number of iterations is 

surpassed. The PCC module is built using 𝑁𝑝𝑐𝑐 units of XORs where 𝑁𝑝𝑐𝑐 is the number of parity 

check constraints. The inputs of the parity check 𝑚, 𝑐𝑚, in Figure 3-44 are from PCHDs of BNs 

connected to 𝐶𝑁𝑚. In our experiment, we use a regular (1296, 648) LDPC code with these 

parameters: 𝑑𝑣 = 3, 𝑑𝑐 = 6, 𝑞 = 6, 𝛴 = 16, 𝑧 = 210. 
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3.5.5. Gradient Descent Bit-Flipping (GDBF) and Probabilistic GDBF (PGDBF)  

The Gradient Descent Bit Flipping (GDBF) and Probabilistic GDBF (PGDBF) are both hard decision, Bit 

Flipping (BF)-based, algorithms used in iterative LDPC decoders. Due to their simple computation 

units, bit flipping decoders significantly reduce the hardware resources needed for implementation. 

The shortcoming of this simplification is a significant performance loss compared to Belief 

Propagation (BP) decoders and theirs variants Min-Sum (MS), Normalized MS etc. 

The GDBF algorithm is derived from gradient descent formulation and its theory consists in finding 

the best suitable bit (or group of bits) to be flipped in the Variable Nodes processing in order to 

maximize a predefined objective function. GDBF algorithm shows error correction performance far 

better than other BF variants and very close to normalized MS algorithm. The Probabilistic GDBF 

(PGDBF) is inspired from both GDBF algorithm and the Probabilistic BF algorithm. PGDBF has a better 

performance than the original GDBF. Instead of flipping all bits satisfying the gradient descent 

condition, PGDBF takes the flipping decision according to a probabilistic value. 

3.5.5.1. Decoder General Description 

The top-level architecture of the decoder is presented in Figure 3-45. This architecture differs from 

the generic LDPC decoder architecture in several aspects:  (i) it contains a global block that takes 

inputs from all VNUs (the Lambdas) and computes the maximum, and (ii) embeds binary random 

generators. 

 

Figure 3-45: Global Architecture of PGDBF Compared to the Original GBDF 

Several implementations of the PGDBF decoder for LDPC codes are proposed: a conventional 

implementation of the random generator through LFSR (Linear Feedback Shift Registers) as a first 

design, and a new approach [Le15] using binary sequences that are produced by the LDPC decoder, 

named IVRG, as second design.  
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The LFSR approach can be seen as a distributed Random Generator (RG) due to the fact that it is 

implemented inside every VN unit. The complexity of the interconnection network depends on the 

type and size of LDPC code used as well as on the chosen level of parallelism. 

These aspects have been widely discussed in the literature [Darabiha08] and are not discussed here. 

Implementation of the RG will be discussed in Section 3.5.5.3. 

An LDPC code is a linear block code defined by a sparse parity-check matrix 𝐻 with size of (𝑀, 𝑁), 

where 𝑁 >  𝑀. A codeword is a vector 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑁) ∈ {0, 1}𝑁  which satisfies 𝐻 ∙ 𝑥𝑇 = 0, 

where 𝑥𝑇  denotes the transposed vector of 𝑥. 

We denote by 𝑦 =  (𝑦1 , 𝑦2, . . . , 𝑦𝑁) ∈  {0,1}𝑁 the output of a Binary Symmetric Channel (BSC), in 

which the bits of the transmitted codeword 𝑥 have been flipped with crossover probability 𝑝0. The 

decoders presented here are dedicated for BSC channel.  

Let 𝑁(𝑣(𝑖)) denote the set of CNs connected to the VN 𝑣(𝑖), with connection degree 𝑑𝑣(𝑖). Let also 

define 𝑁(𝑐(𝑗)) as the set of VNs connected to the CN 𝑐(𝑗), with connection degree 𝑑𝑐(𝑗).  

In Bit Flipping (BF) decoders, the value of variable nodes can change over the iterations, and we 

denote here by 𝑣(𝑘)(𝑖) the value of the variable node at the k-th iteration. We correspondingly 

denote by 𝑐(𝑘)(𝑗) the value of the parity checks at iteration k. The CN calculation in BF algorithms is 

defined by checking whether the parity check is satisfied or not. It can be written as: 𝑐(𝑘)(𝑗) =

 𝑋𝑂𝑅𝑣(𝑖)∈𝑁(𝑐(𝑗))𝑣(𝑘−1)(𝑖),  (XOR is the bit-wise Exclusive-OR operation). In the case of gradient 

descent BF algorithms, a function called inversion function, is defined for each VN unit, and used to 

evaluate that the value 𝑣(𝑘)(𝑖) should be flipped or not.  

The original GDBF is designed for the Additive White Gaussian Noise (AWGN) channel and the 

inversion function is defined as in (3-1). In GDBF [Wadayama10], only the VN having the smallest 

inversion function’s value will be flipped, and sent for the next iteration. 

Λ𝑣(𝑖)
(𝑘)

= (1 − 2𝑣(𝑖)(𝑘))𝛾𝑖 + ∑ (1 − 2𝑐(𝑗)(𝑘))

𝑐(𝑗)∈𝑁(𝑣(𝑖))

 (3-1) 

where 𝛾𝑖  is the received value from AWGN channel. In [Rasheed14], the authors proposed an 

inversion function to apply GDBF algorithm for the Binary Symmetric Channel (BSC). The inversion 

function for BSC is modified, and the bits having the maximum value of Δ𝑣(𝑖)
(𝑘)

 in (3-2) are flipped. 

Δ𝑣(𝑖)
(𝑘)

= 𝑣(𝑖)(𝑘) 𝑋𝑂𝑅𝑦𝑖 + ∑ (𝑐(𝑗)(𝑘))

𝑐(𝑗)∈𝑁(𝑣(𝑖))

 (3-2) 

In [Rasheed14], the inversion function’s value is an integer and varies from 0 to 𝑑𝑣(𝑖) + 1. Due to the 

integer representation of inversion function, many bits can be flipped in the same iteration. This fact 

may induce a negative impact on the convergence of the algorithm as the analysis of [Rasheed14] 

shows. To avoid this effect, the PGDBF has been proposed with the idea that, instead of flipping all 

the bits with maximum inversion function value, only a random fraction of those bits are flipped. The 

random fraction is fixed by a pre-defined probability 𝑝𝑖
(𝑘), which could be different for each VN and 

each iteration. The PGDBF algorithm is explained in Table 3-17.   
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Table 3-17: Probabilistic Gradient Descent Bit-Flipping Algorithm 

Initialization  𝒗𝒊
(𝒊𝒏𝒊𝒕)

 ←  𝑦𝑖 , 𝑖 ∈  [1, 𝑁] 

𝒔𝒚𝒏𝒅𝒓𝒐𝒎𝒆 =  𝑯 ∙  𝒗(𝒊𝒏𝒊𝒕) 

While     𝒔𝒚𝒏𝒅𝒓𝒐𝒎𝒆 ≠  𝟎 𝒂𝒏𝒅 𝒌 <  𝑰𝒎𝒂𝒙 𝒅𝒐 

∀𝒊  ∈  [1, 𝑁] 

Δ𝑣(𝑖)
(𝑘)

= 𝑣(𝑖)(𝑘) 𝑋𝑂𝑅𝑦𝑖 + ∑ 𝑿𝑶𝑹𝑣𝑢∈𝑁(𝑐(𝑗)) 𝑣𝑢
(𝑘)

𝑐(𝑗)∈𝑁(𝑣(𝑖))

 

𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 =  𝒎𝒂𝒙 (Δ𝑣(𝑖)
(𝑘)

) 

𝒊𝒇 Δ𝑣(𝑖)
(𝑘)

 =  𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅   𝒕𝒉𝒆𝒏 

     𝒊𝒇 R𝑖
(𝑘)

 =  𝟏   𝒕𝒉𝒆𝒏 

         x𝑖
(𝑘)

 =  𝑵𝑶𝑻 ( 𝑣(𝑖)(𝑘)); {𝒑( R𝑖
(𝑘)

 =  𝟏) =  𝒑𝒊
(𝒌)

}  

         𝒆𝒏𝒅 𝒊𝒇 

 𝒆𝒏𝒅 𝒊𝒇 

𝒔𝒚𝒏𝒅𝒓𝒐𝒎𝒆 =  𝑯 ∙  𝒗(𝒌) 

𝒌 =  𝒌 + 𝟏 

end While 

Outputs: 𝒗(𝒌) 

 

3.5.5.2. Decoder Modules Description 

For the hardware implementation, it can be seen that the non-probabilistic GDBF and PGDBF have 

the same structure for the Check Node (CN) units and also for the maximum-finder module.  

The maximum-finder (which deliver Threshold signal in Figure 3-46) is in charge of finding the 

maximum value of inversion functions. In this work, we follow the conventional method, which uses 

the binary comparator tree to implement the maximum-finder. Figure 3-46 shows the VN units of 

PGDBF. In this architecture, an extra block, which generates sequences of random bits, denoted as 

𝑅𝑖
(𝑘) in algorithm 1 (signal "ran" in Figure 3-46), are needed. Those blocks are the main difference 

between PGDBF and non-probabilistic GDBF and are required in order to improve the error 

correction performance.  

In [Rasheed14], it is also shown that the optimum probability mass function for the random binary 

sequence is p′ = 0.9. Two solutions for the analysis and design of random generators having a fixed 

value of p′ are presented in the next section. 

Table 3-18 presents the ports description of VNU module. 

Table 3-18: VNU Module Ports Description 

Port Name In/Out Size [bits] Function 

Ena I 1 Enable VNU 

Clk I 1 Clock signal 

Data_load I 1 Data from channel will be loaded to 
internal register if data_load='0' 

Receive_data I 1 Data from channel 
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C2V I 3 inputs from CNU 

threshold I 3 Threshold from maximum finder mdule 

ran_in I 1 Random number from random generator 

sum_out O 3 Energy function output 

VNU_out O 1 Output bit flipped or not 

 

 

 

Figure 3-46: Architecture of VNU in PGDBF 

3.5.5.3. Analysis and Design of Random Binary Generators 

a) LFSR random generator 

The first design proposed is based on Linear Feedback Shift Registers (LFSR), with controlled 

probability of getting zero or ones, we consider for inclusion in each instantiated VNU. We make use 

of LFSR with maximum length feedback polynomial to generate an integer number, and the 

generated number is compared with a threshold to decide if the new bit in the random sequence 

should be a 0 (higher than threshold) or 1 (lower than threshold). Two aspects are of interest when 

designing a variable threshold random binary sequence generator: first the period of the random 

sequence, second the granularity with which the threshold can be programmed.  
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b) Intrinsic-Value Random Generator (IVRG) 

A new approach is presented in this section. This approach reduces the cost of generating random 

binary sequences by means of substituting all local Random Binary Sequence Generators (one per 

VNU) by a global one. We name this new method Intrinsic-Value Random Generator (IVRG), which 

makes use of the value of the CNs inside decoder as inputs. In an LDPC iterative decoder, the values 

of the CNs depend both on the BSC crossover probability 𝑝0, the degree of check nodes 𝑑𝑐 and the 

iteration number. Typically, the number of CN which are unsatisfied (value = ‘1’) is large during the 

first iterations, while it becomes smaller as the iteration number increases. We denote by 

𝑝(𝑐𝑗
(𝑘)

= 1)  =  𝐹(𝑝0, 𝑘, 𝑑𝑐) the probability that a CN is unsatisfied, as a function of the three 

mentioned parameters. 

In this work, we will use only the CN values produced at the first iteration 𝑘 =  0 in order to 

generate sequences of random bits.  

At the first iteration, the probability mass function is given by: 

𝑝(𝑐𝑗
(0)

= 1)  =  𝐹(𝑝0, 0, 𝑑𝑐) =  
1

2
−

1

2
(1 − 2𝑝0)𝑑𝑐. 

The results in [Rasheed14] have showed that the optimal value of 𝑝(𝑐𝑗
(0)

= 1)  for the Tanner code 

(155, 64) is around 0.9, and the range of crossover probability is from 10−3 to around 3 ∙ 10−2 .  

In order to control the random generator probability 𝑝0, we propose to use a function 𝐺 of the CN 

values 𝐺(𝑐𝑗1
(0)

, 𝑐𝑗2
(0)

, . . ), 𝑗1, 𝑗2 ∈ [1, 𝑀] that controls the desired probability 𝑝′. We briefly describe 

the function G as follows: 

Let 𝑐𝑗1 and 𝑐𝑗2 be two binary random variables with 𝑝(𝑐𝑗1 = 1)  = 𝑝(𝑐𝑗2 = 1) = 𝑝, it can be proved 

that  𝑝(𝑐𝑗1𝑶𝑹 𝑐𝑗2 = 1)  = 2𝑝 + 𝑝2  > 𝑝  and 𝑝(𝑐𝑗1𝑨𝑵𝑫 𝑐𝑗2 = 1)  = 𝑝2  < 𝑝.  

 
More specifically: 

𝑝(𝑐𝑗1 = 1)  = 𝑝(𝑐𝑗2 = 1) = 𝑝 =  
1

2
−

1

2
(1 − 2𝑝0)𝑑𝑐,          𝑝(𝑐𝑗1𝑿𝑶𝑹 𝑐𝑗2 = 1)  =

1

2
−

1

2
(1 − 2𝑝0)2𝑑𝑐. 

Using these transformations of probability, and a function 𝐺 implemented as described in Figure 

3-47, we can transform the CN output sequence into a longer binary pseudo-random sequence with 

a desired probability 𝑝′.  

 

Figure 3-47: Architecture of Intrinsic-Valued Random Generator 
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Let define 𝑝′ = 𝐶 ∙ 𝑝0 where 𝑝0 is the probability of the first iteration CN value equal to ‘1’. The 

multiplication coefficient 𝐶 is a function of 𝑝0 with the condition is 𝑝′= 0.1 as in the Figure 3-48. This 

figure shows the values of multiplication coefficients 𝐶 and its approximation using 4 levels, which 

represent 4 levels of noise in BSC channel (4 levels of crossover probability).  

The Table 3-19 presents the port description of the IVRG module. 

Table 3-19: IVRG Module Ports Description 

Port Name In/Out Size [bits] Function 

Ena I 1 Enable VNU 

Clk I 1 Clock signal 

Init I 1 Initial step for loading data from CNU 

Data_in I 93 Input from CNU 

Crossover I 2 Crossover value: level of noise 

Ran_out O 155 Random value: 0 or 1 for each VNU 

 

The larger number of levels the more precision in output probability it offers. The BSC noise level is 

represented as in 2-bit Noise-Level in the final architecture. The CN’s first iteration values are stored 

in the chain of Flip-Flops at the initialization phase. They will be rotated at each iteration. They are 

also assigned to be the inputs of the selectable-OR gates (Figure 3-47) through the random 

connection network.  

As an example, if the BSC crossover probability is 0.01, from Figure 3-47, multiplication coefficient C 

is 2, the output of OR gates will be bitwise-OR results of 2 from 4 inputs. As expected, the desired 

probability is around 0.1 and the results, which is depicted as a scatter plot in Figure 3-48, which 

indicates that the output sequences have the probability to be 1 very close to the expected value. On 

this figure, the blue curve is an approximation that has been used in the FPGA implementation.   

 
Figure 3-48: The Multiplication Coefficient K as a Function of the BSC Crossover 
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We have first made the synthesis of the different solutions for the case of a small LDPC code that has 

been proposed in the literature [Tanner01]: a regular, quasi-cyclic LDPC code with regular connection 

degrees 𝑑𝑣 =  3 and 𝑑𝑐 =  5, with codeword length 𝑁 =  155, called the Tanner code. 

Table 3-20 shows the hardware resources needed to implement the two different PGDBF structures. 

As benchmarks, the resources for the non-probabilistic GDBF and 6 bits Min-Sum decoder are shown 

as well. The maximum frequency and the estimated throughput have been obtained from an 

implementation using FPGA Xilinx Virtex 6 of 40nm technology, after place and route. 

We can notice that the IVRG-PGDBF needs an additional 92 1-bit registers (9.7% overhead) 

compared to the non-probabilistic while the LFSR-PGDBF needs 8215 1-bit registers overhead 

(868.4% overhead). This large overhead emphasizes the advantage of IVRG over LFSR in terms of 

implementation.   

Comparing the Slice LUTs required, the IVRGPGDBF requires 261 more slices than the non-

probabilistic (12.1%) and this number for LFSR-PGDBF is 1394 (64.8%).  

The extra complexity brought by the RG implementation has moreover a negligible impact on the 

obtained throughput (less than 2%) in all PGDBF implementations. We can also see that the offset 

min-sum decoder is far more complex than the BF type decoders, and cannot compete in terms of 

decoding speed.   

 

Table 3-20: Hardware and Throughput Estimation for PGDBF with Different RG Implementations and for Offset 

Min-Sum 

 1-bit Register Slice LUTs Fmax (Mhz) Throughput (Mbps) 

GDBF 946 2151 132.721 4114.3 

IVRG-based PGDBF 1038 2412 132.721 4114.3 

LFSR-based PGDBF 9161 3545 135.56 4202.36 

Offset Min-Sum (6bits) 13694 15350 237.185 197.5 

 

3.5.6. Gallager-B with Extended Alphabet (GB)  

The Gallager B decoder was described by Robert Gallager in his doctoral dissertation at the MIT 

[Gallager62]. This is a hard decision decoder that manipulates bits, not probabilities. This decoder 

has several advantages insofar as it requires little resources and does not use a MAC (Multipliy and 

Accumulate) unit. We implemented a parallel Gallager-B LDPC decoder with extended alphabet, 

which is a hard decision Message Passing (MP) decoder. The Gallager B decoder operates on the bit 

flipping principle, i.e., it changes bits in order to validate all the parity check. The block diagram of 

the decoder core architecture is depicted in Figure 3-50. 

In the following we introduce the notation we utilise later on in the section: 

 𝑣𝑛                   : variable node (bit node) 𝑛 

 𝑐𝑚                  : check node 𝑚 

 𝑥                     : corrected information 

 𝑦                     : vector containing the data 

 𝛼𝑚,𝑛                        : message sent by the bit node n to check node 𝑚 

 𝛽𝑚,𝑛               : message from check node 𝑚 to bit node 𝑛 
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 𝛾𝑛                   : a priori information vector 

 �̃�𝑛                   : a posteriori information 

 𝑠𝑛                   : subtotal whose formula is given by the following 

 𝑠𝑚,𝑛               : subtotal whose formula is given by the following 

 𝐻(𝑐𝑚)          : all neighbour variable nodes of check node 𝑐𝑚 

 𝐻(𝑣𝑛)           : all neighbour check nodes of variable node 𝑣𝑛 

 𝐻(𝑐𝑚)\{𝑣𝑛}: 𝐻(𝑐𝑚) except for 𝑣𝑛 

 𝐻(𝑣𝑛)\{𝑐𝑚}: 𝐻(𝑣𝑛) except for 𝑐𝑚 

 𝑡                    : qualified majority threshold value 

The extended alphabet is used in the implementation of this Gallager-B decoder, which means we 

use {−1, 𝑥, +1} alphabet. When there is no qualified majority of votes, meaning |𝑠𝑚,𝑛| <  𝑡, a 

variable-to-check message (𝛼𝑚,𝑛) will take on the value 0 (instead of replacing the initial 𝛾𝑛 value) 

[Savin14]. To implement this feature, using two bits message was preferred to the use of a 3 states 

implementation. Therefore, each message is composed of two bits whose MSB codes the sign while 

the LSB codes the presence of mistaken information as indicated in Figure 3-49. 

Msg bit Extended

codeword 

input

Error 

indicator  

Figure 3-49: Input Data Format 

Thus the alphabet used in the design is summarized in Table 3-21: 

Table 3-21: Alphabet Format 

Alphabet Msg format 

+1 01 

-1 11 

x x0 

 

The extended alphabet version of Gallager-B decoding algorithm is presented in Table 3-22. 

Table 3-22: Gallager-B with Extended Alphabet Decoding Algorithm 

Input: 𝑦 = (𝑦1, … , 𝑦𝑁) ∈ {0,1}𝑁  

Output: �̂� = (�̂�1, … , �̂�𝑁) ∈ {0,1}𝑁 

Initialization   

𝒇𝒐𝒓 𝒂𝒍𝒍 {𝑣𝑛}𝑛=1,…,𝑁 𝒅𝒐 𝛾𝑛 = 1 − 2𝑦𝑛 

𝒇𝒐𝒓 𝒂𝒍𝒍 {𝑣𝑛}𝑛=1,…,𝑁 𝑎𝑛𝑑 𝑐𝑚 ∈ 𝐻(𝑣𝑛) 𝒅𝒐 𝛼𝑚,𝑛 = 𝛾𝑛 

Iteration Loop 

𝒇𝒐𝒓 𝒂𝒍𝒍 {𝑐𝑚}𝑚=1,…,𝑀  𝑎𝑛𝑑 𝑣𝑛 ∈ 𝐻(𝑐𝑚) 𝒅𝒐 

𝛽𝑚,𝑛 = {

x,   𝑖𝑓 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑖𝑠 x

∏ 𝛼𝑚,𝑛′ 

𝑣𝑛′∈𝐻(𝑐𝑚)∖{ 𝑣𝑛 }

,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝒇𝒐𝒓 𝒂𝒍𝒍 {𝑣𝑛}𝑛=1,…,𝑁 𝑎𝑛𝑑 𝑐𝑚 ∈ 𝐻(𝑣𝑛) 𝒅𝒐 
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𝑠𝑚,𝑛 = 𝛾𝑛 + ∑ 𝛽𝑚′ , 𝑛

𝑐𝑚′∈𝐻 (𝑣𝑛 )∖ {𝑐𝑚 }

𝛽𝑚′ ,𝑛≠x

 

𝛼𝑚,𝑛 = {

x,                            𝑖𝑓 𝑠𝑚,𝑛 = x

𝛾𝑛 ,                           𝑖𝑓 |𝑠𝑚,𝑛| < 𝑡

[𝑠𝑖𝑔𝑛(𝑠𝑚,𝑛), 1], 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝒇𝒐𝒓 𝒂𝒍𝒍 {𝑣𝑛}𝑛=1,…,𝑁 𝒅𝒐 

𝑠𝑛 = 𝛾𝑛 + ∑ 𝛽𝑚,𝑛

𝑐𝑚∈𝐻 (𝑣𝑛 )

𝛽𝑚,𝑛≠x

      

�̃�𝑛 = {
𝛾𝑛 ,                     𝑖𝑓 𝑠𝑛 = 0

[𝑠𝑖𝑔𝑛(𝑠𝑛), 1],   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝒇𝒐𝒓 𝒂𝒍𝒍 {𝑣𝑛}𝑛=1,…,𝑁 𝒅𝒐 

�̂� = (1 − �̃�𝒏)/2 

𝒊𝒇 �̂� 𝑖𝑠 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑 𝒕𝒉𝒆𝒏 𝑒𝑥𝑖𝑡 𝑡ℎ𝑒 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑜𝑝 

End Iteration Loop 

 

 

Figure 3-50 captures the block diagram of the decoder core. As suggested in the figure, the decoder 

core is composed of bit nodes block, check nodes block connected by the interconnection network 

𝛼𝑚,𝑛 and 𝛽𝑚,𝑛. Both of the bit nodes and check nodes are parallel structured, therefor the size of 

datain and dataout is 2×NB_COLUMN. 

  

 

Figure 3-50: Block Diagram Representation of the Gallager-B Decoder 
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Table 3-23 summarizes the functionality and usage of the ports. 

 

Table 3-23: LDPC Decoder Ports Description 

Port I/O Size Description 

enable in 1 Control signal to enable the iteration process when 

data is ready. High level active 

threshold in 3 The threshold value  

datain in 2× NB_COLUMN Codeword parallel input with the extended 

alphabet (leave to “1”) 

done out 1 When active indicates all parity check equations 

are verified 

dataout out 2× NB_COLUMN The processed code word with the extended 

alphabet (0 for correct, 1 for error) 

 

 

Table 3-24 captures all the important parameters involved in the design of the Gallager-B LDPC decoder.  

 

Table 3-24: LDPC Decoder Design Parameters 

Parameter Description 

NB_ROW Number of rows in the H matrix, also represents the 

number of check nodes 

NB_COLUMN Number of columns in the H matrix, also represents 

the number of bit nodes 

NB_ONE Number of “1”s in the H matrix 

N Number of “1”s in a particular column, also 

represents the number of neighbour check nodes of 

a particular bit node 

M Number of “1”s in a particular row, also represents 

the number of neighbour bit nodes of a particular 

check node 

SIZE_SUM The maximum size of a bit node sum computation 

could require (size of sn and sm,n) 

 

3.5.6.1. Bit Node Implementation 

The block diagram of a bit node is depicted in Figure 3-51, which is one of the NB_COLUMN bit nodes 

in the bit nodes block stated above. Bit node calculates the bit-to-check messages 𝛼𝑚,𝑛 using the a 

priori gamma message 𝛾𝑛 and the extrinsic messages 𝛽𝑚′,𝑛, and also calculates the a posterior 
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gamma message �̃�𝑛  using the a priori gamma message 𝛾𝑛 and all messages 𝛽𝑚,𝑛 from its N neighbour 

check nodes. Therefore input gamma priori needs 2 bits while the check message in needs 2×N bits. 

 

Figure 3-51: Bit Node Block Diagram 

A summary of all ports information is shown in Table 3-25. 

Table 3-25: Bit Node Port Description 

Port I/O Size Description 

enable in 1 Control signal to enable the iteration process 

when data is ready. High level active 

threshold in 3 The threshold value  

gamma_priori in 2 Codeword parallel input with the extended 

alphabet (leave to “1”) 

check_message_in in 2×N Message received from check node m, where N is 

the number of neighbour check nodes 

gamma_post out 2 Gamma posterior output 

check_message_out out 2×N Message sent from bit node to check node, 

where N is the number of neighbour check nodes 

 

We will now study the implementation of the bit node. The main difficulty was to consider the 

extended alphabet bit. No parity equations will be validated if they contain information “x”. To solve 

this issue, each computing unit (including addition and subtraction blocks) processes only the 

message bit with the extended bit being “1”. To make the implementation simpler, it first calculates 

the sum 𝑠𝑛 because it is then possible to calculate with only one additional subtracting the 𝛽𝑚,𝑛  

message to obtain the sum 𝑠𝑚,𝑛. Bit Node implementation details are presented in Figure 3-52. 

Bit Node
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threshold
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gamma 
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check 

message 

out
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Figure 3-52: Bit Node Architecture 

The block A representation is captured in Figure 3-53. A block calculates the 𝛼𝑚,𝑛  message to be sent 

to the check node. First we exclude the problem of bit error by placing a condition on the input, if the 

value is 0, it returns erroneous output “x”, in which case the sign bit is not important and its value is 

by default set to 0 (positive). Then we compare the absolute value of 𝑠𝑛 with the threshold value 𝑡, if 

𝑠𝑛 is smaller than the threshold, it returns 𝛾𝑛, otherwise a concatenation of the sign of 𝑠𝑚,𝑛 and an 

error bit set to “1” is returned. 

 

Figure 3-53: Block A Implementation 

The architecture of B Block is depicted in Figure 3-54 . For B block only one multiplexer is used. We 

first compare the 𝑠𝑛 with the zero vector. Then we got the sign of the sum in the same manner as 

above by converting the sum of the "sign-magnitude" format. If the result is zero it returns 𝛾𝑛, 

otherwise it returns a concatenation of the sign and a valid error bit. 
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Figure 3-54: Block B Implementation 

3.5.6.2. Check Node Implementation 

The block diagram of one check node is depicted in Figure 3-55 (the total number of check-nodes is 

equal to NB_ROW. Each check node calculates the check-to-bit message 𝛽𝑚,𝑛 from the bit-to-check 

messages 𝛼𝑚,𝑛 received from its M neighbour bit nodes. Therefore both of the bit message in and 

out are of size 2×M.  

 

Figure 3-55: Check Node Block Diagram 

The port description is captured in . 

Table 3-26. 

Table 3-26: Check Node Ports Description 

Port I/O Size Description 

enable in 1 Control signal to enable the iteration process 

when data is ready. High level active 

bit_message_in in 2×M Message received from bit node n, where M is 

the number of neighbour bit nodes 

check_node_out out 1 When active indicates all equation are verified, 

high level active 

bit_message_out out 2×M Message sent from check node to bit node, 

where M is the number of neighbour bit nodes 
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Check node is a series of multiplications between bit nodes messages. The multiplication is 

equivalent to an XOR for the chosen alphabet. However, we must take into account the extended 

alphabet. To do so we add an AND. This way all error bits must be “1” (no errors) to return a ”1”, 

otherwise the error bit of check-to-variable message will be “0”, hence the returned message will be 

“x”.  A further part was added in practice to allow checking if all parity equations were verified, then 

without unnecessary calculation, if the check_node_out returns “0” which means all equations were 

checked to be satisfied, the iteration process will be terminated and “1” otherwise. The 

implementation detail of bit node is presented in Figure 3-56. 

 

Figure 3-56: Check Node Architecture 

 

3.6. Performance Evaluation and Comparison  

This section reports on the performance evaluation of the implemented decoders, for both Voltage 

Scaling and Simulated Fault Injection scenarios.  

3.6.1. Voltage Scaling 

To evaluate LDPC decoders under voltage scaling, we physically implemented the following 10 

decoders on Xilinx Virtex-7 FPGA: XC7VX485TFFG1761-2 inside the Xilinx VC707 board: SD, GB, GDBF, 

PGDBF, MS, SCMS, FAID, MSnoET, SCMSnoET, and FAIDnoET. Implementation details for the former 

six decoders have been provided in Section 3.5. MSnoET, SCMSnoET, and FAIDnoET decoders are 

variants of the MS, SCMS, and FAID decoders, respectively, without the Early Termination (ET) circuit. 

In [i-RISC/D3.1] it has been demonstrated that an error-free (i.e., not subject to timing errors) ET 

circuit may greatly improve the decoder’s error correction capability on the error-floor region. Here, 

we investigate the impact of the ET circuit on the error correction performance, when it is submitted 

to the same aggression profile than the rest of the decoder. Using similar arguments to those in [i-

RISC/D3.1, Section 1.7.2], it is expected that the decoding error probability on the error-floor region 

will be lower-bounded by the error probability of the ET circuit output.   

 

To get inside on the complexity of the implemented designs we summarize the FPGA resources 

utilization and maximum clock frequency for all the evaluated decoders in Table 3-27. One can 

observe in the table that all designs, except GDBF and PGDBF, can operate at a maximum clock 
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frequency around 200MHz and that MS, SCMS, and FAID, utilize BRAM blocks (embedded RAM FPGA 

resources), while the others are solely realized by means of Flip-Flops and LUTs. 

 
Table 3-27: FPGA Resources Utilization and Maximum Clock Frequency of Implemented Hardware Decoders 

Decoders FFs LUTs BRAMs Max. Clock Freq. [MHz] 

SD 81015 47260 0 194.286 

GB 23577 28152 0 185.791 

GDBF 7365 14283 0 132.520 

PGDBF 8016 16061 0 123.093 

MS 16608 14147 20 198.373 

MSnoET 15296 13354 20 196.299 

SCMS 16948 15855 21 195.442 

SCMSnoET 15705 13819 22 196.299 

FAID 14814 15176 15 195.525 

FAIDnoET 13569 12848 16 195.221 

 

All decoders are evaluated in terms of: Bit Error Rate (BER), Frame Error Rate (FER), average number 

of decoding iterations, throughput, and energy/bit. The throughput (𝑇) and energy/bit (𝐸) are 

computed by: 

𝑇 =  
𝑁

𝐼 ∙ 𝑛cc ∙ 𝑡clk
   and   𝐸 =  

𝐼 ∙ 𝑛cc ∙ 𝑡clk ∙ 𝑃

𝑁
, 

where 𝑁 is the code-length, 𝐼 is the average number of decoding iterations, 𝑛cc is the number of 

clock-cycles per iteration, 𝑡clk is the clock period, and 𝑃 is the consumed power.  

We note that the above throughput and energy formulae are derived by considering all coded bits, 

independently of whether or not they have been successfully decoded by the decoder. To account 

for the decoder performance, so that to have a fair comparison between different decoders and 

different aggression profiles, the throughput and energy/bit are further normalized to either BER or 

FER, as follows: 

𝑇BER = 𝑇 ∙ (1 − BER), 𝑇FER = 𝑇 ∙ (1 − FER) 

𝐸BER = 𝐸 (1 − BER)⁄ , 𝐸FER = 𝐸 (1 − FER)⁄  

Normalizing to BER amounts to computing the throughput and energy by only considering the 

successfully decoded bits. However, in case a frame is in error – which can be detected by syndrome 

computation or by using a Cyclic Redundancy Check (CRC) code – one cannot know which bits are in 

error and which are correct. In such a case, communication systems implementing retransmission 

protocols usually discard the entire frame and ask for retransmission. Hence, normalizing to FER 

amounts to computing the throughput and energy by considering the bits within successfully 

decoded frames only and it is better tailored to the communication system prospective.    

In order to reduce the number of simulations, all the decoders have been evaluated for the Binary 

Symmetric Channel (BSC) only. It is worth mentioning that GB, GDBF, PGDBF, and FAID are hard-

decision decoders, i.e., they operate on data that take only on 0 and 1 values. Using them over a 
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channel other than BSC would require the channel output to be quantized to 1 bit, which would 

actually turn the channel into a BSC.   

SD, MS, and SCMS decoders are soft-decision decoders, i.e., their inputs may take on a wider range of 

values, and thus are quantized on a higher number of bits. The MS and SCMS decoder inputs are 4-

bit signed integers, representing quantized Log-Likelihood Ratio (LLR) values. The binary output of 

the BSC channel is fed to either −4 or +4 (output 0 is fed to +4, while output 1 is fed to −4). The 

impact of the channel value (in this case 4) on the MS decoder performance has been investigated in 

[i-RISC/D3.1] (the SCMS decoder is insensitive to the choice of the channel value). Here, we use a 

channel value of 4, which yields good performance in both the waterfall and the error-floor region.  

The inputs of the SD decoder are 6-bit unsigned integers, representing quantized probability values. 

The binary output of the BSC channel is fed to either 8 or 55 (output 0 is fed to +8, while output 1 is 

fed to +55), corresponding to the noise-dependent scaling method introduced in [Tehrani06]. 

 

In the sequel we present the result of our voltage scaling experiment experiments in a decoder wise 

fashion. For each decoder we present it figure of merit in terms of the previously mentioned metrics 

and comment on the results. 

3.6.1.1. Stochastic Decoder 

The results of voltage scaling experiments of the stochastic decoder under the BSC channel are 

presented in Figure 3-57 to Figure 3-63. The maximum number of iterations is set to 1000. One can 

observe in these figures that:  

 The decoder starts experiencing the impact of voltage scaling at 0.82V and it goes to an 

almost flat FER (i.e., FER = 1) at 0.78V after the decoder tries its best, decoding to its 

maximum number of iterations. This suggests that it takes 0.18𝑉 starting from nominal 𝑉dd 

until the decoder reaches its critical point when it starts experiencing timing errors, and 

0.04V from its critical point until it is completely knocked down.  

 The average number of decoding iterations is increasing with decreasing supply voltage, 

which is consistent with the BER/FER degradation. However, for supply voltage values below 

0.79V the number of decoding iterations is getting below the maximum, while the FER is 

almost flat equal to 1. This indicates that the ET circuit is affected by timing errors, making 

the decoder stop while it shouldn’t.     

 Decreasing the supply voltage from 1V to 0.82V enables a reduction of 50% in terms of 

energy per bit (normalized to BER) with almost the same decoding performance without any 

degradation of throughput. 
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Figure 3-57: BER of Stochastic Decoder under BSC  Figure 3-58: FER of Stochastic Decoder under BSC  

 
Figure 3-59: Average Number of Iterations of Stochastic Decoder under BSC 

  

Figure 3-60: Energy/Bit Normalized to BER of 
Stochastic Decoder under BSC 

Figure 3-61: Energy/Bit Normalized to FER of 
Stochastic Decoder under BSC 
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Figure 3-62: Throughput Normalized to BER of 

Stochastic Decoder under BSC  
Figure 3-63: Throughput Normalized to FER of 

Stochastic Decoder under BSC  

 

 

3.6.1.2. Gallager-B Decoder  

Figure 3-64 to Figure 3-70 present the results of voltage scaling experiments on the Gallager B 

decoder under the BSC channel. The maximum number of iterations is set to 100. One can observe in 

these figures that:  

 The impact of voltage scaling to the decoding performance is visible starting from 0.722V 

and it turns the decoder to its lowest decoding performance at 0.711V shown by its almost 

flat FER (i.e., FER = 1).  

 67% of the nominal energy (normalized to BER) can be saved when by reducing the supply 

voltage from 1𝑉 to 0.725V while maintaining almost the same decoding performance 

without any degradation of throughput. 

 Surprisingly, the average number of decoding iterations doesn’t vary with the supply voltage 

value. Even for flat FER  =  1, the average number of decoding iterations is virtually the same 

as for nominal voltage and the BER presents a rather low error-floor (1E-3 or below) when 

compared to the FER performance. This seems to indicate that the processing units of the 

decoder (including the ET) are not or only negligible affected by timing errors, but the 

offloaded data might not be the one on which the ET has been checked. Such a behavior 

could be explained by a malfunctioning control unit, which seems to be affected by timing 

errors well before the decoder processing units. A malfunctioning control unit could indeed 

result in overwriting the hard-decision (output) buffer of the decoder, after the ET condition 

has been fulfilled. 
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Figure 3-64: BER of Gallager B Decoder under BSC  Figure 3-65: FER of Gallager B Decoder under BSC  

 
Figure 3-66: Average Number of Iterations of Gallager B Decoder under BSC 

  

Figure 3-67: Energy/Bit Normalized to BER of Gallager B 
Decoder under BSC  

Figure 3-68: Energy/Bit Normalized to FER of 
Gallager B Decoder under BSC  
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Figure 3-69: Throughput Normalized to BER of 
Gallager B Decoder under BSC  

Figure 3-70: Throughput Normalized to FER of Gallager 
B Decoder under BSC  

 

3.6.1.3. GDBF Decoder  

The results of voltage scaling experiments of the GDBF decoder under the BSC channel are depicted 

in Figure 3-71 to Figure 3-77. The maximum number of iterations is set to 100. One can observe in 

these figures that:  

 The decoder start to get affected by voltage scaling from 0.8V downwards and it decodes 

almost no received frames (i.e., FER = 1) at 0.76V.  

 Reducing the supply voltage from 1V to 0.81V improves energy efficiency by 60% while 

almost the same decoding performance is achieved without any degradation of throughput. 

 The average number of decoding iterations is virtually the same as for nominal voltage for all 

voltage supply values, except for 0.76V when it suddenly increases to the maximum value. 

This seems to indicate that the control unit gets affected by timing errors at relatively high 

voltage supply (where the processing units are not or only negligible affected by timing 

errors), followed then by the processing units that get severely affected by timing errors at 

voltage supply equal to 0.76V. 

  

Figure 3-71: BER of GDBF Decoder under BSC Figure 3-72: FER of GDBF Decoder under BSC 
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Figure 3-73: Average Number of Iterations of GDBF Decoder under BSC  

  

Figure 3-74: Energy/Bit Normalized to BER of GDBF 
Decoder under BSC 

Figure 3-75: Energy/Bit Normalized to FER of GDBF 
Decoder under BSC  

 

  
Figure 3-76: Throughput Normalized to BER of GDBF 

Decoder under BSC  
Figure 3-77: Throughput Normalized to FER of GDBF 

Decoder under BSC 
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3.6.1.4. PGDBF Decoder  

Figure 3-78 to Figure 3-84 depicts the results of voltage scaling experiments of the PGDBF decoder 

under the BSC channel. The maximum number of iterations is set to 100. One can observe in these 

figures that:  

 The decoding performance starts degrading at 0.85𝑉 due to voltage scaling and it goes to its 

worst condition in which the FER is almost flat (i.e., FER = 1) at 0.76V.  

 Energy efficiency is improved by 47% while keeping almost the same decoding performance 

without any throughput degradation when we turn down the supply voltage from 1V to 

0.85V.  

 The average number of decoding iterations increases with decreasing supply voltage, which 

is consistent with the BER/FER degradation. Hence, unlike the GDBF decoder, we deduce that 

the BER/FER degradation is mainly due to timing errors affecting the processing units, and 

not to malfunctioning control unit. 

  

Figure 3-78: BER of PGDBF Decoder under BSC  Figure 3-79: FER of PGDBF Decoder under BSC  

 
Figure 3-80: Average Number of Iterations of PGDBF Decoder under BSC  
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Figure 3-81: Energy/Bit Normalized to BER of PGDBF 

Decoder under BSC 
Figure 3-82: Energy/Bit Normalized to FER of PGDBF 

Decoder under BSC 

 

  
Figure 3-83: Throughput Normalized to BER of PGDBF 

Decoder under BSC 
Figure 3-84: Throughput Normalized to FER of PGDBF 

Decoder under BSC  

 

3.6.1.5. MS Decoder  

Figure 3-85 to Figure 3-91 and Figure 3-92 to Figure 3-97 present the voltage scaling experiment 

results for the MS decoder with and without early termination (i.e., the MSnoET decoder), 

respectively, under the BSC channel. The maximum number of iterations is fixed at 30. One can 

observe in these figures that:  

MS decoder 

 The voltage scaling degrades the decoding performance starting from 0.77V and it turns the 

decoder to its lowest decoding performance at 0.75V shown by its almost flat FER = 1.  

 The average number of decoding iterations is virtually the same as for any supply voltage 

value, while both BER and FER exhibit a near-flat error-floor at low BSC crossover probability. 

As discussed in Section 3.6.1.2, this indicates that the data offloaded by the decoder and the 
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one on which the ET has been checked are different, which could be explained by a 

malfunctioning control unit.   

 The decoder consumes 53% less energy (normalized to BER) when it is operated at 0.77V, 

when compared to 1V operation, while having the same decoding performance without any 

degradation of throughput.  

MSnoET decoder 

 We note that the performance of the MSnoET decoder is virtually the same as in nominal 

conditions, for any simulated supply voltage down to 0.725V. This indicates that the 

processing units of the decoder are only slightly affected by timing errors. For voltage supply 

values less than 0.725V the control unit stops working (no done signal is given to the 

testbed), and therefore we could not continue the experiment. This confirms our guess that 

the performance degradation of the MS decoder is due to the control unit, and is further 

indicating that the control unit might fail to work properly due to the way the ET circuit is 

integrated to the decoder.   

 The decoder consumes about 58% less energy (normalized to BER) when it is operated at 

0.725V compared to 1V, while having the same decoding performance without any 

degradation of throughput. 

  

Figure 3-85: BER of MS Decoder under BSC  Figure 3-86: FER of MS Decoder under BSC  

 

 
Figure 3-87: Average Number of Iterations of MS Decoder under BSC  
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Figure 3-88: Energy/Bit Normalized to BER of MS 

Decoder under BSC  
Figure 3-89: Energy/Bit Normalized to FER of MS 

Decoder under BSC 

  

Figure 3-90: Throughput Normalized to BER of MS 
Decoder under BSC 

Figure 3-91: Throughput Normalized to FER of MS 
Decoder under BSC 

 

  

Figure 3-92: BER of MSnoET Decoder under BSC Figure 3-93: FER of MSnoET Decoder under BSC  
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Figure 3-94: Energy/Bit Normalized to BER of MSnoET 
Decoder under BSC  

Figure 3-95: Energy/Bit Normalized to FER of MSnoET 
Decoder under BSC  

  

Figure 3-96: Throughput Normalized to BER of 
MSnoET Decoder under BSC  

Figure 3-97: Throughput Normalized to FER of 
MSnoET Decoder under BSC  

 

3.6.1.6. SCMS Decoder  

Figure 3-98 to Figure 3-104 and Figure 3-105 to Figure 3-110 present the results of voltage scaling 

experiments performed on the SCMS decoder with and without early termination (i.e., SCMSnoET), 

respectively, under the BSC channel. The maximum number of iterations is fixed at 30. One can 

observe in these figures that:  

SCMS decoder 

 The voltage scaling degrades the decoding performance starting from 0.771V and it turns 

the decoder to its lowest decoding performance at 0.75V shown by its almost flat FER = 1.  

 The average number of decoding iterations is virtually the same for any supply voltage value, 

while both BER and FER exhibit a near-flat error-floor at low BSC crossover probability. 

Similar to the MS decoder, this indicates that the data offloaded and the one on which the ET 

is checked are different, which could be explained by a malfunctioning control unit.   
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 The decoder consumes 54% less energy (normalized to BER) when it is operated at 0.78V 

when compared to 1V operation, while having the same decoding performance without any 

degradation of throughput.  

SCMSnoET decoder 

 The MSnoET decoder show virtually the same BER/FER performance at any supply voltage 

between 1V and 0.79V, then it suddenly reaches flat FER  =  1 at 0.78V. This degradation is 

expected to be due to a malfunctioning control unit, although we do not have a clear 

indication for this (except possibly the near-flat error floor of the BER curves, similar to the 

behavior observed when we had strong indications of malfunctioning control unit).   

 The decoder consumes about 50% less energy (normalized to BER) when it is operated at 

0.79V compared to 1V, while having the same decoding performance without any 

degradation of throughput. 

  

  
Figure 3-98: BER of SCMS Decoder under BSC  Figure 3-99: FER of SCMS Decoder under BSC  

 
Figure 3-100: Average Number of Iterations of SCMS Decoder under BSC  
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Figure 3-101: Energy/Bit Normalized to BER of SCMS 

Decoder under BSC 
Figure 3-102: Energy/Bit Normalized to FER of SCMS 

Decoder under BSC  

 

  
Figure 3-103: Throughput Normalized to BER of SCMS 

Decoder under BSC 
Figure 3-104: Throughput Normalized to FER of SCMS 

Decoder under BSC  

 

  
Figure 3-105: BER of SCMSnoET Decoder under BSC  Figure 3-106: FER of SCMSnoET Decoder under BSC  
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Figure 3-107: Energy/Bit Normalized to BER of 

SCMSnoET Decoder under BSC  
Figure 3-108: Energy/Bit Normalized to FER of 

SCMSnoET Decoder under BSC  

  
Figure 3-109: Throughput Normalized to BER of 

SCMSnoET Decoder under BSC  
Figure 3-110: Throughput Normalized to FER of 

SCMSnoET Decoder under BSC  

 

3.6.1.7. FAID Decoder  

The results of voltage scaling experiments of the FAID decoder with and without (i.e., FAIDnoET) 

early termination under the BSC channel in which its maximum number of iterations is set at 30 are 

presented in Figure 3-111 to Figure 3-117 and in Figure 3-118 to Figure 3-123, respectively. One can 

observe in these figures that:  

FAID decoder 

 The degradation of decoding performance caused by voltage scaling is visible starting from 

0.76V and it continues degrading till its FER is flat = 1 at 0.74V.  

 The average number of decoding iterations is increasing as supply voltage decreases from 1V 

to 0.75V, which is consistent with the BEF/FER degradation. For supply voltage below 0.74V, 

the average number of decoding iterations is way below its maximum value, although the 

achieved FER is virtually flat equal to 1. This indicates that the ET termination circuit is 

severely affected by timing errors, hence reporting a correct codeword and making the 

decoder stop while it shouldn’t. 
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 Although FAID architecture and implementation present many similarities with those of MS 

and SCMS decoders, we note that for the FAID there is no clear evidence of any kind of 

control unit failure. 

 Turning down the supply voltage from 1V to 0.77V improves energy efficiency (normalized 

to BER) by 58%, without almost any degradation of the decoding performance or of the 

throughput. 

FAIDnoET decoder 

 The degradation of decoding performance caused by voltage scaling is visible starting from 

0.79V and it continues degrading till its FER is flat = 1 at 0.76V.  

 We also note that the decoding performance of the FAIDnoET decoder is degraded with 

respect to that of the FAID decoder. This confirms the fact that – for properly working control 

unit – the ET circuit may improve the decoder performance, as discussed in the first 

paragraph of Section 3.6.1. The intuition behind goes as follows: when the number or timing 

errors affecting the processing units is moderate, the decoder manages to handle them, so 

that the bit error rate is maintained at a low level throughout the iterative process. The 

number of bit errors from one iteration to another may vary (increase or decrease), but if the 

bit error probability if low enough, the decoder will eventually reach an error free iteration 

when the absence of errors is eventually detected by the ET circuit and the decoder stops. 

When the ET circuit is not implemented, the decoder stops when it reaches the maximum 

number of decoding iterations, while there is no particular reason for that the last iteration 

to be error free. 

 

  

Figure 3-111: BER of FAID Decoder under BSC Figure 3-112: FER of FAID Decoder under BSC 
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Figure 3-113: Average Number of Iterations of FAID Decoder under BSC 

  
Figure 3-114: Energy/Bit Normalized to BER of FAID 

Decoder under BSC 
Figure 3-115: Energy/Bit Normalized to FER of FAID 

Decoder under BSC 

 

  

Figure 3-116: Throughput normalized to BER of FAID 
Decoder under BSC 

Figure 3-117: Throughput Normalized to FER of FAID 
Decoder under BSC 
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Figure 3-118: BER of FAIDnoET Decoder under BSC Figure 3-119: FER of FAIDnoET Decoder under BSC 

 

  
Figure 3-120: Energy/Bit Normalized to BER of 

FAIDnoET Decoder under BSC 
Figure 3-121: Energy/Bit Normalized to FER of 

FAIDnoET Decoder under BSC 

 
 

 

  
Figure 3-122: Throughput Normalized to BER of 

FAIDnoET Decoder under BSC 
Figure 3-123: Throughput Normalized to FER of 

FAIDnoET Decoder under BSC 
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3.6.1.8. Voltage Scaling Sensitivity (VSS) 

In this section we summarize the evaluation results for the 10 decoders under test, from the VSS 

metric perspective. In order to capture the way a decoder reacts to the voltage scaling process, the 

Performance Preservation Region (PPR) and Performance Degradation Region (PDR) have been 

introduced in Section 3.2. These regions are delimited by the Vpp and Vpd voltage values, which are 

estimated based on the Monte-Carlo simulation results reported previously: 

 Vpp = the lowest voltage value for which the FER is the same as for nominal Vdd 

 Vpd = the highest voltage value for which the FER is flat, equal to 1 

With the above notation, it follows that:  

PPR =  Vdd − Vpp   and   PDR =  Vpp − Vpd 

PPR measures the decoder potential to save energy while providing its expected performance while 

PDR measures how much energy savings one can still get if the channel conditions permit.   

Table 3-28 shows the PPR and PDR metrics for the decoders under test. Reported values for Vpp and 

Vpd have been estimated by investigating the FER performance of each decoder for various supply 

voltage values. The accuracy of the estimation depends on the increment/decrement between 

supply voltage values for which the decoder has been evaluated. The uncertainty intervals and the 

error margins for the Vpp and Vpd estimates are shown in Table 3-29.   

The uncertainty intervals shown in Table 3-29 should be understood as follows (we include here the 

explanation for the SD only, the same holds true for all the other decoders):  

 Uncertainty interval for 𝑉pp (SD decoder):  

 The achieved FER is (virtually) the same, for any supply voltage value starting from 1V 

down to 0.82V. The next simulated supply voltage value is 0.815V – however, for this 

supply voltage the FER presents a visible degradation 

 Therefore, the Vpp value reported in Table 3-28 is 0.82V (smallest value without 

degradation), while the actual value could be within the interval [0.815V – 0.82V]. The 

error margin of the estimation is thus equal to 0.005V.    

 Uncertainty interval for Vpd (SD decoder): 

 The achieved FER is (virtually) flat equal to 1, for all supply voltage values up to 0.78V. 

The next simulated supply voltage value is 0.785V – however, for this voltage value the 

FER is no longer flat 

 Therefore, the Vpd value reported in Table 3-28 is 0.78V (highest value with flat FER 

 =  1), but the actual value could be within the interval [0.78V – 0.785V]. The error 

margin of the estimation is thus equal to 0.005V.  

Note that values highlighted in red in Table 3-29 are Vpp and Vpd reported in Table 3-28. 
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Table 3-28: PPR and PDR Metrics for the Decoders under Test (Voltage Scaling Scenario) 

 
(1) Errors in the Vpd– Vpp interval are most likely due to timing errors affecting processing units; 

(2) Errors in the Vpp– Vdd interval are most likely due to malfunctioning controller, while processing units (including 

ET) seem to work properly;  

(3) Same performance as for nominal Vdd for any supply voltage value - in particular, the actual Vpp value is lower 

than the displayed one. 

 

Table 3-29: Uncertainty Intervals for 𝑉pp and 𝑉pd Estimates 

 

Table 3-30 depicts the energy savings of the evaluated decoders when we operate them at Vpp 

instead of nominal voltage. Energy savings are computed in terms of energy/bit normalized to BER, 

and in order to have a fair comparison, they are evaluated for all decoders at the same BER = 10−4
. 

The BSC crossover probability for which the decoders achieve the target BER = 10−4 is also reported 

in the table. It can be seen that the energy savings vary between 45% and 67%. The GB decoder 

presents the highest potential for energy savings, but it also exhibits the second worst error 

correction performance. The best error correction performance is provided by the SCMS and 

SCMSnoET decoders, while they allow for energy savings of about 50%.  

Table 3-30: Energy Savings of Evaluated Decoders Operating at 𝑉pp (@BER = 10−4) 

 

 

 

 

 

SD GB GDBF PGDBF MS MSnoET SCMS SCMSnoET FAID FAIDnoET

Vdd 1 1 1 1 1 1 1 1 1 1

Vpp 0,82 0,725 0,81 0,85 0,765 0,725 0,771 0,79 0,77 0,79

Vpd 0,78 0,711 0,76 0,76 0,75 N/A 0,75 0,78 0,74 0,76

PPR 0,18 0,275 0,19 0,15 0,235 0,275 0,229 0,21 0,23 0,21

PDR 0,04 0,014 0,05 0,09 0,015 N/A 0,021 0,01 0,03 0,03

Comments (1) (2) (2) (1) (2) (3) (2) (1) (1) (1)

SD GB GDBF PGDBF MS MSnoET SCMS SCMSnoET FAID FAIDnoET

Vpp [0,815-0,82] [0,722-0,725] [0,8-0,81] [0,84-0,85] [0,764-0,765]  0,725(*) [0,77-0,771] [0,78-0,79] [0,76-0,77] [0,78-0,79]

Vpd [0,78-0,785] [0,711-0,72] [0,76-0,765] [0,76-0,77] [0,75-0,76] N/A [0,75-0,76] [0,78-0,79] [0,74-0,75] [0,76-0,77]

0,005 0,003 0,01 0,01 0,001 N/A 0,001 0,01 0,01 0,01

0,005 0,009 0,005 0,01 0,01 N/A 0,01 0,01 0,01 0,01

(*) Lower supply voltages have not been simulated because the control unit stops working

errror

margins

SD GB GDBF PGDBF MS MSnoET SCMS SCMSnoET FAID FAIDnoET

Energy

savings
50 % 67 % 52 % 45 % 53 % 60 % 52 % 50 % 56 % 54 %

BSC crossover

probability
0,048 0,025 0,023 0,031 0,049 0,049 0,055 0,055 0,05 0,05
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3.6.2. Fault Injection 

Simulated fault injection has been applied to the MS, SCMS, and FAID architectures described in 

Sections 3.5.1, 3.5.2, and 3.5.3. The fault injection methodology, the error profile characterization 

and the fault map generation are described in Section 3.3.2 and Section 3.3.3, respectively. In this 

section, we are presenting the simulated fault injection results. 

Decoders are evaluated in terms of BER, FER, and average number of decoding iterations. MS and 

SCMS decoders are evaluated for both Binary Input Additive White Noise Gaussian (BI-AWGN) and 

BSC channel models. As explained in Section 3.6.1, the FAID decoder operates on binary input data, 

thus it is only evaluated for the BSC model.   

3.6.2.1. Analysis of LDPC Decoders under BI-AWGN 

The inputs of the MS and SCMS decoder are 4-bit signed integers, representing quantized Log-

Likelihood Ratio (LLR) values. A gain factor – referred to as channel scale factor in [i-RISC/D3.1] – is 

first applied on the channel output, which is then quantized and fed to the decoder input. The 

optimization of the channel scale factor has been addressed in [i-RISC/D3.1]. Here, we use a channel 

scale factor equal to 3.5, which yields good performance in both the waterfall and the error-floor 

region. 

Figure 3-124, Figure 3-125, and Figure 3-126 depict the average number of iterations, the BER, and 

the FER for faulty MS architecture for BI-AWGN. The figures indicate that the MS decoder has the 

same decoding performance for a clock period of 3.1ns as a fault free decoder. The average error 

rate for a decoder with a clock period of 3.1ns is of order 10−5, with a maximum of order 10−4. A 

slight decoding performance degradation (of less than 0.1dB for a 10−5 BER) is observed when clock 

frequency is increased to 400MHz (clock period of 2.5ns). The average error rate in this case is of 

order 10−4, while the maximum error rate is of order 10−3. Therefore, average error rates of up to 

10−4  in the decoder do not or only slightly affect the error correction capability. Significant decoding 

performance degradation is observed for a clock period of 2.2ns, which corresponds to an average 

error rate of 10−3. For a clock period of 1.9ns, the MS decoder cannot decode.    

   

 

Figure 3-124: Average Number of Iterations for Faulty MS under BI-AWGN 
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Figure 3-125: BER for Faulty MS under BI-AWGN Figure 3-126: FER for Faulty MS under BI-AWGN 

 

Figure 3-127, Figure 3-128, and Figure 3-129 depict the average number of iterations, the BER, and 

the FER for faulty SCMS architecture for BI-AWGN, when errors are injected in all memories 

(including the memory for previous α message signs and the memory for erasure bits). The figures 

indicate that the SCMS decoder has the same decoding performance for a clock period of 2.5ns as a 

fault free decoder. For a clock period of 2.2ns, the SCMS decoder exhibits an error floor starting at 

SNR  2.5dB (FER  4 × 10−3, BER  6 × 10−5). As for the MS decoder, for a clock period of 1.9ns, 

the circuit has no error correction capability. 

 

 

Figure 3-127: Average Number of Iterations for Faulty SCMS under BI-AWGN with Errors Injected in the Two 
Additional Memories 
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Figure 3-128: BER for Faulty SCMS under BI-AWGN 
with Errors Injected in the Two Additional Memories 

Figure 3-129: FER for Faulty SCMS under BI-AWGN 
with Errors Injected in the Two Additional Memories 

 

 

Figure 3-130, Figure 3-131, and Figure 3-132 depict the average number of iterations, the BER, and 

the FER for faulty SCMS architecture for BI-AWGN, when errors are not injected in the two additional 

memories (the memory for previous α message signs and the memory for erasure bits). When errors 

do not affect the two memories, a small decoding performance decrease (of less than 0.1 dB) is 

obtained for a clock period of 2.2 ns. With respect to the situation when these two memories are 

injected with faults, the decoder does not longer exhibit the error floor phenomena at SNR  2.5dB. 

 

Figure 3-130: Average Number of Iterations for Faulty SCMS under BI-AWGN with No Errors Injected in the Two 
Additional Memories   
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Figure 3-131: BER for Faulty SCMS under BI-AWGN 
with No Errors Injected in the Two Additional 

Memories 

Figure 3-132: FER for Faulty SCMS under BI-AWGN 
with No Errors Injected in the Two Additional 

Memories 

 

3.6.2.2. Analysis of MS, SCMS, and FAID Decoders under BSC 

For MS and SCMS decoders under BSC, the channel scale factor is simply referred to as channel value 

(see discussion from Section 3.6.1). The impact of the channel value on the robustness of the MS 

decoder has been demonstrated analytically in [i-RISC/D3.1] for theoretical error models. Here, we 

further highlight this phenomenon for realistic error models, by simulation the MS decoder with 

channel values 3 and 4. The SCMS decoder is insensitive to the channel value choice hence it is 

enough to simulate the SCMS decoder with a channel value equal of 3. Note also that the channel 

value does not apply to the FAID, which operate on binary input data. 

Figure 3-133, Figure 3-134, and Figure 3-135 depict the average number of iterations, the BER, and 

the FER for faulty MS architecture.  The results indicate a strong influence of the channel value for 

the MS decoder. On one hand, a channel value of 4 will lead to a better error correction capability of 

the decoder with respect to a channel value of 3. On the other hand, for a clock period of 2.2ns, the 

decoding performance when applying a channel value of 4 is almost the same with the one of an 

error-free decoder. Applying a channel value of 3, decoding performance degradation can be 

observed for a clock period of 2.2ns with respect to the error-free decoder. For both values of the 

channel value, for a clock period of 2.5ns or higher there is no performance loss in decoding, while 

for a clock period of 1.9ns, the decoders do not decode.   
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a) Channel Scale Factor 3 b) Channel Scale Factor 4 

Figure 3-133: Average Number of Iterations for Faulty MS under BSC  

  

a) Channel Scale Factor 3 b) Channel Scale Factor 4 

Figure 3-134: BER for Faulty MS under BSC  

  

a) Channel Scale Factor 3 b) Channel Scale Factor 4 

Figure 3-135: FER for Faulty MS under BSC  
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Figure 3-136, Figure 3-137, Figure 3-138, Figure 3-139, Figure 3-140, and Figure 3-141 depict the 

average number of iterations, the BER, and the FER for faulty SCMS architecture under BSC with 

errors injected in the two additional memories (the former 3) and no error injected in the additional 

memories (the latter 3). A value of 3 has been considered for the channel value. The obtained results 

are similar to the ones obtained for BI-AWGN. For the SCMS decoder with faulty previous 𝛼 sign 

memory and faulty erasure memory, an error-floor type of behavior can be observed for a clock 

period of 2.2ns. For the SCMS decoder with error free additional memories, the decoding 

performance for the clock period of 2.2ns is similar to an error free decoder.  

 

 
Figure 3-136: Average Number of Iterations for Faulty SCMS under BSC with Errors Injected in All Memories 

 

  

Figure 3-137: BER for Faulty SCMS under BSC with 
Errors Injected in All Memories 

Figure 3-138: FER for Faulty SCMS under BSC with 
Errors Injected in All Memories 
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Figure 3-139: Average Number of Iterations for Faulty SCMS under BSC with No Errors Injected in the Two 

Additional Memories 

 

  

Figure 3-140: BER for Faulty SCMS under BSC with No 
Errors Injected in the Two Additional Memories 

Figure 3-141: FER for Faulty SCMS under BSC with No 
Errors Injected in the Two Additional Memories 

 

Figure 3-142, Figure 3-143, and Figure 3-144 depict the simulation results for the FAID decoders 

under BSC channels. The FAID decoder presents no decoding performance degradation for clock 

periods of 2.2ns or higher with respect to the error free decoder. Slight performance degradation is 

observed for a clock period of 1.9ns. The FAID decoder cannot decode for clock periods of 1.7ns or 

lower. With respect to the MS decoders, the FAID decoder can decode for the clock period of 1.9ns. 

It must be noted that, as indicated in Figure 3-126, the expected number of activated faults in a FAID 

decoder for the 1.9ns clock period is half compared to the MS and SCMS decoders.  
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Figure 3-142: Average Number of Iterations for Faulty FAID under BSC  

  
Figure 3-143: BER for Faulty FAID under BSC  Figure 3-144: FER for Faulty FAID under BSC  

 

3.6.2.3. Frequency Scaling Sensitivity 

In this section we summarize the evaluation results for the decoders under test, from the FSS metric 

perspective. In order to capture the way a decoder reacts to the voltage scaling process, the 

Performance Preservation Region (PPR) and Performance Degradation Region (PDR) have been 

introduced in Section 3.3. These regions are delimited by the Tpp and Tpd clock period values, which 

are estimated based on the Monte-Carlo simulation results reported previously: 

 Tpp = the lowest clock period for which the FER is the same as for nominal Tclk 

 Tpd = the highest clock period for which the FER is flat, equal to 1 

With the above notation, it follows that:  

PPR =  Tdd − Tpp   and   PDR =  Tpp − Tpd 

PPR measures the decoder potential to increase throughput by means of overclocking, while 

providing its expected performance. PDR measures about how much overclocking one can still resort 

to if channel conditions permit. While FSS analysis is very similar to the VSS analysis presented in 
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Section 3.6.1.8, we note that Tpp and Tpd values are determined based on simulated fault injection 

and not by actual overclocking of the design, and therefore we have to treat them as such. 

Table 3-31 shows the PPR and PDR metrics for the decoders under test. Reported values for Tpp and 

Tpd have been estimated by investigating the FER performance of each decoder for various clock 

period values (similar to the methodology described in Section 3.6.1.8). For MS and SCMS decoders, 

we may observe that the obtained Tpp values are slightly smaller for the BSC than the BI-AWGN, 

which may indicate an increased robustness under BSC. The smaller Tpp value is obtained for 

SCMS(*) and FAID decoders under BSC, and indicates a frequency (hence, throughput)  increase by a 

factor of 2.5, without any degradation of the error correction performance. Note that reducing the 

clock period from nominal Tclk to Tpp corresponds to a throughput increase between 77% (for 

Tpp = 3.1ns) and 150% (for Tpp = 2.2ns). 

 

Table 3-31: PPR and PDR Metrics for the Decoders under Test (SFI Scenario) 

  

 

3.7. Conclusion  

A number of seven LDPC decoders have been implemented and evaluated under either voltage 

scaling or fault injection scenario. Among them, four are hard-decision decoders (GB, GDBF, PGDBF, 

and FAID) and only apply to the BSC channel model. The remaining three decoders (SD, MS, and 

SCMS) are soft-decision decoders, and apply to both Bi-AWGN and BSC channel models. 

Furthermore, three other MS, SCMS and FAID variants without Early Termination (ET) circuit have 

been implemented, thus bringing the total number of evaluated decoders to ten. 

Under voltage scaling scenario, the ten decoders have been evaluated for the BSC model. Evaluation 

results have been reported in terms of error correction performance (BER and FER), average number 

of decoding iterations, throughput, and energy/bit. It has been demonstrated that all decoders are 

able to preserve their nominal error correction performance when supply voltage is scaled down to 

some critical point, from which the error correction performance starts degrading. Informed by the 

evaluation results in terms of BER, FER or average number of decoding iterations, we revealed two 

main phenomena responsible for the error correction performance degradation. For SD, PGDBF, 

FAID, and FAIDnoET decoders, the degradation of the error correction performance is most likely due 

to timing errors affecting the decoder data processing units. For GB, GDBF, MS, SCMS, and SCMSnoET 

decoders the error correction performance lost is primarily due to control unit, which fails to work 

properly at low voltage supply. A particular case is represented by the MSnoET decoder, which 

MS(c=3.5) SCMS(c=3.5) MS(c=3) MS(c=4) SCMS(c=3) SCMS(*) FAID

Tclk 5,5 5,5 5,5 5,5 5,5 5,5 5,5

Tpp 3,1 2,5 2,5 2,2 2,5 2,2 2,2

Tpd 1,9 1,9 1,9 1,9 1,9 1,9 1,7

PPR 2,4 3 3 3,3 3 3,3 3,3

PDR 1,2 0,6 0,6 0,3 0,6 0,3 0,5

(c=x) Channel scale factor or channel value used for BI-AWGN and BSC, respectively

(*) No errors injected in the two additional memories (SCMS specific)

BI-AWGN BSC 
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preserves its nominal error correction performance until the control unit completely stops 

functioning.  

Concerning the ET circuit, we showed that it helps improving the error correction performance, in 

case that the control unit works properly. This phenomenon has been highlighted for the FAID 

decoder. However, the way the ET circuit is integrated to the MS and SCMS decoders seems to be 

responsible for their control units’ failures, which in turn results in a decreased robustness of the MS 

and SCMS decoders with respect to their no-ET counterparts.  

In order to get an overall view of how different decoders react to the voltage scaling process, we 

further introduced the Voltage Scale Sensitivity (VSS) metric and summarized the evaluation results 

from its perspective.  As a result, we measured the decoders potential to save energy while providing 

their expected performance. We showed that voltage scaling may results in energy savings between 

45% and 67%, while preserving the nominal throughput and error correction performance. 

 

Given that voltage scaling creates timing faults all over the circuit it only partially reflect the real life 

decoder exposure to environmental aggression factors. In such situations fault occurrence location 

and rate (fault occurrence map) also relate to decoder architecture and implementation details. To 

this end we introduced a fault map creation methodology and performed fault map guided 

Simulation Fault Injection. In this way we selectively exposed decoder data path parts to errors and 

observed MS, SCMS, and FAID behavior in this conditions. A fault free control has been considered 

for the experiment. The three decoders have been evaluated in terms of BER, FER, and average 

number of decoding iterations, under either the BSC (all decoders) or the BI-AWGN (MS and SCMS, 

only) channel model. The primary conclusion of the SFI experiments is that all the decoders have the 

ability to also correct errors in their data-path, not only those which appear in the transmission 

channel. For all three decoders, increasing the clock frequency by a factor of 2 with respect to the 

maximum supported by the error free decoder will lead to no error correction capability 

degradation. 

For BSC channel, we showed that the channel value has a strong influence on the MS decoder 

performance: a channel value of 4 leads to better decoding performance and better fault tolerance 

with respect to channel value of 3.  

For both BSC and BI-AWGN channels, the errors in the two SCMS-specific memories (previous 𝛼 sign 

and erasure bit memories) have a strong influence on the SCMS performance. For a clock period of 

2.2ns (corresponding to a 10−4 error rate in memories), the SCMS decoder presents a high error 

floor when the two memories are affected by faults. When the two SCMS-specific memories are 

faulty free, similar performance as the error free decoder has been observed.  

The simulations also indicate that the FAID decoder can support lower clock periods than the 

MS/SCMS decoders. However, it must be taken into consideration that the FAID decoder has a lower 

number of expected activated fault locations with respect to the MS based decoders. 

Finally, we introduced the Frequency Scale Sensitivity (FSS) metric and summarized the evaluation 

results from its perspective.  As a result, based on simulated fault injection results, the decoder 

potential to increase throughput by means of overclocking has been estimated to be between 77% 

and 150%, while preserving the nominal error correction performance.  
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4. General Conclusions and Next Steps  

A novel integrated CAD flow targeting reliability heavy-multi objective logic synthesis has been 

proposed in the first part of this Deliverable. We showed that a heterogeneous flow (using both 

academic and industry tools) was necessary, including custom scripts and wrappers developed on top 

of existing tools in order to facilitate the reliability analysis and optimization flow. To start with, a 

detailed study of all the available set of data structures, their benefits and limitations, and the 

associated open source EDA tools was done. We have developed multiple set of reliability 

computation engines that would estimate the probable output error with varying degrees of 

accuracies and speed. Multiple set of logic optimization techniques have been developed which pre-

dominantly work at gate level. Further, we have developed logic augmentation techniques to 

improve the circuit fault tolerance. Going forward, this flow will be used to (i) improve upon the 

initial work of the reliability computation techniques and the graph optimization algorithms, (ii) 

optimize the circuits for improving reliability within a multi-objective optimization framework, and 

(iii) validate and to characterize the circuits proposed as part of proof of concept within i-RISC. 

 

In the second part of this Deliverable, reliable systems in the context of LDPC decoders built out of 

unreliable components have been evaluated. A number of seven LDPC decoders (Stochastic, 

Gallager-B, GDBF, PGDBF, MS, SCMS, and FAID) have been implemented in VHDL/Verilog and 

exposed to external aggression via voltage scaling or simulated fault injection. To have the most 

realistic results, a real experimental hardware platform has been developed to evaluate the LDPC 

decoders implemented on a Xilinx Virtex-7 FPGA, providing voltage scaling support and enabling 

power/energy measurement. For the fault injection simulation scheme, the error profile of the basic 

building blocks of the LDPC decoders under investigation has first been characterized, and then used 

as guidance mean for judiciously performing the fault injection. 

The implemented decoders have been evaluated for different voltage scaling of fault injection 

aggression profiles in terms of (i) error correction performance, specifically FER and BER, (ii) average 

number of iterations, (iii) throughput (Mb/s), and (iv) energy/bit (pJ/bit). We further introduced the 

Voltage Scaling Sensitivity and the Frequency Scaling Sensitivity metrics, so that to capture their 

reaction to voltage and frequency scaling, and to determine their potential to save energy or to 

increase throughput, while delivering their expected error correction performance.  As a main 

contribution of this Deliverable, the conducted experiments substantiated the fault-tolerance 

capabilities of the LDPC decoders under test and the resulting benefits in terms of energy 

consumption and throughput.  

Having provided the implementation and the assessment of the fault-tolerance capabilities of a large 

number of LDPC decoders, the first WP6 milestone (MS7 – Proof of concept: implementation and 

validation of the LDPC decoder) has been reached. Going forward, the results obtained in this 

Deliverable will be used to (i) assess the fault-tolerance capabilities and (ii) evaluate the energy 

consumption and throughput figures of merit of the error-correction driven logic augmentation 

techniques proposed in Work-Package 5 of i-RISC. 
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Appendix 1: Quasi-Cyclic Description of the LDPC Codes 

In this appendix, we describe the organization of the parity-check matrices for the LDPC codes utilized in the 

project. For each non-zero entry in the protograph, the integer value indicated below corresponds to the index 

of the first “1” in the circulant matrix. All the other “1”s of the circulant block are deduced by circular shift, 

modulo L. A “-1” integer value indicates the zero blocks of the protograph. Only the regular LDPC matrices are 

shown in this appendix. 

LDPC Code : R=1/2, dv=3, N=1296, L=54 
 
 49  -1  -1  -1  -1  43  -1  -1  -1  -1  50  -1  -1  -1  -1   2  -1  27  -1  -1  -1  -1  -1  49  

 -1  -1  -1  10  41  -1  -1  -1  -1  52  -1  -1  32  -1  -1  -1  -1  -1  50  -1  50  -1  -1  -1  

 -1  -1  20  -1  -1  -1  -1  20  -1  -1  -1  51  -1  10  -1  -1  47  -1  -1  -1  -1  -1  33  -1  

 -1  24  -1  -1  -1  -1  22  -1  53  -1  -1  -1  -1  -1  31  -1  -1  -1  -1  18  -1  47  -1  -1  

 10  -1  -1  -1  15  -1  -1  -1  -1  -1   2  -1  -1  -1  -1  50  -1  13  -1  -1  -1  -1  -1  53  

 -1  -1  44  -1  -1   6  -1  -1  -1  -1  -1  29  -1  40  -1  -1  16  -1  -1  -1  13  -1  -1  -1  

 -1   2  -1  -1  -1  -1  -1  13  41  -1  -1  -1  -1  -1  42  -1  -1  -1  -1  48  -1  49  -1  -1  

 -1  -1  -1  36  -1  -1  24  -1  -1  50  -1  -1  12  -1  -1  -1  -1  -1  10  -1  -1  -1  48  -1  

 -1  -1  47  -1  50  -1  -1  -1  -1  -1   0  -1  -1  -1  -1   9  -1   7  -1  -1  -1  -1  -1  28  

 -1  24  -1  -1  -1  -1  -1  51  -1  38  -1  -1  -1  -1   6  -1  -1  -1  -1  23  -1  16  -1  -1  

  6  -1  -1  -1  -1  -1   5  -1  -1  -1  -1  13  -1   3  -1  -1  29  -1  -1  -1  16  -1  -1  -1  

 -1  -1  -1  35  -1  16  -1  -1  37  -1  -1  -1   4  -1  -1  -1  -1  -1  24  -1  -1  -1  29  -1  

 

LDPC Code : R=1/2, dv=4, N=1296, L=54 
 
 11  -1  -1  -1  27  -1  -1  -1  33  16  -1  -1  -1  44  -1  -1  44  -1   8  -1  -1  -1  -1   0  

 -1  25  -1  -1  -1  31  29  -1  -1  -1  29  -1  -1  -1  36  -1  -1  34  -1  15  -1  -1  17  -1  

 -1  -1  44   4  -1  -1  -1  11  -1  -1  -1   2  50  -1  -1  52  -1  -1  -1  -1  30  33  -1  -1  

 27  -1  -1  -1  34  -1  20  -1  -1  20  -1  -1  -1  13  -1  -1  27  -1   4  -1  -1  -1  -1  27  

 -1  42  -1  22  -1  -1  -1  11  -1  -1  -1  44  -1  -1   4  14  -1  -1  -1  -1  45  17  -1  -1  

 -1  -1  24  -1  -1  10  -1  -1  10  -1  18  -1   2  -1  -1  -1  -1  19  -1  38  -1  -1  31  -1  

 -1  -1  40  -1  -1  35  -1  -1  31  19  -1  -1   3  -1  -1  42  -1  -1  -1  42  -1  -1  39  -1  

 -1  29  -1   0  -1  -1  -1  29  -1  -1   5  -1  -1  -1  47  -1  -1  28  -1  -1  28  41  -1  -1  

  9  -1  -1  -1   7  -1  20  -1  -1  -1  -1   1  -1  19  -1  -1   5  -1  25  -1  -1  -1  -1  41  

 -1  -1  53  -1  -1   3  -1  -1  26  -1   3  -1  -1  -1  30  -1  -1   5  -1  35  -1  -1  44  -1  

 -1   4  -1  -1   4  -1  -1   5  -1  -1  -1  13  42  -1  -1  50  -1  -1  -1  -1  36  38  -1  -1  

 39  -1  -1  17  -1  -1  36  -1  -1  34  -1  -1  -1  46  -1  -1  12  -1   8  -1  -1  -1  -1  15  

 

LDPC Code : R=3/4, dv=3, N=1296, L=27 
 
 -1 -1 -1  9  9 -1 -1 -1 -1 -1  6 -1 -1 -1 -1  8 15 -1 -1 -1 -1 18 -1 -1 20 -1 -1 -1 -1 -1 18 -1 -1 12 -1 -1 18 -1 -1 -1 -1 -1 -1  1 19 -1 -1 -1  

  7 -1 -1 -1 -1  1 -1 -1 -1  2 -1 -1  9 -1 -1 -1 -1 -1 -1 17 -1 -1 19 -1 -1 -1 26 -1 13 -1 -1 -1  1 -1 -1 -1 -1 -1 17 -1 -1  7 -1 -1 -1 17 -1 -1  

 -1 10 -1 -1 -1 -1 -1 25 -1 -1 -1  4 -1 17 -1 -1 -1 16 -1 -1 14 -1 -1 -1 -1 15 -1 -1 -1 -1 -1 22 -1 -1 -1  1 -1 21 -1 -1 -1 -1 11 -1 -1 -1 -1  8  

 -1 -1 22 -1 -1 -1 10 -1 24 -1 -1 -1 -1 -1 22 -1 -1 -1  5 -1 -1 -1 -1 15 -1 -1 -1  7 -1 14 -1 -1 -1 -1 24 -1 -1 -1 -1  9  2 -1 -1 -1 -1 -1  5 -1  

 19 -1 -1 -1 -1 -1 -1 25 -1 -1  9 -1 17 -1 -1 -1 -1 -1 -1  8 17 -1 -1 -1 -1 24 -1 -1 18 -1 -1 -1 -1 -1 -1  9 -1 -1 11 -1 -1  8 -1 -1 -1 -1 -1  2  

 -1 17 -1 -1  9 -1 -1 -1 -1  2 -1 -1 -1 -1 -1 25 12 -1 -1 -1 -1 -1 25 -1 -1 -1 12 -1 -1 -1 -1 15 -1 18 -1 -1 23 -1 -1 -1 -1 -1  1 -1 -1 22 -1 -1  

 -1 -1 -1 10 -1 21 -1 -1 19 -1 -1 -1 -1  2 -1 -1 -1  3 -1 -1 -1 18 -1 -1  5 -1 -1 -1 -1 26 -1 -1 -1 -1 15 -1 -1  0 -1 -1 -1 -1 -1 24  7 -1 -1 -1  

 -1 -1 11 -1 -1 -1 20 -1 -1 -1 -1 24 -1 -1 23 -1 -1 -1 22 -1 -1 -1 -1  0 -1 -1 -1 22 -1 -1  0 -1  9 -1 -1 -1 -1 -1 -1  5 20 -1 -1 -1 -1 -1 26 -1  

 10 -1 -1 -1 20 -1 -1 -1 -1 -1  9 -1 -1 -1 -1  6 -1 -1 -1 19 -1 -1  7 -1 -1 -1  3 -1  6 -1 -1 -1 -1 -1 -1 23 -1 -1 15 -1 -1 24 -1 -1 -1 17 -1 -1  

 -1  5 -1 -1 -1 -1 -1 15 -1 22 -1 -1 21 -1 -1 -1  6 -1 -1 -1 23 -1 -1 -1  7 -1 -1 -1 -1 -1 -1 19 -1 18 -1 -1 26 -1 -1 -1  5 -1 -1 -1 -1 -1 -1  4  

 -1 -1  4 -1 -1 -1 16 -1 24 -1 -1 -1 -1 -1 24 -1 -1 -1  4 -1 -1 -1 -1 22 -1 -1 -1 22 -1 -1  4 -1 11 -1 -1 -1 -1 -1 -1 13 -1 -1  1 -1 -1 -1  6 -1  

 -1 -1 -1  1 -1 20 -1 -1 -1 -1 -1 11 -1  5 -1 -1 -1  1 -1 -1 -1  7 -1 -1 -1 14 -1 -1 -1 20 -1 -1 -1 -1  5 -1 -1  8 -1 -1 -1 -1 -1 16 19 -1 -1 -1  

 

LDPC Code : R=3/4, dv=4, N=1296, L=27 
 
 -1 -1  0 -1 12 -1 -1 -1  0 22 -1 -1  1 -1 -1 -1 11 -1 23 -1 -1 -1 -1 21  1 -1 -1 -1 17 -1 -1 24 -1  0 -1 -1 -1 -1  2 -1 18 -1 11 -1 -1 -1 19 -1  

 -1 14 -1 23 -1 -1 10 -1 -1 -1 26 -1 -1 -1 20 -1 -1 19 -1 -1 25 -1 21 -1 -1 19 -1  3 -1 -1 24 -1 -1 -1 -1 20 -1 26 -1 -1 -1 20 -1 -1 11 -1 -1 14  

 16 -1 -1 -1 -1 25 -1 26 -1 -1 -1  7 -1  9 -1 18 -1 -1 -1 24 -1 19 -1 -1 -1 -1 25 -1 -1 13 -1 -1 11 -1 22 -1 18 -1 -1 13 -1 -1 -1 24 -1  9 -1 -1  

 -1 -1 16 -1 25 -1 17 -1 -1 -1 14 -1 16 -1 -1 -1 -1  1  4 -1 -1 -1 12 -1  6 -1 -1 -1 21 -1 -1 26 -1 -1 -1  9 -1  9 -1 -1 11 -1 -1 -1  3 -1 18 -1  

 -1 23 -1 -1 -1 15 -1 -1  6 25 -1 -1 -1 -1 23  1 -1 -1 -1 25 -1 -1 -1 20 -1 -1  9  0 -1 -1 23 -1 -1 20 -1 -1 -1 -1 13 -1 -1  3 25 -1 -1 -1 -1 18  

 17 -1 -1 14 -1 -1 -1 18 -1 -1 -1 22 -1 18 -1 -1 25 -1 -1 -1 15 21 -1 -1 -1  6 -1 -1 -1 24 -1 -1 10 -1  5 -1 23 -1 -1 17 -1 -1 -1  3 -1  7 -1 -1  

 -1  3 -1 -1 -1  9  3 -1 -1 -1 23 -1 -1 -1  0 -1 -1 17 -1 -1 10 22 -1 -1 -1 -1  0 24 -1 -1 -1 16 -1 -1 20 -1 22 -1 -1  3 -1 -1 -1 13 -1 -1 -1 24  

 11 -1 -1  2 -1 -1 -1  0 -1 -1 -1 20 -1 26 -1  9 -1 -1 26 -1 -1 -1 23 -1 -1 11 -1 -1 -1 15 -1 -1 16 23 -1 -1 -1  2 -1 -1 24 -1 -1 -1 21  8 -1 -1  

 -1 -1 21 -1 24 -1 -1 -1 18 15 -1 -1 18 -1 -1 -1  6 -1 -1 20 -1 -1 -1 23 17 -1 -1 -1 14 -1 16 -1 -1 -1 -1  3 -1 -1 13 -1 -1 17 14 -1 -1 -1 24 -1  

 1 -1 -1 13 -1 -1  6 -1 -1 -1 -1  7 -1 15 -1 -1 -1 12 18 -1 -1 -1  4 -1 -1 -1 15 -1 -1  1 -1 22 -1  8 -1 -1 15 -1 -1 -1 24 -1 -1 -1 18 17 -1 -1  

 -1 17 -1 -1 -1 19 -1 24 -1 -1 23 -1 -1 -1 11  2 -1 -1 -1 -1  9 25 -1 -1 -1  5 -1  9 -1 -1 -1 -1 18 -1 22 -1 -1 -1  8 10 -1 -1 -1 14 -1 -1 -1 16  

 -1 -1 14 -1 18 -1 -1 -1 20  4 -1 -1 13 -1 -1 -1 19 -1 -1  0 -1 -1 -1 24 22 -1 -1 -1 24 -1 22 -1 -1 -1 -1 11 -1 23 -1 -1 -1 15 13 -1 -1 -1  8 -1  

 


