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Abstract

This deliverable presents an overview of the activities carried out within the Work Package 4
(WP4) during the period Month 13 to Month 24 (M13-M24) of the project. These activities
mainly include the analysis and design of low complexity LDPC decoders and corresponding
memory architectures, robust to hardware unreliability.

A special attention is devoted to the decoder analysis under data-dependent logic gate fail-
ures. We propose memory architectures that build on the one-step majority logic decoder, and
develop analytical tools to evaluate their robustness. We also investigate bit-�ipping decodes
built in part from unreliable components, and show they can tolerate a �xed fraction of error.
An improved version of the probabilistic gradient descent bit �ipping algorithm is also proposed,
whose performance under unreliable hardware is shown to be superior compared to other known
hard decision algorithms. In addition, we prove the existence of memory architectures that
achieve an arbitrary small probability of failure under the data-dependent failure model, which
represents the �rst such result for failure models other than the von Neumann model.

Moreover we started investigations on reliable data transport structures and this deliverable
also presents preliminary steps towards the construction of energy e�ective reliable in-chip in-
terconnects. To this end we targeted the Near/Sub-Threshold operating region and proposed
a dual-rail interconnection strategy, which outperforms the single-rail counterpart in terms of
energy consumption at the expense of some area overhead.
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Introduction

This deliverable addresses various issues related to the potential on chip realization of data
storage and transport facilities out of unreliable components. It summarizes the main research
activities carried out during the second year of the i-RISC project, relating to the tasks of Work
Package 4 (WP4) from the Description of Work document. The main objectives of WP4 include
the analysis of state-of-the-art memory architectures under more realistic hardware failure mod-
eling, the design of novel memory architectures able to tolerate data-dependent gate failures, and
the design of new codes that ensure reliable and energy e�ective intra/inter-chip communication.

A Gantt chart of WP4 tasks and their time distribution, which indicates the tasks addressed
and initiated during the period M13-M24, is presented in Figure 1 below. During this period,
the main focus was on the investigation of hard decision LDPC decoders � suited for data
storage and transport applications � and proposing techniques to increase their robustness when
decoding operations are not perfectly reliable. Successful completion of all tasks in this WP
will give us theoretical guidelines for building LDPC codes based low-complexity fault-tolerant
memories and ensuring reliable data transport on unreliable hardware.

Figure 1: Gantt chart of WP4.
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Executive Summary

We summarize below the main technical contributions reported in this deliverable. We discuss
the most important results of our work and highlight their relevance to the overall i-RISC project
strategy.

The following objectives have been addressed during the second year of the project:

Objective 4.1: Proposing novel memory architectures having linear complexity and high
storage capacity that are based on structured LDPC codes.

Objective 4.2: Designing fault-tolerant memories with low redundancy rates.

Objective 4.3: Analysing the robustness of memories designed for tolerating both spatial
and temporally correlated errors.

Objective 4.4: Designing the constrained codes for intra/inter-chip bus connections.

The list of objectives indicates that Task 4.1 � Taylor-Kuznetsov memory architectures based
on structured LDPC codes, Task 4.3 � Design of iterative decoders with the fastest convergence,
Task 4.4 � Fault tolerance for correlated error models and Task 4.5 � On-chip reliable data
transport were mostly investigated during M13-M24. Note that Task 4.2 � Multi-bit �ipping
decoders was also scheduled to be investigated in M13-M24 time period, but most of the work
related to this task was performed during the �rst year of the project and was included in
Deliverable D4.1. Our main technical contributions relating to these tasks can be summarized
below.

Analysis of Taylor-Kuznetsov Memory using One-Step Majority Logic Decoder
(Task 4.1) In Chapter 1 we investigate the reliability of the Taylor-Kuznetsov memory which
employs a faulty one-step majority logic decoder. Contrary to the recent research in which only
the faulty one-step majority logic decoder was considered, we here examine the reliability of the
whole memory construction. Based on a sequence of output errors probabilities at successive
time instants we de�ne a threshold that predicts the noise level which can be tolerated for the
memory to stay reliable. Our analysis is restricted to the independent gate failure model.

Reliable Memories Built of Unreliable Components: Majority-Logic Decoding and
Analysis of Data-Dependent Logic Gate Failures (Task 4.4). The analysis presented in
Chapter 2 completes the work done during the �rst year of project related to one-step majority
logic (O-S-MAJ) decoding. Based on the results presented in Deliverable 4.1, we investigate
the performance of O-S-MAJ decoders in the presence of timing gate failures. We derive the
analytical expressions for the upper and lower bounds on bit error rate, and use it to evaluate the
performance of �nite geometry LDPC codes. As a convenient measure of performance variation
caused by timing gate failures we also de�ne the data-dependence factor. In addition, we propose
the low complexity memory architecture based on O-S-MAJ decoder, which proved to be robust
to data-dependent gate failures.

Expander Graph Arguments for Bit-Flipping Decoders Made of Unreliable Gates
(Task 4.4). In Chapter 3 we examine the simple bit-�ipping (BF) decoder whose check node

12



operations are prone to data-dependent gate failures. We show that expander graph arguments
can be successfully used to establish lower bounds on guaranteed error correction capability of
faulty BF decoders. More precisely, we prove that if underlying Tanner graph has a su�cient
expansion the number of errors that can be tolerated increases linearly with the code length.
Similarly, we prove that the error correction of a noisy BF decoder can also be guaranteed when
Tanner graph of a code has su�cient girth. In addition, we show that memory architecture based
on BF decoder can tolerate a �xed faction of component failures. Based on that conclusion, we
use Chernof bound to prove that in the asymptotic code length our memory architecture achieves
arbitrary small probability of failure under data-dependent failure model. The work presented
in Chapter 3 is of the theoretical importance to overall i-RISC project strategy, since represent
the �rst result on guaranteed error correction of faulty decoders.

MUDRI: A Fault-Tolerant Decoding Algorithm (Task 4.3). Chapter 4 is dedicated to
the design of a novel bit-�ipping algorithm resistant to hardware unreliability. This algorithm
represents an improved version of probabilistic gradient descent bit �ipping (PGDBF) decoder,
presented in Deliverable 3.2. We show that PGDBF decoder can be improved by random re-
initializations of decoding process after certain number of iterations. This modi�cations not only
ensures correction of some error patterns that are uncorrectable by PGDBF, but also increases
the immunity of the decoder to the failures in registers and logic gates. Presented algorithm
outperforms all known BF decoders and represents one of the most important results of WP 4.

Robust Interconnect for Near/Sub-Threshold Region (Task 4.5). In Chapter 5 we
present our initial results towards the construction of energy e�ective reliable data transport
structures. Due to its intrinsic low power consumption we targeted the Near/Sub-Threshold
operating region and proposed a dual-rail interconnection strategy, which outperforms the single-
rail counterpart in terms of energy consumption at the expense of some area overhead. One
remarkable feature of our proposal is the fact that it almost completely eliminates the overshot,
which is very detrimental for signal integrity, thus the dual-rail interconnect we propose exhibits a
built-in level of fault tolerance. Given that preliminary results are promising we plan to continue
this research avenue and investigate the impact of various coding schemes, e.g., constrained
coding, on the energy consumption and reliability of the proposed interconnect scheme when
utilized in larger digital circuits.

13



Chapter 1

Analysis of Taylor-Kuznetsov Memory
using One-Step Majority Logic Decoder

Abstract: This chapter addresses the problem of constructing reliable memories
from unreliable components. We consider the memory construction proposed by Tay-
lor in which a codeword stored in a faulty memory is regularly updated by an LDPC
decoder to overcome the memory degradation. We assume that the LDPC decoder
used in the system is a faulty one-step majority logic decoder. Compared to [1, 2]
which analyze only the faulty one-step majority logic decoder, we analyze here the
reliability of the whole memory construction. We introduce a sequence of output er-
rors probabilities at successive time instants and determine the properties and the
�xed points of the sequence. From the �xed-point analysis, we de�ne a threshold that
predicts the noise level which can be tolerated for the memory to stay reliable. We
�nally represent the reliability regions of the Taylor-Kuznetsov memory with respect
to the decoder noise parameters and validate the theoretical results with Monte-Carlo
simulations.

The work reported in this Chapter has been published in: E. Dupraz, D. Declercq, B. Vasic,
�Analysis of Taylor-Kuznetsov memory using one-step majority logic decoder�, Information The-
ory and Applications Workshop, San Diego, CA, USA, February 2015 [P3]

1.1 Introduction

Over the past few years, important electronic chip size reductions coupled with huge increase
in integration factors have made electronic devices much more sensitive to noise. The hardware
noise may introduce errors during elementary computation operations and may also a�ect the
memory units. As a consequence, there is a need to address the issue of constructing reliable
memories running on faulty hardware.

Taylor [3] and Kuznetsov [4] were the �rst to address the issue of constructing reliable
memories built from unreliable components. In the memory architecture proposed in [3, 4],
the information is stored as a codeword obtained from a Low Density Parity Check (LDPC)
code. The codeword is regularly passed through an LDPC decoder in order to correct the errors
introduced by the faulty hardware. As the LDPC decoders runs on the same faulty hardware
as the memory, it is assumed faulty as well.

More recently, Chilappagari et al. [1, 2] and Brkic et al. [5] considered the use of a faulty
One-Step Majority Logic (OS-MAJ) LDPC decoder in the memory architecture proposed by
Taylor and Kuznetsov. The authors of [1,2,5] analyzed the Bit Error Rate (BER) performance
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of the OS-MAJ decoder alone, but they did not evaluate the reliability of the whole memory
architecture. Vasi¢ and Chilappagari [6] identi�ed an equivalence between a faulty Gallager
B decoder and the memory architecture proposed by Taylor and Kuznetsov. However, they
evaluated the reliability of the memory only through �nite-length simulations. Chilappagari et
al. [7] evaluated the reliability of the memory architecture by providing an analytic expression of
the maximum fraction of errors that can be corrected by the faulty LDPC decoder at successive
time instants. The result in [7] was aimed at providing rigorous conditions for memory reliability,
based on graph expansion arguments. However, computing expansion of large graphs is a hard
problem and as a consequence, the results of [7] are not convenient for the design of a reliable
memory architecture.

In this chapter, we consider the memory architecture of [1,5] with a faulty OS-MAJ decoder.
In this memory architecture, discrete time instants t = 0, . . . , T , are considered, and a codeword
obtained from an LDPC code is stored in memory at initial time instant t = 0. Between two
time instants t and t + 1, the faulty hardware induces a degradation in the memory, which is
represented by a memory degradation parameter α. In order to overcome the memory degra-
dation, the codeword stored in the memory is also passed through a OS-MAJ LDPC decoder
between t and t + 1. As the LDPC decoder runs on the same hardware as the memory, the
faulty hardware introduces some noise inside the decoder. At time instant T , the information
is extracted from the memory. The codeword stored in the memory at time instant T is passed
through a Gallager B LDPC decoder in order to recover the information that was initially stored
at time instant t = 0. The performance of the memory architecture can be evaluated in terms
of redundancy and reliability.

The redundancy was de�ned in [3] as the number of noisy elements required to construct
the memory architecture divided by the memory capability, that is the number of information
bits stored by the memory. It is required that the redundancy does not depend on k, which
induces that the complexity of the memory architecture is linear witk k, so that the memory
architecture can be constructed even for large values of k. The memory is said reliable if at time
instant T , the Gallager B decoder can perfectly recover the information that was stored at time
instant t = 0.

In this chapter, we propose an analytical method to analyze the reliability of the memory
architecture as a function of the memory degradation level α. We �rst express the error proba-
bilities in the memory at successive time instants. Then we analyse the convergence properties
of the sequence of error probabilities and introduce a threshold de�nition that indicates the max-
imum degradation level that the memory can tolerate to stay reliable. This de�nition enables
us to represent reliability regions as a set of degradation levels and decoder noise parameters
for which a reliable storage of information is possible. We also provide �nite-length simulation
results which validate the theoretical analysis.

The outline of the chapter is as follows. Section 1.2 presents the memory architecture and
the faulty OS-MAJ decoder used in the architecture. Section 1.3 derives the sequence of error
probabilities in the memory and analyzes the growing and convergence properties of the sequence.
Section 1.4 introduces the reliability de�nition and the memory threshold de�nition. Section 1.4
also provides the reliability regions. Section 1.5 presents the �nite-length simulation results.

1.2 Fault-Tolerant Memories

In this section, we present the memory architecture and the error model describing the memory
degradation induced by the faulty hardware. The memory architecture and the error model were
originally introduced in [3, 4] and latter considered in [1, 2, 5�7]. We explain how, as initially
proposed by [3], LDPC codes can be used to overcome the memory degradation induced by
the faulty hardware. We then describe the faulty OS-MAJ LDPC decoder used as a correction
circuit.
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Figure 1.1: Information stored in the memory at successive time instants

1.2.1 Memory Degradation

Consider a memory with a storage capability of k bits, and consider the discrete time instants
t = 0, . . . , T . Denote by x(0) the binary information vector of length k initially stored in memory
at time instant t = 0, and denote by x(t) the binary information vector of length k that is in
the memory at time instant t. Let x(t)

v be the v-th component of the vector x(t). The memory
degradation between two successive time instants t and t+ 1 is modeled by a Binary Symmetric
Channel (BSC) of parameter α, which is denoted BSC(α). The BSC gives a symmetric and
memoryless error model. Although such a model may not take into account all the errors
induced by the faulty hardware in a realistic memory, we consider it here as a �rst step for the
analysis.

Unfortunately, because of the memory degradation, the number of errors in x(t) with respect
to x(0) increases with t. For large enough t, x(t) will contain too many errors, and it will not
be possible to recover the initial x(0) from x(t) anymore. In order to overcome this e�ect, the
information vector is encoded by an LDPC code, as described in the following.

1.2.2 Taylor-Kuznetzov Memory Architecture

Le x(0) be a codeword obtained from an LDPC code of dimension k de�ned by a parity check
matrix H of size m × n, with k ≤ m − n. The vector x(0) is stored in the memory at time
instant t = 0, and the memory has a storage capability of k information bits. The Tanner graph
of the code is composed of n Variable Nodes (VN) v ∈ {1, . . . , n} and m Check Nodes (CN)
c ∈ {1, . . . ,m}. The degree of the VN v is denoted as dv and the degree of the CN c is denoted
as dc. Here, the code is assumed to be regular, i.e, dv does not depend on v, and dc does not
depend on c. Denote by N (v) the set of CNs connected to the VN v, and denote by N (c) the
set of VNs connected to the CN c.

Between two successive time instants t and t + 1, the vector x(t) stored in the memory
undergoes two operations, as depicted in Figure 1.1. First, x(t) is passed through BSC(α),
which gives the degraded vector y(t). Second, y(t) is passed through an LDPC decoder called
the refresh decoder. The refresh decoder reads the memory content y(t) at time t and outputs
the vector x(t+1) which is written back in the memory and stored in memory at instant t + 1.
The refresh decoder has to correct most of the errors introduced by the BSC between two time
instant t and t + 1, so that x(t) is never too far away from x(0). Here, the refresh decoder is
a OS-MAJ decoder. We choose a very low complexity OS-MAJ decoder in order to limit the
redundancy of the memory architecture. In addition, as the refresh decoder runs on the same
faulty hardware as the memory, it will be assumed faulty as well.

Finally, when the information has to be extracted from the memory at time instant T , we
allow the use of a second LDPC decoder called the �nal decoder. The �nal decoder has to
reconstruct almost perfectly x(0) from x(T ). Here, the �nal decoder is a noiseless Gallager B
decoder. Indeed, as the �nal decoder is used only once at the end of the storage, we allow it to
be both noiseless and more complex compared to the refresh decoder.
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1.2.3 Refresh Decoder: Faulty OS-MAJ Decoder

We �rst describe the noiseless version of the OS-MAJ decoder. At time instant t, the refresh
decoder receives the degraded vector y(t). As a �rst step of the decoding, each CN c computes
a message γc→v for all the VNs v ∈ N (c) connected to it. Let A = {a1, . . . , ad} be a multiset of
d binary digits and de�ne the function realizing the XOR sum of the d terms of A as

f⊕(A) = a1 ⊕ · · · ⊕ ad. (1.1)

The CN messages are calculated from the function f⊕ as ∀c ∈ {1, . . . ,m}, ∀v ∈ N (c),

γc→v = f⊕

(
{y(t)
v′ }v′∈N (c)\v

)
. (1.2)

From the CN messages it receives, each VN v ∈ {1, . . . , n} computes a decision value ηv. Let
B = {b1, . . . , bd} be a binary multiset of size d, and let a be a binary digit. We de�ne the
majority voting function as

fmaj(B, a) =


1 if |supp(B)| > dv

2

0 if |supp(B̄)| > dv
2

a otherwise
(1.3)

where supp(B) is the support of B, B̄ is the complement of B, and |.| is the cardinality of a set.
The decision values are calculated from the function fmaj as ∀v ∈ {1, . . . , n},

ηv = fmaj

(
{γc→v}c∈N (v), y

(t)
v

)
. (1.4)

At the end of the decoding, each VN is set as x(t+1)
v = ηv. The resulting vector x(t+1) corresponds

to the vector stored in memory at time instant t+ 1.
We now describe the faulty version of the OS-MAJ decoder. Denote by γ̃c→v the noisy

versions of the CN messages γc→v in (1.2), and by η̃v the noisy versions of the decision values ηv.
In order to obtain a faulty version of the OS-MAJ decoder from the above noiseless description,
we replace the noiseless functions f⊕ in (1.1) and fmaj in (1.3) by their noisy versions f̃⊕ and
f̃maj. in (1.4).

The noisy XOR sum function f̃⊕ is de�ned as

f̃⊕(A) = f⊕(a1, . . . , ad)⊕ e⊕ (1.5)

where e⊕ is a random variable distributed according to the Bernoulli distribution with parameter
p⊕. The parameter p⊕ represents the error probability of the function. As for the memory
degradation e�ect, the error model for the XOR sum function is assumed memoryless and
symmetric, as a �rst step of the analysis. With the de�nition of the function f̃⊕ in (1.5), we
assume that the noise applies only at the end of the whole XOR sum computation. Another
model would be to assume that the CN computation is realized from (d−1) 2-inputs faulty XOR
gates, each with error probability pxor,2. However, the two models are equivalent as we have
the relation p⊕ = P (f̃⊕(a1, . . . , ad) 6= f⊕(a1, . . . , ad)) = 1

2 −
1
2(1 − pxor,2)(d−1). It thus su�ces

to calculate the parameter p⊕ from pxor,2 to obtain the error model de�ned by the functionf̃⊕
in (1.5).

The noisy majority voting function f̃maj is de�ned as

f̃maj(B, a) = fmaj(b1, . . . , bd, a)⊕ emaj, (1.6)

where emaj is a random variable distributed according to the Bernoulli distribution with param-
eter pmaj. The parameter pmaj represents the error probability of the majority voting function.
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As for the XOR sum computation, the noise is assumed to be only at the end of function com-
putation. While this model may not capture all the noise e�ects that could appear inside the
majority voting function, it does not require knowledge of a particular hardware implementation
of the function. However, it appears su�cient for the �rst step of the analysis and more accurate
models will be considered in future works. Note that in the faulty OS-MAJ decoder considered
in [1,2,5] the majority voting functions are noiseless and only the XOR gates are assumed faulty.

At the end, because of the refresh decoder, the memory constructed from faulty components
requires more components than the memory built from reliable units. In order to evaluate the
amount of induced additional complexity, the redundancy of the memory architecture can be
evaluated as follows.

1.2.4 Redundancy of the Memory Architecture

The redundancy of the memory is de�ned in [3] as the number of noisy components used in
the memory architecture divided by the memory capability k. For the memory architecture
considered in the paper, the redundancy of the memory is expressed as [7]

Red =
1 +D + dv(dc − 2)

1− dv
dc

. (1.7)

where D is the complexity of the majority voting unit and D depends only on dv. In (1.7), the
�nal decoder is no taken into account as it is used only once at the end of the storage. The
redundancy depends only on the code parameters dv, dc, but does not depend on the memory
capability k. As a result, the complexity of the memory architecture built from unreliable
components is only linear with the memory capability.

Now, we would like to determine whether and for which parameters α, p⊕, pmaj, the con-
sidered memory architecture is reliable. Thus for a �xed code and a given redundancy, we
now analyze the reliability of the considered memory architecture with respect to the memory
degradation parameter α and to the decoder noise parameters p⊕, pmaj.

1.3 Error Probability Evaluation

In this section, we analyze the reliability of the memory by expressing the bit error probabilities
in the successive vectors x(t) stored in the memory at time instants t = 0, . . . , T . We �rst
express analytically the error probability of the faulty OS-MAJ refresh decoder. We then use
this probability to derive the successive error probabilities in the x(t).

1.3.1 Error Probability of the Faulty OS-MAJ Decoder

Here, we �nd the error probability of the OS-MAJ decoder as a function of the memory degrada-
tion level at the input of the decoder. The error probability of the faulty OS-MAJ decoder was
given in [8,9] for di�erent decoder noise error models. We restate it here for the error model we
consider in the paper. For now, assume that the input degradation level is α, which corresponds
to the degradation level in the �rst time interval between t = 0 and t = 1.

The BSC representing the memory degradation and the faulty functions f̃⊕ and f̃maj used
in the decoder are symmetric in the sense of [10]. Thus, from [10], we can assume that the
all-zero codeword was initially stored in memory, which greatly simpli�es the analysis. From the
all-zero codeword assumption, we obtain the error probability of the Majority Logic decoder by
expressing the probabilities of the messages exchanged during the decoding.

Denote by p̃γ = P (γ̃c→v = 1) the probability of a noisy CN message γ̃c→v. Denote by
pη = P (ηv = 1) the probability of a noiseless decision value ηv, and denote by p̃η = P (ηv = 1)
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the probability of its noisy version. The probability p̃γ of the noisy CN message γ̃c→v can be
written as

p̃γ =
1

2
− 1

2
(1− 2p⊕)(1− α)(dc−1). (1.8)

It corresponds to the probability of an occurence of odd number of ones among the (dc − 1)
inputs of the CN, or of an error in the XOR sum computation. The probability pη of the
noiseless decision value ηv is calculated depending on the parity of the VN degree dv. If dv is
odd, pη can be written as

pη =

dv∑
j=d dv2 e

(
dv
j

)
p̃jγ(1− p̃γ)(dv−j) (1.9)

If dv is even, we get

pη =

dv∑
j= dv

2

(
dv
j

)
p̃jγ(1− p̃γ)(dv−j)

− (1− α)

(
dv
dv
2

)
p̃
( dv2 )
γ (1− p̃γ)(

dv
2 ). (1.10)

In both cases, pη corresponds to the probability of a majority of 1 digits at the input of the
noiseless majority voting unit.

We now express the error probability of the decoder. Denote ν = (p⊕, pmaj) the decoder noise

parameter pairs. The error probability Pe,ν(α) = P (x
(1)
v = 1|x(0)

v = 0) of the faulty OS-MAJ
decoder can be calculated from pη as

Pe,ν (α) = pη(1− pmaj) + (1− pη)pmaj. (1.11)

The error probability Pe,ν (α) of the decoder is equal to the probability p̃η = P (ηv = 1) of the
noisy decision value ηv. The error probability Pe,ν (α) depends on the input noise level α, and
on the decoder noise parameters p⊕, pmaj.

The expression of the error probability Pe,ν (α) in (1.11) can now be used to evaluate the
successive error probabilities in the memory.

1.3.2 Successive Error Probabilities in the Memory

In this section, we want to derive the expressions of the error probabilities in the x(t) at successive
time instants t = 0, . . . , T . In order to do this, we also give the expressions of the degradation
levels in the y(t) at successive time instants t = 0, . . . , T . As before, from the symmetry of
the functions and error models considered in the memory architecture, we can assume that the
all-zero codeword was initially stored in memory. According to the memory architecture de�ned
in Section 1.2, the successive degradation levels in the y(t) and the successive error probabilities
in the x(t) are given in the following proposition.

Proposition 1. Denote β
(t)
ν (α) the degradation level in y(t) with respect to x(0), i.e., β(t)

ν (α) =

P (y
(t)
v = 1|x(t)

v = 0). The successive degradation levels β
(t)
ν (α) can be expressed recursively as

β(1)
ν (α) = α, (1.12)

and ∀t > 1,

β(t)
ν (α) = (1− α)Pe,ν

(
β(t−1)
ν (α)

)
+ α

(
1− Pe,ν

(
β(t−1)
ν (α)

))
. (1.13)

19



The error probabilities in the successive x(t) are given by δ
(t)
ν (α) = P (x

(t)
v = 1|x(0)

v = 0), and

δ(t)
ν (α) = Pe,ν

(
β(t)
ν (α)

)
, ∀t ≥ 1. (1.14)

The initial β(1)
ν (α) is given by the fact that y(1) is the output of BSC(α). At time instant

(t − 1), the stored vector x(t−1) has error probability Pe,ν
(
β

(t−1)
ν (α)

)
and is passed through

BSC(α). The resulting y(t−1) can be seen as the output of the concatenation of BSC(α) and of

BSC
(
Pe,ν

(
β

(t−1)
ν (α)

))
, respectively, which gives the expression of β(t)

ν (α) in (1.13). The faulty

decoder then produces x(t) from its input y(t), and as a result, the error probabilities in the
successive x(t) are given by the δ(t)

ν (α) in (1.14).
Proposition 1 gives the recursive expression of the sequences {β(t)

ν (α)}+∞t=1 and {δ(t)
ν (α)}+∞t=1

of error probabilities in the memory. In the following, we analyze the sequence of {β(t)
ν (α)}+∞t=1

instead of the sequence of {δ(t)
ν (α)}+∞t=1 . Indeed, we are more interested in the degradation levels

that the memory can tolerate than in the successive error probabilities. This is in compliance
with the conventional analysis of LDPC decoders in which we de�ne a threshold on the channel
parameter.

The memory will be reliable if the successive degradation levels are small enough so that at
any time instant, we can guarantee that x(t) is in a close proximity of x(0) and can be recovered
by a perfect Gallager B decoder. In order to be able to check this condition for various values
of α, p⊕, pmaj, and for di�erent choices of LDPC codes, we �rst analyze the increasing and

convergence properties of the sequence {β(t)
ν (α)}+∞t=1 .

1.3.3 Sequence Properties

In this section, we �rst analyze the increasing properties of the sequence {β(t)
ν (α)}+∞t=1 . The

properties of the sequence {β(t)
ν (α)}+∞t=1 are stated in the following Proposition.

Proposition 2. Consider the sequence {β(t)
ν (α)}+∞t=1 given in Proposition 1.

1. Fix p⊕ and pmaj. If the function α→ Pe,ν (α) is increasing with α, then

∀α < 1/2, β(t)
ν (α) ≤ β(t+1)

ν (α). (1.15)

2. Fix p⊕ and pmaj. If the function α→ Pe,ν (α) is increasing with α, then

∀t > 0, α1 ≤ α2 ⇒ β(t)
ν (α1) ≤ β(t)

ν (α2). (1.16)

3. Fix α, pmaj, and denote ν1 = (pxor,1, pmaj), ν2 = (pxor,2, pmaj). If the function p⊕ →
Pe,ν (α) is increasing with p⊕, then

∀t > 0, pxor,1 ≤ pxor,2 ⇒ β(t)
ν1 (α) ≤ β(t)

ν2 (α). (1.17)

4. Fix α, p⊕, and denote ν1 = (p⊕, pmaj,1), ν2 = (p⊕, pmaj,2). If the function pmaj → Pe,ν (α)
is increasing with pmaj, then

∀t > 0, pmaj,1 ≤ pmaj,2 ⇒ β(t)
ν1 (α) ≤ β(t)

ν2 (α). (1.18)

Proof.
1) The proof is made recursively.
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First compute β(2)
ν (α) = α(1 − 2Pe,ν (α)) + Pe,ν (α) ≥ α. The inequality come from (1 −

2Pe,ν (α)) > 0. As β(1)
ν (α) = α, we get β(2)

ν (α) ≥ β(1)
ν (α).

Then assume that β(t)
ν (α) ≥ β(t−1)

ν (α) and compute

β(t+1)
ν (α)− β(t)

ν (α)

= (1− 2α)
(
Pe,ν

(
β(t)
ν (α)

)
− Pe,ν

(
β(t−1)
ν (α)

))
≥ 0.

The inequality come from the above assumption. At the end, we get β(t+1)
ν (α) ≥ β(t)

ν (α), which
proves (1.15).

2) Compute

β(t+1)
ν (α2)− β(t+1)

ν (α1)

= (1− 2α1)Pe,ν

(
β(t)
ν (α1)

)
+ (1− 2α2)Pe,ν

(
β(t)
ν (α2)

)
+ (α1 − α2)

≥ 0,

which proves (1.16)

3) The proof is made recursively. We �rst show that Pe,ν
(
β

(1)
ν1 (α)

)
≤ Pe,ν

(
β

(1)
ν2 (α)

)
and

that β(2)
ν1 (α2) ≤ β

(2)
ν2 (α). We then assume that at step t, Pe,ν

(
β

(t)
ν1 (α)

)
≤ Pe,ν

(
β

(t)
ν2 (α)

)
and

β
(t)
ν1 (α2) ≤ β(t)

ν2 (α), and we show that this is also true at step t+ 1.
The proof for 4) is the same as the proof for 3).

Proposition 2 assumes that the function Pe,ν (α) is increasing with α and with the decoder
noise parameters. Although it is reasonable to assume that the error probability of the faulty
decoder increases with the BSC parameter and with the decoder noise parameters,the results
of [11, 12] show that the second assumption is not always true. For example, for the discrete
Min-Sum decoder with 7 quantization levels for the messages, the authors of [11] observe that the
noise in the decoder can sometimes improve the decoder performance compared to the noiseless
case. The same e�ect is observed for the Probabilistic Gradient Descent Bit-Flipping decoders
introduced in [12]. As a consequence, Proposition 2 does not hold for such decoders. On the
other hand, for the faulty OS-MAJ decoder, we can show that the function Pe,ν (α) is increasing
with α and with the decoder noise parameters. As a consequence, for the memory architecture
we consider in the chapter, higher values of α, p⊕, pmaj, will lead to increased degradation levels

β
(t)
ν (α).
Proposition 2 also shows that the successive degradation levels β(t)

ν (α) are increasing with
t. As a result, even with the refresh decoder, the faulty memory keeps degrading the stored
information. However, we hope that the sequence of degradation levels {β(t)

ν (α)}+∞t=1 converges
to a �xed point which is no too high, so that the initial x(0) can always be recovered from x(t),
even for large values of t. In order to verify this condition, we now analyze the convergence
behavior of {β(t)

ν (α)}+∞t=1 .

1.3.4 Fixed-point analysis

Here, we analyze the asymptotic behavior of {β(t)
ν (α)}+∞t=1 by determining the �xed points of the

sequence {β(t)
ν (α)}+∞t=1 . The �xed points of the sequence {β(t)

ν (α)}+∞t=1 are the values β satisfying
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β = (1− α)Pe,ν (β) + α(1− Pe,ν (β)), or equivalently if α 6= 1/2,

Pe,ν (β) =
β − α
1− 2α

. (1.19)

From the condition (1.19), the �xed points of the sequence of {β(t)
ν (α)}+∞t=1 correspond to the

intersection of the curve representing Pe,ν (β) and the straight line y = β−α
1−2α . This gives a very

simple condition to determine the �xed points of {β(t)
ν (α)}+∞t=1 . Note that if Pe,ν (1/2) = 1/2

(which is always satis�ed), then β = 1/2 is always a �xed point of {β(t)
ν (α)}+∞t=1 , whatever the

value of α is.
The �xed points correspond to the possible limits of the sequence {β(t)

ν (α)}+∞t=1 . We know
that β = 1/2 is always a �xed point, but it is a bad one for which we cannot recover the original
x(0) from x(t). Thus, we hope that the sequence {β(t)

ν (α)}+∞t=1 has other �xed points which
correspond to degradation levels that can be handled by the �nal decoder. In the following, we
propose a de�nition of the memory reliability that accounts for this condition.

1.4 Reliability Conditions

In this section, we give a de�nition of the reliability of the memory. The reliability de�nition
relies on the above asymptotic analysis on the sequence of degradation levels {β(t)

ν (α)}+∞t=1 . From
the reliability conditions, we propose a threshold de�nition that determines the set of degradation
parameters α that lead to a reliable storage of information.

1.4.1 Reliability Conditions

The reliability conditions we give here are based on the reliability conditions originally introduced
in [3, Section 2.2]. The following de�nition adapts the reliability conditions of [3] to our analysis
of the convergence properties of the sequence {β(t)

ν (α)}+∞t=1 .

De�nition 1. Consider the memory architecture of Section 1.2 and �x the parameters α, p⊕,

pmaj. Consider the sequence {β(t)
ν (α)}+∞t=1 given in Proposition 1. Denote B the set of �xed-

points of {β(t)
ν (α)}+∞t=1 excluding 1/2, and denote by β? the threshold of the noiseless Gallager B

decoder.
A memory is said to be reliable for the parameters α, p⊕, pmaj, if the following three condi-

tions are veri�ed

1. Bounded redundancy: The redundancy Red of the memory does not depend on the memory
capability k,

2. Stability: The set B is nonempty,

3. Admissibility: The set B is such that maxB ≤ β?.

The condition 1 requires bounded redundancy. From (1.7), The condition 1 is always ful�lled.
The conditions 2 and 3 are related to the asymptotic analysis of the successive degradation levels
in the memory. The condition 2 requires that the sequence {β(t)

ν (α)}+∞t=1 has �xed points other
than β = 1/2. It guarantees that the memory is stable in the sense that the degradation
levels converge to a �xed point. The condition 3 ensures that the �xed point corresponds to a
degradation level that can be handled by the �nal decoder.

The validity of Conditions 2 and 3 depend on the value of the memory degradation parameter
α, and on the decoder noise parameters p⊕ and pmaj. In order to identify the set of parameters
α, p⊕, pmaj, that lead to a reliable memory, we introduce a threshold de�nition as follows.

22



1e-3 1e-2 1e-1
1e-3

1e-2

1e-1 (3,6)-code
(3,5)-code
(3,4)-code

α

P
e,
ν(
α
)

Figure 1.2: Error probabilities w.r.t. α, for p⊕ = 10−3, pmaj = 10−3 and Codes with dv = 3

1.4.2 Threshold De�nition

The following threshold de�nitions were introduced for LDPC codes in channel coding. The
noiseless threshold in [13] was de�ned as the maximum channel parameter α such that Pe,ν (α) =
0. This condition cannot be applied here because of the noise introduced by the faulty hardware,
which prevents the decoder from reaching an error probability 0. This is why several other
threshold de�nitions were introduced for noisy decoders: the useful threshold [14], the target-
BER threshold [14, 15], and the functional threshold [16]. However, these threshold de�nitions
cannot be used in our context, because they characterize the behavior of the faulty decoder
alone. Here, we introduce a new threshold de�nition that takes into account the dynamic of the
whole memory architecture.

De�nition 2. Consider the memory architecture of Section 1.2 and �x the decoder noise pa-
rameters p⊕, pmaj. The degradation threshold is de�ned as

α = arg max
α
{The memory is reliable in the sense of De�nition 1}. (1.20)

The degradation threshold is de�ned as the maximum parameter α for which the memory
is reliable. In the above de�nition, the decoder noise parameters p⊕ and pmaj are �xed, and the
threshold is only on α. Indeed, α is the parameter of the memory, while p⊕ and pmaj are the
parameters of the correction circuit, and we want to express the threshold in terms of reliability
of the memory elements.

At the end, the degradation threshold enables to characterize the set of parameters α, p⊕,
pmaj, that lead to a reliable memory. These parameters can be represented in the form of
reliability regions, as described in the following.

1.4.3 Reliability Regions

In this section, we provide reliability regions as the set of parameters α, p⊕, pmaj, that lead
to a reliable memory. We consider regular LDPC codes of VN degree dv = 3 and CN degrees
dc = 4, dc = 5, dc = 6, respectively. For the faulty OS-MAJ decoder, we set p⊕ = 10−3, and
pmaj = 10−3. In order to verify the reliability of the memory for given parameters α, p⊕, pmaj,
we need the expression Pe,ν (α) of the error probability of the faulty OS-MAJ decoder. Thus we
�rst discuss the curves representing Pe,ν (α) as a function of α.

The error probabilities Pe,ν (α) are calculated from (1.11). Figure 1.2 shows Pe,ν (α) as a
function of α for the codes of VN degree dv = 3. We see that the error probability increases with
α but does it very slowly for small α. However, there is no distinguishable threshold value on α
that would separate the low and the high error probability regions. However, from the analysis
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Figure 1.3: Reliability regions w.r.t p⊕, for pmaj = 10−3
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Figure 1.4: Reliability regions w.r.t pmaj, for p⊕ = 10−3

carried in the chapter, we can identify a memory threshold by analyzing the properties of the
sequence {β(t)

ν (α)}+∞t=1 , as illustrated in the following.
For the codes with dv = 3, Figure 1.3 represents the threshold values ᾱ obtained from

De�nition 2 with respect to p⊕ Figure 1.3 thus gives the reliability regions with respect to p⊕.
As expected, the reliability regions shrink with the code rate increase. The reliability regions are
convex, even for large values of p⊕. When the decoder noise parameter p⊕ becomes too large,
the threshold value ᾱ becomes 0, which means that the decoder noise is too high to enable the
memory to be reliable . Figure 1.4 represents the reliability regions with respect to pmaj. We
get the same conclusions as before.

We conclude this section by a remark that the analysis of the chapter and the threshold
de�nition enable characterization of the set of parameters α, p⊕, pmaj, for which the memory
is reliable. To verify the accuracy of the characterization, we now give �nite-length simulation
results.

1.5 Finite-length Simulations

In this section, we evaluate at �nite length the reliability of the memory architecture we consider
in the chapter. We consider regular LDPC codes of dimension k = 400 with VN degree dv = 3
and CN degrees dc = 4, dc = 5, dc = 6, respectively.

Figure 1.5 represents the BER of the Faulty OS-MAJ Decoder for the three considered codes
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Figure 1.6: BER w.r.t. α of the memory architecture with p⊕ = 10−3 and pmaj = 10−3 and
T = 200

with p⊕ = 10−3 and pmaj = 10−3. The curves are very similar to the curves of Figure 1.2 that
represent the error probabilities with respect to α. The only di�erence is that the curves of
Figure 1.5 are closer to each other than the curves of Figure 1.2.

Figure 1.6 represents the BER for the whole memory architecture after T = 200 time instants
for the three codes with p⊕ = 10−3 and pmaj = 10−3. As expected, when the rate of the code
increases, the BER increases. We see that when α becomes too large, the BER after T = 200
is too high and the memory is not reliable anymore. The value α for which the memory is
not reliable anymore should correspond to the threshold value ᾱ. However, here, for the three
considered codes, this value α is smaller than the threshold. Indeed, the analysis carried in
the chapter is an asymptotic analysis and as a consequence, the �nite-length results are more
pessimistic. Increasing the size of the memory may reduce the gap between the asymptotic
results and the �nite-length results.

Figure 1.7 represents the BER for the whole memory architecture after T = 200 time instants
for the code with dc = 6, for several values of p⊕ and pmaj. As expected, the memory is
less reliable when the decoder noise increases. In particular, for p⊕ = pmaj = 5 × 10−2 and
p⊕ = pmaj = 10−2 , the memory is not reliable, whatever the value of α.
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Figure 1.7: BER w.r.t. α of the memory architecture with p⊕ = 10−3 and pmaj = 10−3 and
T = 200

1.6 Conclusion

In this chapter, we provided an analysis of the reliability of the memory architecture proposed by
Taylor [17] and Kuznetsov [18]. We expressed the successive error probabilities in the memory
and we introduced a threshold de�nition to characterize the set of memory degradation param-
eters and decoder noise parameters that lead to a reliable memory. The results of the paper
can be extended to irregular codes and to other refresh decoders, such as faulty Gallager A or
B decoders with a small number of iterations.
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Chapter 2

Reliable Memories Built of Unreliable
Components: Majority-Logic Decoding
and Analysis of Data-Dependent Logic
Gate Failures

Abstract: In this chapter we propose a memory architecture build from unreli-
able components. The data are stored as codewords of an error correction code and
corrected by an one-step majority logic decoder between periodic updates of mem-
ory registers. The decoder is also made of unreliable logic gates whose failures are
transient and data-dependent. A closed-form expression for the average residual bit
error rate after one memory update cycle derived in [5] is used for �nding bounds
on the one-step majority logic decoder performance under the gate timing errors.
In addition, we investigate the ability of the proposed memory to store information
over time. We proved that the proposed memory architecture is reliable under the
adversarial failure model. We illustrate the results by numerical examples of memory
architectures which employ �nite geometry codes.

The work presented in this chapter has been submitted for publication in: S. Brkic, P. Ivanis, B.
Vasic, �Reliable memories built of unreliable components: majority-logic decoding and analysis
of data-dependent logic gate failures�, IEEE Transactions on Communications (submitted) [P5]

2.1 Introduction

Increased integration factor of integrated circuits together with stringent energy-e�ciency con-
straints result in an increased unreliability of today's semiconductor devices. As a result of
supply voltage reduction and the process variations e�ects, a fully reliable operation of hard-
ware components cannot be guaranteed [19]. Error control coding as a method for adding
redundancy to ensure fault-tolerance of systems build of unreliable hardware was introduced in
the late sixties and early seventies by Taylor [3] and Kuznetsov [4] in the context of reliable
storage. In their memory system, the information sequence, encoded by a low-density parity-
check (LDPC) code, is stored in unreliable memory registers, which are periodically updated
using a �noisy� correcting circuit. It was proved that, under the so called von Neumann failure
model, such a memory even with a number of redundant gates linear in memory size is capable
of achieving arbitrary small error probability [3], i.e. has non-zero storage capacity.
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The equivalence between Taylor-Kuznetsov (TK) fault-tolerant memory architectures and a
Gallager-B decoder built from unreliable logic gates was �rst observed by Vasi¢ et al. in [20]
and [7], and developed by Vasi¢ and Chilappagari [6] into a theoretical framework for analysis
and design of faulty decoders of LDPC codes and using them to build reliable memories made
of unreliable components. Recent research in this area has been aimed to two main directions:
(i) achieving reliable storage and (ii) reliable transmission of information.

The modi�ed TK scheme was introduced by Ivkovic et al. in [1], where it was shown that
by adding a simple syndrome checker, build from reliable hardware, the performance of TK
scheme can be signi�cantly improved. The existence of a reliable memory based on a modi�ed
bit-�ipping algorithm was shown by Chilappagari and Vasi¢ in [21] and [20], who proposed a
memory architecture that can tolerate a �xed fraction of errors in registers and logic gates based
on expander LDPC codes.

Performance of the ensemble of LDPC codes under faulty iterative decoding was studied by
Varshney in [14], who showed that, under the von Neumann failure model, the density evolution
technique is applicable to faulty decoders which he used to examine the performance of faulty
Gallager-A and belief-propagation algorithms. Density evolution analysis of the noisy Gallager-
B decoder was presented in the series of complementing papers by Yazdi et al. in [22] and [23]
and by Huang et al. in [24]. In [22] the authors studied the performance of the binary Gallager-B
decoder used to decode irregular LDPC codes and proposed optimal resource allocation of noisy
computational units, i.e. variable and check nodes of varying degrees, in order to achieve minimal
error rate. The faulty decoder of non-binary regular LDPC codes was analyzed in [23] in the
presence of von Neumann errors. In [24] a more complicated failure model was considered, which
includes transient errors and permanent memory errors. Similar analysis was done by Leduc-
Primeau and Gross in [25], where the faulty Gallager-B decoder improved by message repetition
scheme was studied. More general �nite-alphabet decoders were investigated by Huang and
Dolecek in [26], while a noisy min-sum decoder realization was considered by Ngassa et al.
in [27] and by Balatsoukas-Stimming and Burg in [15]. Dupraz et al. [28] have improved the
notion of a noisy threshold by introducing the so called functional threshold, which accurately
characterizes the convergence behavior of LDPC code ensembles under noisy �nite-alphabet
message passing decoding.

Although complex soft-decision iterative decoders build from reliable components typically
outperform the low-complexity majority logic decoders, this is not necessarily true for faulty
decoders. The complex Boolean functions are more sensitive to hardware unreliability, which
may lead to pronounced vulnerability, as shown in a case of the noisy quanti�ed min-sum
decoder [27]. On the other hand, the probabilistic gradient decent bit �ipping decoder, recently
proposed by Al Rasheed et al. in [12], performs approximately the same on both perfect and
faulty hardware. This resulted in an increased interest in hard-decision decoders.

One-step majority logic (O-S-MAJ) decoding introduced in the sixties by Rudolf [29] and
Massey [30] is an important class of algorithms in the context of faulty decoding. In the O-S-MAJ
decoder the decoding process is terminated after only one iteration, and the bit estimates are
obtained by a majority vote on multiple parity check decisions. In contrast to iterative decoders,
the bit error rate performance of these decoders can be evaluated analytically for �nite-length
codes as shown by Radhakrishnan et al. [31].

In all the above references a special type of so called transient failures is assumed. Transient
failures manifest themselves at particular time instants but do not necessarily persist for later
times. These failures have probabilistic behavior and we assume the knowledge of their statistics.
The simplest such statistics is the von Neumann failure model [32], which assumes that each
component of a (clocked) Boolean network fails at every clock cycle with some known probability.
Additionally, the failures are not temporally nor spatially correlated. In other words, failures of
a given component are independent of those in previous clock cycles and independent of failures
of other components.
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However, the von Neumann failure model is only a rough approximation of the physical
processes leading to logic gate failures. The actual probability of failure of logic gates is highly
dependent on a digital circuit manufacturing technology, and for high integration factors the
failures are data-dependent and/or temporally correlated as it was shown by Zaynoun et al.
in [33]. For example, timing errors are heavily dependent on data values processed by the gate
in previous bit intervals and cannot be represented accurately by the von Neumann model.

The three main contributions of this chapter the following: (i) the memory architecture which
uses O-S-MAJ decoders with faulty XOR gates for correcting failures in memory registers, (ii)
a general approach to modeling of data-dependent gate faults based on Markov chains, and
(iii) analysis of the e�ects of gate faults due to timing errors to memory reliability. Markov
chain model captures the e�ects of data-dependent and correlated nature of gate failures. In
this chapter we continue the analysis presented in Deliverable 4.1 where we derived a closed
form expression of the residual bit error rate (BER) at the output of the one-step majority logic
decoder for an ensemble of regular LDPC codes free of four-cycles. Here, we investigate in�uence
of timing gate failures on the performance of �nite geometry LDPC codes.

The rest of the chapter is organized as follows. In Section 4.2 the preliminaries on O-S-MAJ
decoding are discussed. In Section 2.3 we give a description of our memory architecture and
novel approach to gate failure modeling. Section 2.4 is dedicated to the theoretical analysis of
the one-step majority logic decoder. The special case of the timing failure model, while the
capability of the memory to store information over time is investigated in Section 2.5. The
numerical results are presented in Section 2.6. Finally, some concluding remarks and future
research directions are given in Section 4.5.

2.2 Preliminaries

2.2.1 Decoding of LDPC Codes

Let C be a (γ, ρ)-regular binary LDPC code of length n, with a parity check matrix H and code
rate r ≥ 1− γ/ρ. The parity check matrix can be represented with a bipartite graph called the
Tanner graph. Each column in the parity check matrix corresponds to a variable node and each
row corresponds to a check node in the Tanner graph, and a variable node v and a check node c
are adjacent if and only if Hc,v = 1. We denote a set of edges incident on a node x in a Tanner
graph (x can be either variable or check node) as Ex. A vector x = (x1, x2, ..., xn) is a codeword
if and only if HxT = 0 (mod 2).

A codeword x is stored in a memory, and when read from the memory each bit xv is �ipped
by probability α and observed as rv. We refer to rv as value of the variable node v. The number
of �ipped bits is called the Hamming distance between the stored codeword x and the read-back
word r, and is denoted as dH(x, r).

The O-S-MAJ decoder is implemented as expressed in Algorithm 1.

Algorithm 1 O-S-MAJ Decoder:

Input: r = (r1, r2, . . . , rn)
for ∀v do
r̂v ← rv
∀e ∈ Ev : me ←

⊕
e′∈Ec\{e} re′

if |{e ∈ Ev : me = s}| > bγ/2c then
r̂v ← s

end if
end for
Output: r̂ = (r̂1, r̂2, . . . , r̂n)
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Figure 2.1: The memory architecture scheme.

A check node makes an estimate of the variable node value based on the other variable
nodes. The value of variable node itself is not used in its estimation. Majority of bit estimates
determine the decoded bit value.

2.2.2 Transient Gate Failures

Let f : {0, 1}m → {0, 1}, m > 1, be an m-argument Boolean function. The relation between
the input arguments y1, y2, . . . ym and the output z of a perfect gate realizing this function is
z = f(y1, y2, . . . , ym). For a faulty gate, this input-output relation is z = f(y1, y2, . . . , ym) ⊕ e,
where ⊕ is the Boolean XOR and the error e ∈ {0, 1} is a Bernoulli random variable. Denote
by y = (y1, y2, . . . , ym) the gate input vector, i.e. a vector of arguments. Denote by {y(k)}k≥0

a time-sequence of input vectors, and by {e(k)}k≥0 the corresponding failure sequence. In the
manuscript we will interchangeably use the terms �failure� and �error� meaning that the fail-
ures are �additive� errors. In a classical von Neumann transient failure model the error values
{e(k)}k≥0 are independent of input sequence {y(k)}k≥0.

2.3 System Model

2.3.1 The Memory Architecture

We analyze the O-S-MAJ decoding in the context of reliable information storage, as presented
in Fig. 2.1. A collection of Nc � 1 codewords x(1),x(2), . . . ,x(Nc), denoted as {x(k)}k∈[1,Nc],
is stored in an unreliable memory registers, which are periodically updated based on the error
correction scheme. The memory unreliability is modeled by an n-dimensional binary random
variable E de�ned over {0, 1}n with independent entries Ej such that Pr{Ej = 1} = α, 1 ≤ j ≤
n. The values read form the memory can be described by random variables R(k) = E ⊕ x(k),
where their particular realizations are denoted as r(k), 1 ≤ k ≤ Nc. The memory registers are
updated by the round-robin scheduling principle, which means that k-th codeword registers r(k)

are updated in (a−1)Nc+k, a ∈ N, memory update cycles. During an update cycle the sequence
r(k) is decoded by the faulty O-S-MAJ decoder and replaced by the newly estimated sequence
r̂(k). The registers update mechanism is formally expressed in Algorithm 2.

The memory architectures that use error correcting schemes are characterized by two closely
related parameters: complexity and redundancy. The memory complexity is de�ned as the total
number of components within the memory required to store a single bit or perform 2-input
Boolean function [3]. The redundancy of a memory architecture is the ratio of the complexity of
the memory to the complexity of an irredundant memory built from perfectly reliable registers,
which store the same number of information bits [3].
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The O-S-MAJ decoder needs ρ (ρ − 1)-input XOR gates at each check node, and γ-input
majority logic (MAJ) gate at every variable node. It is known that the (ρ− 1)-input XOR gate
can be implemented as serial concatenation of ρ−2 2-input XOR gates. As there are nγ/ρ check
nodes, the total number of 2-input XOR gates needed for the decoder implementation is equal
to nγ(ρ− 2). We denote the complexity of the γ-input MAJ gate as Dγ .

Algorithm 2 The memory registers update in L cycles:

Input: {r(k)}k∈[1,Nc]

j ← 1
while j ≤ L do
k ← mod (j,NC)
for ∀v do
r̂

(k)
v ← r

(k)
v

∀e ∈ Ev : me ←
⊕

e′∈Ec\{e} r
(k)
e′

if |{e ∈ Ev : me = s}| > bγ/2c then
r̂

(k)
v ← s

end if
end for
j ← j + 1

end while
Output: {r̂(k)}k∈[1,Nc]

The memory build from reliable registers does not use error correcting scheme and its com-
plexity is equal to nrNc, where r represents code rate of a LDPC code used in a memory with
redundance. Then, the memory redundancy can be expressed as follows

R = n(Nc +Dγ + γ(ρ− 2))/(rnNc) ≤ (Nc +Dγ + γ(ρ− 2))/((1− γ/ρ)Nc). (2.1)

The memory redundancy is independent of n and remains bounded for in�nite code lengths.
The �nal bit decision in a O-S-MAJ decoder is made on the basis of majority of the bit

estimates, resulting in the probability of error of an estimated bit greater than or equal to the
probability of failure of the MAJ gate. Since the error probability of the MAJ gate lower bounds
the BER performance, MAJ gates must be made highly reliable. Otherwise, the probability of
error is determined by this �nal gate, not the error control scheme. Thus, it is reasonable to
make an assumption that MAJ gates are perfect and that only XOR gates are faulty. Reliable
MAJ gates can be realized, for example, by using larger transistors. It should be noted that TK
memory scheme also requires perfect MAJ gate implementation for the �nal step of extracting
user information [3].

We are interested in �nding the residual error rate after the decoding scheme. For that
purpose we may assume that the sequence of codewords {x(k)}k≥0 is transmitted through the
communication Binary Symmetric Channel (BSC) with crossover probability α and then suc-
cessively decoded by a single O-S-MAJ decoder built from perfect MAJ gates and faulty XOR
gates. Before proceeding to this derivation we discuss a realistic model of XOR gate failures.

2.3.2 Data-Dependent Error Model

There are two types of hardware failures considered in this chapter: memory register failures and
XOR logic gate failures. The memory registers failures can be modeled as spatially independent
uniformly distributed random variables with the same probability of failure for each of the
memory register [34]. On the other hand, the gate failures are dependent on gate input patterns
and can not be represented in the same manner as memory failures [33].
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In order to capture more accurately the data and time dependence of the failures we use
Markov chains. Namely, we assume that e(k), the error at time k, is a�ected by the current
and M − 1 prior consecutive gate input vectors, i.e., its probability depends on the input vector
sequence in the time interval [k − (M − 1), k], denoted as {y(j)}j∈[k−(M−1),k], where M is a
positive integer. Denote this probability by Pr{e|s(k)}, where the gate state s(k) at time k is
de�ned as s(k) = {y(j)}j∈[k−(M−1),k]. As previously stated, in our O-S-MAJ decoder only XOR
gates are unreliable. The number of states grows exponentially with M and ρ, i.e., for an
(ρ− 1)-input XOR gate used in our decoder there are 2M(ρ−1) states.

The inputs of a (perfect) MAJ gate are the outputs of γ XOR gates in the neighbor-
ing check nodes. Thus, at time k these gates can be associated with a state array σ(k) =

(s
(k)
1 , s

(k)
2 , . . . , s

(k)
γ ), whose elements represent states of particular XOR gates. Based on σ(k), an

error probability vector can be formed as ε(k) = (ε
(k)
1 , ε

(k)
2 , . . . , ε

(k)
γ ), ε(k)

m = Pr{e|s(k)
m }, 1 ≤ m ≤ γ.

The values of the error probability vector can be obtained by measurements or by simulation of
the selected semiconductor technology. Thus, in our analysis we assume that these values are
known.

2.4 Decoder Analysis under Timing Errors

Timing errors in logic gates are caused by so-called timing violations. The gate timing violation
happens due to the supply voltage reduction, sampling clock �uctuations or signal propagation
delays, when the output signal of a gate is sampled or used in the next stage before it reaches a
steady value, leading to an incorrect output. Treating these errors represents a major challenge
in new energy-e�cient CMOS technologies [33]. Timing errors depend on a gate history, i.e.
data values processed by the gate in previous bit intervals. As an erroneous output of a logic
gate occurs only if the gate output changes its values, it is usually su�cient to consider the
failure dependence on data in current and only one previous bit interval, i.e. M = 2. Thus,
two disjoint subsets of faulty XOR gate states, denoted as S1 and S2, can be identi�ed. The
�rst subset S1 is constituted by states in which gate output remains unchanged and for which
the failure is impossible, i.e. Pr{e|s(k)} = 0, ∀s(k) ∈ S1. If a gate output changes its value,
the failure is possible and the states from the subset S2 have non-zero error probabilities. For
simplicity, we assume that these error probabilities are the same, i.e. Pr{e|s(k)} = ε, ∀s(k) ∈ S2.

Let {x(k)}k≥0 be a codeword sequence stored in the memory registers. Clearly, decoding
error of x(k) depends on M − 1 codewords previously read from the memory. Let ym,v =

{y(j)
m,v}j∈[k−(M−1),k], 1 ≤ m ≤ γ, 1 ≤ v ≤ n, be sequence of code bits that, if stored with

no errors, will appear at inputs of m-th XOR gate connected to node v, in the time interval
[k − (M − 1), k].

The XOR gate output will remain unchanged if gate input vectors from two consecutive time
points k−1 and k, k > 1, are the same or di�er in an even number of positions. Thus, for example,
the m-th XOR used for decoding the bit xv will produce correct output, at time k, if the vectors
written in the memory y

(k−1)
m,v and y

(k)
m,v satisfy the relation mod (dH(y

(k−1)
m,v ,y

(k)
m,v), 2) = 0 and

no memory errors occur. Similarly, the gate output will be erroneous with the probability ε if
all bits are stored without errors and mod (dH(y

(k−1)
m,v ,y

(k)
m,v), 2) = 1. However, the gate input

vectors parity can be changed due to memory failures, when an odd number of gate inputs from
two consecutive time points are �ipped. The probability of the collection of all such events is
equal to

A =

ρ−2∑
j=0

(
2(ρ− 1)

2j + 1

)
α2j+1(1− α)2ρ−2j−3. (2.2)

Therefore, we can conclude that the gate output will be erroneous with the probability εA when
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the relation mod (dH(y
(k−1)
m,v ,y

(k)
m,v), 2) = 0 is satis�ed. Let all XOR gates with this property,

used for decoding the bit xv, form a set Gv. Similarly, Hv is composed of all the gates for which
mod (dH(y

(k−1)
m,v ,y

(k)
m,v), 2) = 1.

Let Pv(α, ε(t)) be the probability of miscorrection of code bit v under error probability vector
ε(t). The derivation of Pv(α, ε(t)) was explained in Deliverable 4.1 in details. We now extend
the previous discussion on faulty XOR gates and formulate the lemma that describes the data-
dependence of O-S-MAJ decoding.

Lemma 1. Let x(k−1) and x(k) be the codewords decoded in two consecutive bit intervals. The
faulty O-S-MAJ decoder will operate worst if the cardinality of the set Gv, |Gv| = 0, 1 ≤ v ≤ n,
while the best performance corresponds to decoding of the consecutive codewords for which |Gv| =
γ, 1 ≤ v ≤ n.

Proof: The failures of XOR gates from the set Gv happen with probability Aε, while the
failure rate under condition that a gate is an element of the Hv is equal to (1 − A)ε. Since
A < 0.5 a gate from Hv will be erroneous more often. The proof of lemma follows from the fact
that the probability Pv(α, ε) monotonically increases with increase of hardware unreliability, i.e.
for every ε(t1) and ε(t2) with property ε(t1)

m ≤ ε(t2)
m , 1 ≤ m ≤ γ holds Pv(α, ε(t1)) ≤ Pv(α, ε(t2)). �

The previous lemma reveals a fundamental property of the O-S-MAJ decoding performance
under data dependent hardware failures: dependence on codewords decoding order. It can be
seen that, for example, decoding of two the same codewords will result in the lowest error rate,
while if two complementary codewords are consecutively decoded the decoder will operate worst.

The O-S-MAJ decoder built entirely from reliable components satisfy the symmetry theorem,
which states that performance of the decoder are independent of codewords being decoded. We
see that the symmetry condition does not hold for the O-S-MAJ decoding in the presence of
timing errors. The negative e�ect of data-dependence can be reduced by optimizing the encoding
process. However, this is out of scope of this paper and left for future research.

Let the cardinality of the set Gv, be equal to |Gv| = tv. The bit miscorrection probability
depends only on the number of non-zero elements of ε, but not on its order. Thus, we can simplify
the notation by introducing ε(t) = (ε

(t)
1 , ε

(t)
2 , . . . , ε

(t)
γ ): an error probability vector with t non-zero

elements. This allows as to formulate the following corollary that gives the bit miscorrection
probability under timing errors.

Corollary 1. The probability that a code bit xv of a (γ,ρ)-regular LDPC code is incorrectly
decoded by the faulty O-S-MAJ decoder under timing errors is given by

P̄v(tv) =

γ∑
t=0

Pv

(
α, ε(t)

) tmax∑
j=tmin

(
tv
j

)(
γ − tv
t− j

)
Aγ+2j−tv−t(1−A)tv+t−2j , (2.3)

where, tmin = max(t+ tv − γ, 0) and tmax = min(tv, t).
Proof: The probability that j non-zero failure rates in ε(t) originated from the set Gv and

t − j from the set Hv is equal to
(
tv
j

)(
γ−tv
t−j
)
Aγ+2j−tv−t(1 − A)tv+t−2j . The sum of all possible

ways that t non-zero failure rates can appear represents the contribution of Pv
(
α, ε(t)

)
in the

overall miscorrection probability value. The �nal summation for all γ + 1 values of t gives the
bit miscorrection probability. �

Based on Lemma 1 and Corollary 1 we can measure the e�ect of data-dependence by bound-
ing BER values, as described in the following lemma.

Lemma 2. The conditional average bit error rate of a (γ, ρ)-regular LDPC code decoded by the
faulty O-S-MAJ decoder in the presence of timing errors is bounded by

γ∑
t=0

(
γ

t

)
At(1−A)γ−tPv

(
α, ε(t)

)
≤ P̄e(x(k)|x(k−1)) ≤

γ∑
t=0

(
γ

t

)
Aγ−t(1−A)tPv

(
α, ε(t)

)
. (2.4)
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Proof: According to Lemma 1 the lower bound is obtained by setting tv = γ in Eq. (2.3).
Similarly, the upper bound can be calculated by setting tv = 0. �

The bounds presented in Eq. (2.4) are obtained under conditions described in Lemma 1, i.e.
they represent the lowest and the highest possible BER values. These bounding values depend
on all parameters γ, ρ, ε and α and can di�er by orders of magnitude. The analysis of decoder
performance under timing errors for the several classes of LDPC codes is presented in Section
2.6.

2.5 Analysis of TK-based Memories

In the previous section we have analyzed the memory system in which multiple codewords
represent memory content, meaning that di�erent codewords are decoded in the consecutive bit
intervals. We found the residual error rate after one decoding cycle. Here, we investigate ability
of the memory based on the O-S-MAJ to preserve information over time.

We assume that only one codeword is stored in our memory presented in Fig. 2.1 (Nc = 1).
The bit values stored in the registers are updated at regular time instants (τ, 2τ, . . . , Lτ, L ∈ N),
by the O-S-MAJ decoder presented in Sections 4.2 and 2.3. It is also assumed that the time for
update is smaller compared to τ and that the memory content do not change while the update
is in progress.

We investigate memory architecture under the adversarial failure model. In the adversarial
model the number of components failures at any given time is upper bounded, i.e. only a fraction
of components can be faulty [21]. Let αm be the fraction of errors that can a�ect the memory
registers between memory correcting cycles and let α⊕ be the fraction of erroneous XOR gates
used for decoding a single bit during the every correcting cycle. The majority logic gates are
considered to be reliable as in the previous sections. We are interested in �nding the fraction of
errors that can be tolerated by our memory architecture. It is given by the following theorem.

Theorem 1. The proposed memory architecture build from LDPC codes free of four cycles can
preserve all stored information bits for an arbitrary long time period if

nαm + γα⊕ ≤ bγ/2c. (2.5)

Proof: Since for four-cycle free LDPC codes the number of orthogonal parity check sums
for each bit is equal to column weight of the code parity check matrix, the O-S-MAJ decoder
can correct up to bγ/2c codeword errors. In other words, each bit will be decoded correctly if
the number of incorrect estimates at inputs of a MAJ gate is no greater then bγ/2c. In a noisy
decoder incorrect estimate can also appear due to an unreliability of a XOR gate. In the worst
case tm memory errors can produce tm incorrect estimates and, similarly, t⊕ XOR failures can
lead to t⊕ incorrect estimates. Thus, each bit will be correctly decoded if tm + t⊕ ≤ bγ/2c. If
total number of errors in the time interval τ is bounded by the previous condition, after every
correcting cycle in the memory registers only correct values of bits are written. Therefore, Eq.
(2.5) is obtained by noting that tm = nα and t⊕ = α⊕γ. �

If all the XOR gates were perfect, the fraction of memory failures that can be tolerated
would correspond to a correcting capability of a code. The presence of gate failures reduces the
correcting capability of a code by the factor γα⊕. It can be seen that, under the condition given
by Theorem 1, the O-S-MAJ decoder can correct all memory errors that appeared between two
update cycles. In such a way the number of erroneous registers is never larger then nαm. In the
next section, we illustrate Eq. (2.5) with examples of memories based on projective geometry
codes.

Additionally, under the data-dependent error model, gate failures are dependent on failures
of the memory registers. This is especially pronounced in the case of timing errors where the
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�xed fraction of memory failures cause the �xed fraction of gate failures. Then, Eq. (2.5) can
be simpli�ed as in the following corollary.

Corollary 2. The proposed memory architecture under timing errors can tolerate the �xed frac-
tion of memory failures αm if

αm ≤
1

n

⌊γ
6

⌋
. (2.6)

Proof: Consider the memory registers connected to a particular XOR gate. If in the previous
correcting cycle all memory errors were corrected the output of a XOR gate during the current
cycle can be erroneous only if the total number of memory failures in both current and previous
decoding cycles is odd.

Let FL be a set of all faulty memory registers between the (L − 1)-th and L-th update
cycle. From the initial condition follows |FL| ≤ αmn, for any L > 0. It is clear that the
maximal number of faulty XOR gates correspond to the case when FL−1 ∩ FL = ∅. Then, the
total number of faulty XOR gates used for decoding a particular bit is bounded by 2αmn. The
Eq. (2.6) can be obtained by incorporating the previous observation into expression (2.5), from
Theorem 1. �

The previous corollary is important because it de�nes the condition under which memory
failures can be corrected during the memory update cycle regardless of the XOR gate reliability.
In other words, if the number of faulty memory registers is less then bγ/6c, the memory content
can be stored correctly under timing errors with arbitrary high XOR failure rates.

Note that Eq. (2.6) does not guarantee positive storage capacity since the fraction of memory
failures reduces with code length increase. In order to prove that memory based on O-S-MAJ de-
coder has positive storage capacity under timing error model we use expander graph arguments.
This is presented in the next chapter of the deliverable.

2.6 Numerical Results

2.6.1 Decoder Performance under Timing Errors

The codes designed from �nite geometries are considered to be important one-step majority logic
decodable codes [35�37]. It was proved that for a LDPC code derived from �nite geometries,
with column weight γ, the O-S-MAJ decoder can correct up to bγ/2c errors [31]. In this section
we investigate 2-dimensional a�ne and projective geometry LDPC codes form over the Galois
�eld GF(2s), denoted as AG(2, 2s) and PG(2, 2s) codes, s > 0, respectively. The a�ne geometry
codes, AG(2, 2s), have the parity check matrix with row weight ρ = 2s + 1 and column weight
γ = 2s and minimum distance dmin = 2s + 1. The PG(2, 2s) code is characterized by column
and row weights equal to ρ = γ = 2s + 1 and minimum distance dmin = 2s + 2.

The average bit error probabilities for several PG and AG codes under timing errors are
presented in Fig. 2.2. The performance upper bounds are calculated using Eq. (2.4) for the case
of two gate error rates ε = 10−3, 10−2 and compared to the case of ε = 0, i.e. with the perfect
decoder. It should be noted that lower bounds values correspond to rare hardware failures and
can be well estimated using

γ∑
t=0

(
γ

t

)
At(1−A)γ−tPv

(
α, ε(t)

)
≈ Pv (α, (0, . . . , 0)) , (2.7)

and for that reason they are omitted from Fig. 2.2.
It can be seen that frequent hardware failures can lead to signi�cant performance degradation.

This degradation is especially pronounced in the region with low memory failure rates. For
example if α = 10−3, extremely unreliable XOR gates (with ε = 10−2) can reduce the bit error
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Figure 2.2: Analytically calculated BER bounds for di�erent LDPC codes constructed from
�nite geometries.
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Figure 2.3: The data-dependence factor values for di�erent (γ, ρ) classes of LDPC codes (ε =
10−2).

rate for an order of magnitude for all the presented codes. On the other hand, hardware failures
corresponding to ε = 10−3, cause notably smaller performance loss. Performance loss is lower
for higher s, which results in negligible BER degradation for codes with s = 4, i.e. AG(2, 24)
and PG(2, 24). Since ε = 10−3 is considered to be a large value of the gate failure probability,
the O-S-MAJ is in general proved to be resistant to hardware unreliability. For smaller values
of ε (ε < 10−3), the BER degradation is negligible for all the analyzed codes.

As a convenient measure of performance variation caused by timing errors we de�ne the
data-dependence factor, F , as ratio of two border BER values, given by Lema 2, as follows

F =

∑γ
t=0

(
γ
t

)
At(1−A)γ−tPv

(
α, ε(t)

)∑γ
t=0

(
γ
t

)
Aγ−t(1−A)tPv

(
α, ε(t)

) . (2.8)

The values of F for di�erent (γ, ρ) classes of LDPC codes are presented in Fig. 2.3. It can be
seen that the degradation is higher in codes with larger column weights. For example, when
α = 10−3, for codes with γ = ρ = 5, the BER upper bound is two order of magnitude higher
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then the corresponding lower bound. As correcting capability of the code increases with γ, it is
interesting to notice that the better codes are more susceptible to negative e�ects of hardware
failures, for the same ρ value. Additionally, it can be shown that the performance loss can be
reduced by increasing row weight of H.

2.6.2 Tolerable Error Region

The condition given in Theorem 1 is graphically interpreted in Fig. 2.4, for several PG codes.
The region below the curves describes all fractions of errors that can be tolerated. It can be seen,
for example, that memory architecture based on PG(2, 4) code can provide successful information
storage even if fractions close to 10% of all memory registers and XOR gates are erroneous during
the time interval τ . Although the codes with higher column weights can correct more errors in
absolute scale, the number of memory components also increases resulting narrower tolerable
region for these codes.

2.7 Conclusion

Although the von Neumann error model is suitable for theoretical evaluation of fault-tolerant
systems, use of the results obtained under this error model is limited. In practice, unreliability of
logic gates is usually data-dependent and correlated in time. Hence, in order to describe hardware
unreliability phenomenon more accurately, the change of modeling paradigm is required. We
advocate use of Markov chains, which provide more general modeling approach.

We proposed a low complexity memory architecture, build from simple XOR and MAJ
logic gates, that can operate well under unreliable gate computation. Then, based on data-
dependent gate failure model, we developed an analytical method for performance evaluation
of the proposed memory architecture. Our method enables calculating the BER of any regular
LDPC code of girth at least six. These BER values are highly dependent on the codewords
stored in the memory and we have succeed to bound them for the case of timing errors. We
have also studied the ability of the proposed memory to preserve information over time.

The future research includes the investigating fault-tolerant schemes which use other types
of LDPC decoders, under data-dependent hardware failures. We are working on generalization
of tolerable error region results to more complex memory architectures, such as, for example,
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�nite-alphabet LDPC decoders. Based on the structural property of Tanner graphs of LDPC
codes we are also investigating possibility of designing novel decoders that can work well under
data-dependent hardware failures.
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Chapter 3

Expander Graph Arguments for
Bit-Flipping Decoders Made of
Unreliable Gates

Abstract: In this chapter we investigate the fault-tolerant decoders based on the
bit �ipping algorithm for low-density parity-check (LDPC) codes, in the presence of
data-dependent logic gate failures. Based on the expander property of the Tanner
graph of the LDPC code, we prove that the number of worst case errors that can
be corrected by the bit �ipping algorithm, built in part from unreliable logic gates,
increases linearly with the code length. In addition, we give conditions under which
a memory architecture based on the bit �ipping algorithm can preserve the stored
information for an arbitrary long time period.

3.1 Introduction

Due to huge density integration increase, lower supply voltages, and variations in technological
process, complementary metal-oxide-semiconductor (CMOS) and emerging nanoelectronic de-
vices are inherently unreliable. Moreover, the demands for energy e�ciency require reduction
of energy consumption by several orders of magnitude, which can be done only by aggressive
supply voltage scaling. Consequently, the signal levels are much lower and closer to the noise
level, which reduces the component noise immunity and leads to unreliable behavior. It is widely
accepted that future generations of circuits and systems must be designed to deal with unreliable
components [19]. Recently, there has been a surge in interest in error control schemes that can
ensure fault-tolerance in unreliable hardware. The only known class of codes resilient to logic
gate faults are low-density parity-check (LDPC) codes [4,20,38]. Their attractiveness lays in the
theoretical guarantee that the decoding hardware overhead required to ensure reliable operation
grows only linearly with the code length even when logic gates are faulty [3]. Such fault tolerant
decoders are based on message-passing and bit-�ipping decoding algorithms, which unlike more
complex algorithms, limit the error propagation in a decoder caused by faulty logic gates.

This research is mostly motivated by the studies of fault-tolerant memories based on the
LDPC decoders presented in the late sixties and early seventies by Taylor [3] and Kuznetsov [4].
In their pioneering works they proposed a memory architecture build entirely from unreliable
components, capable of preserving stored information over arbitrary long time. Their memory
is composed of an unreliable memory registers which are periodically updated using a faulty cor-
recting circuit. It was later observed by Vasi¢ et al. in [6,7,20] that an update cycle corresponds
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to one iteration of a Gallager-B decoder, built from unreliable logic gates.
Both Taylor and Kuznetsov as well as most of the related work [1�4, 6, 7, 12, 14, 15, 20�28]

modeled logic gate unreliability as transient independent failures, originally introduced by von
Neumann [32]. In the von Neumann failure model each component of a (clocked) Boolean
network fails at every clock cycle with some known probability. Additionally, failures of a given
component are independent of those in previous clock cycles and independent of failures of other
components. Although the simplicity of this model makes it attractive for theoretical analysis,
it is unrealistic. In practice, the unreliability of logic gates is strongly data-dependent and
correlated in time. The most dominant e�ect in new energy-e�cient CMOS technologies a logic
gate unreliability comes from the so-called timing violations, which happen when a gate output
changes its value [33]. The logic gate failures resulting from timing violations are called timing
failures. Their statistics and e�ects to gate reliability has been recently studied by [5].

In this chapter, we consider timing failures. More speci�cally, we investigate the error cor-
rection capabilities of the bit �ipping decoders, and show that expander graph arguments can
be used to establish lower bounds on guaranteed error correction capability. Additionally, we
extend results presented in [39] and prove that the error correction of a noisy bit �ipping decoder
can also be guaranteed when Tanner graph of a code has su�cient girth.

Furthermore, following the work presented in [21], we investigate the conditions under which
the memory architecture based on the bit �ipping decoder, as a correction circuit, can preserve
information over time, and provide upper bounds on fraction of component failures that can be
tolerated. Then, based on the Cherno� bounds, we prove that in the asymptotic code length
our memory architecture achieves arbitrary small probability of failure under data-dependent
failure model.

Guaranteed error correction of LDPC codes and iterative decoders have been studied in
numerous papers, but with rather limited results. Although Gallager [40] proved the existence
of (γ ≥ 3, ρ > γ)-regular LDPC code, for which, under certain conditions, error rate approaches
zero asymptotically, he failed to show that iterative decoders can correct �xed fraction of errors
if there exist some α, 0 < α < 1 for which the decoder can correct αn worst case errors, where
n is the code length.

Zyablov and Pinsker [41] analyzed parallel bit �ipping algorithm and proved that asymptot-
ically, almost all codes in the regular code ensemble with left degree γ ≥ 5, can correct �xed
fraction of error. Sipser and Spielman [42] showed that expander LDPC codes can be conve-
niently used for guaranteed error correction analysis. They proved that both serial and parallel
bit �ipping algorithms can correct �xed fraction of error if the underlying Tanner graph is a
good expander. In the later work Burshtein [43] generalized results presented in [41] and [42]
and proved that a linear number of errors can be corrected by parallel bit �ipping algorithm
with almost all codes in (γ ≥ 4, ρ > γ)-regular ensemble. The expander graph arguments can be
also used to provide guarantees of the message passing algorithms, at is was shown by Burshtein
and Miller in [44]. Feldman et al. in [45] investigated linear programming (LP) and derived
theoretic bounds for LP decoding of expander LDPC codes. Recently, Chilappagari et al. [39]
provided another look on the guaranteed error correction of the bit �ipping algorithms. They,
found the relation between the girth of the Tanner graph and the guaranteed error correction
capability of an LDPC code.

Recent research on noisy LDPC decoders has been aimed to two main directions: (i)
achieving reliable storage (see [1, 6, 7, 20, 21]) and (ii) reliable transmission of information
(see [2, 12,14,15,22�28]).

The modi�ed Taylor-Kuznetsov scheme was introduced by Ivkovic et al. in [1], where it was
shown that by adding a simple syndrome checker, build from reliable hardware, the performance
of the memory scheme can be signi�cantly improved. The existence of a reliable memory based
on a modi�ed bit-�ipping algorithm was shown by Chilappagari and Vasi¢ in [21] and [20],
who proposed a memory architecture that can tolerate a �xed fraction of error in registers and
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logic gates based on expander LDPC codes. Varshney in [14] used the density evolution tool to
investigate the memory architecture based on Gallage-A decoder and obtained a tight bound on
the memory storage capacity, under von Neumann gate failure model. His approach is limited to
the data-independent gate failures, and it is not applicable for the case of timing failures. In this
chapter we overcome this problem by proving that the number of component failures that can be
tolerated increases with the code length, which for in�nite code length leads to perfectly reliable
memory. This represents the �rst prove of the reliable memories existence under data-dependent
gate failures.

The rest of the chapter is organized as follows. In Section 3.2 the system model is presented,
where preliminaries on LDPC codes, decoding algorithm and failure models are discussed. Sec-
tion 3.3 is dedicated to the theoretical analysis of the noisy bit �ipping decoder, while the
capability of the memory to store information over time is investigated in Section 3.4. Finally,
some concluding remarks and future research directions are given in Section 3.5.

3.2 System Model

3.2.1 LDPC Expander Codes and Decoding Algorithm

Let G = (U,E) be a graph with set of nodes U and set of edges E. An edge e is an unordered
pair (v, c) which connects two neighborly nodes v and c. The cardinality of the set U , denoted
as |U | represents the order of the graph and, while |E| de�nes the size of the graph. The set
of neighbors of a particular node u is denoted as N (u). The number of neighbors of a node u,
denoted as d(u) is called the degree of u. The average degree of a graph G is d̄ = 2|E|/|U |.

The girth g of a graphG, is the length of smallest cycle inG. A bipartite graphG = (V ∪C,E)
is a graph constructed from two disjoint sets of nodes V and C, such that all neighbors of nodes
in V belong to set C, and vice versa. The nodes in V are called variable nodes and nodes from
V are check nodes. A bipartite graph is said to be γ-left-regular if all variable nodes have degree
γ, and similarly, a graph is ρ-right-regular if all check nodes have degree ρ.

Consider a (γ, ρ)-regular binary LDPC code of length n and its graphical representation
given by γ-variable node-regular and ρ-check node-regular Tanner bipartite graph G, with nγ/ρ
check nodes and n variable nodes. Let Ev (Ec) be the set of neighbors of variable v (check c).
In this paper we only consider expander codes, i.e. LDPC codes whose Tanner graphs satisfy
expansion property de�ned as follows.

De�nition 3. [42] A Tanner graph G of a (γ, ρ)-regular LDPC code is a (γ, ρ, α, δ) expander
if for every subset S of at most an αn variable nodes, at least δ|S| check nodes are incident to
S.

The codeword of the expander code is transmitted through communication channel and
decoded by the parallel bit-�ipping decoder, which can be summarized as follows [42]:

• In parallel, �ip each variable that is in more unsatis�ed than satis�ed parity checks.

• Repeat until no such variable remains.

In order to characterize the decoder build from unreliable components it is not su�cient to
give only its functional description. The decoder performance are highly dependent on the way
how the decoder is implemented at the circuit level. In this paper the hardware unreliability is
modeled at logic gate level, which means that the correction capability of the decoder depends on
the type of the gates used in the decoder and their mutual connections. Our decoder is divided
into processing units that correspond to nodes in Tanner graph representation of the decoder.
Let −→mi(e) (

←−mi(e)) be the messages passed on an edge e from (to) variable node to/from check
node during i-th decoding iteration, respectively. Similarly −→mi(F ) and ←−mi(F ) denote the set of
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all messages from/to a variable node over the set of edges F ⊆ E. Each variable node processing
unit performs the majority voting on the binary messages received from its neighboring check
nodes as follows

Φ(←−mi−1(Ev)) =


1 if

∑
e∈Ev

←−mi−1(e) ≥ dγ/2e,

0 if
∑
e∈Ev

←−mi−1(e) < dγ/2e, (3.1)

where dxe denotes the smallest integer greater than or equal to x. The output of the majority
logic (MAJ) gate, described by the function Ψ(·) is then passed to all neighboring check nodes,
i.e −→mi(e) = Φ(←−mi−1(Ev)), ∀e ∈ Ev.

During each iteration, the check node processing unit c performs ρ Exclusive OR (XOR)
operations de�ned as follows

Ψ(−→mi(Ec \ {e})) =
⊕

e′∈E(c)\{e′}

−→mi(e
′), ∀e ∈ Ec. (3.2)

The results of the XOR operations are passed to neighboring variable nodes by mapping←−mi(e) =
Ψ(−→mi(Ec \ {e})), ∀e ∈ Ec.

Note that in our decoder the check node calculates estimates of the neighboring variable
nodes, rather then the parity check equation, since the value of the variable being estimated is
not used in the calculation. However, it is functionally equivalent to the bit-�ipping decoder.

It is clear that after each decoding iteration, a variable will be corrupt if receives more then
γ/2 incorrect estimates from its neighbors. It should be emphasized that for γ-even, it is also
possible that γ/2 incorrect estimates corrupt a variable. Our decoder implementations requires
ρ (ρ− 1)-input XOR gates at each check node, and γ-input majority logic gate at every variable
node.

Hardware unreliability in the decoder comes from unreliable computation of the operations
Φ(·) and Ψ(·) as logic gates performing these functions are prone to timing failures, which are
described in the following subsection.

3.2.2 Failure Models

In a faulty bit-�ipping decoder, the decoding operations performed by logic gates may result
in a perturbation of the gate output bit with respect to its correct value. We use the term
�perturbation� do denote an unintended bit �ip due to faulty-computation/storage, while the
term ��ip� is used for intended operations performed by the decoding algorithm. We say that a
bit or a variable is corrupt if its value is di�erent from the value it would have during decoding
a codeword when there were no errors/failures of any kind.

We consider two failure models, probabilistic and adversarial. We introduce the probabilistic
model �rst.

Let f : {0, 1}m → {0, 1}, m > 1, be an m-argument Boolean function, which at time instant
k produces the result z(k) = f(y

(k)
1 , y

(k)
2 , . . . , y

(k)
m ), where y(k)

1 , y
(k)
2 , . . . , y

(k)
m are input arguments

at time k. Due to unreliability of the logic gate, the result of the function computation is
z(k)⊕χ(k), where χ(k) is the error at time k. In the timing failure model χ(k) is data-dependent
and Pr{χ(k) = 1|z(k) = z(k−1)} = 0, i.e. when the gate output is unchanged during two
consecutive time instants the function f is always correctly computed [5]. On the other hand,
when z(k) 6= z(k−1), Pr{χ(k) = 1|z(k) 6= z(k−1)} = εg, εg > 0. Furthermore, XOR gates fail
independently, i.e., for any e 6= f , the perturbations in ←−mi(e) and ←−mi(f) due to failures of
the corresponding XOR gates are assumed to be independent. The memory elements fail also
independently with probability εm [34], and MAJ gates and the gates used to verify that all
checks are satis�ed are assumed to be perfect.
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Note that although it is known that di�erent input patterns cause gate failures with di�erent
probabilities [33], we simplify the analysis by using only the highest possible failure rate denoted
by εg. The value εg can be obtained experimentally or by circuit-level simulation of gates
implemented in a given semiconductor technology.

In order to prove that the memory architecture can tolerate a number of failures we use
adversarial failure model. According to this model the fraction of component failures at any
given time is bounded, i.e. only the fraction of component is allowed to be faulty. As number of
component increases, so does the number of allowed failures. Moreover, the adversarial model
assumes the worst case scenario in which the failures are inserted in a such way that they have
the most negative e�ect on the decoding. In the adversarial timing-error model failure of a logic
gate may occur when the gate output changes its value from the previous time instant.

3.3 Analysis of the Bit-Flipping Decoder

In this section we prove our main theorem which states that the correcting capability of the
bit-�ipping decoder built partially from unreliable gates increases linearly with expander code
length. We assume that following two conditions are satis�ed: (i) The MAJ gates used in the
decoder are reliable, and XOR failures follow the timing-error mechanism introduced in Section
3.2.2, and (ii) no more than |CXOR| gates perturb their outputs in the �rst iteration. The need
for previously described assumptions will be discussed shortly.

Now we formulate our main theorem. We also provide the proof as it reveals important facts
on behavior of iterative decoders in presence of gate failures

Theorem 2. Consider a (γ, ρ, α, (15/16 + ε)γ) expander, ε ≥ 0. The bit-�ipping decoder built

from unreliable check nodes can correct any pattern of |V1| <
(

(3+16ε)αn−4|CXOR|
)
/(5−16ε)

errors after at most dlog 6√
13+1

[(1− 16ε)|V1|/4 + |CXOR|]e+ 3 decoding iterations.

Proof: Let Vi be the set of corrupt variables at the beginning of the i-th decoding iteration.
The set of corrupt variables at the beginning of the i + 1-th iteration (i.e., end of the i-th
iteration), Vi+1, can be divided into two disjunct subsets: (i) (Vi+1 ∩ Vi), the subset of corrupt
variables that remained corrupt at the end of the i-th iteration, and (ii) (Vi+1 \Vi), the subset of
newly corrupted variables, i.e., variables that were correct in the (i− 1)-th iteration but became
corrupt during the i-th iteration. Let Si be the set of variables that were corrected during
(i − 1)-th iteration and also stayed correct at the end of i-th iteration. Since the variables in
Si are �ipped in the (i − 1)-th iteration, from the de�nition of timing failure model, it follows
that any variable in Si may cause a perturbation of the neighboring XOR gate outputs in the
i-th iteration and consequently the incorrect estimates of variables with whom it shares the
neighbors. On the other hand, no perturbation of XOR-gate outputs occurs in the check nodes
connected to only un-�ipped variables in the (i− 1) iteration.

Each incorrect estimate of a particular variable in Vi+1\Vi is due to the variable's connection
(through shared neighbors) to either variables from the set Vi ∪ Si or some other variable in
Vi+1 \Vi, which have caused the XOR gates perturbations in i-th iteration. Thus, each incorrect
estimate indicates that a check is shared by two variables in Vi ∪ Si ∪ Vi+1. On the other hand,
there are no restrictions on possible neighbors of a check producing all correct estimates � they
can be variables in Vi+1 \ Vi or variables outside of the set Vi ∪ Si ∪ Vi+1. From Eq. 3.1, the
number of correct estimates of each newly corrupt variable in Vi+1 \ Vi cannot be greater than
γ/2, which means that the correct estimates are produced by at most γ/2 di�erent neighboring
check nodes. If the sets Vi+1 \ Vi and Vi ∪ Si do not share any neighbors, each variable in
Vi+1 \ Vi shares at least half of its neighbors with other variables in Vi+1 \ Vi. This comes from
the fact that the check node which sends an incorrect estimate to a node in Vi+1 \ Vi must
be also connected to at least one other node in Vi+1 \ Vi which causes that incorrect estimate.
Consequently, there are no more then 3γ/4 checks connected to a variable in Vi+1 \ Vi that are
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not neighbors of Vi∪Si. Similarly, we can conclude that the number of neighbors of any variable
in Vi+1 ∩ Vi that are not the neighbors of (Vi \ Vi+1) ∪ Si is also upper bounded by 3γ/4. Now,
we can bound the number of checks connected to Vi ∪ Si ∪ Vi+1 as

|N (Vi ∪ Si ∪ Vi+1)| ≤ γ(|Vi| − |Vi ∩ Vi+1|) + γ|Si|
+ 3γ/4|Vi+1 \ Vi|+ 3γ/4|Vi+1 ∩ Vi|
= γ|Vi|+ γ|Si|+ 3γ/4|Vi+1 \ Vi|
− γ/4|Vi ∩ Vi+1|. (3.3)

If we assume that

|Vi ∪ Vi+1 ∪ Si| < αn (3.4)

for all i > 0, then, by the expansion property,

|N (Vi ∪ Si ∪ Vi+1)| ≥ (15/16 + ε)γ(|Vi|+ |Si|+ |Vi+1 \ Vi|). (3.5)

Combining the previous two inequalities we obtain

|Vi|(1− 16ε) ≥ (3 + 16ε)|Vi+1 \ Vi|+ 4|Vi+1 ∩ Vi|
+ (16ε− 1)|Si|
≥ 3|Vi+1| − |Si|. (3.6)

Because all elements of Si were corrupt before (i − 1)-th iteration we know that |Si| ≤ |Vi−1|,
which based on previous inequality implies

|Vi| ≥ 3|Vi+1| − |Vi−1|. (3.7)

Let |V2| ≤ β|V1|, β > 0. Then, based on Eq. (3.7), we can express upper bounds on the number
of corrupt variables, for a few starting iterations as

|V3| ≤
1 + β

3
|V1|,

|V4| ≤
1 + 4β

32
|V1|,

|V5| ≤
4 + 7β

33
|V1| . . . .

(3.8)

It is not di�cult to show that

|Vi| ≤
ai−3 + βai−2

3i−2
|V1|, (3.9)

where a0 = a1 = 1 and

ai = ai−1 + 3ai−2, (3.10)

for all i ≥ 2. By solving the above di�erence equation we express the right side of Eq. (3.9) in
a more convenient way. This is given by the following lemma.

Lemma 3. The number of corrupt variables before i-th decoding iteration, i > 1, |Vi| is bounded
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by

|Vi| ≤ β
(√13 + 1

6

)i−2
|V1|. (3.11)

�

In order to complete this part of the proof we have to analyze the �rst decoding iteration
and bound |V2|. In the following lemma we show that the upper bound of the value |V2| can be
expressed in terms of |V1| and |VXOR|, the number of XOR gate failures in the �rst iteration.

Lemma 4. The number of corrupt variables after the �rst decoding iteration, |V2| is bounded by

|V2| ≤
1− 16ε

4
|V1|+ |CXOR|. (3.12)

Proof: From the analysis presented in [42] we know that the decoder build from reliable
components reduces the number of corrupt variables to at most (1− 4δ)|V1|, for all δ > 0. The
�rst summand in Eq. (3.12) is obtained noting that δ = 3/16 + ε. The second summand in
Eq. (3.12) follows from the fact that each XOR gate failure can corrupt at most one additional
variable. �

Combining Eq. (3.11) and Eq. (3.12) we obtain

|Vi| ≤
(1− 16ε

4
|V1|+ |CXOR|

)(√13 + 1

6

)i−2
. (3.13)

The previous equation shows that the number of corrupt variables reduces over time, which after
su�cient number of iteration leads to the correction of all initially corrupt variables.

Note that in our derivation we also assumed that |Vi ∪ Vi+1 ∪ Si| < αn, for all i > 0 (Eq.
(3.4)). We prove by mathematical induction stricter condition |Vi−1 ∪ Vi ∪ Vi+1| < αn, for all
i > 1, since |Si| ≤ |Vi−1|.

Let assume that |Vi−2 ∪Vi−1 ∪Vi| < αn. This means that Eq. (3.13) is satis�ed for the �rst
i−1 iterations and that we can use it to bound |Vi−1| and |Vi|. Assume by the way of contradiction
that |Vi−1 ∪Vi ∪Vi+1| ≥ αn. Then, since we know that |Vi−1 ∪Vi| < αn, there must exists some
A ⊂ Vi+1 \(Vi∪Vi−1) for which A∪Vi−1∪Vi = αn, and |N (A∪Vi−1∪Vi)| ≥ (15/16+ε)γαn. On
the other hand, for some δ, 15/16 + ε < δ ≤ 1, the number of checks connected to A∪ Vi−1 ∪ Vi
is bounded by

|N (A ∪ Vi−1 ∪ Vi)| ≤ δγ(|Vi−1|+ |Vi|)
+ 3γ/4(αn− |Vi−1| − |Vi|). (3.14)

Combining previous relation with the lower bound given by the expansion we obtain

|Vi−1|+ |Vi| ≥
3 + 16ε

16δ − 12
αn ≥ 3 + 16ε

4
αn, (3.15)

which, based on Eq. (3.11), �nally gives

|V1| ≥
4

1− 16ε

[ 3(3 + 16ε)

2(7 +
√

13)

( 6

1 +
√

13

)i−3
αn− |CXOR|

]
, (3.16)

The last inequality contradicts our initial assumption about |V1| given in the theorem formu-
lation, and hence |Vi−1 ∪ Vi ∪ Vi+1| < αn for all i > 2. When i = 2, Eq. (3.15) reduces

45



to

|V1| ≥
(3 + 16ε)αn− 4|CXOR|

5− 16ε
, (3.17)

which also contradicts our initial assumption. Finally, the condition |V1 ∪V2| < αn follows from
the Eq. (3.12) and initial condition for |V1|. This proves the theorem. �

Corollary 3. In the previous analysis we assumed that XOR logic are unreliable, but not the
MAJ logic gates. If we allow MAJ logic gates to be prone to timing gate failures, error correction
can not be guaranteed. This follows from the fact that in the worst case scenario correction of
every variable can be annulled by the MAJ logic gate failure.

Note that correcting capabilities of the decoder depends not only on the expansion property
of the decoder, but also on the number of XOR failures in the �rst iteration (|CXOR|). If there
is su�ciently large number of XOR gates whose output is perturbed during the �rst iteration,
the decoding process will not converge to the correct codeword. Recall from the timing failure
model that |CXOR| depends on the XOR gates inputs at time instant prior to the �rst decoding
iteration, on which we have limited knowledge. On the other hand, we can force all transistor-
level transient processes in the decoding circuitry to reach a stationary state, and that before
the decoding starts, there are no transitions at gate outputs nor â��accumulatedâ�� errors.
Practically, this can be done by slightly slowing down the clock in the �rst iteration and letting
the signal level stabilize. Since the clock is slower, there are no-timing errors and the XOR
computations are reliable, i.e. |CXOR|=0.

We next compare our results with the results from [42] where a reliable decoder was consid-
ered. It can be observed that the presence of the XOR gate failures reduces the number of errors
that can be tolerated by the bit-�ipping decoder. Although in both cases the number of errors
that can be corrected is upper bounded by αn, the noisy decoder requires higher graph expan-
sion, to maintain the same correcting capability as that of the perfect decoder. For example,
in order to correct 3αn/5 code bit errors, a perfect decoder would require expansion of 4γ/5,
while the graph of a noisy decoder needs expansion of at least 15γ/16. Additionally, unreliable
check node operations cause that less corrupt variables are corrected during decoding iterations,
which increase the number of iterations needed for the correction of an error pattern.

The problem of explicit construction of expander graph with expansion arbitrary close to γ
(called lossless expanders) was investigated by Capalbo et al. in [46], where it was shown that
required expansion 15/16 + ε can be achieved with graph left degree γ = poly(1− γ/ρ, 16/(1−
16ε)). This proves the existence of a expander code that can tolerate �xed fraction of error
under data-dependent gate failures.

Another proof of the guarantee error correction of LDPC codes was provided by Chilappagari
et al. in [39], where the correction capabilities of a LDPC code was expressed in terms of girth
of Tanner graph. In the following theorem we extend the results presented in [39] to the case of
the noisy bit-�ipping decoder.

Theorem 3. Consider an LDPC code with γ-variable node-regular Tanner graph with γ ≥ 16
and girth g = 2g0. Then, bit-�ipping decoder built from unreliable check nodes can correct any
error pattern |V1| such that |V1| < (3n0(γ/8, g)− 4|CXOR|)/5, where

n0(γ/8, g) = n0(γ/8, 2j + 1) = 1 +
γ

8

j−1∑
i=0

(γ
8

)i
, g odd,

n0(γ/8, g) = n0(γ/8, 2j) = 2

j−1∑
i=0

(γ
8

)i
, g even. (3.18)

Proof: In order to prove the theorem we use the following lemma.
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Lemma 5. The number of checks connected to the set of V variable nodes in γ-variable node-
regular Tanner graph with girth g = 2g0 satis�es

|N(V )| ≥ γ|V | − f(|V |, g0), (3.19)

where f(|V |, g0) represents the maximal number of edges in an arbitrary graph with |V | nodes
and girth g0.

Proof: See [39]. �

Based on the Moore bound, we know that the number of nodes n(d̄, g0) in a graph with the
average degree d̄ ≥ 2 and girth g0 satis�es [47]

n(d̄, g0) ≥ n0(d̄, g0), (3.20)

where n0(d̄, g0) is de�ned in Eq. (3.18). On the other hand, since γ/8 ≥ 2 graph with |V | <
n0(γ/8, g0) nodes must have average degree smaller than γ/8. Then, based on the de�nition of
average degree follows

f(|V |, g0) < γ|V |/16. (3.21)

Combining the previous expression with Eq. (3.5) we obtain

|N(V )| > 15γ/16. (3.22)

�

Note that the authors in [39] showed that the γ ≥ 4 represents su�cient condition that error
correction is guaranteed on Tanner graph with girth g. However, due to logic gate failures higher
expansions is required compared to error-free decoder implementation and we were able to come
to the same conclusion only when γ ≥ 16.

3.4 Application to Reliable Memories Build from Unreliable Com-
ponents

In this section we investigate the problem of reliable storage of information in the unreliable
memory cells. The information is stored as a codeword of an LDPC code in n memory cells.
Each memory cell stores one code bit. In order to preserve the stored codeword, the memory
cells are periodically updated at regular time instants τ, 2τ, . . . , Lτ, L ∈ N, based on the error
correction scheme. In our memory architecture the update of the bit values is equivalent to one
iteration of the bit-�ipping algorithm, described in Section 3.2.

When the memory is built entirely from unreliable components, the bits read from the
memory at some time instant, in the most of the cases, will not be equivalent to the originally
stored codeword. If we declare a memory failure every time that happens, our memory will
be unreliable most of the time. Thus, if we want to recover the information, the �nal step of
codeword extraction must be performed by reliable logic gates. In this paper we follow the
system setup proposed by Taylor [3], which states that memory failure is declared only if the
sequence read from the memory cannot be successfully decoded by the noiseless version of the
same decoder in the �nite number of iterations. We show that our memory architecture under
certain conditions achieves arbitrary low memory failure probability.

We �rst investigate the memory reliability under the adversarial failure model, described in
Section 3.2. Let αm be the maximal fraction of failures that can a�ect memory cells between
memory correcting cycles (iterations). In the Corollary 3, given in the previous section we
stated that failures of MAJ gates can corrupt all variables corrected by the decoder, and hence,
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in order to preserve information over time we must bound the number of allowed failures per
decoding iteration. Let αγ be the maximal fraction of MAJ gate failures, during one decoding
iteration. The following theorem gives the fraction of failures that can be tolerated by our
memory architecture. We consider the case when |CXOR| = 0, in which the signal is stabilized
in the �rst iteration. This was justi�ed in the Section 3.3.

Theorem 4. The proposed memory architecture based on (γ, ρ, α, (15/16 + ε)γ) expander code
can preserve all stored information bits for an arbitrary long time period if

αm + αγ ≤
3 + 16ε

2(13− 16ε)
α. (3.23)

Proof: At t=0 a codeword of our expander code is written into the memory. The memory
cells are updated at time instants iτ , i > 0, by performing one iteration of the bit-�ipping
algorithm. Let V (t) be a set of corrupt variables (memory cells) at time t. The number of
corrupt variables before the �rst update |V (τ − δ0)|, where δ0 denotes denote an in�nitesimal
duration of time, is bounded by

|V (τ − δ0)| ≤ nαm. (3.24)

After the update cycle we have

|V (τ)| ≤ (βαm + αγ)n, (3.25)

where β = (1 − 16ε)/4. In the time interval [τ, 2τ) there can be at most αmn memory cells
failures, which in the wort case will lead to αmn additional corrupt variables. Then,

|V (2τ − δ0)| ≤ (βαm + αm + αγ)n. (3.26)

Based on Eq. (3.7) and the previous discussion for all i > 1 we obtain

|V (iτ)| ≤ 1

3

(
|V (iτ − δ0)|+ |V ((i− 1)τ − δ0)|

)
+ αγn, (3.27)

which leads to

|V (iτ − δ0)| ≤ (ai−2β + bi−2)αm + ci−2αγ
3i−2

n, (3.28)

where a0 = a1 = 1, b0 = 1, b1 = 5, c0 = 1, c1 = 4 and

ai = ai−1 + 3ai−2,

bi = bi−1 + 3bi−2 + 3i,

ci = ci−1 + 3ci−2 + 3i.

We next show that the number of corrupt memory cells can be upper bounded as presented in
the following lemma.

Lemma 6. The number of corrupt memory cells before the i-th update cycle |V (iτ − δ0)| for all
i > 0 satis�es

|V (iτ − δ0)| < (3 + β)(αm + αγ)n. (3.29)

�

Note that previous lemma can be used only if |V (iτ)∪ V (iτ − δ0)∪ V ((i− 1)τ − δ0)| < αn,
for i > 0. Finding the condition under which the previous relation is satis�ed gives upper bound
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on fraction of failures that can be tolerated. This proof is analogous to one presented in Section
3.3. Similarly, as it was done in the Section 3.3 we can �nd the condition that contradicts the
previous relation. For that purpose we can rewrite Eq. (3.15) as follows

|V (iτ − δ0)|+ |V ((i− 1)τ − δ0)| ≥ 3 + 16ε

4
αn, (3.30)

which leads to

αm + αγ >
3 + 16ε

2(13− 16ε)
α. (3.31)

Then, we can conclude that Lemma 6 holds if

αm + αγ ≤
3 + 16ε

2(13− 16ε)
α. (3.32)

The memory failure occurs when, at every time instants, the memory content cannot be
decoded successively by a perfect bit-�ipping decoder. The following lemma describes correction
capabilities of the perfect decoder.

Lemma 7. The bit-�ipping decoder built from reliable components can correct any α0 < (7 +
16ε)/8 fraction of errors, if the (γ, ρ, α, (15/16 + ε)γ) expander code is used.

Proof: See [42]. �

Since the fraction of corrupt memory cells at any time instant does not exceeds the error
capability of the bit-�ipping decoder, the memory content is preserved. This proves the theorem.
�

We next show how the right side of the Eq. (3.23), denoted by αtotal(α, ε) = (3+16ε)/[2(13−
16ε)]α, can be upper bounded. For that purpose the following lemma is used.

Lemma 8. Let α∗ and ε∗ be such that αtotal(α
∗, ε∗) ≥ αtotal(α, ε), 0 < α < 1, 0 < ε ≤ 1/16.

Then, they satisfy the following relation

ε∗ = (1− (1− α∗)ρ)/(α∗ρ)− 15/16. (3.33)

Proof: The previous relation follows from the [42, Theorem 25] where it was shown that the
set of αn variables can have at most nγ(1− (1− α)ρ)/ρ+O(1) neighbors and the fact that we
look for graphs which expand by at least a factor of (15/16 + ε). �

Based on the Eq. (3.33) we can numerically express the upper bounds for �xed values of ρ,
which is presented in Table 1. Note that this upper bound does not depend on the parameter γ.
It can be observed that by increasing the check node degree ρ, the number of neighbors of a set
with αn variable nodes reduces. On the other hand, we require that a set with αn variable nodes
have expansion of at least 15/16, which can be only satis�ed with a reducing of α. Consequently,
αtotal is inversely proportional to ρ, and its highest value is obtained for ε close to zero.

Table 3.1: The upper bound values of tolerable fractions of failures.

ρ α∗ ε∗ αtotal(α
∗, ε∗)

16 0.0087 2.64× 10−5 0.002

20 0.0069 1.46× 10−5 0.0016

30 0.0045 2.92× 10−5 0.001

40 0.0033 2.44× 10−5 7.71× 10−4
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We now expand the above results to the probabilistic failure model de�ned in Section 3.2.
Let ∆m > 0 and ∆γ > 0 be such that εm + ∆m = αm and εg + ∆γ = αγ , where failure rates εm
and εg are de�ned in Section 3.2.2 and represent the probability of perturbation of a memory
cell and MAJ logic gate, respectively. Then, when condition given by Eq. (3.18) is satis�ed, the
following lemma can be formulated.

Lemma 9. The probability that memory failure occurs after L update cycles, P (L), is bounded
by

P (L) ≤ L(e−2∆2
mn + e−2∆2

γn). (3.34)

Proof: The proof is analogous to one provided in [21] and follows from the fact that by
Cherno� bounds the probability of failure of more then a �xed fraction of component at time
interval τ is bounded. �

The previous lemma describes a weak bound of the memory performance and its main goal
is to show that P (L) decreases exponentially when the code length increases. It proves the
existence of memory that can preserve all stored bits in asymptotic code length under the
timing gate failure model.

3.5 Conclusion

In this paper we have shown that the concept of guaranteed error correction can be expanded
to faulty bit-�ipping decoders, when the check node operations are prone to data-dependent
failures. We also proved the existence of the memory architecture that achieves arbitrary small
probability of failure under timing failure model, which presents the �rst such result under failure
models other then the von Neumann model.

This paper raises a number of open questions in analysis of faulty decoders. The expander
arguments have proven to be suitable for the analysis of the message passing decoders and it
would be interesting to continue Burshtein and Millerâ��s work [44] on the irregular LDPC
codes, for the case when node operations are unreliable. Additionally, we show that high graph
expansions is required for guaranteed error correction of the faulty bit-�ipping decoders. This
requirement usually leads to complex decoders realizations and improving the required condition
represents a major challenge. On the other hand, analysis of the expansion properties of graphs
that correspond to the known quasi-cyclic LDPC codes can help us revealing which codes are
more resistent to gate failures.
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Chapter 4

MUDRI: A Fault-Tolerant Decoding
Algorithm

Abstract: We propose an improved version of probabilistic gradient descent bit �ip-
ping algorithm for decoding low density parity check codes, based on MUltiple De-
coding attempts and Random re-Initializations (MUDRI). The proposed algorithm
signi�cantly increases the probability of correcting error patterns uncorrectable by
the existing variants of bit-�ipping algorithm. The performance of the algorithm im-
plemented in noisy hardware is analyzed for various code types and codeword lengths,
and shown to be superior compared to other hard decision algorithms. The MUDRI
decoder is mostly insensitive to the failures in registers and logic gates and therefore
represents a desirable solution for implementation in unreliable hardware.

The work presented in this chapter has been published in P. Ivanis, O. Al Rasheed, and B. Vasic,
�MUDRI: A fault-tolerant decoding algorithm�, IEEE International Conference on Communi-
cations (ICC), London, UK, June 2015 [P4].

4.1 Introduction

High integration factor of integrated circuits together with low power consumption requirements
makes emerging semiconductor devices inherently unreliable [19]. Traditional von Neumann-type
triple modular redundancy architectures that ensure fault tolerance are ine�cient in handling
such increased unreliability thus requiring solutions based on error control coding. In traditional
models of computer and communications systems with error correction coding, it is assumed
that the operation of a decoder is deterministic and the randomness (in the form of noise and/or
errors) exists only in the communication/storage channel elements. While appropriate in systems
where the reliability of registers and logic gates used in the decoder is many orders of magnitude
higher than the reliability of the channel, this assumption is invalid if digital logic in the decoder
is built of faulty components.

Recently there was a surge in research in fault-tolerant decoders. Vasic and Chilappagari [6]
established and information theoretical framework for analysis and design of faulty decoders for
low-density parity-check (LDPC) codes. They have also analyzed bit-�ipping decoding [6] or one-
step majority logic (MAJ) decoding [2], [5]. Methods for performance analysis of more complex
decoders built from unreliable hardware based on the sum-product algorithm (SPA) [14] and
its suboptimal (min-sum algorithm) version [27] have been also developed for transient failure
model. In the similar context, �nite-alphabet decoders (FAID) were analyzed by Huang and
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Dolecek in [26]. Density evolution analysis of the simplest massage-passing algorithm (Gallager-
B) implemented in noisy hardware is given in [23] and [25].

The bit-�ipping (BF) decoder is an attractive candidate for high speed applications when
only hard decisions are available at the channel output, but since its performance is typically
inferior when compared to the Gallager-B algorithm [25], numerous ingenious improvements of
the BF algorithms have been proposed in the literature (see [48] and references therein) with the
aim to close this gap. Recently, we proposed an modi�cation of Gradient Descent Bit Flipping
(GDBF) [49], appropriate for binary symmetric channel (BSC). The algorithm incorporates the
idea of Probabilistic Bit Flipping (PBF) [50] in GDBF, with some additional improvements.
The resulting algorithm, that we named Probabilistic Gradient Descent Bit Flipping (PGDBF)
algorithm, was shown to be resilient to logic gate failures [51].

A probabilistic analysis of the PGDBF performed in this chapter reveals that the PGDBF
is not capable of correcting some low-weight error patterns. Therefore, we propose a modi�-
cation of the algorithm, based on the principle of MUltiple Decoding attempts and Random
re-Initializations (MUDRI) of decoders. A similar approach has resulted in improved perfor-
mance of non-faulty (perfect) FAID [52]. The MUDRI decoder modi�cation combined with
new threshold adaptation method results in signi�cant performance improvement and high level
of immunity to the failures in registers and logic gates. We also demonstrate the algorithm's
ability to control logic gate failures on the various code types - quasi-cyclic (QC), progressive
edge growth (PEG) and Latin squares based (LS), with di�erent column weights and codeword
lengths.

The rest of the chapter is organized as follows. Section II gives the necessary background.
In Section III we present the MUDRI decoder. Section IV gives the performance analysis in the
presence of hardware failures and comparison with the other decoding algorithms, and Section
V concludes the chapter.

4.2 Preliminaries

Let C denote an (N,K) binary LDPC code with rate R = K/N , de�ned by the null space of
H, an M × N parity check matrix. Tanner graph representation of C, denoted by G, consists
of the set of variable nodes V = {v1, v2, ..., vN} and the set of check nodes C = {c1, c2, ..., cM}.
Two nodes are neighbors if there is an edge between them. A code represented by the graph G
is said to be have a regular column-weight γ if all variable nodes in V have the same number of
neighbors γ. The ρ-regular check regular code is de�ned analogously.

The set of neighbors of a variable and check nodes is denoted as Nv and Nc, respectively. Let
x = (x1, x2, . . . , xN ) denote a codeword of C, where xv denotes the value of the bit associated
with variable node v. The e�ect of the BSC with crossover probability α is modeled by an
N -dimensional binary random variable with independent coordinates Ev, such that Pr(Ev =
1) = α, v = 1, 2, ..., N where ev is realization of Ev. The vector received by a decoder is
y = (y1, y2, . . . , yN ), where yv = xv ⊕ ev, and ⊕ is the modulo-two sum. We shall refer to
variable nodes initially in error as erroneous nodes and variable nodes initially correct as correct
nodes.

We consider iterative decoders which at the l-th iteration (l ∈ [0, L], where L is maximal
number of iterations) produce the estimate x̂(l) as an output. The GDBF algorithm for all
variable nodes v calculates the inverse function [49, Eqn. (6)]

∆(l)
v (χ, η) = χ(l)

v ηv +
∑
c∈Nv

∏
u∈Nc

χ(l)
u , (4.1)

where χ(l)
v = 1−2x̂

(l)
v and ηv = 1−2yv denote the �bipolar� versions of x̂

(l)
v and yv. The estimate

of a variable node v is initialized as χ(0)
v = ηv, and in the l-th iteration only the symbols with
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minimum value of the inverse functions are inverted to obtain χ(l+1)
v .

In [51], we shown that the GDBF algorithm can be adapted to the BSC. By using modulo-2
arithmetic, we have shown that the inverse function for the case of regular column-weight γ
codes can be minimized by maximization of the following modi�ed inverse function (MIF) [51]

Λ(l)
v (x̂,y) = x̂(l)

v ⊕ yv +
∑
c∈Nv

⊕
u∈Nc

x̂(l)
u . (4.2)

In the PGDBF algorithm, the refreshed estimation in the l-th iteration is calculated as [51]

x̂(l+1)
v =

{
av ⊕ x̂(l)

v ,Λ
(l)
v (x̂,y) = b(l),

x̂
(l)
v ,Λ

(l)
v (x̂,y) < b(l).

(4.3)

where b(l) denotes the largest value of the MIF at the l-th iteration, i.e., b(l) = max
v

(Λ
(l)
v (x̂,y)),

and av denotes a realization of Bernoulli B(1, p) random variable. The parameter p introduces
a randomness in the �ipping process, and if p = 1, PGDBF corresponds to deterministic GDBF
for BSC channel.

In hardware, the calculation of Λ
(l)
v (x̂,y) requires: (i) γ ρ-input exclusive or (XOR) gates

which compute the parities in the neighboring check nodes, (ii) one two-input XOR gate to
check if the v-th bit of the current estimate is the same as the bit initially estimated from the
channel, and (iii) one (γ + 1)-input MAJ gate with adaptable threshold. As it is shown in [12],
the calculation of the threshold b(l) can be realized without a global operation of integer maxi-
mizations. b(l) is initialized to the maximum possible value (b(l),init = γ + 1), and decremented
every time when all the MAJ gate outputs are zero. In this decrementation procedure, the �rst
occurrence of a non-zero MAJ gate output indicates that the threshold reached the maximal
MIF value. After that, a change of at least one MAJ gate output with respect to its previous
value indicates that max2

v
(Λ

(l)
v (x̂,y)), the second MIF maximum is reached.

4.3 The MUDRI Algorithm

In this section, we propose a modi�cation of PGDBF algorithm presented in [51]. We begin
with three illustrative examples, exhibiting a method used to analyze probabilistic algorithms
and presenting the intuition behind our decoder.

4.3.1 Example 1

Due to their very nature, probabilistic BF algorithms render inapplicable the trapping set anal-
ysis method developed for their deterministic counterparts [48]. In order to analyze the cor-
rectability of low-weight error patterns, let us consider a a three-bit error pattern shown in Fig.
4.1a, where white (black) circles represent the correct (erroneous) variable nodes, and the (black)
white squares denote (un)satis�ed checks. If the GDBF algorithm is applied (for which p = 1),
the largrest MIF value b(1) = 2 is associated with variable nodes v1, v2, v3 and v4 in the �rst
iteration. These variable nodes are dashed-circled. In the next iteration, the MIF value b(1) = 4
is associated with the same variable nodes, as presented in Fig. 4.1b. Note that these nodes
have di�erent value compared to the initial values. As it results in the �xed set [53], this error
pattern cannot be corrected by the GDBF algorithm.

On the other hand, if the PGDBF is applied, the four bits with the largest MIF are not
�ipped automatically but are only the candidates for �ipping. It can be shown that there is only
one �ipping sequence that results in a successful decoding after exactly two iterations. Denote by
sl the probability that a given error pattern is successfully decoded in the l-th iteration. In our
example, probability of the �ipping sequence f = (f1, f2) = ((0, 1, 0, 1), (1)) is s2 = p3(1− p)2.
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Figure 4.1: a) A three-bit pattern, b) the pattern in the second iteration of GDBF.

It is clear that s1 = 0, as this pattern cannot be corrected in the �rst iteration. Note
that other �ipping choices resulting in di�erent �ipping sequences might lead to the successful
decoding but, possibly, in a larger number of iterations. We refer to such �ipping sequences as
suboptimal. In our case this number of iterations is l > 2. As there may be many suboptimal
�ipping sequences, the closed form expression for sl is complicated. However, its numerical
value can be easily estimated by using Monte Carlo simulation. The probability of unsuccessful
decoding at the L iteration is obtained as

pPGDBF (L) = 1−
L∑
l=1

sl. (4.4)

4.3.2 Example 2

As the PGDBF algorithm is probabilistic in nature, successful decoding of certain types of errors
cannot be guaranteed as it is possible for deterministic algorithms (e.g. algorithm in [48] correct
all triple errors for some codes). By using Eq. (4.4) we are able to estimate pPGDBF (L) for
any error pattern, and the general conclusion is that it can be reduced by increasing parameter
L. However, there are some error patterns which have high values of pPGDBF (L) even for high
values of L, and one such error pattern is shown in Figure 4.2a.

In the �rst iteration, b(1) = 3 is associated with the variable nodes v2, v4 and v5. The
PGDBF update rule allows an independent �ipping of all these variables (23 possible choices),
but only some of them are actually �ipped. If only v5 is �ipped (with the probability p(1− p)2),
the error pattern at the beginning of the second iteration looks like the one shown in Fig. 4.3b.
In this case, b(2) = 2 and six bits are considered for �ipping, with 26 possibilities for the �ipping
choices in this step. If only the bits that are incorrectly received are chosen for �ipping (v1, v3,
v6 and v7), with the probability p4(1 − p)2, the decoding process is successfully completed. As
only one �ipping sequence results in decoding after two iterations, the corresponding probability
is obtained by multiplying the probabilities in two successive steps as s2 = p5(1− p)4. However,
if a wrong choices are made in a few iterations at the beginning of decoding, it does not have to
be completed successfully even for very large value of L. Therefore, we propose the modi�cation
of the algorithm. If the syndrome has non-zero value after L1 iterations, the decoding is stopped
and repeated bL/L1c times starting from the received word for the other �ipping random choices.
If the random sequences are independent, the probability that the decoding fails is

pMUDRI(L,L1) =

(
1−

L1∑
l=1

sl

)bL/L1c

. (4.5)

In the special case when L1 = L, we have a single attempt with L iterations, and the above
expression reduces to Eq. (4.4). The probability of unsuccessful decoding can be minimized
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Figure 4.2: a) A �ve-bit error pattern uncorrectable by using GDBF, b) The second iteration of
PGDBF, after the �rst iteration with the optimal choice.
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Figure 4.3: a) A four-bit pattern critical in PGDBF, b) the second iteration if b(l) = 3, c) the
second iteration if b(l) = 2.

with the proper choice of this parameter L1.

4.3.3 Example 3

Finally, we show that the four bit error pattern presented in Fig. 4.3a is uncorrectable by
the PGDBF, and propose the appropriate modi�cation. In the �rst iteration, only v5 has two
unsatis�ed checks and it has to be �ipped. In the next step (Fig. 4.3b) there are three variable
nodes with one unsatis�ed check, but only v5 has the value di�erent from the value initially
received from the channel. As the same bit has the maximal MIF value in two successive
iterations, and as failing to �ip cannot help when there are only one candidate, we conclude that
pPGDBF (L) = 1 for any L.

In such a situation we propose decrementing the threshold in variable nodes until it reaches
the second largest value, i.e. b(l)mod = max2

v
(Λ

(l)
v (x̂,y)). In our example b(2)

mod = 1, the nodes with

Λ
(l)
v (x̂,y)) ≥ 1 are �ipped and the decoding is successful after the second iteration (Fig. 4.3c).
The above modi�cations are combined with the PGDBF algorithm [51] to obtain the MUDRI
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decoding algorithm, formally given in Algorithm 3. The modi�cation related to the threshold
adaptation (explained in Example 3) is implemented as a separate function FUN, where in(l)

denotes the number of variable nodes that should be �ipped in GDBF in the l-th iteration. The
modi�cation is applied under the condition that in(l) = in(l−1) = 1 and that in two successive
iterations the maximal MIF value corresponds to the same bit in the codeword (denoted by v(l)

f ).

Algorithm 3 MUDRI decoder

Input: y

∀v ∈ V : x̂
(0)
v ← yv

s(0) ← x̂(0)HT (∀c ∈ C : s
(0)
c ←

⊕
u∈Nc x̂

(0)
u )

n = 0, l = 0
while s(l) 6= 0 and n ≤ bL/L1c do
l = 0, in(0) = 0, v

(0)
f = 0, ∀v ∈ V : x̂

(0)
v ← yv

s(0) ← x̂(0)HT (∀c ∈ C : s
(0)
c ←

⊕
u∈Nc x̂

(0)
u )

while s(l) 6= 0 and l ≤ L1 do

∀v ∈ V : Compute Λ
(l)
v (x̂,y))

b(l), in(l), v
(l)
f ← FUN(Λ

(l)
v (x̂,y), in(l−1), v

(l−1)
f )

for ∀v ∈ V do
if Λ

(l)
v (x̂,y) ≥ b(l) then

x̂
(l+1)
v ← av ⊕ x̂(l)

v

else
x̂

(l+1)
v ← x̂

(l)
v

end if
end for
s(l+1) ← x̂(l+1)HT

l← l + 1
end while
n← n+ 1

end while
Output: x̂(l)

4.4 Analysis and Numerical Results

In this section, the impact of the parameters in the MUDRI is considered, and the corresponding
numerical results are presented. Then, the performance of the algorithm implemented in the
faulty hardware is presented to illustrate its robustness to the logic gate failures.

4.4.1 Analysis of the MUDRI algorithm

To evaluate the algorithm performance, we �rst consider the decoding of the error patterns
presented in the motivating examples, illustrated in Figures 4.1a and 4.2a, for the case when
these patterns appear in the Tanner (155,64) code. The probability of successful decoding
at exactly l iterations is estimated by using Monte Carlo simulation, and the corresponding
probability distributions are presented in Fig. 4.4.

As expected, the probability that a three-bit error pattern is not successfully decoded steadily
decreases with the increase of the parameter L, and we obtain pPGDBF (100) = 3× 10−5 for the
standard PGDBF algorithm. On the contrary, the simulation results show that the �ve-bit error
pattern from Fig. 4.2a is either corrected in 14 or less iterations, or it cannot be corrected
at all (sl ≈ 0 for l > 14). In this case, the probability of decoding failure is estimated as
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Algorithm 4 FUN: Adaptation of threshold in MAJ gates

Input: Λ
(l)
v (x̂,y), in(l−1), v

(l−1)
f

b(l) ← max
v

(Λ
(l)
v (x̂,y)))

in(l) = 0, v
(l)
f = 0

for ∀v ∈ V do
if Λ

(l)
v (x̂,y) = b(l) then

in(l) = in(l) + 1
v

(l)
f ← v

end if
end for
if l > 1 and in(l) = in(l−1) = 1 and v(l)

f = v
(l−1)
f then

b(l) ← max2
v

(Λ
(l)
v (x̂,y)))

end if
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Figure 4.4: Probability distribution of the successful decoding in the l-th iteration of PGDBF,
three-bit and �ve-bit error pattern, Tanner (155,64) code, p = 0.7.
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Figure 4.5: Probability of unsuccessful decoding for the three-bit and �ve-bit error pattern,
MUDRI with bL/L1c attempts per L1 iterations each, p = 0.7.
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Figure 4.6: FER as a function of number of iterations l, Tanner (155, 64) code, α = 0.01, various
decoding algorithms.

pPGDBF (14) = 0.8768. The increase of L cannot help by itself, but combined with the proposed
modi�cation with multiple attempts, it results in lowering probability of unsuccessful decoding.
Further optimization of the parameter L1 also results in lowering pMUDRI , as presented in Fig.
4.5. It can be noticed that the best results are obtained for approximately L1 = 6 decoding
iterations per attempt.

In Fig. 4.6, the frame error rate (FER) as a function of number of iterations is presented
for α = 0.01. Although it is not convenient to adapt parameter L1 for every error pattern,
the simulations indicates that the minimal value of FER (i.e. pMUDRI(L,L1) averaged over all
received error patterns) is achieved for L1 ≈ 25 for Tanner (155,64) code and this parameter is
somewhat larger for longer codes.

It is interesting to notice that while the PBF, GDBF and Gallager-B decoders need not
more than 30 iterations to converge, after which their FER performance has reached the lowest
possible value, the PGDBF continues to improve its FER performance up to 100 iterations and
results in signi�cant gain compared to the GDBF. The MUDRI, with ten attempts per each of
L1 = 25 iterations, results in an order of magnitude lower FER when compared to the PGDBF.
The algorithm performance further improves with the increase of parameter L, to approximately
FER=6× 10−7 when L = 2000.

4.4.2 Performance in the faulty hardware implementation

With an aim of demonstrating the robustness of the algorithm to the hardware failures, we
consider the canonical transient von-Neumann logic gate failure mechanism in which the failures
in di�erent gates and in di�erent time instants are independent and identically distributed.
The failures manifest themselves as random bit �ips at the gate outputs. All XOR gates have
probability of failure P⊕, and failures in the register where x̂(l) is stored occur with probability
PR. We also assume that MAJ gates are reliable, i.e. PMAJ ≈ 0. Although optimistic, this can
be readily realized by using, for example, larger transistors in MAJ gates. Now we present the
numerical results of Monte Carlo simulations for L = 100 and L1 = 50.

First, we present the FER performance of two codes with similar codeword lengths but
di�erent column weights. The performance of (2388, 1793) code (code C1) with girth-8 and
γ = 3 based on Latin Squares [53] and (2212, 1880) code (code C2) with girth-6 and γ = 4
are determined as a function of parameter p and presented in Fig. 4.7. When p = 1, the
algorithm realized in faulty hardware has lower FER than the algorithm implemented in perfect
hardware, and the performance can be further improved by reducing the parameter p for both
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Figure 4.7: FER as a function of parameter p, LDPC codes with γ = 3 and γ = 4, α = 0.004.
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Figure 4.8: FER as a function of probability of error in XOR gates, α = 0.004, PR = 0, LDPC
codes with γ = 3 and girth-8, with various code rates and codeword lengths.

codes. For C1 the best performance is obtained for p ≈ 0.7 in the non faulty case, while the
lowest FER is obtained for p ≈ 0.8 when P⊕ = 10−3, and PR = 10−4. This corresponds to
the previously published results for short quasi-cyclic codes with girth-8 and γ = 3 [51]. For C2

(with γ = 4), the best performance are obtained if p ≈ 0.9 for the non-faulty case, while for the
faulty implementation the optimum value of p is slightly larger.

The FER performance of QC and LS codes with various code rates are presented in Fig. 4.8,
as a function of the parameter P⊕. If p = 1, the best performance is achieved for the non-zero
value of P⊕. On the other hand, if p = 0.7 the FER is signi�cantly reduced for small values
of P⊕, when compared to the p = 1 case. More importantly, when p = 0.7 the FER is almost
insensitive to P⊕ in a wide range of P⊕ values, up to a certain threshold, and is dominantly
determined by the codeword length. The threshold can be estimated as P⊕,th = 5/N for the
codes with γ = 3 and girth-8.

In Fig. 4.9, we present the FER performance for �ve LDPC codes with various code con-
structions (QC, PEG, LS), column weights and codeword lengths (available in [54]), and for the
case when α = 0.008, P⊕ = 10−3 and p = 0.7. It is clear that the MUDRI decoder has approxi-
mately same performance, up to a certain threshold of PR. The value of PR where FER doubles
with respect to the non-faulty case is dominantly determined by the codeword length. For the
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Figure 4.9: FER as a function of probability of error in registers, α = 0.008, P⊕ = 10−3, LDPC
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Figure 4.10: FER as a function of crossover probability in BSC channel. The code is
LS(2388, 1793) (C1), the empty markers corresponds to perfect hardware and full markers to
faulty hardware with P⊕ = 10−3, PR = 10−4, p = 0.7 in the PGDBF and MUDRI and the other
decoding algorithms.

codes with γ = 3 and girth-8, this threshold is estimated to be PR,th = 1/(2N). Although the
codes with γ = 4 and girth-6 have lower error correction capability, they are somewhat less
sensitive to the logic gate failures.

The FER performance of C1 for various decoders is presented in Fig. 4.10. It can be
noticed that the Gallager-B outperforms the GDBF for lower values of crossover probability in
BSC channel and the GDBF is more e�ective in the water-fall region. In the presence of gate
failures, the performance is degraded for the Gallager-B decoder, but is improved for the GDBF
(p = 1). The performance of MUDRI with p = 0.7 outperforms all hard decision algorithms
for the analyzed crossover probability, and the increase of the parameter L results in additional
performance improvement. In addition, the MUDRI is less sensitive to hardware failures when
compared to the Gallager-B and PGDBF.

4.5 Conclusion

By analyzing the characteristics trapping sets, we have improved the PGDBF algorithm. The
new algorithm is capable of correcting error patterns uncorrectable by the GDBF algorithm and
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its probabilistic variant. The modi�cation results in a signi�cant performance improvement,
especially in the case when large maximum number of iterations is permitted. It has been
shown that the corresponding decoder is robust to the logic gate failures. We have shown that
the critical probability of failure in XOR logic gates and registers is rather insensitive to the
code construction method and rate, and it is mostly determined by the codeword length.

Our future research focuses on identifying the �ipping sequences resulting in minimum num-
ber of iterations required for successful decoding of critical error patterns. As a result, we expect
to design a low complexity deterministic modi�cation of GDBF algorithm with fast convergence.
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Chapter 5

Robust Interconnect for
Near/Sub-Threshold Region

Abstract: In this chapter we present our initial results towards the construction
of energy e�ective reliable data transport structures. Due to its intrinsic low power
consumption we targeted the Near/Sub-Threshold operating region and proposed a
dual-rail interconnection strategy, which outperforms the single-rail counterpart in
terms of energy consumption at the expense of some area overhead. One remarkable
feature of our proposal is the fact that it almost completely eliminates the overshot,
which is very detrimental for signal integrity, thus the dual-rail interconnect we pro-
pose exhibits a built-in level of fault tolerance.

5.1 Introduction

Within the context of deep-submicron (DSM) semi-conductor fabrication technologies era the
contribution of interconnects to the Integrated Circuit (IC) performance became increasingly
crucial. This is mostly associated with the fact that wire parasitic e�ects started to dominate
digital ICs important �gures of merit, such as speed, energy consumption, and reliability. This
situation is unavoidable and is becoming more aggravated as the technology scales towards tens
of nm feature size. Fig. 5.1 represents a simpli�ed model of a 3-bit interconnect, which will be
used within this section as a discussion vehicle, where CI is the inter-line capacitance and CL is
the line-to-ground capacitance.

Figure 5.1: The RC model of a 3-bit line

5.1.1 Delay

It is well accepted that interconnect delay has a huge impact on the overall delay of state of the
art digital ICs implemented in DSM technologies. Due to the existence of big parasitic elements,
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such as resistors, capacitors the circuit performance can dramatically degrade. Moreover, with
technology scaling the crosstalk among adjacent wires, i.e., the situation when a signal transition
on one line induces traveling waves on adjacent lines, is becoming a signi�cant contributor to data
transmission delay value and its variation. When crosstalk occurs transition on neighbouring
wires (aggressors), e.g., line (1) and (3) in Fig. 5.1, can either speed up or slow down the
transition on victim wires, line (2) in our example. We note that the worst-case delay occurs
when the victim line and the two aggressors are switching in opposite directions, as illustrated in
Fig. 5.2. In this case, both coupling capacitances (between the victim and the two aggressors)
need to be charged. The coupling (crosstalk) e�ect can result in overshoot for the signals, which
is harmful to the reliability. Because all the circuits work within a certain range of operating
voltage, big o�set from that range causes high peak current and also low noise margin, which
could most likely lead to some transient error and/or shorter lifetime.

Figure 5.2: The worst-case delay for a 3-bit line.

The mitigation of the crosstalk consequences has been investigated and up to date some
approaches have been proposed. Signal line duplication (wire redundancy) has been introduced
in [55] and can fundamentally avoid the worst delay case at the expense of a signi�cant area
overhead. Bus encoding is another approach to optimize the interconnect delay and to eliminate
the worst switching cases. Several encoding algorithms have been introduced, such as bus
inverter algorithm [56], one to one mapping scheme [57], and some data dependent methodologies
[57]. One can also choose to manipulate the space between adjacent wires, thus not to follow the
layout design rules, to further reduce the inter-line capacitances and hence the delay. Moreover,
in conjunction with the previously mentioned techniques, one may try to maintain the signal
integrity and speed on long wires by breaking them into shorter segments connected by repeaters.

5.1.2 Energy

Apart of inducing IC delay increase long interconnects also contribute a signi�cant amount
to the power dissipated in digital ICs. It is well known that energy consumption is highly
related to the value of the capacitances present in circuits. Thereby, for long interconnects, high
capacitance is unavoidable. Additionally, given that the space between wires is following the
fabrication process feature size scaling the value of the Miller capacitor is increasing. Thus it
is clear that reducing crosstalk e�ects is also bene�cial for energy e�ciency. However, unlike
the delay normally determined by the worst case, the bus energy dissipation is a�ected by
the overall crosstalk across the bus lines. Furthermore, for the consideration of performance
and signal integrity, repeaters are necessary for long wires, which contribute signi�cantly or
even in a major part to the total bus energy consumption. As for diminishing the energy
consumption, bus-encoding schemes, which take advantage of spatial and temporal redundancy
or use weighted opposite-transition-forbidden codes have been introduced in [58]. These coding
schemes require extra hardware at both encoding and decoding side of the circuits, which can be
quite expensive in terms of area and themselves can be major energy consumption contributors.
Also, such schemes are not �panacea universalis� as their e�ectiveness is limited to certain data
distribution types. One straightforward method to save energy is to dramatically decrease the
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voltage supply VDD, down to Near/Sub-Threshold Region (NSTR), which is in line with the i-
RISC project philosophy. We note that the conventional repeater insertion technique commonly
used in super-threshold domain does not provide any performance improvement in case of long
interconnect length under sub-threshold conditions. The state of the art in this region focuses
on the material choice, such as single-wall carbon nanotube, Cu, and mixed carbon nanotube
bundle, etc. [59].

5.2 Dual-Rail Interconnect for Near/Sub-Threshold Operation

In this section we introduce an approach to enhance performance and robustness of sub-powered
interconnect while not losing the bene�t of low energy consumption. The basic idea is to transmit
signals in the dual-rail format while using cross-coupled inverters rather than conventional bu�ers
as drivers to strengthen the signals, as depicted in Fig. 5.3. This structure has the capability to
magni�cently supressed the overshoot magnitude because of the fact that no inverter is directly
involved in the propagation line. Moreover, the transmission delay can also be reduced due to
the positive feedback capability of the cross-coupled inverters. However, it should be understood
that power consumption would be increased inevitably subject to the number of lines involved,
which means larger resistor and capacitor, but an overall lower energy consumption can still
be achieved even for wider interconnects. A down side of this approach is the area overheard
as such interconnect can consume up to two times more area than the single-rail counterpart.
We note however that in the nano era chip real estate is perceived like a commodity thus it is
not that important any longer while energy consumption and reliability are at premium. To

Figure 5.3: Dual-rail interconnect for NSTR operation.

get a �rst inside on the practical potential of our proposal we built three 3-bit 500µm long
interconnects as follows: (i) single-rail with standard repeater insertion strategy, (ii) dual-rail
using normal repeater, and (iii) dual-rail according to the proposed scheme. The distributed RC
line model has been implemented and to explore the worst-case scenario, we considered the case
when line (1) and (3) are switching in the same direction while line (2) switches in the opposite
direction (see Fig. 5.1). We utilized the 45nm PTM CMOS model in our simulation. We set
the temperature to 75◦C and to cover the NSTR operation range we made the voltage supply,
VDD, sweep from 0.2V to 0.5V with a 50mV step. The corresponding power, delay, energy,
and maximal overshoot value obtained for the three designs are summarized in Table 5.1. Fig.
5.4 depicts the corresponding power, delay, and energy, respectively. It can be observed that,
when compared with the single-rail counterpart, the proposed approach brings signi�cant delay
improvement with some penalty in power consumption but it is always reducing the overall
power delay product, which is the energy consumption. When compared with the dual-rail
using the conventional repeater insertion scheme, the proposed interconnect has slightly smaller
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area requirements and consume less power/energy at the expense of about 20% more delay. It
should be noticed that we only investigate the worst case here rather than the average case
while no encoding scheme is utilized. The most impressive improvement of our proposal is
the suppression of the overshoot. When compared with the two conventional approaches, the
overshoot is negligible in our design, which can be quite bene�cial to the signal integrity. Note
that the overshoot magnitude ranges from 14% to 32% and from 7% to 18% of the VDD value,
for the conventional single-rail and dual-rail design, respectively, while it is about two orders
of magnitude smaller for the proposed dual-rail approach. The low energy consumption can
also be related to this characteristic due to the fact that the charge on inter-wire capacitance is
signi�cantly reduced.

It can be concluded that the proposed dual-rail cross-coupled inverter methodology for NSTR
interconnect is promising for its delay improvement against the conventional single-rail case, and
its power e�ciency against the conventional dual-rail model, and more important, the substantial
overshoot reduction. As a follow up work we plan to investigate the further potential of this
approach by combining it with other encoding schemes in order to achieve even higher energy
e�ciency.

Table 5.1: Power, delay, energy, and maximum overshoot.

3-bit (500um) POWER (µW ) Delay (nS)

VDD(V ) Single Dual Proposed Single Dual Proposed
0.2 4.7 7.3 5.5 6 3.7 4.6
0.25 7.1 11.1 8.5 2.7 1.7 2.1
0.3 10.3 15.8 12.4 1.3 0.83 1.03
0.35 14.3 21.6 17.2 0.76 0.49 0.6
0.4 19.4 28.6 23.1 0.49 0.33 0.4
0.45 25.6 37.3 30.3 0.38 0.25 0.3
0.5 33.4 48.1 39.1 0.31 0.21 0.25

3-bit (500um) Energy (fJ) Max Overshoot (mV )

VDD(V ) Single Dual Proposed Single Dual Proposed
0.2 28.2 27.0 25.3 28.5 25.7 0.5
0.25 18.9 18.9 17.8 38.9 34.9 1.4
0.3 13.4 13.1 12.8 53.9 47.6 2.6
0.35 10.9 10.6 10.3 75.9 62.1 2.8
0.4 9.64 9.4 9.24 121.6 61.9 2.9
0.45 9.66 9.3 9.1 137.9 50.7 3.2
0.5 10.3 10.1 9.6 162.9 36.5 2.7

5.3 Conclusion

In this section we made some preliminary steps towards the construction of energy e�ective
reliable data transport structures, i.e., interconnects. To this end we targeted the Near/Sub-
Threshold operating region and proposed a dual-rail interconnection strategy, which outperforms
the single-rail counterpart in terms of energy consumption at the expense of some area overhead.
One remarkable feature of our proposal is the fact that it almost completely eliminates the
overshot, which is very detrimental for signal integrity, thus the dual-rail interconnect we propose
exhibits a certain level of fault tolerance by construction. In the last 3rd year of the project
we plan to continue this research avenue and investigate the impact of various coding schemes,
e.g., constrained coding, on the energy consumption and reliability of the proposed interconnect
scheme.
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(a) Power (b) Delay

(c) Energy

Figure 5.4: Power, delay, and energy for single-rail, dual-rail, and the proposed dual-rail.
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Chapter 6

General Conclusion and Next Steps

During the M13-M24 period we have made considerable progress beyond the state of the art
on the analysis of hard decision decoders, under data-dependent gate failure models. We have
also designed probabilistic bit-�ipping decoders robust to hardware unreliability, and initiated
research on reliable data transport. The main contributions during this period for WP4 can be
summarized as follows:

• We developed the analytic tool for the �nite code length analysis of the one-step majority
logic decoders, subjected to data-dependent logic gate failures. This tool enable us to
evaluate the performance of memory architectures that are based on one-step majority
logic decoding.

• We demonstrated that the guaranteed error correction concept can be extended to the
faulty iterative decoders. We proved that the error correction capability of the faulty
bit-�ipping decoder increases linearly with code length, even when logic gates used in
the decoder are prone to data-dependent failures. In addition we proved the existence of
reliable memories under correlated gate failures, which represents the �rst such result for
failure models other than the simple independent failure model.

• We designed a fast convergent bit-�ipping decoder robust to hardware unreliability. Our
decoder outperforms all known bit-�ipping decoders in terms of error correction capabili-
ties.

• We proposed a dual-rail interconnection strategy tailored for Near/Sub-Threshold oper-
ation, which outperforms traditional the single/dual-rail counterparts in terms of energy
consumption.

The topics presented in this deliverable will be further investigated in the third year of the
project. New challenges for the rest of the project in WP4 include the following:

• Investigate the guaranteed error correction analysis of the Gallger-B decoder, as well as
novel designs of hard decision message passing decoders robust to hardware unreliability.

• Continue the work towards the understanding of the decoding failures of the probabilistic
bit-�ipping decoder, so that to further improve its error correction performance. We also
intend to use this work as a guideline for the development of deterministic decoders with
approximately the same performance but lower complexity levels.

• Analyze the novel hard decision decoders proposed in this project under data-dependent
failure models.

• Investigate the design of constraint codes in order to avoid crosstalk error prone data pat-
terns, which potentially enables robust and low energy intra/inter-chip data transmission.

67



Bibliography

[1] M. Ivkovic, S. K. Chilappagari, and B. Vasic, �Construction of memory circuits using unre-
liable components based on low-density parity-check codes,� in Proceedings of IEEE Global
Telecommunications Conference (GLOBECOM'06), San Francisco, CA, USA, Nov. 2006,
pp. 1�5.

[2] S. Chilappagari, M. Ivkovic, and B. Vasic, �Analysis of one step majority logic decoders
constructed from faulty gates,� in Proceedings of IEEE International Symposium on Infor-
mation Theory (ISIT 2006), Seattle, USA, July 2006, pp. 469�473.

[3] M. Taylor, �Reliable information storage in memories designed from unreliable components,�
Bell System Technical Journal, vol. 47, pp. 2299�2337, 1968.

[4] A. Kuznetsov, �Information storage in a memory assembled from unreliable components,�
Problems of Information Transmission, vol. 9, pp. 254�264, 1973.

[5] S. Brkic, P. Ivanis, and B. Vasic, �Analysis of one-step majority logic decoding under cor-
related data-dependent gate failures,� in Proceedings of IEEE International Symposium on
Information Theory (ISIT 2014), Honolulu, USA, June�July 2014, pp. 2599�2603.

[6] B. Vasic and S. K. Chilappagari, �An information theoretical framework for analysis and
design of nanoscale fault-tolerant memories based on low-density parity-check codes,� IEEE
Transactions on Circuits and Systems I, Regular Papers, vol. 54, no. 11, pp. 2438�2446, Nov.
2007.

[7] S. Chilappagari and B. Vasic, �Fault tolerant memories based on expander graphs,� in
Proceedings of IEEE Information Theory Workshop, Tahoe City, CA, USA, 2�7 Sep. 2007,
pp. 126�131.

[8] S. Chilappagari, M. Ivkovic, and B. Vasic, �Analysis of one step majority logic decoders
constructed from faulty gates,� in IEEE International Symposium on Information Theory,
July 2006, pp. 469�473.

[9] S. Brkic, P. Ivanis, and B. Vasic, �Analysis of one-step majority logic decoding under cor-
related data-dependent gate failures,� in IEEE International Symposium on Information
Theory (ISIT). IEEE, 2014, pp. 2599�2603.

[10] L. Varshney, �Performance of LDPC codes under faulty iterative decoding,� IEEE Trans-
actions on Information Theory, vol. 57, no. 7, pp. 4427�4444, July 2011.

[11] C. K. Ngassa, V. Savin, and D. Declercq, �Unconventional behavior of the noisy min-
sum decoder over the binary symmetric channel,� in Information Theory and Applications
Workshop, Feb. 2014, pp. 1�10.

[12] O. Al Rasheed, P. Ivanis, and B. Vasic, �Fault-tolerant probabilistic gradient-descent bit
�ipping decoder,� IEEE Communications Letters, vol. 18, no. 9, pp. 1487�1490, Sept. 2014.

68



[13] T. J. Richardson and R. Urbanke, �The capacity of low-density parity-check codes under
message-passing decoding,� IEEE Transactions on Information Theory, vol. 47, no. 2, pp.
599�618, Feb. 2001.

[14] L. Varshney, �Performance of LDPC codes under faulty iterative decoding,� IEEE Trans-
actions on Information Theory, vol. 57, no. 7, pp. 4427�4444, July 1973.

[15] A. Balatsoukas-Stimming and A. Burg, �Density evolution for min-sum decoding of LDPC
codes under unreliable message storage,� IEEE Communications Letters, vol. 18, no. 5, pp.
849�852, May 2014.

[16] C. K. Ngassa, V. Savin, E.Dupraz, and D. Declercq, �Density Evolution and Functional
Threshold for the Noisy Min-Sum Decoder,� Accepted at IEEE Transactions on Communi-
cations, December 2014.

[17] M. Taylor, �Reliable information storage in memories designed from unreliable components,�
Bell System Technical Journal, vol. 47, pp. 2299�2337, Dec. 1968.

[18] A. Kuznetsov, �Information storage in a memory assembled from unreliable components,�
Problems of Information Transmission, vol. 9, pp. 254�264, 1973.

[19] S. Ghosh and K. Roy, �Parameter variation tolerance and error resiliency: New design
paradigm for the nanoscale era,� Proceedings of the IEEE, vol. 98, no. 10, pp. 1718�1751,
Oct. 2010.

[20] B. Vasic, S. Chilappagari, S. Sankaranarayanan, and R. Radhakrishnan, �Failures of the
Gallager B decoder: analysis and applications,� in Proceedings of 2nd Information Theory
and Applications Workshop (ITA 2006), San Diego, CA, Feb. 2006, paper 160, [Online
Available:] http://ita.ucsd.edu/workshop/06/papers/160.pdf.

[21] S. K. Chilappagari and B. Vasic, �Reliable memories built from unreliable components based
on expander graphs,� arXiv:0705.0044v1 [cs.IT], May 2007.

[22] S. M. Sadegh Tabatabaei Yazdi, C. H. Huang, and L. Dolecek, �Optimal design of a Gallager
B noisy decoder for irregular LDPC codes,� IEEE Communications Letters, vol. 16, no. 12,
pp. 2052�2055, Dec. 2012.

[23] S. M. Sadegh Tabatabaei Yazdi, H. Cho, and L. Dolecek, �Gallager B decoder on noisy
hardware,� IEEE Transactions on Communications, vol. 61, no. 5, pp. 1660�1673, May
2013.

[24] C. H. Huang, Y. Li, and L. Dolecek, �Gallager B LDPC decoder with transient and per-
manent errors,� IEEE Transactions on Communications, vol. 62, no. 1, pp. 15�28, Jan.
2014.

[25] F. Leduc-Primeau and W. Gross, �Faulty Gallager-B decoding with optimal message repe-
tition,� in Proceedings of 50th Allerton Conference on Communication, Control, and Com-
puting, Monticello, USA, Oct. 2012, pp. 549�556.

[26] C. H. Huang and L. Dolecek, �Analysis of �nite alphabet iterative decoders under processing
errors,� in Proceedings of IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Vancouver, Candada, May 2013, pp. 5085�5089.

[27] C. Kameni Ngassa, V. Savin, and D. Declercq, �Min-Sum-based decoders running on
noisy hardware,� in Proceedings of IEEE Global Telecommunications Conference (GLOBE-
COM'13), Atlanta, USA, Dec. 2013, pp. 1�5.

69



[28] E. Dupraz, D. Declercq, B. Vasic, and V. Savin, �Finite alphabet iterative decoders robust
to faulty hardware: Analysis and selection,� in Proceedings of 8th International Symposioum
on Turbo Codes and Iterative Information Processing (ISTC), Bremen, Germany, Aug. 2014,
pp. 1�10.

[29] L. D. Rudolf, �A class of majority logic decodable codes,� IEEE Transactions on Information
Theory, vol. 13, no. 2, pp. 305�307, Apr. 1967.

[30] J. L. Massey, Threshold Decoding. Cambridge, MA, USA: MIT Press, 1963.

[31] R. Radhakrishnan, S. Sankaranarayanan, and B. Vasic, �Analytical performance of one-
step majority logic decoding of regular LDPC codes,� in Proceedings of IEEE International
Symposium on Information Theory (ISIT 2007), Nice, France, June 2007, pp. 231�235.

[32] J. Von Neumann, �Probabilistic logics and the synthesis of reliable organisms from unreliable
components,� in Automata Studies, C.E. Shannon and J. McCarty, eds., Princeton Univ.
Press, July 1956, pp. 43�98.

[33] S. Zaynoun, M. S. Khairy, A. M. Eltawil, F. J. Kurdahi, and A. Khajeh, �Fast error aware
model for arithmetic and logic circuits,� in Proceedings of 30th IEEE International Confer-
ence on Computer Design (ICCD), Montreal, QC, Sept.�Oct. 2012, pp. 322�328.

[34] A. Khajeh, K. Amiri, M. Khairy, A. M. Eltawil, and F. Kurdahi, �A uni�ed hardware and
channel noise model for communication systems,� in Proceedings of IEEE Global Telecom-
munications Conference (GLOBECOM'10), Miami, Florida, USA, 6�10 Dec. 2010, pp. 1�5.

[35] S. Lin and D. J. Costello, Error control coding, 2nd Edition. Englewood Cli�s, NJ: Prentice-
Hall, 2004.

[36] Y. Kou, S. Lin, and M. Fossorier, �Low-density parity-check codes based on �nite geometries:
A rediscovery and new results,� IEEE Transactions on Information Theory, vol. 47, no. 7,
pp. 2711�2736, Nov. 2001.

[37] R. Lucas, M. P. C. Fossorier, Y. Kou, and S. Lin, �Iterative decoding of one-step majority
logic deductible codes based on belief propagation,� IEEE Transactions on Communica-
tions, vol. 48, no. 6, pp. 931�937, June 2000.

[38] N. Pippenger, �On networks of noisy gates,� in Proceedings of 26th Annual Symposium on
Foundations of Computer Science, Portland, OR, USA, Oct. 1985, pp. 30�38.

[39] S. K. Chilappagari, D. V. Nguyen, B. Vasic, and M. W. Marcellin, �On trapping sets and
guaranteed error correction capability of LDPC codes and GLDPC codes,� IEEE Transac-
tions on Information Theory, vol. 56, no. 4, pp. 1600�1611, Apr. 2010.

[40] R. G. Gallager, Low Density Parity Check Codes. Cambridge, MA, USA: MIT Press, 1963.

[41] V. V. Zyablov and M. S. Pinsker, �Estimation of the error-correction complexity for Gallager
low-density codes,� Probl. Inf. Transm., vol. 11, no. 1, pp. 18�28, 1976.

[42] M. Sipser and D. Spielman, �Expander codes,� IEEE Transactions on Information Theory,
vol. 42, no. 6, pp. 1710�1722, Nov. 1996.

[43] D. Burshtein, �On the error correction of regular LDPC codes using the �ipping algorithm,�
IEEE Transactions on Information Theory, vol. 54, no. 2, pp. 517�530, Feb. 2008.

[44] D. Burshtein and G. Miller, �Expander graph arguments for messagepassing algorithms,�
IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 782�790, Feb. 2001.

70



[45] J. Feldman, T. Malkin, R. A. Servedio, C. Stein, and M. J. Wainwright, �LP decoding
corrects a constant fraction of errors,� IEEE Transactions on Information Theory, vol. 53,
no. 1, pp. 82�89, Jan. 2007.

[46] M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson, �Randomness conductors and
constant-degree lossless expanders,� in STOC'02: Proceedings of the thiry-fourth annual
ACM symposium on Theory of computing, New York, NY, USA: ACM Press, 2002, pp.
659�668.

[47] N. Alon, S. Hoory, and M. Linial, �The moore bound for irregular graphs,� Graphs and
Combinatorics, vol. 18, no. 1, pp. 53�57, 2002.

[48] D. V. Nguyen and B. Vasic, �Two-Bit Bit Flipping Algorithms for LDPC Codes and Col-
lective Error Correction,� IEEE Trans. Comm., vol. 62, no. 4, pp. 1153�1163, April 2014.

[49] T. Wadayama, K. Nakamura, M. Yagita, Y. Funahashi, S. Usami, and I. Takumi, �Gra-
dient Descent Bit Flipping algorithms for decoding LDPC codes,� IEEE Transactions on
Communications, vol. 58, no. 6, pp. 1610�1614, June 2010.

[50] N. Miladinovic and M. Fossorier, �Improved Bit-Flipping decoding of low-density parity-
check codes,� IEEE Trans. Inform. Theory, vol. 51, no. 4, pp. 1594�1606, April 2005.

[51] O. A. Rasheed, P. Ivanis, and B. Vasic, �Fault-Tolerant Probabilistic Gradient-Descent Bit
Flipping Decoder,� IEEE Communications Letters, vol. 18, no. 9, pp. 1487�1490, Sept 2014.

[52] D. Declercq, E. Li, B. Vasic, and S. Planjery, �Approaching maximum likelihood decoding
of �nite length LDPC codes via FAID diversity,� in Proc. 2012 IEEE Information Theory
Workshop (ITW), Sept 2012, pp. 487�491.

[53] D. Nguyen, S. Chilappagari, M. Marcellin, and B. Vasic, �On the Construction of Structured
LDPC Codes Free of Small Trapping Sets,� IEEE Trans. Inform. Theory, vol. 58, no. 4,
pp. 2280�2302, April 2012.

[54] L. Danjean and S. K. Planjery, http://www2.engr.arizona.edu/~vasiclab/tools/LDPC_
Code_List.

[55] D. Rossi, C. Metra, A. K. Nieuwland, and A. Katoch, �Exploiting ECC redundancy to
minimize crosstalk impact,� IEEE Design and Test of Computers, vol. 22, no. 1, pp. 59 �
70, Jan.-Feb. 2005.

[56] K. S. Sainarayanan, C. Raghunandan, and M. B. Srinivas, �Bus encoding schemes for min-
imizing delay in VLSI interconnects,� in Proceedings of the 20th annual conference on In-
tegrated circuits and systems design, 2007, pp. 184�189.

[57] V. Bret and K. Keutzer, �Bus encoding to prevent crosstalk delay,� in Proceedings of the
2001 IEEE/ACM international conference on Computer-aided design, 2001, pp. 57�63.

[58] A. R. Brahmbhatt, J. Zhang, Q. Qiu, and Q. Wu, �Adaptive low-power bus encoding based
on weighted code mapping,� in Proceedings of the 2006 IEEE International Symposium on
Circuits and Systems (ISCAS 2006), 2006, pp. 4 pp� 1742.

[59] S. D. Pable and M. Hasan, �Interconnect design for subthreshold circuits,� IEEE Transac-
tions on Nanotechnology, vol. 11, no. 3, pp. 633 � 639, Feb. 2012.

71


