

FP7-ICT / FET-OPEN – 309129 / i-RISC

D5.2

Report on Fault Tolerant Synthesis through Error Correcting Codes Driven

Graph Augmentation

Editor: Emanuel Popovici

Deliverable nature: Public

Due date: January 31, 2015

Delivery date: February 27, 2015

Version 2.0

Date of current version: April 15, 2016

Total number of pages: 61

Reviewed by: i-RISC members

Keywords: Codeword Prediction Encoder, Fault tolerance, IC synthesis, Error
Correction Control, VLSI, Soft error, reliability, single-event upset, single-
event transient, fault-tolerance, Cut enumeration, Boolean Matching,
Multi-Objective Optimization.

Abstract

This deliverable presents an overview of the work carried out in relation to Work Package 5 (WP5)

during the second year of the project. The document reports all the activities aimed to develop error

coding driven graph augmentation (Task 5.3), a first step towards fault-tolerant circuit design. A

novel method to design fault tolerant circuitry with prime focus on improving the fault tolerance

capability of combinatorial logic by means of error correction codes is discussed. Mathematical

analysis on the Boole Shannon limit (Task 5.5) for linear circuits is also articulated. Different

methodologies aimed at multi objective optimization (Task 5.4) are detailed, explaining the

combinational circuit optimization techniques for different constraints like reliability, power & delay.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 2 of (61)

List of Authors

Participant Author

UCC Emanuel Popovici (e.popovici@ucc.ie)

Satish Grandhi (sagrand@ue.ucc.ie)

Christian Spagnol (Christian.spagnol@ue.ucc.ie)

Jiaoyan Chen (chenj@ue.ucc.ie)

David McCarthy (davidmc@ue.ucc.ie)

CEA Valentin Savin(valentin.savin@cea.fr)

TUD

UPT

Sorin Cotofana(s.d.cotofana@tudelft.nl)

Alexandru Amaricai (alexandru.amaricai@cs.upt.ro)

mailto:e.popovici@ucc.ie
mailto:sagrand@ue.ucc.ie
mailto:Christian.spagnol@ue.ucc.ie
mailto:chenj@ue.ucc.ie
mailto:davidmc@ue.ucc.ie
mailto:valentin.savin@cea.fr
mailto:s.d.cotofana@tudelft.nl
mailto:alexandru.amaricai@cs.upt.ro

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 3 of (61)

Table of Contents

List of Dissemination Activities .. 5

List of Figures .. 6

List of Tables ... 7

Abbreviations ... 8

1. Executive Summary ... 9

2. Error Coding Driven Graph Augmentation (Task 5.3) .. 11

2.1. Introduction ... 11

2.2. Low Density Parity Check (LDPC): Overview .. 11

2.3. Codeword Prediction Encoder (CPE) for Fault Prone Boolean Functions 13

2.3.1. Proposed Scheme ... 13

2.4. CPE Simulator & CAD Automation... 14

2.4.1. Netlist Format ... 15

2.4.2. Fault Injection ... 16

2.4.3. Criticality Threshold .. 16

2.4.4. The CAD flow .. 16

2.5. Experimental Results .. 18

2.5.1. Critical Nodes ... 18

2.5.2. Area Overhead.. 20

2.5.3. NMR Vs CPE .. 21

2.5.4. Hardware Impact Investigation .. 22

2.5.5. Case Study .. 23

2.5.6. Impact of LDPC code sizes on Area... 25

2.5.7. Validation on MCNC Benchmark Circuits ... 26

2.6. Conclusion ... 28

3. Boole Shannon Limit of noisy combinational logic (Task 5.5) .. 29

3.1. Problem setting.. 29

3.2. Cost analysis .. 29

3.3. CPE Cost Analysis ... 30

3.3.1. Notation and Conventions: .. 30

3.4. Cost analysis for Area/Power against error free circuit .. 31

3.4.1. Error Correction Capacity ... 32

3.5. CPE and Modular Redundancy comparison ... 34

3.5.1. Area/ throughput comparison.. 35

3.5.2. Area/performance comparison .. 36

3.6. Conclusion ... 38

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 4 of (61)

4. Multi Objective Optimization (Task 5.4) ... 39

4.1. Introduction ... 39

4.2. Reliability Computation .. 41

4.2.1. Simulation Based Methodology ... 41

4.2.2. Mersenne twister & Random Number Generation .. 42

4.3. Reliability Driven Synthesis .. 43

4.3.1. Rule Based Methodology ... 44

4.3.2. Cut Enumeration & Boolean matching approach ... 48

4.4. Power and Delay Driven Synthesis .. 53

4.4.1. Implementation .. 54

4.5. Conclusion ... 56

5. Conclusion and Next Steps ... 57

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 5 of (61)

List of Dissemination Activities

Accepted Papers

[P1] S. Grandhi, C. Spagnol, and E. Popovici, "Reliability analysis of logic circuits using probabilistic

techniques," 10th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME),

pp.1-4, June 30-July 3, 2014.

[P2] J. Chen, C. Spagnol, S. Grandhi, E. Popovici, S. Cotofana, and A. Amaricai, "Linear

Compositional Delay Model for the Timing Analysis of Sub-Powered Combinational Circuits," IEEE

Computer Society Annual Symposium on VLSI (ISVLSI), pp.380-385, July 9-11, 2014.

[P3] S. Grandhi, S. Spagnol, J. Chen, E. Popovici, and S. Cotafona, "Reliability aware logic synthesis

through rewriting," 27th IEEE International System-on-Chip Conference (SOCC), pp.274-279, Sept.

2-5 , 2014.

Submitted Papers

[P4] J. Chen, C. Spagnol, S. Grandhi, E. Popovici, and S. Cotofana, “Inverse Gaussian Distribution

Based Timing Analysis of Sub-threshold CMOS Circuits“, Microelectronics Journal. {Submitted}

[P5] S. Grandhi, D. McCarthy, E. Popovici, and S. Cotofana, “Studying the impact of Technology

Mapping on the Reliability of Combinational circuits”, IEEE International Symposium on Low

Power Electronics and Design (ISLPED), 2015 {Submitted}

[P6] S. Grandhi, D. McCarthy, C. Spagnol, J. Chen, and E. Popovici, “A CAD Framework for

Reliability Estimation and Optimization of Combinational Circuits”, Journal of Low Power

Electronics. {In preparation}

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 6 of (61)

List of Figures

Figure 2-1: Example of parity-check matrix and corresponding bipartite Tanner graph 12

Figure 2-2 : Computation of extrinsic messages and of the a posteriori information 12

Figure 2-3: Methodology of Codeword Prediction Encoder ... 14

Figure 2-4: Indegree and Outdegree graphical representation. ... 15

Figure 2-5 : The graph augmentation tool flow .. 16

Figure 2-6: LDPC Decoder Architecture within CPE Framework ... 17

Figure 2-7: CPE tool top level representation ... 18

Figure 2-8: CDF of the number of erroneous outputs generated by one single error injection 18

Figure 2-9 : CDF plot of Criticality degree of 'F' & 'P' Circuits. .. 19

Figure 2-10: Critical node count for different Linear and Non-Linear circuits. 20

Figure 2-11: Area overhead due to parity augmentation. .. 21

Figure 2-12: Performance of BER Vs CPE... 22

Figure 2-13: Area & timing Analysis on IP cores using CPE methodology. .. 23

Figure 2-14: Output BER for various Criticality thresholds ... 24

Figure 2-15: Detailed plots for output error on F, P and decoder output nodes. 24

Figure 2-16: Area Vs Coding Rate Plot ... 25

Figure 2-17: Critical Gate Count Vs Coding Rate ... 26

Figure 3-1: Cost-reduction upper-bound, ensuring both cost-effectiveness and reliability 34

Figure 3-2: Delay vs. normalized area for MR and CPE schemes with various unrolling factors 36

Figure 4-1 : AIG representation of a circuit ... 42

Figure 4-2: Error Injection on AND & Inverter gates. .. 43

Figure 4-3: Ad-Hoc Rules used in Logic Optimization. ... 44

Figure 4-4 : Simulation results for rule1 .. 46

Figure 4-5 : Simulation results for rule2 .. 46

Figure 4-6: Simulation results for rule4 ... 47

Figure 4-7 : Simulation results for rule3 .. 47

Figure 4-8: Simulation results for rule5 ... 47

Figure 4-9: Simple CUT analogy ... 49

Figure 4-10 : Simple logic circuit before (a) and after (b) rewriting. ... 50

Figure 4-11 : The design flow for power, delay and area estimation ... 54

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 7 of (61)

List of Tables

Table 2-1: Protected Nodes Vs Criticality Threshold ... 23

Table 2-2: Gate Error = 1.00e-03; Critical Gate Threshold = 10 {Case1} ... 26

Table 2-3 : Gate Error = 1.00e-03; Critical Gate Threshold = 5 {Case2} .. 27

Table 2-4: Gate Error = 1.00e-04; Critical Gate Threshold = 10 {Case3} ... 27

Table 2-5: Gate Error = 1.00e-04; Critical Gate Threshold = 5{Case4} .. 27

Table 2-6: Gate Error = 1.00e-05; Critical Gate Threshold = 10 {Case5} ... 27

Table 2-7: Gate Error = 1.00e-05; Critical Gate Threshold = 5 {Case6} ... 28

Table 4-1: Different Scenarios for Rule Analysis. .. 45

Table 4-2: MCNC benchmark circuits performance evaluation employing local transformation rules 48

Table 4-3: Maximum number of NPN-equivalent functions. .. 49

Table 4-4: Logic Optimization results using cut enumeration technique. .. 53

Table 4-5: Comparison of OPT-P with the best algorithm in ABC. .. 55

Table 4-6: comparison of OPT-T with the best algorithm in ABC. ... 55

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 8 of (61)

Abbreviations

BCH Bose Chaudhuri Hocquenghem

BER Bit Error Rate

BSC Binary Symmetric Channel

CAD Computer Aided Design

CDF Cumulative Distributive Function

CPE Codeword Prediction Encoder

CT Criticality Threshold

DES Data Encryption Standard

DRM Dynamic Reliability Management

DWAA Dynamic Weighted Average Algorithm

ECC Error Correcting Codes

EDA Electronic Design Automation

FEC Forward Error Correction

FER Frame Error Rate

IC Integrated Circuit

IP Intellectual property

LDPC Low Density Parity Codes

LDGM Low Density Generator Matrix

MCNC Microelectronics Centre of North Carolina

NBTI Negative Bias Temperature Instability

PI Primary Input

PO Primary Output

RMR R-fold Modular Redundancy

SER Soft Error Rate

TMR Triple Modular Redundancy

VLSI Very Large Scale Integration

WP Work Package

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 9 of (61)

1. Executive Summary

In the second year of the i-RISC project (M13-M24), Work Package 5 (WP5) addressed three

important research problems: Fault tolerant techniques employing the traditional Error Coding

Driven Graph Augmentation (Task 5.3), multi objective gate level optimization with the aim of

improving circuit reliability (Task 5.4) and developing mathematical framework for computing the

Boole-Shannon limit for noisy circuits (Task 5.5).

Work Package (WP) 5 has been tasked with two major contributions towards the i-RISC goals:

 The first WP5 goal is the achievement of systematic synthesis and optimization of reliable

circuits, culminating with a multi-objective circuit design optimization, with respect to its

area, delay, power, and all driven by reliability. The introduction of reliability as circuit figure

of merit leads to a 4-dimensional (area, delay, power, reliability) solution space, and has a

tremendous influence on the complexity of the synthesis process.

 The second WP5 goal is a fundamental study on the effectiveness of integrating error-

correcting codes into the structural (Boolean network) implementation of the circuit logical

functionality. More precisely, this aims at researching on potential links between the logic

representation of a digital circuit and error correcting codes in order to generate fault

tolerant implementation of the logical functionality of the circuit.

To give a quick recap of the first year research study, the following issues have already been

addressed:

 We analyzed a number of data structures and singled out the And-Inverter-Graph (AIG) as

the most appropriate for our goals due to its compactness, versatility to incorporate many

parameters of concern (switching activity, delay, reliability, etc.), and scalability to any circuit

size.

 A primitive design flow has been proposed combining custom tools, academic tools with

more established/industry accepted tools that would allow evaluation and validation of our

designs.

 Gate level reliability aware logic optimization techniques have been presented.

 We reported an initial framework for the synthesis of chips made from unreliable

components, through the concept of error correcting codes driven graph augmentation.

A Gantt chart of WP5 tasks and their time distribution, which indicates the tasks addressed and

initiated during the period M13-M24, is presented below:

 Task 5.3 : Fault tolerant techniques employing error coding driven graph augmentation

 Task 5.4 : Reliability heavy multi objective logic optimization techniques

 Task 5.5 : Mathematical analysis to define Boole-Shannon limit for noisy circuits

Deliverables 5.1 5.2 5.3

n

n

n n

n n

n n

YEAR 2 YEAR 3YEAR 1
WP5: FAULT TOLERANT FUNCT SYNTHESIS

T
as

k
s

T5.1: Data structures for fault tolerant synthesis

T5.2: Design Flow for fault tolerant synthesis

T5.3: Error-coding driven graph augmentation

T5.4: Multi-objective optimisation

T5.5: Boole-Shannon limit for noisy circuits

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 10 of (61)

The main technical contributions presented in this deliverable are summarized as follows:

 A CAD framework completely automating the flow of systematic synthesis of fault tolerant

combinational circuits (Task 5.3): A novel methodology to design fault tolerant circuitry by

employing the error correction codes mechanism that is generic and is applicable to any

combinatorial logic. The study presented here focuses mainly on encoding aspects, adapted

from the field of forward error correction, for protecting fault prone Boolean functions. All

the scripts developed have been completely integrated unto the traditional VLSI EDA design

flow as reported in the i-RISC deliverable D6.1.

 Performance analysis and plotting results using Codeword Prediction Encoder (CPE)

simulator (Task 5.3): To evaluate the performance of the CPE methodology, we have

developed simulator in ‘C’. It converts any input file unto a proprietary internal format and

process the circuit for different characteristics. Different types of LDPC decoders are

employed to determine the best possible configuration that provides the least possible error

on the output node. We introduce the novel concept of “Critical Nodes” which are basically

the high octane nodes that have to be safe guarded under all circumstances. This work also

presents results from the application of the methodology on various benchmark circuits as

well as IP cores and investigation of various error correction codes.

 Pre-Dominantly Reliability driven logic optimization along with power and timing

optimization techniques (Task 5.4): We propose a highly accurate reliability estimation

methodology developed in line with the traditional simulated based power estimation

techniques. Mersenne twister is used to generate highly random set of input patterns.

Further, we also introduce a cut-enumeration based reliability driven optimization technique.

And-Inverter graph based rewriting algorithm using 4-input cuts are employed to introduce

logically equivalent modifications unto the input circuit representation. Initial simulation

results report up to 10% improvement in circuit reliability values.

 Mathematical approach to define the Boole-Shannon limit for noisy circuits (Task 5.5):

Theoretical analysis describing the goodness of the Codeword Prediction Encoder (CPE) and

its performance limits are presented. We consider all the four parameters: Area, Timing,

Power and Reliability to evaluate the improvement achieved by employing the newly

proposed scheme. Currently, we limit our analysis of computing the extra cost incurred due

to the CPE approach to linear circuits.

The deliverable is organized as follows: Chapter 2 is dedicated to the fault tolerant techniques

through graph augmentation by means of Codeword Prediction Encoder (CPE). All the simulation

results and the performance analysis through CPE simulator are also reported. Chapter 3 describes

the mathematical analysis of the CPE approach its performance limits. Chapter 4 introduces a new

highly accurate reliability estimation technique based on simulation based methodologies. The Multi-

objective logic optimization technique is also detailed out here. The last chapter is dedicated to

concluding remarks and future work.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 11 of (61)

2. Error Coding Driven Graph Augmentation (Task 5.3)

Abstract: The continuous scaling of the transistor length has resulted in significant increase in the

soft error rate in combinational circuits. As a result, fault tolerant techniques that improve circuit

reliability are the need of the hour. Traditional fault tolerant techniques analyze the circuit reliability

issue from a static point of view neglecting the dynamic errors. This work proposes a novel

methodology to design fault tolerant circuitry by employing the error correction codes mechanism.

The method is generic and is applicable to any combinatorial logic. The study presented here focuses

mainly on how to generate redundancy for protecting fault prone Boolean functions. The idea is

adapted from the field of forward error correction for telecommunications and in particular this

section will focus on both encoding aspects and error correction capabilities. We further present

results from the application of the method in various IP cores and investigation of various error

correction codes.

2.1. Introduction

This work introduces a novel reliability driven fault tolerant methodology for combinational circuits

by augmenting extra logic to correct some of the errors. Fault tolerant techniques for improving

reliability of digital circuitry have been of interest from long time. Von Neumann [Neumann56] first

introduced a classification of the error type and proposed solutions based on multiplexing techniques

as early as 1956. One of the most fundamental and effective fault-tolerant mechanisms introduced in

that work was the well-known R-fold modular redundancy (RMR), where R replicas (R = 3, 5, 7, . . .)

of a computing subsystem present their outputs to a voter block that generates a reliable output

based on a majority criterion . The RMR in its R = 3 version (TMR) has been widely used in the design

of systems where reliability is considered a key issue. However, despite the wide spectrum of

research works based on the RMR technique, almost all of them analyze the reliability issue from a

static point of view. In other words, given a set of error-prone data replicas generated by R

independent subsystem replicas, the majority of studies seek to determine the reliability

characteristics of the RMR structure without any temporal consideration. A different approach to

improve fault tolerance is based on the use of methods derived from Error Control Coding (ECC)

theory to protect the combinational logic that implements a particular Boolean Function. The focus

of this approach is not on changing the combinational logic but on augmenting it to enable the

retrieval of the correct output even if errors have occurred.

2.2. Low Density Parity Check (LDPC): Overview

Low-density parity check (LDPC) codes are a class of linear block codes and were invented by Gallager

[Gallager 63]. Since the proposed class of codes required that the parity-check matrix representing

the code has a small number of ones to be efficiently decoded, the codes have been called low

density parity check codes. Like all linear block codes they can be described via matrices. The second

possibility is a graphical representation. The matrix defined in Figure 2-1 is a parity check matrix with

dimension 𝑚 × 𝑛 for a (8, 4) code. Two important conventions used in describing LDPC codes are:

𝑤𝑟 for the number of 1´s in each row and 𝑤𝑐 for the columns. For a matrix to be called low-density,

the two conditions 𝑤𝑐 << 𝑛 and 𝑤𝑟 << 𝑚 is a must.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 12 of (61)

Figure 2-1: Example of parity-check matrix and corresponding bipartite Tanner graph

Tanner introduced an effective graphical representation for LDPC codes as shown in Figure 2-1.

Tanner graphs are bipartite graphs. That means that the nodes of the graph are separated into two

distinctive sets and edges are only connecting nodes of two different types. The two types of nodes

in a Tanner graph are called variable-nodes (v-nodes) and check-nodes (c-nodes). The representation

of the code by means of the Tanner graph gives an underlying structure that facilitates the decoding

process. The message 𝑦 received from the channel is the codeword 𝑥 sent corrupted by some error 𝑒

that has been added by the channel. Since the channel model used is the Binary Symmetric Channel

(BSC), the received word can be written as: 𝑦 = 𝑥 + 𝑒, where 𝑒 is the binary error pattern, and the

sum above is computed modulo 2. We further denote the received syndrome:

𝑧 = 𝐻𝑦 = 𝐻𝑥 + 𝐻𝑒 (2.1)

From the property of linear block codes every codeword satisfies 𝐻𝑥 = 0, hence the syndrome is

𝑧 = 𝐻𝑒. The decoding problem consists of finding the most probable vector 𝑒 that explains the

observation of such a syndrome. For LDPC codes, decoding can be implemented by message passing

algorithms that exchange messages between v-nodes and c-nodes, as shown in Figure 2-2. For more

details, the reader may refer to [i-RISC/D3.1].

Figure 2-2 : Computation of extrinsic messages and of the a posteriori information

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 13 of (61)

2.3. Codeword Prediction Encoder (CPE) for Fault Prone Boolean Functions

The approach presented in [i-RISC/D5.1] attempts to reduce the error probability on the output of a

combinatorial circuit by choosing an optimal realization of the Boolean function under investigation.

A different approach to improve fault tolerance is based on the use of methods derived from Error

Control Coding (ECC) theory to protect the combinational logic that implements a particular Boolean

Function. The focus of this approach is not on changing the combinational logic but on augmenting

extra combinational logic to enable the retrieval of the correct output even if errors have occurred.

The main challenges include:

 How to implement such a system capable of taking advantage of the added redundancy?

 How to do it in an optimal way (minimum amount of redundancy) add minimum amount of

redundancy to correct the given number of errors?

Important work to cross the field of circuit design with the knowledge of error correction theory

has been done by Taylor [Taylor-68a, Taylor-68b] that used LDPC codes and faulty memories and

logic, to build fault tolerant architectures for reliable systems. Taylor’s approach has been the base

for numerous other works [Kuznetsov73, adjicostis05, Vasic07]. The approach presented here can

be seen as an expansion of the Check Symbols Generation [Touba97] [Mohanram03] and the Parity

Prediction Function [Sogomonjan93] [Manich96] [Ko01], where circuitry is added to a combinatorial

network to generate extra bit to ensure parity. We formalize these approaches and extend them to

take full advantage of the power of error correction codes to enable correction of the faults not just

detection.

2.3.1. Proposed Scheme

Forward error correction methods generate a codeword 𝑐 C, with C being the particular code being

used (e.g. an LDPC code), by encoding an information message 𝑢. We call the encoder 𝔼. Assuming

without loss of generality that the encoder is systematic the codeword 𝑐 is composed by 𝑢 and

several extra symbols called the parity 𝑝.

We look for a way to apply such procedure on an unreliable combinatorial circuit ℂℂ with

inputs 𝑖 and outputs 𝑜. The simplest solution would be to encode the outputs 𝑜. However this

approach suffers from the fact that if a fault incurs in ℂℂ, then input of the encoder is �̃� (the error

corrupted output) that gives �̃� after encoding. �̃� may or may not be a codeword of C, depending of

the presence of faults in the encoder logic, however no decoder will be able to retrieve 𝑖 from it.

Another disadvantage of the scheme is that from hardware prospective the concatenation of ℂℂ and

𝔼 increases the critical path and hence limits the throughput. We propose to combine the encoding

process in the combinatorial circuit to ensure that the outputs 𝑜 of the new combinatorial logic ℂ𝔼 is

a codeword as depicted in Figure 2-3. In this new scenario, ℂ𝔼 computes not only the outputs 𝑜 but

also a set of parity 𝑝 that guarantee[𝑜|𝑝] ∈ 𝑪, (systematic encoding is used). Different from the

previous approach, in this case the parity 𝑝 is computed directly from the inputs 𝑖.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 14 of (61)

Figure 2-3: Methodology of Codeword Prediction Encoder

To understand how the new combinatorial logic is obtained, lets define as ℰ(∙) the function

computed by 𝔼 and let's assume that we are working with binary codes, then ℰ: 𝐺𝐹(2)𝑘 → 𝐺𝐹(2)𝑛,

where 𝑘 is the dimension and 𝑛 is the length of the code C. The number of outputs of the

combinatorial circuit ℂℂ is also assumed to be equal to 𝑘. The functionality of ℂℂ can be described as

a function ℱ(∙) with ℱ: 𝐺𝐹(2)𝑙 → 𝐺𝐹(2)𝑘 where 𝑙 is the number of binary inputs and 𝑘 is the

number of binary outputs. The function 𝒫(∙) that maps the inputs directly to the parity is 𝒫 ∶

 𝐺𝐹(2) 𝑙 → 𝐺𝐹(2)𝑚 and is the composition ℰ(ℱ(∙)). This can be seen simply by considering how its

result must be equivalent of computing ℱ(∙) and then ℰ(∙) on the results.

It is evident that even if the operation is equivalent to serially concatenating the two blocks,

it computes the parity on an independent path than the original combinatorial logic, and hence it

does not suffer from the fault propagation scenario discussed above. In a sense the function 𝒫(∙)

predicts the parity of the outputs 𝑜 from the inputs 𝑖 as if a standards encoder were implemented

with 𝑜 as inputs. For all linear FEC codes the encoding process can be expressed as a matrix

multiplication of the input message and the generator matrix 𝑮, the composition ℰ(ℱ(∙)) is then

equivalent to:

𝒫(𝑗) = ∑ ℱ𝑏(𝑗)𝑮

𝑘

𝑏=0

(𝑏, 𝑗) 𝑗 ∈ {0, … , 𝑚} (2.2)

The combinatorial logic that computes the parity is a linear combination of the various

functions that compute the output bits, as such the resulting logic may be costly, both with regards

with area consumption and in term of critical path.

2.4. CPE Simulator & CAD Automation

To implement the CPE methodology and evaluate its performance, we have automated the complete

methodology. Quite a few scripts were developed to initially convert the traditional verilog netlists

into proprietary format that is easy to parse by the CPE simulation engine. The whole automation

comprises of ‘2’ steps, namely:

 Pre-Processing

 Testing Using CPE simulator

In order to understand the whole process, it is imperative to explain the internal proprietary format

that we have employed. We shall also introduce the important term “Criticality Threshold”.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 15 of (61)

2.4.1. Netlist Format

Any circuit in VLSI chip design is represented as collection of gates written a file generally called as

the netlist. Since CPE simulator is a tool completely developed in C-language, it cannot understand

the terminology of gates. Hence, we have developed an internal proprietary format to represent the

verilog netlists. The Verilog list may correspond either to the original circuit F or to the parity circuit

P. Each gate in the circuit is converted into a node within the internal format.

A node 𝑋 is called a predecessor of 𝑌 if the output of 𝑋 is an input of 𝑌 (in graph terminology, there

is a directed edge from 𝑋 to 𝑌). In this case, 𝑌 is said to be a successor of 𝑋.

 The indegree of a node is defined as the number of its predecessors

o input nodes must have indegree equal to zero

 The outdegree of a node is defined as the number of its successors

o output nodes must have outdegree equal to zero

Figure 2-4: Indegree and Outdegree graphical representation.

The following convention is used to represent all possible gates:

0 = NOT, 1 = AND, 2 = OR, 3 = XOR, 4 = NAND, 5 = NOR, 6 = XNOR

Nodes of type 0 must be of indegree = 1. Nodes of type 2-6 must be of indegree >= 2.

The following table depicts a snapshot of small netlist representation:

14 14 775

4 2 4 3 2…………….

4 711 712 713 714

2 252 253

0 185

Line1: N_inputs N_outputs N_internal

Line2: Ordered list of indegrees: must contain N_internal+N_outputs values, corresponding to the

indegrees of internal and output nodes (in order)

Line3: List of predecessors of the node N_inputs

…

Line#: List of predecessors of the node N_inputs+N_outputs-1

Line#: List of predecessors of the node N_inputs+N_outputs

…

Line#: List of predecessors of the node N_inputs+N_outputs+N_internal-1

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 16 of (61)

2.4.2. Fault Injection

The internal format of circuit representation allows simulating the netlist in C. Furthermore, we can

inject errors by flipping the output of each gate with a pre defined error probability on each gate. For

simplicity purpose, the same value of probability is used for all the gates, irrespective of their type or

their position within the graph. The methodology employed to insert faults is similar to the one

described in deliverable D5.1 [i-RISC/D5.1]. It is called as “Gate output probabilistic mutant” – it

alters the gate output with a given probability.

2.4.3. Criticality Threshold

Some particular gates of the circuit may be critical, in the sense that injecting only one error at the

output of such a gate may result in a very large number of errors at the output of the circuit. This

happens when the output of the gate is propagated to a large number of outputs of the circuit. Such

error events are characterized by a very high number of errors on the output of the circuit and cause

decoding failures with very high probability. In order to identify these gates at the design time, we

use the graphical description of the netlist introduced above, and proceed as described below.

The criticality degree of a node 𝑋, denoted by 𝑐𝑑𝑒𝑔(𝑋), is defined as the number of output nodes to

which 𝑋 is connected by at least one path. Thus, injecting an error in node 𝑋, may produce at most

𝑐𝑑𝑒𝑔(𝑋) errors on the output. In our simulations, we fix a criticality threshold (𝐶𝑇): Nodes 𝑋 with

𝑐𝑑𝑒𝑔(𝑋) > 𝐶𝑇 are considered to be “protected” (e.g. by increasing area), so as to make then

reliable (error-free). Hence, errors are injected only in nodes 𝑋 with 𝑐𝑑𝑒𝑔(𝑋) £ 𝐶𝑇. For example,

 For example, fixing CT = 5, means that errors are injected only in those nodes that are

connected to at most 5 output nodes (cdeg(n) £ 5)

 A particular case is CT = -1, which means that all nodes are error-prone (no “protected”

nodes)

2.4.4. The CAD flow

There are a number of scripts that were developed which perform pre-processing of all the input files

before they can be run through the CPE simulator. Figure 2-5 shows the top level representation of

the complete tool.

Figure 2-5 : The graph augmentation tool flow

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 17 of (61)

 Based on the codeword length & the LDPC rate, we generate the Generator matrices.

Similarly, the reference combinational logic, either the MCNC benchmark circuits or the

standalone IP’s are also converted into the internal format which is easily understood by the

CPE simulator.

Figure 2-6: LDPC Decoder Architecture within CPE Framework

 A number of consistency checks are performed in order to make sure the netlists adhere to

the syntax.

o Check that input nodes (numbered from 0 to N_inputs-1) have indegree zero.

o Check that output nodes (numbered from N_inputs to N_inputs+N_outputs-1) have

outdegree zero.

o Determine the processing order of internal and output nodes, i.e. which nodes must

be processed in the first stage, which nodes must be processed in the second stage,

etc.

 Nodes processed in the first stage are those whose all predecessors are input

nodes.

 Nodes processed in stage l (l≥2) are those whose predecessors are either

input nodes or have been processed during stages 1, …, l−1.

 If a processing order cannot be find consistency check error.

 The CPE simulator is the framework developed to automate the process of simulating the

standard MCNC benchmark circuits. It accepts all the input files,

o The combinational circuit netlist called ‘F’

o The parity circuit netlist called ‘P’

o The LDPC generator matrix

and propagates the error through the netlist to simulate the final the BER & FER values.

Figure 2-7 shows the top level architecture of the CPE tool :

 An SRC module which generates the values of the inputs

 The output of the SRC goes into a module ‘F’ and a second module ‘P’ – these

modules are simulating the corresponding netlists, including the error injection at

the gate level.

 The outputs of F and P modules go into the decoder module.

 Finally, output from the decoder goes into the BER/FER estimation module, where it

is compared to the original input generated by the SRC module.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 18 of (61)

Figure 2-7: CPE tool top level representation

2.5. Experimental Results

A number of benchmark circuits have been simulated using the cad setup for various different

constraints. It should be mentioned here that all the simulation results presented in this section

assumes that the decoder is run on reliable hardware (error free hardware). This is referred to as

asymmetric setting where in the circuit and the corresponding augmented logic is error prone and

we assume that the decoder is fault free. Going forward, we would like to perform analysis for the

symmetric case as well.

2.5.1. Critical Nodes

Criticality degree of a gate is defined as the number of erroneous outputs generated when the gate is

in error (assuming that all the other gates are error-free). We have injected only one error in the

circuit (at the output of one single gate) and counted the number of errors generated on the output

of the circuit. For a randomly generated logic circuit, this behavior is illustrated in Figure 2-8, which

plots the CDF data of the number of errors on F-output generated by one single error injection. It

turns out that for about 93% of gates, injecting an error generates less than 10 errors on the output

which is acceptable. However, for some gates, the error injection can generate up to 191 errors on

the output. Hence, we conclude that decoder failures are due to a very large number of errors on the

output of F (or P) even if the gate error probability is quite low.

Figure 2-8: CDF of the number of erroneous outputs generated by one single error injection

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 19 of (61)

We have further moved on and computed the criticality degrees of all nodes in F and P. As

depicted in Figure 2-9, only 1.67% of the nodes of F have a criticality degree > 8 (which is good).

However, for P the situation is completely different. There are many nodes with very high criticality

degree (38.8% of nodes have criticality degree > 50). We cannot protect all these nodes, because that

would not make sense. There seems to be some kind of trade-off popping up here: Increasing the

number of nodes of P may allow decreasing their criticality level (more nodes, but less critical). On

the contrary, decreasing the number of nodes in P could increase their criticality level (less nodes,

but more critical); we are in the process of finding the optimal trade-off between number of nodes

and criticality.

Figure 2-9 : CDF plot of Criticality degree of 'F' & 'P' Circuits.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 20 of (61)

As an important of point, the number of critical nodes is currently a bigger problem within the

nonlinear circuits compared to linear circuits. As depicted in Figure 2-10, the number of critical nodes

is pretty huge in the non linear circuits. The parity circuit often dominates the total count of critical

nodes. This is because of the current methodology used to generate the augmented logic circuit (F)

circuit. We concatenate the functional unit with the generator matrix which is not the best possible

approach. We are looking at different ways to overcome this issue.

Figure 2-10: Critical node count for different Linear and Non-Linear circuits.

2.5.2. Area Overhead

Any error correction technique comes with the extra overhead of the parity circuit that needs to

augmented to the existing logic circuit. As shown in Figure 2-11, for linear circuits, the size of the

parity circuits is much smaller. This is because we multiply two matrices to generate the new circuit.

But, in the case of non linear circuits, the overhead is slightly on the higher side. Currently, we are in

the middle of coming up with better methodologies to reduce the size of the parity circuit.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 21 of (61)

Figure 2-11: Area overhead due to parity augmentation.

2.5.3. NMR Vs CPE

Figure 2-12 plot portrays the bit error probability of the CPE and TMR methodologies for the MCNC

benchmark circuit ‘DES’. In the simulator, we have declared all the gates whose failure generates

more than 10 errors on the output of F or P as critical. By injecting errors only on non-critical gates,

the performance of CPE fared much better than TMR. For a gate error probability of 0.001, the bit

error probability of CPE = 4e-9, while the bit error probability of TMR = 6.3e-4. This represents a

significant improvement, by more than 5 orders of magnitude!! Note that in order to achieve a bit

error probability of 4e-9 using N-modular redundancy, one should take N = 11!

We are currently looking at solutions to turn the critical gates into always reliable. One possibility

would be to use modular redundancy for these gates which means that each gate is repeated N

times (say 3 times) + a majority logic gate. Is this realistic? The other alternative is to make sure we

define a different voltage island for all these critical gates so that they are powered up by higher

voltage.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 22 of (61)

Figure 2-12: Performance of BER Vs CPE

2.5.4. Hardware Impact Investigation

This section presents several applications of this encoding technique to two IP cores. The use of

different ECC codes is investigated. For reference the results are compared with the original

size/timing and with the Triple Modular Redundancy (TMR) scheme [Taylor68-a]. These results have

been already documented in [iRISC – D5.1] and only the final results are reported for the sake of

completion. Two IP cores commonly used in telecommunication systems, the Scrambler and the

Chien Search block for Reed Solomon decoding were considered. Several codes are investigated to

span a large variety of possibilities in terms of code length, error correction capability,

encoding/decoding complexity, etc. These include: Hamming code, BCH codes, Low Density Parity

Check (LDPC) codes and the Low Density Generator Matrix (LDGM) codes. Area and Delay results for

the application of the proposed fault protection scheme for the Scrambler and Chien Search cores

are as shown in Figure 2-13. It can be seen how the implementation of the CPE protection can have a

significant impact in term of area and delay. It is also evident how the cost of the scheme is

dependent on the combinatorial logic to be secured.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 23 of (61)

Figure 2-13: Area & timing Analysis on IP cores using CPE methodology.

2.5.5. Case Study

We have selected MCNC benchmark circuit “DES” as our test case and performed various simulations

to study our methodology. The numbers of critical nodes for different criticality threshold (CT) levels

are tabulated in Table 2-1. The reliability of the CPE approach depends on the CT value. However,

even if we consider a CT value as high as CT = 10, the number of nodes to be protected in P (5524) is

still higher that the total number of nodes of F (3249). Thus, it doesn’t really make sense to use CPE

under such circumstances, because a more simple and efficient solution would be to protect all the

nodes in F.

Table 2-1: Protected Nodes Vs Criticality Threshold

Figure 2-14 depicts the output error probability plot. When CT is set to -1, all nodes are possibly

error-prone, most of the CPE output bit errors are due to the fact that the decoder converges to a

wrong codeword. But with CT= 2, 5, 8, 10; the decoder never converged to a wrong codeword. Figure

2-15 gives a detailed analysis of the output error on all the three output nodes; the ‘F’ circuit, the ‘P’

circuit as well as the decoder.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 24 of (61)

Figure 2-14: Output BER for various Criticality thresholds

Figure 2-15: Detailed plots for output error on F, P and decoder output nodes.

Besides, one other limitation is the extremely gate count of the parity circuit (P). For the current test

case, there are a total of ‘3249’ nodes in the circuit and ‘41151’ nodes in the corresponding parity

circuit (P). This results in an increased error probability on output nodes of parity circuit as compared

to the logic circuit (F). This also results in an area significantly larger which is not really desirable. Size

of P must be considerably reduced, in order for CPE to provide an effective solution.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 25 of (61)

2.5.6. Impact of LDPC code sizes on Area

Throughout this section, by size of a circuit we mean the number of the elementary logic gates that

have to be interconnected to form the circuit function. Also this discussion is limited to linear circuits

at this moment and would be extended to non linear circuits in the future. The size of the fault-

tolerant CPE implementation is the sum of the combinational circuit ‘𝐹’ , the parity circuit ‘𝑃’ and the

decoder ‘𝐷’. It is given by:

Size(CPE) = Size(𝐹) + Size(𝑃) + Size(𝐷) (2.3)

Although LDPC decoding algorithms consist of iterative message passing procedures, in practical

implementations only the circuitry corresponding to a decoding iteration has to be instantiated in

hardware. In this case, the size of the decoding circuit is known to increase linearly with the size of

the decoding input. Thus, assuming that the rate 𝑘 𝑛⁄ of the code is constant, we can write Size(𝐷) =

𝒪(𝑛) = 𝒪(𝑘). If 𝐹 is a random matrix, the size of the combinatorial circuit implementing 𝐹 increases

linearly with 𝑙 × 𝑘. Therefore, assuming that the ratio 𝑙 𝑘⁄ of matrix dimensions remains constant, we

can write Size(ℂℂ) = 𝒪(𝑙 × 𝑘) = 𝒪(𝑘2). Similarly, we have Size(𝕊) = 𝒪(𝑘2). Moreover, since ℂℂ and 𝕊

are of comparable sizes, which asymptotically dominate the size of the decoding circuit 𝐷, we can

(asymptotically) approximate the size of the fault-tolerant CPE implementation by:

Size(CPE) ≈ 2 × Size(ℂℂ) (2.4)

A higher rate code can result in significant reduction in the size of the ‘P’ circuit and hence the overall

area of the implementation as shown in Figure 2-16.

Figure 2-16: Area Vs Coding Rate Plot

But, on the positive note, higher rate codes can result is less number of critical gates as shown in

Figure 2-17. Hence, it is a tradeoff between area vs. performance. A higher rate code occupies less

area but it has less capability of correcting errors. Similarly, a low rate code increases the size of the

parity circuit drastically but improves the performance of the circuit from a reliability perspective.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 26 of (61)

Figure 2-17: Critical Gate Count Vs Coding Rate

2.5.7. Validation on MCNC Benchmark Circuits

We have tested the CPE methodology on a selected of non linear MCNC benchmark circuits and a set

of randomly generated linear circuits. Table 2-2 to Table 2-7 describe the simulation results for the

following six scenarios:

 Gate error set of 1e-03, 1e-04, 1e-05

 Critical Gate threshold set of ‘5’ & ‘10’

In Table 2-2 to Table 2-7, column 1 describes the circuit under consideration. Column 2 and 3 provide

the gate count of both the ‘F’ {Circuit under test} and the ‘P’ {parity logic} circuit. Column 4 and 5

provide the critical gate count of both the ‘F’ {Circuit under test} and the ‘P’ {parity logic} circuit.

Column 6, 7 and 8 provide the error probability on the output node of the ‘F’ {Circuit under test}, the

‘P’ {parity logic} circuit and the decoder.

Table 2-2: Gate Error = 1.00e-03; Critical Gate Threshold = 10 {Case1}

Benchmark Gate Count Critical Gates Error Probability

F P F P out-F out-P CPE

C5315MCNC 936 2307 176 1151 6.23e-03 2.26e-02 5.947e-03

C6288MCNC 2290 2408 1822 2326 1.97e-02 9.33e-03 1.284e-02

desMCNC 2204 7292 41 2877 8.05e-03 4.00e-02 2.921e-04

pairMCNC 932 2617 139 1198 3.53e-03 2.55e-02 4.917e-04

Random1 4007 1578 306 132 8.66e-03 1.00e-02 3.493e-02

Random2 91905 33926 6732 2839 1.58e-01 1.77e-01 1.614e-01

Random3 46244 17289 3330 1401 8.32e-02 9.94e-02 9.442e-02

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 27 of (61)

Table 2-3 : Gate Error = 1.00e-03; Critical Gate Threshold = 5 {Case2}

Benchmark Gate Count Critical Gates Error Probability

F P F P out-F out-P CPE

C5315MCNC 936 2307 321 1845 3.83e-04 2.53e-03 5.875e-05

C6288MCNC 2290 2408 2162 2341 5.45e-03 4.76e-03 1.900e-03

desMCNC 2204 7292 675 3219 5.39e-03 3.04e-02 4.491e-06

pairMCNC 932 2617 247 1333 2.92e-03 1.81e-02 1.048e-05

Random1 4007 1578 530 225 6.87e-03 8.17e-03 1.230e-02

Random2 91905 33926 12398 5275 1.26e-01 1.40e-01 1.311e-01

Random3 46244 17289 5996 2557 6.56e-02 7.64e-02 8.494e-02

Table 2-4: Gate Error = 1.00e-04; Critical Gate Threshold = 10 {Case3}

Benchmark Gate Count Critical Gates Error Probability

F P F P out-F out-P CPE

C5315MCNC 936 2307 176 1151 2.73e-04 2.26e-02 5.947e-03

C6288MCNC 2290 2408 1822 2326 2.27e-03 8.21e-04 1.012e-03

desMCNC 2204 7292 41 2877 8.27e-04 4.19e-03 3.265e-08

pairMCNC 932 2617 139 1198 3.62e-04 2.60e-03 1.628e-06

Random1 4007 1578 306 132 8.74e-04 1.04e-03 8.692e-05

Random2 91905 33926 6732 2839 1.85e-02 1.94e-02 1.729e-02

Random3 46244 17289 3330 1401 9.19e-03 1.09e-02 1.500e-03

Table 2-5: Gate Error = 1.00e-04; Critical Gate Threshold = 5{Case4}

Benchmark Gate Count Critical Gates Error Probability

F P F P out-F out-P CPE

C5315MCNC 936 2307 321 1845

C6288MCNC 2290 2408 2162 2341 5.70e-04 4.74e-04 1.272e-04

desMCNC 2204 7292 675 3219 ---- ---- 0.00

pairMCNC 932 2617 247 1333 --- ---- 0.00

Random1 4007 1578 530 225 7.01e-04 8.24e-04 2.432e-06

Random2 91905 33926 12398 5275 1.45e-02 1.66e-02 6.786e-03

Random3 46244 17289 5996 2557 7.11e-03 8.30e-03 1.084e-04

Table 2-6: Gate Error = 1.00e-05; Critical Gate Threshold = 10 {Case5}

Benchmark Gate Count Critical Gates Error Probability

F P F P out-F out-P CPE

C5315MCNC 936 2307 176 1151

C6288MCNC 2290 2408 1822 2326 2.37e-04 9.52e-05 9.899e-05

desMCNC 2204 7292 41 2877 ---- ---- 0.00

pairMCNC 932 2617 139 1198 --- ---- 0.00

Random1 4007 1578 306 132 8.74e-05 1.05e-04 1.058e-06

Random2 91905 33926 6732 2839 1.88e-03 2.23e-03 1.859e-06

Random3 46244 17289 3330 1401 9.20e-04 1.11e-03 1.538e-07

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 28 of (61)

Table 2-7: Gate Error = 1.00e-05; Critical Gate Threshold = 5 {Case6}

Benchmark Gate Count Critical Gates Error Probability

F P F P out-F out-P CPE

C5315MCNC 936 2307 321 1845

C6288MCNC 2290 2408 2162 2341 5.46e-05 4.65e-05 1.397e-05

desMCNC 2204 7292 675 3219 --- ---- 0.00

pairMCNC 932 2617 247 1333 --- --- 0.00

Random1 4007 1578 530 225 --- --- 0.00

Random2 91905 33926 12398 5275 1.44e-03 1.68e-03 0.00

Random3 46244 17289 5996 2557 --- --- 0.00

From Table 2-2 to Table 2-7, it is clear that the CPE approach provides complete error free decoding

ability for any error less than 1e-05. Even at 1e-04, the performance is very good. Further analysis is

going on to develop techniques which can improve the performance of the methodology even at

higher gate error rates.

2.6. Conclusion

We have proposed a novel methodology to implement error correction codes driven graph

augmentation techniques to improve the fault tolerance of the circuits that is generic and is

applicable to any combinatorial logic. CPE methodology of implementation and performance

evaluation has been completely automated. Initial simulation results shows that performance of CPE

is much better as compared to that of the NMR approach. We need a replication of up to ‘11’ times

of the combinational circuit to achieve similar kind of performance as the CPE. Apart from this, some

other important set of conclusions to make are as follow {for any LDPC code rate & for any critical

gate threshold}:

• With lower code rate, we achieve significant amount of performance improvement where in

the CPE can correct all errors for gate error probability of 1e-2.

• Lower the code rate, higher the number of gates in the parity circuit ‘P’.

• Number of critical gates is not rising drastically with code rate.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 29 of (61)

3. Boole Shannon Limit of noisy combinational logic (Task 5.5)

The CPE approach has already been presented in Section 2.3 and evaluation/simulation of its

performances when applied to real circuits has been presented in Section 2.5. In this section

theoretical analysis of its goodness and its performance limits are presented. This is in line with task

5.5 which is aimed at computing the Boole Shannon limit of noisy combinational logic performance.

3.1. Problem setting

The CPE approach focuses on using ECC based methods/architectures to improve reliability of

combinatorial circuits. A significant difference with standard EDA approach is the fact that there is no

attempt to internally modify or alter the logic but the aim is to augment the circuit in such a way that

it adds "redundancy” that can then be exploited to recover the correct output. A parallel can be

drawn with the communication systems where the redundant symbols are added to the message and

transmitted. This redundant symbol allows the recovery of the message even in presence of

transmission error.

For the analysis presented the system where the CPE is applied can be partitioned based on

two characteristics, first if the circuit to protect is linear or no non-linear, second if the system is

symmetric (encoding1 and decoding process are faulty) or asymmetric (perfect decoding process).

The analysis presented here focuses on the case of linear circuits, for both the symmetric and

asymmetric scenarios. The situation where non-linear circuits are presents several difficulties due to

the lack of mathematical methods to work with such circuits. Analysis of the CPE limits in such

scenario will require fundamental discoveries and will be focus of future long term work.

The symmetric-linear case is of great interest from analysis point of view because in the

symmetric scenario the only usable coding scheme is LDPC codes, thanks to their ability of decoding

the received message even in presence of faulty hardware, as reported in Deliverable D3.1 [i-

RISC/D3.1]. LDPC codes are of great interest from the ECC augmented hardware point of view due to

their low complexity and the complete understanding of their asymptotical performance and

theoretical limits. The first factor turns them into most favored scheme to be used in hardware

where area and the throughput are the dominating factors. The second factor allows for an

asymptotic analysis of reachable performances to be carried out.

3.2. Cost analysis

In VLSI circuit design, there are three parameters that are considered when comparing equivalent

circuits: Area, Timing and Power. Whit the advent of unreliable gates a fourth parameter is

introduced namely reliability. To evaluate the goodness of any new proposed scheme, it is necessary

to consider all these four constraints and the inter-relation between them. In this line of thought, we

introduce a general notation to evaluate proposed schemes. We will use the term cost C() to mean

any of the four goals, or any linear combination of the four.

For the moment to simplify analysis, we consider the cost of a XOR gate and assume that the

cost of any circuit can be represented as a multiple of this cost. This would suite the analysis for the

case of linear circuits while an extension for non-linear cases would require consideration of the cost

1
 Here, “encoding” means the computation of the original circuit (𝐹) and of the parity circuit (𝑃). Encoding is

always assumed to be error prone.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 30 of (61)

of universal gates and how these costs can be combined to estimate the cost of the complete circuit.

These topics will form the core of future investigation on how to expand the proposed analysis for

non-linear circuits.

3.3. CPE Cost Analysis

In this section, we analyze the cost incurred due to the CPE approach in the case of linear circuits. To

do so specific corner case scenario are considered. These are scenarios where we are interested on

evaluating the cost of the CPE approach on one of the four goals without considering the effect on

the others. For example

 Is it possible to reduce area if I do not care throughput reduction?

 Is it possible to reduce power at the cost of area?

The analysis gives an idea of what are the limits in the best case scenario. These are

equivalent of situation when one of the parameter is free or much less important. The first analysis

focuses on the cost of the CPE in term of area or power.

3.3.1. Notation and Conventions:

We associate a cost with each probabilistic XOR-gate ⊕𝜀, which is denoted by 𝐶𝜀:

 𝐶𝜀 is a positive value that denotes the cost function in order to implement a XOR-gate with

error probability 𝜀. Throughput this section, cost should be understood as either area of

power.

Clearly, the cost must be a decreasing function of ε, that is 𝐶𝜀1
> 𝐶𝜀2

 for 𝜀1 < 𝜀2, or put

differently, more reliable gates are also more expensive. For 𝜀 = 0, 𝐶0 represents the cost of the

ideal (error-free) XOR-gate.

We will further denote the cost associated with the implementation of circuit 𝐹 with

probabilistic XOR-gate ⊕𝜀 as 𝐶(𝐹𝜀). In particular, 𝐶(𝐹0) denotes the cost of the ideal circuit. By a

slight abuse of notation, we denote by 𝐹 both the implementing circuit and the corresponding linear

function. Since 𝐹 is linear, it can also be represented by a binary matrix of size 𝑙 × 𝑘 (𝑙 is the number

of binary inputs, and 𝑘 is the number of binary outputs). We shall assume that:

 The number of XOR-gates used to implement 𝐹 is proportional with the number of non-zero

(1’s) entries of the corresponding binary matrix,

 If 𝐹𝜀 is synthesized from 𝜃 XOR-gates ⊕𝜀, then 𝐶(𝐹𝜀) = 𝜃𝐶𝜀.

For asymptotic consideration, increasing the size of 𝐹 to infinity means that both 𝑙 and 𝑘 go

to infinity, while keeping the ratio 𝑙/𝑘 constant (shape of 𝐹).

Finally, we need one more assumption concerning the LDPC decoder, denote by 𝐷. First, we

note that 𝐷 is not a linear function, hence it cannot be implemented with XOR-gates only. However,

the complexity of 𝐷 depends linearly on the code-length and the number of decoding iterations.

Therefore, by expressing the cost of each gate composing 𝐷 as a multiple of the cost of the XOR-gate,

we may write:

 𝐶(𝐷𝜀) = 𝑛𝜇𝛿𝐶𝜀 (𝜀 ≥ 0), where

o 𝑛 is the code-length

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 31 of (61)

o 𝜇 expresses the contribution of the number of decoding iterations to the total cost of

the decoder. More details follows below.

o 𝛿 is a constant value depending on the implemented decoder

It is important to mention that the optimal number of decoding iterations increases logarithmically

with the code-length (here, optimal means that increasing the number of decoding iterations above

this value should not provide any further coding gain). However:

 If we are interested in the area (cost = area), 𝜇 is equal to number of decoding iterations

instantiated in hardware.

o Usually 𝜇 = 1, as only one iteration is instantiated in hardware.

o In order to increase throughput, several decoding iteration may be instantiated in

hardware (the decoder is said to be unrolled). In this case, one may assume that

1 ≤ 𝜇 ≤ log (𝑛).

 If we are interested in power consumption (cost = power), then 𝜇 ≅ log (𝑛).

3.4. Cost analysis for Area/Power against error free circuit

The focus is now to find the conditions that guarantee the CPE approach to consume less area (or

power). Let's start to define the notation used in case of CPE with LDPC codes. Assuming,

 𝐹 to be a non-sparse matrix of size 𝑙 × 𝑘 – the original linear circuit

 𝐻 to be the sparse parity-check matrix of the LDPC code, with dimension 𝑚 × 𝑛, where

𝑚 = 𝑛 − 𝑘

 𝐺 to be the parity part of a generator matrix of the LDPC code. Hence, writing 𝐻 = [𝐻𝑖 | 𝐻𝑝],

with 𝐻𝑖 of size 𝑚 × 𝑘 and 𝐻𝑝 of size 𝑚 × 𝑚, 𝐺 can be computed as 𝐺 = 𝐻𝑖
𝑇 ∙ (𝐻𝑝

𝑇)
−1

. Note

that 𝐺 is of size 𝑘 × 𝑚 and it is generally not a sparse matrix.

 Let 𝑃 = 𝐹 ∙ 𝐺 be the matrix of size 𝑙 × 𝑚, corresponding to the parity circuit within the CPE

approach.

o Indeed if the vector 𝑖 ∈ {0,1}𝑙 denotes the binary inputs of 𝐹, and 𝑜𝐹 = 𝑖 ∙ 𝐹 and

𝑜𝑃 = 𝑖 ∙ 𝑃 denote the binary outputs of 𝐹 and 𝑃, respectively, then [𝑜𝐹 | 𝑜𝑃] is a

codeword of the LDPC code defined by 𝐻, since one has 𝐻 ∙ [𝑜𝐹 | 𝑜𝑃]𝑇 = 0.

 We further denote by 𝜆𝐹 and 𝜆𝑃 the fraction of non-zero (1’s) entries of 𝐹 and 𝑃,

respectively. According to the cost linearity assumption, we may write:

o 𝐶(𝐹𝜀) = 𝜆𝐹𝑙𝑘𝐶𝜀

o 𝐶(𝑃𝜀) = 𝜆𝑃𝑙𝑚𝐶𝜀

Under these assumptions, we can state the conditions that ensure the CPE to be less costly then the

error free alternative:

 In the asymmetric case, the cost of the CPE approach is less than the cost of the fault-free

circuit if and only if:

𝐶(𝐹𝜀) + 𝐶(𝑃𝜀) + 𝐶(𝐷0) < 𝐶(𝐹0) (3.1)

After some manipulations, and denoting 𝑟 =
𝑘

𝑛
 the coding rate, one gets:

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 32 of (61)

𝐶𝜀 <
𝜆𝐹𝑟 − (𝜇 𝑙⁄)𝛿

𝜆𝐹𝑟 + 𝜆𝑃(1 − 𝑟)
 𝐶0 (3.2)

 In the symmetric case, the cost of the CPE approach is less than the cost of the fault-free

circuit if and only if:

𝐶(𝐹𝜀) + 𝐶(𝑃𝜀) + 𝐶(𝐷𝜀) < 𝐶(𝐹0) (3.3)

After some manipulations, and denoting 𝑟 =
𝑘

𝑛
 the coding rate, one gets:

𝐶𝜀 <
𝜆𝐹𝑟

𝜆𝐹𝑟 + 𝜆𝑃(1 − 𝑟) + (𝜇 𝑙⁄)𝛿
 𝐶0 (3.4)

 In the asymptotic case, i.e assuming that 𝑙 goes to infinity while keeping the shape of 𝐹 (𝑙/𝑘)

and the coding rate (𝑘/𝑛) constant, in both symmetric and asymmetric cases, we get:

𝐶𝜀 <
𝜆𝐹𝑟

𝜆𝐹𝑟 + 𝜆𝑃(1 − 𝑟)
 𝐶0 (3.5)

since 𝜇 increases at most logarithmically with 𝑛, and thus with 𝑙. Moreover, assuming 𝐹 to be

a random matrix, the expected value of both 𝜆𝐹 and 𝜆𝑃 is 𝜆𝐹 = 𝜆𝑃 =
1

2
, which gives:

𝐶𝜀 < 𝑟 ∙ 𝐶0 (3.6)

The main result of interest is the condition found for the asymptotical case. It had drawn a clear

connection between the cost of a single gate and the rate of the code needed to achieve a desired

performance. There is here a strong parallel with the Shannon limit for communication systems, in

the sense that it set the limit of the achievable regions once the code rate is set. It also set a simple

limit that help deciding if the reduction in cost of new technology is sufficient high to justify switching

to such technology.

However, the above analysis doesn’t consider whether or not there exists a code of rate 𝑟 capable to

correct (with high probability) the errors occurring at the output of 𝐹 and 𝑃. In other words, the

above inequality ensures that the CPE approach is cost effective, but doesn’t ensure that it is also

reliable (i.e. allows recovering the correct output). This issue is addressed in the next section.

3.4.1. Error Correction Capacity

In this section we further elaborate on the above cost analysis, by taking into account the error

correction capacity of the proposed CPE approach. We define 𝛼𝜀 =
𝐶𝜀

𝐶0
∈ [0, 1] to be the cost

reduction factor, when replacing an ideal (fault-free) technology with an error-prone one. Recall that

𝜀 is the error-probability of the faulty XOR-gate, and let 𝜎𝐹 and 𝜎𝑃 denote the error probability at

the output of 𝐹 and 𝑃, respectively (clearly, both 𝜎𝐹 and 𝜎𝑃 depend on 𝜀). To simplify the analysis,

we will assume throughout this section that

 𝜎𝐹 = 𝜎𝑃 ≝ 𝜎𝜀

Hence, within the CPE approach, 𝜎𝜀 represents the error probability at the decoder input. According

to Equation (3.6), the CPE approach is cost-effective if and only if:

𝑟 > 𝛼𝜀 (3.7)

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 33 of (61)

Let �̅�𝜀 ∈ [0,
1

2
] be maximum fraction of errors that can be corrected by a code of rate 𝑟 > 𝛼𝜀.

According to Shannon’s theorem, we have:

𝛼𝜀 = 1 − ℎ(�̅�𝜀) ⇔ �̅�𝜀 = ℎ−1(1 − 𝛼𝜀) (3.8)

where ℎ(𝑥) = −𝑥 log2(𝑥) − (1 − 𝑥)log2 (1 − 𝑥) is the binary entropy function.

Therefore, if 𝜎𝜀 < �̅�𝜀 the CPE approach is not only cost effective but also reliable, in the sense that it

is able to correct the errors occurring at the output of 𝐹 and 𝑃.

Since 𝐹 and 𝑃 are linear circuits with sizes 𝑙 × 𝑘 and 𝑙 × 𝑚, any binary output of F and P can be

computed by a chain of XOR-gates of length at most 𝑙. If every XOR-gate is in error with probability 𝜀,

the output error probability can be upper-bounded by (note that this upper-bound is not expected to

be tight):

𝜎𝜀 < 𝜎𝜀
′ =

1 − (1 − 2𝜀)𝑙

2
 (3.9)

In particular, for 𝜎𝜀
′ < �̅�𝜀 the CPE approach is both cost effective and reliable. We also have:

𝜎𝜀
′ < �̅�𝜀 ⇔ 𝛼𝜀 < 1 − ℎ (

1 − (1 − 2𝜀)𝑙

2
) (3.10)

For large 𝑙 values2, the above inequality establishes an upper-bound for the cost reduction factor,

which ensures that the CPE approach to be both cost-effective and reliable. This upper-bound is

plotted in Figure 3-1, for 𝑙 = 106 and 𝑙 = 109.

It can be seen that for small 𝜀 values, the CPE approach is both cost-effective and reliable for any

cost-reduction factor 𝛼𝜀 ≤ 1. The intuition behind is quite obvious: for small 𝜀, the 𝜎𝜀 value – error

probability at the output of 𝐹 – is also small, and the CPE approach may use a code with rate close to

1 (note that coding rate = 1 corresponds to the original circuit only).

As the 𝜀 value increases, the cost-reduction factor 𝛼𝜀 is bounded below 1 and decreases until it gets

close to 0 (i.e. the cost of the fault-prone technology must be negligible with respect to the cost of

the fault-free technology). The “waterfall” region (where 𝛼𝜀 decreases from 1 to 0) corresponds to

an increase in the value of 𝜀 by approximatively 3 to 4 orders of magnitude.

2
 Large enough such that the term (𝜇 𝑙⁄)𝛿 in Equations (3.2) and (3.4) can be considered negligible.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 34 of (61)

Figure 3-1: Cost-reduction upper-bound, ensuring both cost-effectiveness and reliability

3.5. CPE and Modular Redundancy comparison

The Modular Redundancy (MP) is a well-known methodology to improve reliability by mean of

replication of the circuit. This can be seen as the equivalent to a repetition code where the same

symbol is transmitted several times and then a majority voting is applied. The scheme is extremely

simple and well understood and it is hence interesting to compare the CPE approach against it. To

compare the two architectures, it is important to consider that both schemes, CPE and MR, there are

tradeoffs between area and throughput. Ω-MR schemes can be implemented by instantiating Ω

copies of the same circuit 𝐹, or by instantiating only 𝜔 copies and reusing each copy Ω/𝜔 times.

Similarly an LDPC decoder can be implemented by unrolling some of all the iterations into a long

pipeline or by reusing the same hardware for compute all the iterations. Let's now define some

notation to consider this aspect:

 𝐴𝐹 , 𝐴𝑃 , 𝐴𝐷𝐸𝐶 the area of the 𝐹, 𝑃 and 𝐷 blocks

o 𝐴𝐷𝐸𝐶 = 𝜇𝐴𝐼 with 𝐴𝐼 area of single iteration

o 𝜇 is the number of unrolled iterations

 𝐴𝑀𝑅
𝜔 the area of the MR when 𝜔 instances of 𝐹 are used

o 𝐴𝑀𝑅
𝜔 = 𝜔𝐴𝐹

o The corresponding latency is given by Ω/𝜔 clock cycles

 𝐴𝐶𝑃𝐸
𝜇

 the area of the CPE when LDPC decoder is unrolled

o 𝐴𝐶𝑃𝐸
𝜇

= 𝐴𝐹 + 𝐴𝑃 + 𝜇𝐴𝐼

o The corresponding latency is given by Ι/𝜇 clock cycles, where Ι is the total number of

decoding iterations of the LDPC decoder.

Using the same notation and conventions as in Section 3.3.1, we can now state the conditions to

ensure that the area of the CPE is smaller than the area of the Ω-MR.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 35 of (61)

3.5.1. Area/ throughput comparison

In this section, we first compare CPE and Ω-MR in term of area and throughput without consideration

on the total performance. Then,

 𝐴𝐶𝑃𝐸
𝜇

 ≤ 𝐴𝑀𝑅
𝜔 if:

o If better throughput is not necessary :

𝐴𝐼

𝐴𝐹
 ≤

𝑟𝜔− 1

𝑟𝜇
 (3.11)

o If better throughput is desired

𝐴𝐼

𝐴𝐹
 ≤

Ω

Ι
−

1

𝜇𝑟
 (3.12)

This can be simply proved by the following analysis:

𝐴𝐶𝑃𝐸
𝜇

 ≤ 𝐴𝑀𝑅
𝜔 ⇔ 𝐴𝐹 + 𝐴𝑃 + 𝜇𝐴𝐼 ≤ 𝜔𝐴𝐹 (3.13)

Considering that the area of the 𝑃 circuit can be evaluated as:

𝐴𝑃 = (
1

𝑟
− 1) 𝐴𝐹 (3.14)

We can rewrite the condition (3.13) as:

𝜇𝐴𝐼 ≤ (𝜔 −
1

𝑟
) 𝐴𝐹 ⇔

𝐴𝐼

𝐴𝐹
 ≤

𝑟𝜔− 1

𝑟𝜇
 (3.15)

Considering the throughput condition, if better throughput is desired then:

Ω

𝜔
≥

Ι

𝜇
 ⇒ 𝜔 ≤ Ω

μ

Ι
 (3.16)

Using the condition (3.14) for the previous case, we get:

𝐴𝐼

𝐴𝐹
 ≤

Ω

Ι
−

1

𝜇𝑟
 (3.17)

The two condition presented show limits in the ratio between the area of iteration of the

LDPC decoder and the area of the function being protected that guarantee the cost of using the CPE

scheme is less than the cost of using Ω-MR. Intuitively it is understandable that for small circuit it

may be better to repeat the circuit rather than using a LDPC decoder. Analysis of these zones and

partitions need to be further investigated to understand their implications and conceptual value.

Case Study: We consider an Ω-MR schemes with Ω = 12 and unrolling factor (i.e., number of copies

of 𝐹 instantiated in hardware) 𝜔 ∈ {1, 2, 3, 4, 6, 12}. The delay (
Ω

𝜔
) vs. normalized area (

𝐴𝑀𝑅

𝐴𝐹
= 𝜔𝐴𝐹)

when varying the 𝜔 value is plotted in Figure 3-2 (solid black curve, no markers).

We further consider a CPE approach with Ι = 12 decoding iterations and unrolling factor

(i.e., number of decoding iterations instantiated in hardware) 𝜇 ∈ {1, 2, 3, 4, 6, 12}. We consider that

the rate of the LDPC code is either 𝑟 = 1/2 or 𝑟 = 3/4, and that the area of one decoding iteration is

either 𝐴𝐼 =
1

4
𝐴𝐹 or 𝐴𝐼 =

1

10
𝐴𝐹. Considering two different values for 𝐴𝐼 may reflect:

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 36 of (61)

(1) the use of different decoders, one more powerful but having an increased area, and a

second one less powerful but having a smaller area,

(2) an increase on the size of the circuit 𝐹 under consideration, since 𝐴𝐼 becomes negligible

with respect to 𝐴𝐹 when the size of 𝐹 goes to infinity.

The delay (
Ι

𝜇
) vs. normalized area (

𝐴𝐶𝑃𝐸

𝐴𝐹
=

1

𝑟
+ 𝜇

𝐴𝐼

𝐴𝐹
) when varying the 𝜇 value for the CPE

approach is also plotted in Figure 3-2 (solid/dashed, red/blue curves, corresponding to different 𝑟

and
𝐴𝐼

𝐴𝐹
 values). It can be seen that the CPE approach offers more flexibility, giving the possibility to

obtain a better compromise between area and delay.

 However it is clear that focusing only on the area and delay is of limited value since there are

no considerations of the fact that the CPE approach may also have better error protection

performance. Error correction performance of the two schemes is discussed in the next section.

Figure 3-2: Delay vs. normalized area for MR and CPE schemes with various unrolling factors

3.5.2. Area/performance comparison

Next step in our analysis is to consider the performance, in term of error correction capability. To

maintain the comparison fair we assume that both schemes are implemented so that they achieve

the same throughput, that is we consider a fully parallel Ω -MR and a fully unrolled LDPC decoder.

Moreover few assumptions are taken to simplify the analysis:

 Output Error Probability 𝜎𝐹 = 𝜎𝑃 = 𝜎

 Complexity of 𝐹 scales quadratically with 𝑘 (𝐴𝐹 = 𝛾𝑘2)

First let us find an asymptotical relationship between area and performances for the Ω-MR

scheme. The error probability of the modular redundancy scheme, denoted by 𝜎𝑀𝑅, is the probability

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 37 of (61)

of having the majority of the replica in error; this can be represented of binomial combination. When

the limit for Ω that goes to infinity we have:

𝜎𝑀𝑅 ≈ 𝜎Ω 2⁄ (3.18)

Put differently, in order to reach an output error probability of 𝜎𝑀𝑅, it is necessary to repeat

the 𝐹 function Ω ≈ 2
log (𝜎𝑀𝑅)

log(𝜎)
 times. Hence, we have

𝐴𝑀𝑅

𝐴𝐹
= Ω ≈ 2

log (𝜎𝑀𝑅)

log(𝜎)
, which show that the area

of the MR approach goes to infinity as the target error probability 𝜎𝑀𝑅 goes to zero.

We now derive an asymptotical relationship between area and performances for CPE

approach. Let 𝑟𝜎 denote the capacity of a BSC channel with error probability 𝜎 (i.e. maximum coding

rate which can asymptotically correct any fraction of errors ≤ 𝜎). It is known that:

𝑟𝜎 = 1 − ℎ(𝜎) (3.19)

where ℎ(𝜎) = −𝜎 log(𝜎) − (1 − 𝜎)log (1 − 𝜎) is the binary entropy function. Let us assume that

we have a family of LDPC codes operating close to the channel capacity. This means that LDPC codes

are of rate ≅ 𝑟𝜎 and any output error probability (arbitrarily close to zero) can be achieved when the

code-length goes to infinity. The area of the CPE scheme using an LDPC code with rate ≅ 𝑟𝜎 and fully

unrolled decoder with Ι decoding iterations, is given by:

𝐴𝐶𝑃𝐸 ≅
1

𝑟𝜎
 𝐴𝐹 + Ι𝐴𝐼 (3.20)

Considering now that the number of iterations required scales with the logarithm of the

dimension of the LDPC code Ι ≈ log(𝑘) and that the area of each iteration of the LDPC decoder is

linearly dependent to the dimension of the LDPC code

𝐴𝐼 = 𝛿𝑛 = 𝛿
1

𝑟𝜎
𝑘 (3.21)

We obtain:

𝐴𝐶𝑃𝐸 ≅
1

𝑟𝜎
 𝐴𝐹 + 𝛿𝑘log(𝑘) (3.22)

Normalizing by 𝐴𝐹 (𝐴𝐹 = 𝛾𝐾2), we get:

𝐴𝐶𝑃𝐸

𝐴𝐹
=

1

𝑟𝜎
+

𝛿

𝛾

log (𝐾)

𝐾
 (3.23)

Unlike the Ω-MR approach, the CPE approach can achieve an arbitrary small output error

probability, with bounded area penalty. As 𝑘 goes to infinity, we get
𝐴𝐶𝑃𝐸

𝐴𝐹
=

1

𝑟𝜎
, which also confirms

the findings from the previous section.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 38 of (61)

3.6. Conclusion

The analysis presented in this section reflect only a preliminary investigation on the various possible

avenues to reach mathematical formulation of what are the limitation and achievable trade off of the

i-RISC approach to error prone circuitry. Two research directions are foreseen for continue this work.

The first it is to understand the implication of the corner scenario cost analysis presented and expand

it into a unify approach that could evaluate all costs (area/power/throughput/performance) in a

multidimensional way. In this direction it would also be necessary to expand the analysis to non-

linear circuits. The second direction would improve the asymptotical analysis presented to eventually

arrive to a formulation of a Boole-Shannon limit for ECC and error prone circuitry. The research in

this direction should first only consider linear circuits to obtain fundamental limits in the same way

many conceptual limits in telecommunication are presented/valid only for restricted channels. It is

foreseen that formulation of these limit for non-linear circuit may require years of fundamental

research on many mathematical tools before being possible.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 39 of (61)

4. Multi Objective Optimization (Task 5.4)

Abstract: In this section, a novel multi-objective optimization tool is introduced to address and

improve the reliability along with the traditional parameters like power, delay and area of

combinational circuits. Though reliability driven logic optimization is in its infancy when compared to

power and delay driven optimization, the method presented here is still based on the popular and

successful concept of local transformations. The key idea is to employ local transformation rules that

enhance the circuit reliability without altering the functionality of the circuit. This rewriting

capability, along with the reliability evaluation method for assessing the SER of a circuit, enable the

integration of the SER in a unified search algorithm that iteratively evolves the design in order to

satisfy a given set of objectives. This technique was previously extensively used for optimizing the

area, power and the delay and the current results show that it can reduce error probability as well.

Experimental results based on simulations performed on MCNC benchmark circuits indicate that our

reliability-driven synthesis methodology improves circuit reliability by up to 10%.

Publications: Two Journals under preparation; Three Conference papers accepted [P1-P3];

4.1. Introduction

The low reliability of advanced CMOS devices has become a critical issue that has to be

considered in the digital IC design flow. To overcome the reliability related concerns, a variety of

techniques have already been proposed. Negative Bias Temperature Instability (NBTI) and its

mitigation techniques have received significant focus [Vrudhula06]. Dynamic Reliability Management

(DRM) techniques, which try to hide the inherent pessimistic reliability while maintaining the system

performance and lifetime expectation within the desired range were previously proposed [Rivers04].

Another novel idea is the concept of inexact computing [Palem12] where circuits are designed with

erroneous gates. Reliability driven logic synthesis is one area that is gaining lot of importance in the

last few years. In [Smita07], Soft Error Reliability (SER) is improved through localized circuit

restructuring taking advantage of don’t care based re-synthesis and local rewriting. In [Diana13], a

technique to improve the circuit robustness to soft errors based on redundancy addition and

removal (RAR) by eliminating gates with large contribution to the overall SER is proposed. Efficient

algorithms for synthesizing approximate circuits for concurrent error masking of logical and timing

errors were employed in [Mohanram13]. ATPG-based rewiring method to generate functionally-

equivalent yet structurally-different implementations to reduce the SER was developed in

[Almukhaizim06]. All these approaches employ redundant node addition techniques to improve

circuit reliability. Our approach slightly differs as we use subset of NPN-equivalent (Negation-

Permutation-Negation equivalent) logic configurations to improve circuit reliability. The biggest

advantage is that we do not add any extra overhead by increasing node count. ABC [Brayton10], a

logic synthesis and verification tool which performs scalable logic optimisation based on AND-

Inverter Graphs (AIGs) [Mishchenko06] has been used to accommodate all our algorithms. This

section investigates gate level methodologies to improve circuit reliability by employing logic

synthesis techniques. As part of our ongoing research, we are developing a reliability aware logic

synthesis tool.

The first step in building a reliability aware synthesis tool is to develop an efficient algorithm

that computes circuit reliability. Reliability analysis of logic circuits deals with computing the impact

that the gate level have on the circuit Primary Outputs(PO). Traditional approach to reliability

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 40 of (61)

analysis begins with elementary SPICE simulations to estimate the circuit error probability. Several

analytical approaches for computing reliability have been previously reported [Choudhury09,

Han11]. In this line of thought, we propose two different methodologies. One is based on

probabilistic based methods and second is based on simulation based methods. As we represent the

circuit in the AIG format, a novel algorithm based on probability principles is proposed, with the

prime focus being AND & Inverter gates. The algorithm uses the dynamic weighted average algorithm

(DWAA) [Ercolani89] approach to account for the impact of reconvergent fanout on the overall

results. Besides, we also present a second methodology that is based on the well known simulation

based techniques. Both these techniques have trade off’s wrt each other and one supersedes the

other in specific applications. Though the probabilistic based method is very fast, it can be slightly

less accurate. This methodology is used in intermediate steps where it is required to compare two

configurations to make a fast decision of choosing which is better. Exact reliability numbers are not

required in this stage which enables us do with slightly less accuracy. The simulation based

methodology is very accurate but can be time consuming specially for large circuits. This is used in

final steps which require accurate reliability numbers before signoff.

The second phase in the synthesis tool development is the optimization of combinational

circuit for a given set of constraints. Logic optimization and synthesis is the process of taking in a

higher level representation of a circuit and translating it into hardware. This generally involves three

steps. The first is compiling the high level representation into an intermediate representation. The

second is optimising the intermediate representation. The third is mapping the circuit onto the final

output representations. The term "synthesis", besides describing the whole process, can refer to

either the compilation or optimization steps individually. In this work the interest is in the

optimisation step, and in particular optimising for the reliability constraint. Through optimising for

reliability, it is hoped to indirectly allow power savings. Operating a circuit at reduced voltages, at

near- or sub-threshold operation has a potential for great power savings. However this can cause the

gates to be unreliable.

Logic optimization techniques are traditionally classified under two broad categories, local

rule-based transformations (or rewriting) and technology independent/dependent algorithms

[Mishchenko 06-b]. Rewriting is based on employing a set of local transformation rules on a small

sub-section of the graph in order to improve area, power or timing. A rule transforms a pattern for a

local sub-expression, or a sub-circuit, into another equivalent one. Since rules need to be described,

and hence the type available of operations/gates must be known, the rule-based approach usually

requires that the description of the logic is confined to a limited number of operation/gate types

such as AND, OR, XOR, NOT etc. Algorithmic based approaches work on the observation that there

exists certain set of operations, which are inherently good irrespective of technology. These methods

use global transformations such as decomposition or factorization, and therefore they are much

more powerful compared to the rule-based methods. However, general Boolean methods, including

don’t care optimization, do not scale well for large functions. Algebraic methods are fast and robust,

but they are not complete and thus often give lower quality results. For this reasons, industrial logic

synthesis systems normally use algebraic restructuring methods in a combination with rule-based

methods.

The present work is based on the popular and successful concept of local transformations

[Darringer81] [Brayton87]. In this work, we explore the possibility of reducing output error

probability by employing local transformation techniques a.k.a. rewriting. Reliability driven logic

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 41 of (61)

optimization is in its infancy when compared to power and delay driven optimization. There are two

methodologies that we propose in this work. The first is rule-based resynthesis, and the second is

based on cut enumeration. Rule-based resynthesis approaches rely on searching the graph for

specific substructures and replacing these with alternatives. The search and replacement

substructures are hand derived and hard-coded. A slightly more general approach to this is using

Boolean algebra transforms that can apply to various sub-circuits with a common feature. Hard-

coded graph synthesis has been used for power in [Mehrotra13] and for reliability in [Grandhi2014-

b]. The second approach to synthesis is cut rewriting [Mishchenko06-b].

4.2. Reliability Computation

One of the keys for developing an efficient optimization and synthesis tool is the availability of

accurate reliability information as well as efficient/fast algorithms for computing the reliability of

logic functions representing partial solutions during the optimization process. A pure reliability

analysis based on HSPICE Monte Carlo simulations is not feasible due to a prohibitive computation

time and excessive resource requirements. In this section, we address the problem of computing

circuit reliability investigating two different approaches and presenting the tools that has been

developed for each approach. The first method, simulation based approach, is based on simulating

the combinatorial circuit under test and injecting error with specific characteristics to gather

statistical information on how these error propagate through the circuit . The second method,

probabilistic based approach, builds a model of the combinatorial circuit and calculates the reliability

of the circuit based on mathematical analysis of the model. This has already been reported in the

previous deliverable report [iRISC-D5.1].

4.2.1. Simulation Based Methodology

Simulation-based reliability estimation technique can be employed at various levels of abstraction,

which include: switch-level, gate level, and block-level. In this paper, we only consider gate level

simulation since it provides very accurate activity estimates and is significantly faster than switch-

level simulation, which simulates transitions at the transistor level. Block-level simulation, which

considers larger blocks such as registers, adders, multipliers, memories, and state machines, is not

considered. Gate-level simulation-based reliability estimation involves simulating a Boolean network

consisting of logic gates while keeping track of transitions, both error free and error prone

conditions, in order to determine error probability for each node in the network. During a simulation,

the value at the output of a gate is determined from the values at the input of the gate each time an

input changes. Gate-level simulation is a well studied problem and much effort has been placed on

improving its speed [Burch93, Todorovich02, Betz99]. It is highly accurate compared to probabilistic

methodologies. But, despite many innovations, it comes with the overhead of extremely long run

times for large system-level designs. Moreover, simulation requires input vectors, which are often

not available when designing a new system. Keeping this criterion in mind, we use this methodology

only for final estimation limiting ourselves to use the probabilistic methodology most of the time

during the intermediate computations.

The tool generates random vectors and applies them on the primary inputs of the AIG based

circuit representation. The tool can process multiple simulation runs simultaneously, analyzing how

reliability varies with input vectors. We employ extra xor gates to model the error on each gate to

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 42 of (61)

compute the numbers under ideal and faulty scenario. First of all, we define the following four

important variables:

 pNtk : It is a pointer to the network (circuit) under consideration as shown in Figure 4-1

 pNode: It is a pointer to the node under consideration in the circuit as shown in Figure 4-1

(all the Primary inputs, Internal Nodes & primary outputs will be treated as Node)

 pLeft_Child : It is a pointer to the Left Child of the node under consideration.

 pRight_Child : It is a pointer to the Right Child of the node under consideration.

Figure 4-1 : AIG representation of a circuit

Next, count the number of inverters by traversing through every Internal node and check

whether the left child or right child have inverters or not. If yes, then increase the inverter count.

Repeat the process until all the nodes are traversed and correspondingly increase the AND gate

counter every time a internal node is traversed. Follow the same procedure for counting the number

of inverters for primary output and simultaneously create a dynamic array for storing the values of

Internal nodes and Primary output using `Calloc' function. Once the counting and allocation has been

done the next step is to generate a random pattern for primary inputs as well as for nodes and their

respective left and right Child (these random pattern will be required when modelling the gates to be

faulty).

4.2.2. Mersenne twister & Random Number Generation

For generating random pattern, we can either use rand() or random function() available in C library

but the disadvantage with them is that they have a period of length 232 - 1 and since we will be

running quite millions of simulations so they are high chances of patterns to get repeated and

moreover the patterns generated are correlated to each other. To overcome the problem of the

period length, we used a pseudo random number generator called Mersenne twister. The name has

derived from the concept of Mersenne prime. In mathematics, a Mersenne prime is a prime number

of the form Mn = 2n-1. This is to say that it is a prime number which is one less than a power of two.

The four Mersenne primes are 3, 7, 31 and 127. It has a very long period of 219937 - 1. It is k-

distributed to 32-bit accuracy for every 1 < k < 623. It passes numerous tests for statistical

randomness, including the diehard tests. We have used two commands for manipulating the default

generator.

 mt_seed(void): Choose a seed from random input

 mt_lrand(void): Generates 32-bit random value.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 43 of (61)

Once the random patterns are generated the next task is to apply them to the primary inputs

of the circuits and calculate the output value at each and every internal node by considering the

circuit to be ideal. The computation is carried out as follows: traverse through the node in a

sequential order and for every node calculate the right and left child using the built in function:

 pLeft_Child = Abc_ObjFanin0(pNode_UC);

 pRight_Child = Abc_ObjFanin1(pNode_UC);

After the calculation of the left and right child ,next check whether there is a inverter at the

childs or not by using the function : pNode_UC -> fCompl0 ; if this value is equal to zero then it

indicates that there is no inverter at the left child and if the value is 1 then it indicates the presence

of a inverter at the left child. pNode_UC -> fCompl1: if this value is equal to zero then it indicates

there is no inverter at the right child and if the value is 1 then it indicates the presence of a inverter

at the right child.

Figure 4-2: Error Injection on AND & Inverter gates.

Till now, all the AND gates as well as inverters has been considered to be fault free but to

calculate the reliability we need to model the circuit as faulty .this can be achieved by the use of XOR

gates . A XOR gate is applied just after each gate with one input from the gate and other from a

randomly generated vector as shown in Figure 4-2. Now, the output of the XOR gate will be random

in accordance with the inputs and hence the gates can be regarded as faulty. Once we have both

Ideal and faulty values at all the nodes, we can compute the error probability and in turn the

reliability. To compute the error probability, traverse through each node and check whether the Ideal

value is equal to faulty value. If yes, then increase the error probability count for that node. Repeat

the procedure till all the node have been traversed and keep updating their respective error

probability count after each iteration. After the completion of all the iteration, for each node divide

its error probability count by the no. of iteration to calculate the error probability and repeat the

same for the remaining nodes. Now, the reliability for a particular node can be computed using the

formula:

R(t) = 1 - P(r), (4.1)

where P(r) is error probability.

4.3. Reliability Driven Synthesis

We propose two different methodologies both based on the rewriting technique. The first is

Rule-based resynthesis and the second one being cut rewriting. Rule based resynthesis approaches

rely on searching the graph for specific substructures and replacing these with alternatives. The

search and replacement substructures are hand derived and hard-coded. We introduce set of local

transformation rules for logic optimization from a reliability perspective. These set of rules along an

algorithm to compute the impact of gate errors on the circuit output(s) are integrated unto a

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 44 of (61)

reliability aware logic synthesis tool that applies the transformation rules in a guided fashion on

complex combinational circuits. Evaluation of the tool on a set of MCNC benchmark circuits and

results show a reliability improvement upto 7.5%. The second approach to synthesis is cut rewriting.

A cut is a self-contained subgraph of the main graph having a set number of inputs and a single

output. In cut based rewriting, the cuts that are rooted as a certain node are identified node, and

alternative cuts that compute the same function are evaluated as replacements for that node. A

precomputed forest of possible alternatives is provided from which possible alternatives are

selected. This methodology is much more superior in terms of its performance compared to the

initial methodology proposed.

4.3.1. Rule Based Methodology

The basic idea behind our proposal is to implement reliability aware transformations. We

introduce set of local transformation rules for logic optimization from a reliability perspective. The

proposed transformation rules (i) maintain the logical equivalence of the new circuit with the original

one and (ii) provide a set of standard rules that when applied in a guided fashion would result in

improved circuit reliability. We then study the impact of the gate error probability on equivalent logic

configurations to determine the best realization. The transformation rules are built upon the

application of Boolean algebra logical equivalence laws such as swapping and reduction of variables.

We have evaluated our logic transformation rule set on a test circuit and results show a reliability

improvement in the order of 8%.

4.3.1.1. Local Transformation Rules

In this section, we present the set of transformation rules utilized in our quest for the

reliability optimized implementation of Boolean functions. Most of the details behind the local

transformation rules, its application and others have been reported in previous years report [iRISC-

D5.1]. Only the top level representation of each of the rules is presented in Figure 4-3 for quick

reference.

Figure 4-3: Ad-Hoc Rules used in Logic Optimization.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 45 of (61)

4.3.1.2. Exhaustive Analysis of Rules

Direct mathematical analysis is not feasible to compute the improvement achieved as the number of

variables in the equations used to compute the output error probability are too high. Instead, we set

the input node static probability to 0.5 and the input error probability to 0.01 and perform simulation

using the tool previously described. All the rules have also been investigated for other generic

patterns such as Gaussian. Simulation results for different input patterns confirm that rules [1-4]

improve the reliability of the circuit and hence suggest that they are applicable in any general

scenario. In contrast, rule5 is applicable only under certain circumstances as detailed out later in the

section.

Table 4-1: Different Scenarios for Rule Analysis.

Each of the logical transformation presented in the main paper can be seen a transformation

between two logical equivalent circuit. Mathematical equations that describe the primary output

reliability/error probability in function of the input error probabilities input static probabilities and

the gate error probability of the primary output can be associated with each of this logical equivalent

circuit.

RoOrg = f1{PEI , SPI ,GE}

RoMod = f2{PEI , SPI ,GE}
(4.2)

Unfortunately, even for small circuit, it is not possible to give a complete mathematical

characterization to determine the reliability performance of the circuit configurations from these

equations. Consider a three input graph. Eq. (4.2) has seven variables: three input error probabilities,

three input static probabilities and the gate error probability. It is hence impossible to find a

symbolical solution to determine if and when one function is lower than the other. As an example of

the complexity, apply Eq. (4.2) to Rule4 a closed form equation of the output error probability can be

obtained, however, the resulting polynomial has degree 20. Hence, it is clearly understood that there

exists no simple method to completely define the performance of the two configurations. As an

approximate solution we investigate the behaviour of the equivalent circuits in different scenarios.

We have identified four different patterns that are commonly observed in digital circuits, namely;

Gaussian, reversed Gaussian, monotonically increasing and monotonically decreasing.

We apply these four patterns on the input pins error probabilities as well as static probability

independently assuming the other parameter to be constant. Table 4-1 lists the eight different

scenarios considered for exhaustive testing of the local transformation rules. The set of simulation

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 46 of (61)

results covering all the patterns listed in Table 4-1 are plotted in Figure 4-4 to Figure 4-8. From the

Rule1 plots, we see that considerable reliability improvement is achieved by reducing the node

count. While valid for this specific rule the statement cannot be generalized for any circuit. In our

research, we have observed that intelligent insertion of extra nodes can result in reliability

improvement. The question of how to insert such extra nodes is still an open problem and subject of

future investigation. Rule3 is pre-dominantly applicable on most of the basic communication blocks.

It can have a higher impact factor as xor is the most commonly used configurations in circuits like

cordic, parity encoder etc. Rule4 scales up the reliability numbers by almost 10% in all the cases. The

simulation results presented show how for Rule1 to Rule4 the proposed transformation is beneficial

for all input scenario.

Figure 4-4 : Simulation results for rule1

Figure 4-5 : Simulation results for rule2

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 47 of (61)

Figure 4-6: Simulation results for rule4

Figure 4-7 : Simulation results for rule3

Figure 4-8: Simulation results for rule5

4.3.1.3. Simulation Results

The rules presented have been tested in various conditions and the simulation results show reliability

improvement in every scenario. However, due to the high variable count, it is impossible to derive a

rigorous proof and/or to test for all input scenario. Hence, one cannot generalize the improvement in

all circumstances. As a result, a local optimization search algorithm is used to confirm the reliability

improvement before its application on the circuit. Alg. 1 details the process adopted for performing

local transformations. Starting from the initial circuit configuration, we traverse through the graph to

see if any of the rules are applicable on the given node. For every possible transformation, the new

reliability of the circuit is computed. The configuration that yields the highest improvement in circuit

reliability is fixed and the new topology is generated. This process is continued on every node on the

graph until we reach the primary outputs where no more transformations are applicable.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 48 of (61)

To prove that the whole methodology is scalable, we have run our tool on various MCNC

benchmark circuits. In Table 4-2, Columns 1 and 2 give the name and number of gates in the

benchmark circuit. Column 3 captures the error probability of the original and the optimized circuit

while Column 4 highlights the improvement achieved. The reliability improvement is computed using

Eq. (4.3).

𝑅𝑀𝑒𝑡𝑟𝑖𝑐 =
(∑ 𝑅𝑜𝑟𝑔

𝑛
𝑖=1) − (∑ 𝑅𝑛𝑒𝑤

𝑛
𝑖=1)

∑ 𝑅𝑜𝑟𝑔
𝑛
𝑖=1

 (4.3)

where ’n’ is the number of nodes. Columns 5 list the total number of output nodes and column 6 lists

the count of nodes whose reliability improvement is greater than 0.5%. While for smaller circuits,

there is not many paths which go unoptimized, for larger circuits, this can be quite high. We have

performed a thorough analysis and figured out that the main reason is most of these paths have gate

count less than ’10’.

Table 4-2: MCNC benchmark circuits performance evaluation employing local transformation rules

4.3.2. Cut Enumeration & Boolean matching approach

Rewriting is a common approach to logic optimization based on local transformations. Most

commercially available logic synthesis tools include a rewriting engine that may be used multiple

times on the same netlist during optimization. This section presents an And-Inverter graph based

rewriting algorithm using 4-input cuts. The best circuits are pre-computed for a subset of NPN classes

of 4-variable functions. Cut enumeration and Boolean matching are used to identify replacement

candidates.

4.3.2.1. Primitive Terminology

4.3.2.1.1. Cuts

A cut of a node n is a set C of nodes such that any path from a PI to n must pass through at least one

node in C. Node n itself forms a trivial cut. The nodes in C are called the leaves of cut C. A cut C is K-

feasible if |C| ≤ K; additionally, C is called a K-input cut if |C| = K. An example is shown in Figure 4-9.

The node set {d, f ,g, k} defines a cut C of node l. C is a 4-input cut since it has four leaves, d, f , g, and

k, and every path from a PI to l, if exists, must pass through at least one of them. Nodes i, j, and h are

the internal nodes of the cut. However, set {g, h, i} is not a cut of l, because path a− f −k−l does not

pass through any of the nodes in the set.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 49 of (61)

Figure 4-9: Simple CUT analogy

4.3.2.1.2. NPN equivalence

Two Boolean functions, F and G, are NPN-equivalent and belong to the same NPN equivalence class,

if F can be transformed into G through negation of inputs (N), permutation of inputs (P), and

negation of the output (N) [Hurst1985]. For example, Boolean functions 𝐹 = 𝑎𝑏 + 𝑐 and 𝐺 = �̅��̅� +

�̅�𝑐 are NPN-equivalent, since 𝐺 = �̅� (�̅� + 𝑐) = 𝑎 + (�̅� + 𝑐)̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
= 𝑎 + 𝑏𝑐̅̅̅ ̅̅ ̅̅ ̅̅ ̅ and G can be transformed

from F through

 Negating c,

 Swapping the position of a and c, and

 Negating the output

Table 4-3: Maximum number of NPN-equivalent functions.

N 2 3 4 5 6 7

𝟐𝑵+𝟏𝑵! 16 96 768 7680 92160 1290240

4.3.2.1.3. Boolean matching

Boolean matching is a technique widely used in technology mapping [DeMicheli1990]. It compares a

sub graph with library cells by functionality, with the consideration of functional equivalence. Unlike

structural pattern matching, Boolean matching is normally done by calculating the canonical form

representation of functions under permutation and negation of inputs/output. Thus, a Boolean

matcher can also be used as a canonicalizer. The most obvious and the easiest solution is exhaustive

search. For a function with N inputs, the maximum number of its NPN-equivalent functions is 2N+1N!,

which is huge even for a small N, as shown in Table 4-3.

4.3.2.2. AIG rewriting

AIG rewriting technique presented in [Bjesse2004] is used as a way to compress circuits before

formal verification. Rewriting is performed in two steps. In the first step, which happens only once

when the program starts, all two-level AIG sub graphs are pre-computed and stored in a table by

their Boolean functions. In the second step, the AIG is traversed in topological order. The two-level

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 50 of (61)

AIG sub graphs of each node are found and the functionally equivalent pre-computed sub graphs are

tried as the implementation of the node, while logic sharing with existing nodes is considered. The

sub graph leading to least error on the output node is used as the replacement of the original sub

graph.

An improved AIG rewriting technique for pre-mapping optimization is presented in

[Mishchenko06-a]. It uses 4-input cuts instead of two-level sub graphs in rewriting, and preserves

the number of logic levels so the area is reduced without increasing delay. Additionally, AIG

balancing, which minimizes delay without increasing area, is used together with rewriting, to achieve

better results. Iterating these two processes forms a new technology-independent optimization flow,

which is implemented in the sequential logic synthesis and verification system, ABC [ABC12]. We use

this technique but modify the parameter of optimization from area to reliability.

A cut is a self-contained subgraph of the main graph having a set number of inputs and a

single output. In cut based rewriting, the cuts that are rooted as a certain node are identified node,

and alternative cuts that compute the same function are evaluated as replacements for that node.

For the traditional goals of area and timing, the goals are to reduce the number of nodes and the

depth of nodes, respectively. The rewriting implementation used in ABC attempts to reduce area in

particular, and also not to worsen timing (leaving actual timing improvements to rule-based

synthesis). A precomputed forest of possible alternatives is provided from which possible alternatives

are selected.

To improve the area, ABC’s rewriting algorithm takes a node, and gets a set of cuts of the

node. It then tries alternative implementations for each of these 4- input cuts. For each cut, the

nodes that are computing this function and no other can be removed, and new nodes that aren’t

duplicates of existing nodes must be added. The cut implementation is then scored by the number of

nodes it removes, less the number it must add. For each cut, several function implementations are

tried and the best implementation of any cut is selected and applied to the network. An option to the

algorithm optionally permits zero-improvement cuts, to seek permutations of the network that might

be more amenable to other improvement methods.

Figure 4-10 : Simple logic circuit before (a) and after (b) rewriting.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 51 of (61)

Figure 4-10 shows the effect of cut-based rewriting on the simple logic circuit. Though this

was obtained with ABC’s standard rewriting algorithm, the same result is produced by most of the

algorithms for reliability in this work, due to the simplicity of the circuit.

4.3.2.3. Experimental Results

The main algorithm implemented in this work is called "Rewrite for Reliability" or rwrel for its

command in ABC. A pseudo-code of this algorithm is shown in Alg. 1. This algorithm is based on the

standard cut-rewriting algorithm from ABC, adapted so that the goal is reliability instead of area. Two

versions of the algorithm were developed in this work. The first version selects the least error for

each cut, and then selects the least error cut for the node. The second version instead selects the

most improved cut for each node. A ’percent decrease in error’ goal function is used, written as:

𝑅𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =
𝑃𝜀(𝑜𝑙𝑑𝑐𝑢𝑡) − 𝑃𝜀(𝑛𝑒𝑤𝑐𝑢𝑡)

𝑃𝜀(𝑜𝑙𝑑𝑐𝑢𝑡)
 (4.4)

The rewriting algorithm is applied to each AND-node in the AIG network in topological order.

That is, the nodes connected directly to the inputs are rewritten first and the nodes nearest the

outputs are rewritten last. This search order is easily enforced in ABC since it ensures that the nodes

are numbered in topological order. It is ensured that only nodes that existed in the initial network

are rewritten, since nodes created by the rewriting process will topologically be earlier in the

network but their index numbers will be higher.

For each node, the cut enumerator is invoked to find a set of cuts fanning in to that node.

These cuts are iterated over; taking only those with exactly 4 inputs (the cut enumerator will produce

cuts with up to 4 inputs). For each cut, the truth table of that cut is evaluated, that is the truth table

of the cut output in terms of the cut inputs. The function is converted into the canonical form of the

NPN class, and possible implementations of this are looked up in a precomputed substitution node

forest.

For each alternative implementation, a decomposition (possible alteration) of the network

based on substituting that implementation is formed. The probability of error for the cut is read

directly from the forest. For each cut, the rewrite that gives the least error for that cut is chosen.

Selecting which cut to use to rewrite the node is the difference between the two version of the

algorithm. In the first version, the cut giving least error is chosen. In the second version, the most

improved cut is chosen.

Algorithm 1: Reliability Aware Optimization Employing Cut Enumeration

Require: N, total number of nodes in the AIG network

1. For node N in AIG do

2. Get cuts based at N

3. For 4-input cut C based at N do

4. Get truth-table F of N in terms of C

5. For Possible graph S of function F do

6. Make decomposition D corresponding to cut C

7. Remove original nodes from D

8. Add nodes of S to D

9. IF Level > MaxLevel then

10. Go to Next S

11. end if

12. Compute savings as nodes that can be dropped from network with D

13. Compute cost of adding new nodes.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 52 of (61)

14. Error = Error(S)

15. IF Error < BestError then

16. BestS = S

17. BestD = D

18. end if

19. end for

20. end for

21. Apply decomposition BestD to the AIG

22. end for

This algorithm was implemented as an adaptation of the existing rewriting code in ABC.

Modified versions of the data structures were created to include probability information. The key

functions of the rewriting process were then rewritten to use reliability as a goal. Cut enumeration is

carried out by a dedicated existing ABC module, and is described in more detail below.

The decomposition module of ABC is a module for representing possible modifications of the

network. Decomposition includes the new nodes that must be added or reused (found in the

network by strashing). Nodes in the original cut are marked for removal if they are not needed

elsewhere. In area based rewriting, decomposition must be formed for every implementation of

every cut as building the decomposition is how area change is calculated. All these decompositions

are still built when rewriting for reliability so as to retain the same, known correct, code structure,

even though the decomposition could be delayed and one calculated per cut, since the reliability

information is available in the forest.

In both versions of the algorithm, the rewrite for a given cut is selected for least error, based

on the reliability information in the forest. For the first version of the algorithm the cut that gives

least error is chosen, based on the forest information. For the second version of the algorithm, the

reliability of the initial form of the cut is evaluated as described above, and the improvement

calculated using this. All utility functions from the rewriting module were duplicated, just changing

them to work with the expanded structures instead of the originals. The cut enumeration and

decomposition modules are self-contained and are used directly.

The presented algorithm is implemented using structurally hashed AIG as an internal circuit

representation and integrated in ABC synthesis tool as a command ‘rwrel’. ‘print_rel’ command is

developed to display the network reliability statistics.To evaluate its effectiveness, we performed a

set of experiments using IWLS 2005 benchmarks with more than 5000 AIG nodes after structural

hashing. A unit gate reliability of 10−4 is used throughout. The networks were loaded in from

Berkeley Logic Interchange Format (BLIF) files and strashed to AIGs. Correctness was checked using

the ABC cec equivalence check command, extensively during development as well as spot checks

during evaluation. Having established the correctness and performance of the algorithms, its effect

on the 8051 microcontroller circuits implemented using ACSL were tested.

The results for each test are shown in Table 4-4. In the table, column 1 lists the name of the

benchmark circuit. Column 2&3 provides the number of nodes and output error probability of the

default circuit. The gate count, reliability and the percentage improvement in output error

probability of both the original configuration and the optimized one are computed and tabulated in

columns 4-9. From the table, it is clear that improvement in output error probability employing the

UCC synthesis algorithms provides much better improvement compared to the default algorithms

provided by the standard tool.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 53 of (61)

Table 4-4: Logic Optimization results using cut enumeration technique.

Circuit Default config UCCREL Resynabc

Gates Error Gates Error Improvement (%) Gates Error Improvement (%)

Adder 175 0.01879 224 0.01377 26.68 146 0.01858 1.11

multiplier 631 0.06016 769 0.04751 21.02 487 0.05890 2.09

Divider 1011 0.40089 1183 0.24584 38.68 837 0.32419 19.13

b9 105 0.00655 97 0.00630 3.89 87 0.00624 4.79

cm162a 52 0.00210 53 0.00173 17.73 35 0.00240 -14.08

cm85a 40 0.00220 48 0.00180 18.06 36 0.00159 27.57

Cu 67 0.00289 59 0.00223 22.66 50 0.00254 11.86

Dalu 1735 0.01868 1637 0.01699 9.04 1214 0.02031 -8.73

frg1 659 0.00569 533 0.00471 17.34 491 0.00515 9.55

Pair 1736 0.06542 1854 0.05895 9.90 1381 0.06346 3.00

Unreg 112 0.00551 112 0.00532 3.39 112 0.00551 0.00

Vda 1020 0.15659 1125 0.09768 37.62 875 0.14759 5.74

x2 54 0.00259 57 0.00223 13.70 48 0.00245 5.29

4.4. Power and Delay Driven Synthesis

The circuit is structurally represented as an AIG graph and the longest path delay from one of the

inputs to one of the outputs of the network is calculated under a given delay model. A non-zero-

delay model (corresponding to the AIGs) is assumed which takes into account the delay due to AND

gates, inverters and the fanout. Average power dissipation in digital CMOS circuits can be expressed

as the sum of three main components Pshort−circuit, Pleakage and Pswitching . Pswitching is the switching

power dissipation, also called the dynamic power is proportional to α the switching activity factor

(also called transition probability), Cl the overall capacitance to be charged and discharged in a

reference clock cycle, Vdd the supply voltage and fclk the clock frequency. The difference in arrival

times of signals at a gate input (the difference in the arrival times of the fanins at the AND node),

leads to spurious or unwanted transitions, also called glitches. These spurious transitions play a

major role in dynamic power dissipation. Based on the fanins’ arrival times and the delay of the

node, time instants at which a possible signal transition can occur have been calculated. Figure 4-11

depicts the complete flow for power & timing optimization of combinational circuits.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 54 of (61)

Figure 4-11 : The design flow for power, delay and area estimation

4.4.1. Implementation

Initially our method only targeted low power optimisation schemes. This implies decreasing the

switching power (SP(f)) with no constraints on the longest path delay (MAT(f)) of the network.

According to the conditions for the applicability of any rule, if all the four rules of power optimisation

namely Rp1, Rp2, Rp3 and Rp4 are possible on a given node, then the rule which gives maximum

reduction of switching power is chosen. Same applies when any three rules are possible on a given

node. The rules applied in this method may decrease the switching power greedily but may increase

the MAT(f) of the network largely. The algorithm applied in this implementation is a Greedy

Algorithm [31] i.e. the rules are applied recursively at locally optimal AIG nodes until the minimal

sum of switching power is achieved. The optimisation scheme proposed in this method is local and

more emphasis will be on global and multi-objective optimisation in the further optimisation

schemes. A tool called RESWITCH implemented in C as a sub-package in ABC which performs power

optimisation. The tool OPT-PT is implemented on a set of MCNC Benchmark circuits. To complement

the MCNC benchmark circuits, a set of large-scale random combinational logic circuits were

prepared.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 55 of (61)

Table 4-5: Comparison of OPT-P with the best algorithm in ABC.

Table 4-6: comparison of OPT-T with the best algorithm in ABC.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 56 of (61)

4.5. Conclusion

In this section, we summarized the activities within the development of the multi-objective

optimization & synthesis tool. On top of the probabilistic methodology described in the first year

report, we have also developed a simulation based methodology which is more accurate. An initial

tool incorporating the AIG and some local transformation rules based on Boolean algebra has been

proposed for computing the reliability function and it was demonstrated that through the selective

application of the proposed rules, the reliability could be significantly improved. Application of this

tool on the standard MCNC benchmarks resulted in an average improvement of 4.06% and a peak

improvement of 7.52%. We have also proposed another logic optimization technique based on cut

enumeration and Boolean matching. Version 1 gave an average improvement of 5.11% on the MCNC

benchmarks, with a peak of 27.75%. Version 2 gave an average improvement of 15.33% and peak

improvement of 37.62%. For comparison, standard area-goal rewriting was also tested to see if the

error would reduce on a ’less gates is less to go wrong’ basis. An average improvement of 4.50% was

obtained for standard rewriting on the MCNC benchmarks which is way less than our new

methodologies proposed. The proposed framework will be used to explore systematic multi-

objective optimization methodology of fault tolerant circuits in Task 5.4 during the 3rd year of the

project. We also plan to complete the framework of a single synthesis tool which would optimize

circuits based on all the input constraints; power, delay and reliability, in a single package.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 57 of (61)

5. Conclusion and Next Steps

In this report, we summarized the activities within WP5 for the second year of the i-RISC project.

From the task 5.4 perspective, a new simulation based methodology to study the impact of gate

failure on complex combinational circuits is developed. We proposed two different circuit

optimization methodologies based on local transformation rules have been presented. A synthesis

algorithm based on these rewriting techniques was also presented that improves the circuit

reliability. Application of the synthesis algorithm on the MCNC benchmark circuits with node count

from 30 upto 1500 resulted in improving overall circuit reliability by up to 10%.

Going forward, we plan to extend the local transformation rule set to encompass more

possible scenarios. From a reliability perspective, we believe that the AIG data structure is more

appropriate to represent combinational circuits. In particular the fact that AIG are non canonical (i.e.

there exist more graphs representing the same logic function) can be exploited to further improve

reliability. We intend to extend the reliability evaluator to sequential circuits as well that would

enable us to characterize the more recent and complex IWLS 2005 benchmarks. Intelligent addition

of nodes within the structure can have a huge impact as far as reducing the error on the output node

is concerned. We are currently focussing on developing a solid mathematical based analogy that can

guide our optimization algorithms to insert these nodes automatically based on the structure of the

circuit.

We also started working on the Task 5.5 with a number of encouraging developments on

computing the Boole-Shannon limit for noisy circuits. A preliminary investigation on the various

possible avenues to reach mathematical formulation of what are the limitation and achievable trade

off of the i-RISC approach to error prone circuitry is reported. Two research direction are foreseen for

continue this work. The first it is to understand the implication of the corner scenario cost analysis

presented and expand it into a unify approach that could evaluate all costs

(area/power/throughput/performance) in a multidimensional way. In this direction it would also be

necessary to expand the analysis to non-linear circuits. The second direction would improve the

asymptotical analysis presented to eventually arrive to a formulation of a boole-shannon limit for

ECC and error prone circuitry. The research in this direction should first only consider linear circuits

to obtain fundamental limits in the same way many conceptual limits in telecommunication are

presented/valid only for restricted channels. It is foreseen that formulation of these limit for non-

linear circuit may require years of fundamental research on many mathematical tools before being

possible.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 58 of (61)

References

[ABC12] ABC: A system for Sequential Synthesis and Verification, Berkeley Verification and Synthesis

Research Center, 2012 (www.eecs.berkeley.edu/~alanmi/abc/abc.htm).

[Almukhaizim06] Sobeeh Almukhaizim, Yiorgos Makris, Yu-Shen Yang, and Andreas Veneris.

Seamless integration of ser in rewiring-based design space exploration. In Test Conference, 2006.

ITC’06. IEEE International, pages 1–9. IEEE, 2006.

[Bahar03] I. Bahar, J. L. Mundy, and J. Chen, “A probabilistic-based design methodology for

nanoscale computation,” in International Conference on Computer Aided Design, 2003, pp. 480–486.

[Betz99] V. Betz, J. Rose, A. Marquardt, Architecture and CAD for deep-submicron FPGAs, Kluwer

Academic Publishers, 1999.

[Bhaduri05] D. Bhaduri and S. Shukla, “Nanolab: A tool for evaluating reliability of defect-tolerant

nano architectures,” in IEEE Transactions on Nanotechnology, 4(4), 2005, pp. 381–394.

[Bjesse04] P. Bjesse and A. Boralv, “DAG-aware circuit compression for formal verification,” in

Computer Aided Design, 2004. ICCAD-2004. IEEE/ACM International Conference on, 2004, pp. 42 – 49

[Borkar05] S. Borkar, “Designing reliable systems from unreliable components: the challenges of

transistor variability and degradation,”Micro, IEEE, vol. 25, no. 6, pp. 10–16, 2005.

[Brayton10] R. Brayton and A. Mishchenko, “Abc: An academic industrial-strength verification tool,”

in Proceedings of the 22Nd International Conference on Computer Aided Verification, pp. 24–40,

2010.

[Brayton87] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang, “Mis: A multiple-level

logic optimization system,” Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, vol. 6, no. 6, pp. 1062–1081, 1987.

[Brayton10] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength verification tool”,

Proceedings of CAV'10, Springer, LNCS 6174, 2010, pp. 24–40.

[Bryant86] R. Bryant, “Graph-based algorithms for Boolean function manipulation”, IEEE

Transactions on Computers, Vol. 35, No. 8, 1986, pp. 677–691.

[Burch93] R. Burch, F. Najm, P. Yang, T. Trick, A Monte Carlo approach to power estimation, in IEEE

Trans. on VLSI Systems., Vol. 1, Issue 1, pp. 63-71, 1993.

[Chen14] Chen J; Spagnol, C.; Grandhi, S.; Popovici, E.; Cotofana, S.; Amaricai, A., "Linear

Compositional Delay Model for the Timing Analysis of Sub-Powered Combinational Circuits," VLSI

(ISVLSI), 2014 IEEE Computer Society Annual Symposium on , vol., no., pp.380,385, 9-11 July 2014.

[Choudhury09] M.R. Choudhury, and K. Mohanram, “Reliability analysis of logic circuits.” in IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28(3), 2009, pp. 392–405.

[Constantinescu03] C. Constantinescu, “Trends and challenges in vlsi circuit reliability,”Micro, IEEE,

vol. 23, no. 4,pp. 14–19, 2003.

[Darringer81] J. Darringer, W. H. Joyner, C. Berman, and L. Trevillyan, “Logic synthesis through local

transformations,” IBM Journal of Research and Development, vol. 25, no. 4, pp. 272–280, 1981.

[DeMicheli90] F.Mailhot and G. DeMicheli, “Technology mapping using Boolean matching and don’t

care sets,” in Design Automation Conference, 1990. EDAC. Proceedings of the European, Mar. 1990,

pp. 212 –216.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 59 of (61)

[Diana13] Kai-Chiang Wu and Diana Marculescu. A low-cost, systematic methodology for soft error

robustness of logic circuits. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,

21(2):367–379, 2013.

[Ercolani89] S. Ercolani, M. Favalli, et. al., “Estimate of signal probability in combinational logic

networks,” in Proceedings of the 1st European Test Conference, 1989, pp. 132–138.

[Grandhi14-a] Grandhi, S.; Spagnol, C.; Popovici, E., "Reliability analysis of logic circuits using

probabilistic techniques," Microelectronics and Electronics (PRIME), 2014 10th Conference on Ph.D.

Research in , vol., no., pp.1,4, June 30 2014-July 3 2014.

[Grandhi14-b] Grandhi, S.; Spagnol, C.; Jiaoyan Chen; Popovici, E.; Cotafona, S., "Reliability aware

logic synthesis through rewriting," System-on-Chip Conference (SOCC), 2014 27th IEEE International,

vol., no., pp.274,279, 2-5 Sept. 2014.

[Gallager63] R. G. Gallager. Low-Density Parity-Check Codes . MIT Press, 1963.

[Kuznetsov73] A. Kuznetsov, "Information storage in a memory assembled from unreliable

components," Prob. Inf. Transmission, vol. 9, pp. 254-264, 1973.

[Han11] J. Han, H. Chen, E. Boykin, and J. A. B. Fortes, “Reliability evaluation of logic circuits using

probabilistic gate models,” in Microelectronics Reliability, 51, 2011, pp. 468–476.

[Hadjicostis05] C. N. Hadjicostis and G. C. Verghese, "Coding approaches to fault tolerance in linear

dynamic systems," IEEE Trans. Inf. Theory , vol. 51, no. 1, pp. 210-228, Jan. 2005

[i-RISC/D3.1] FP7-ICT/FET-OPEN/ i-RISC project, Deliverable 3.1, “Fault tolerant LDPC encoding and

decoding”, January 2014.

[i-RISC/D5.1] FP7-ICT/FET-OPEN/ i-RISC project, Deliverable 5.1, “Data Structures and Design Flow for

Fault Tolerant Circuit Synthesis”, January 2014.

 [Kaeslin08] H. Kaeslin, Digital Integrated Circuit Design: From VLSI Architectures to CMOS

Fabrication, 1st ed. New York, NY, USA: Cambridge University Press, 2008.

[Krishnaswamy05] S. Krishnaswamy, G. F. Viamontes, I. L. Markov, and J. P. Hayes, “Ac- curate

reliability evaluation and enhancement via probabilistic transfer matrices.” in Proceedings of the

Design, Automation and Test in Europe, 2005, pp. 282–287.

[Hurst85] S. Hurst, D.Miller, and J.Muzio, Spectral Techniques in Digital Logic. Academic Press, 1985.

[Mehrotra11] R. Mehrotra, T. English, M. Schellekens, S. Hollands, and E. Popovici, “Timing-driven

power optimisation and power-driven timing optimisation of combinational circuits,” Journal of Low

Power Electronics, vol. 7, no. 3, pp. 364–380, 2011.

[Mehrotra13] Rashmi Mehrotra, “Systematic Delay-driven Power Optimisation and Power-driven

Delay Optimisation of Combinational Circuits”, PhD Thesis 2013, University College Cork, cora.ucc.ie.

[Mishchenko06-a] A. Mishchenko, S. Chatterjee and R. Brayton, “Dag-aware AIG rewriting a fresh

look at combinational logic synthesis”, Proceedings of the 43rd annual conference on Design

automation, 2006, pp. 532–535.

[Mishchenko06-b] A. Mishchenko and R. K. Brayton, “Scalable logic synthesis using a simple circuit

structure,” in Proc. IWLS, pp. 15–22, 2006.

[Mischchenko13] A. Mishchenko, N. Een, R. Brayton, M. Case, P. Chauhan, and N. Sharma, "A semi-

canonical form for sequential AIGs", Proc. DATE'13, pp. 797-802.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 60 of (61)

[Mohanram 09] M. Choudhury and K. Mohanram, “Reliability analysis of logic circuits,” Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 28, no. 3, pp. 392–405,

2009.

[Mohanram13] Mihir R Choudhury and Kartik Mohanram. Low cost concurrent error masking using

approximate logic circuits. Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, 32(8):1163–1176, 2013.

[Neumann56] J. Von Neumann, "Probabilistic logics and the synthesis of reliable organisms from

unreliable components", Automata Studies, vol. 34, pp.43 -98, 1956.

[Palem12] K. Palem and A. Lingamneni, “What to do about the end of moore’s law, probably!,” in

Design Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE, pp. 924–929, 2012.

[Patel03] K. Patel, I. Markov, and J. Hayes, “Evaluating circuit reliability under probabilistic gate-level

fault models.” in Proceedings of the International Workshop on Logic Synthesis, 2003, pp. 59–64.

[Pedram96] S. Iman and M. Pedram, “Pose: power optimization and synthesis environment,” in

Design Automation Conference Proceedings 1996, 33rd, pp. 21–26, 1996.

[Pippenger89] N. Pippenger, “Invariance of Complexity Measures for Networks with Unreliable

Gates,” J. Assoc. Comput. Mach. 36, p. 531, 1989.

[Pippenger90] N. Pippenger, “Developments in 'The Synthesis of Reliable Organisms from Unreliable

Gates,” Proceedings of Symposia in Pure Mathematics, pp. 311-324, 1990.

[Rejimon05] T. Rejimon and S. Bhanja, “Time and space efficient method for accurate computation

of error detection probabilities in VLSI circuits,” in IEE Proceedings on Computers and Digital

Techniques, 152(5), 2005, pp. 679–685.

[Rejimon06] ——, “Probabilistic error model for unreliable nano-logic gates,” in 6th IEEE Conference

on Nanotechnology, 1, 2006, pp. 47–50.

[Smita07] Smita Krishnaswamy, Stephen M Plaza, Igor L Markov, and John P Hayes. Enhancing design

robustness with reliability-aware resynthesis and logic simulation. In Computer-Aided Design, 2007.

ICCAD 2007. IEEE/ACM International Conference on, pages 149–154. IEEE, 2007.

[Taylor06] E. Taylor, J. Han, and J. Fortes, “Towards accurate and efficient reliability modeling of

nanoelectronic circuits,” in 6th IEEE Conference on Nanotechnology, 1, 2006, pp. 395–398.

[Taylor-68a] M. Taylor, "Reliable information storage in memories designed from unreliable

components," Bell Syst. Tech. J., vol. 47, pp. 2299-2337,1968.

[Taylor-68b] M. Taylor, "Reliable computation in computing systems designed from unreliable

components," Bell Syst. Tech. J., vol. 47, pp. 2339-2266,Dec. 1968.

[Todorovich02] E. Todorovich, M. Gilabert, G. Sutter, S. Lopez-Buedo, and E. Boemo, A tool for

activity estimation in FPGAs, in the Intl. Conf. on Field-Programmable Logic (FPL), pp. 340-349, 2002.

[Vasic07] Vasic, B.; Chilappagari, S.K., "An Information Theoretical Framework for Analysis and

Design of Nanoscale Fault-Tolerant Memories Based on Low-Density Parity-Check Codes," Circuits

and Systems I: Regular Papers, IEEE Transactions on , vol.54, no.11, pp.2438,2446, Nov. 2007.

[Vittoz14] E. A. Vittoz, Low-Power CMOS Circuits. CRC Press, Nov 2005, ch. Weak Inversion for

Ultimate Low-Power Logic, pp. 1–18, 0.

D5.2: Report on Fault Tolerant Synthesis through ECC Driven Graph Augmentation

© i-RISC, February 2015 Page 61 of (61)

[Vrudhula06] S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao, and S. Vrudhula, “Predictive modeling of

the nbti effect for reliable design,” in Custom Integrated Circuits Conference, 2006. CICC ’06. IEEE,

pp. 189–192, 2006.

