
FP7-ICT / FET-OPEN 309129 / i-RISC

D3.1

Fault tolerant LDPC encoding and decoding

Editor: D. Declercq, ENSEA

Deliverable nature: Public

Due date: January 31, 2014

Delivery date: February 3, 2014

Version: 1.0

Total number of pages: 81 pages

Reviewed by: i-RISC partners

Keywords: LDPC codes, faulty Density Evolution, Min-Sum and self-
corrected Min-Sum, FAID decoders, robustness to transient errors.

Abstract
This deliverable presents an overview of the activities carried out by the work package WP3 during

the first year of the project. These activities include mainly the study of iterative decoding under
faulty hardware, in order to understand the limits of Fault tolerance techniques based on LDPC
forward error correction.

In order to protect the different parts of the chips from transient defects, the storage and com-
putation units have to be redundant and incorporate a powerful error-correction technique. In this
workpackage, we focus on the class of LDPC codes, decoded with iterative message passing decoders,
and our goal is the design of LDPC codes with fault-tolerant encoder and decoder architectures. Our
contribution during this first period of the project has been to develop theoretical analysis and to
propose practical decoding algorithms, which are tolerant to transient errors, coming from the faulty
hardware. Error correcting codes with fault tolerant encoder and decoder architectures constitute a
building block of our approach to fault tolerant chip design.

D3.1: Fault tolerant LDPC encoding and decoding

List of Authors

Participant Author

CEA Valentin Savin (valetin.savin@cea.fr)

Christiane L. Kameni Ngassa (christiane.kameningassa@cea.fr)

ENSEA David Declercq (declercq@ensea.fr)

Erbao Li (erbao.li@ensea.fr)

ELFAK Bane Vasic (vasic@email.arizona.edu)

Page 2 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

Contents

List of Dissemination Activities 5

List of Figures 7

List of Tables 8

List of Algorithms 9

List of Abbreviations 10

Introduction 11

Executive Summary 12

1 Min-Sum-based decoders running on noisy hardware 15

1.1 Introduction . 15

1.2 LDPC Codes and the Min-Sum Algorithm . 16

1.2.1 LDPC Codes . 16

1.2.2 Min-Sum Decoding . 16

1.3 Error Injection and Probabilistic Models for Noisy Computing 18

1.3.1 Noisy Message-Passing decoders . 18

1.3.2 Error Injection Models . 19

1.3.3 Bitwise-XOR Error Injection . 20

1.3.4 Output-Switching Error Injection . 21

1.3.5 Probabilistic models for noisy adders, comparators and XOR-gates 21

1.3.6 Nested Operators . 22

1.4 Noisy Min-Sum Decoding . 23

1.4.1 Finite-Precision Min-Sum Decoder . 23

1.4.2 Noisy Min-Sum Decoder . 23

1.4.3 Sign-Preserving Properties . 24

1.5 Density Evolution . 25

1.5.1 Concentration and Convergence Properties . 25

1.5.2 Density Evolution Equations . 25

1.5.3 Error Probability and Useful and Target-BER regions 28

1.6 Asymptotic analysis of the noisy Min-sum decoder . 30

1.6.1 Numerical results for the BSC . 30

1.6.2 Numerical results for the BI-AWGN channel 38

1.7 Finite Length Performance of Min-Sum based decoders 41

1.7.1 Practical implementation and early stopping criterion 41

1.7.2 Corroboration of the asymptotic analysis through finite-length simulations . . . 42

1.7.3 Noisy Self-Corrected Min-Sum decoder . 44

1.8 Conclusion . 46

c©i-RISC, January 2014 Page 3 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

2 The Finite-Alphabet Iterative Decoding Framework for Faulty Hardware 47
2.1 Brief introduction of FAID decoders . 47

2.1.1 Definitions . 47
2.1.2 Min-Sum-Based Decoders: Instances of FAIDs 48
2.1.3 Discussion on the Design of FAIDs . 50
2.1.4 Simulation Results . 51

2.2 Faulty FAID Decoding and Analysis . 52
2.2.1 Definition of Faulty FAID decoders . 52
2.2.2 Density Evolution for Faulty FAID . 54
2.2.3 Noisy Density Evolution Analysis . 55
2.2.4 Selection of FAIDs based on the Functional Region 58

2.3 Finite length Simulation Results . 62
2.4 Conclusion and future developments in the i-RISC project 63

3 Design of Min-Sum-based LDPC decoders using imprecise arithmetic 65
3.1 Introduction . 65
3.2 Related works . 66
3.3 LDPC codes and iterative decoding . 66

3.3.1 Notation . 67
3.3.2 Min-Sum decoding . 68
3.3.3 Normalized Min-Sum decoding . 68
3.3.4 Offset Min-Sum decoding . 69
3.3.5 Self-Corrected Min Sum decoding . 69

3.4 Imprecise Min-Sum-based decoders . 69
3.4.1 Kogge-Stone Adder . 70
3.4.2 The imprecise adder . 70
3.4.3 The imprecise comparator . 71
3.4.4 Implementation of imprecise Min-Sum-based decoders 72

3.5 Simulation Results . 73
3.5.1 Decoders’ performance . 73
3.5.2 Complexity analysis . 74

3.6 Conclusion . 75

4 General Conclusion and Next Steps 76

Page 4 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

List of Dissemination Activities

Published papers

[P1] C. L. Kameni Ngassa, V. Savin, D. and Declercq, “Design of Min-Sum-based LDPC decoders
using imprecise arithmetic”, IEEE Int. Conference on Computer as a tool (EUROCON), Zagreb,
Croatia, July 2013.

[P2] C. L. Kameni Ngassa, V. Savin, and D. Declercq, “Analysis of Min-Sum based decoders imple-
mented on noisy hardware”, Asilomar Conference on Signals, Systems and Computers, Asilomar,
CA, USA, November 2013.

[P3] C. L. Kameni Ngassa, V. Savin, and D. Declercq, “Min-Sum-based decoders running on noisy
hardware”, IEEE Global Communications Conference (GLOBECOM), Atlanta, GA, USA, De-
cember 2013.

[P4] C. L. Kameni Ngassa, V. Savin, and D. Declercq, “Unconventional behavior of the noisy Min-
Sum decoder over the Binary Symmetric Channel”, IEEE Information Theory and Applications
Workshop (ITA), San Diego, CA, USA, February 2014.

Submitted papers

[P5] C. L. Kameni Ngassa, V. Savin, and D. Declercq, “Asymptotical and finite length analysis of
the Min-Sum Decoder on noisy hardware”, IEEE Transactions on Communications, submitted.

[P6] S. Planjery, D. Declercq, and B. Vasić, “Guaranteed error correction with finite number of
iterations and FAID decoders”, IEEE Transactions on Information Theory, submitted.

Workshop presentations

[P7] C. L. Kameni Ngassa, V. Savin, and D. Declercq, “Min-Sum-based decoders running on noisy
hardware”, Groupement de Recherche Information, Signal, Image et Vision (GdR-ISIS), Tele-
com ParisTech, Paris, July 2, 2013.

[P8] C. L. Kameni Ngassa, V. Savin, and D. Declercq, “Analysis and design of Min-Sum-based de-
coders running on noisy hardware”, i-RISC Workshop, European Solid-State Circuits Conference
(ESSCIRC), Bucharest, September 20, 2013.

[P9] Bane Vasić and David Declercq, “Bit-flipping decoders for fault-tolerant memories”, i-RISC
Workshop, European Solid-State Circuits Conference (ESSCIRC), Bucharest, September 20,
2013.

[P10] David Declercq, S. Planjery and B.Vasić, “Low complexity Finite Alphabet Iterative Decoders
tolerant to faulty hardware”, i-RISC Workshop, European Solid-State Circuits Conference (ES-
SCIRC), Bucharest, September 20, 2013.

c©i-RISC, January 2014 Page 5 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

List of Figures

1 Gantt chart of Work-Package 3 . 11

1.1 Asymptotic error probability P
(∞)
e of the noiseless MS decoder as a function of p0 . . 31

1.2 Effect of the noisy adder on the asymptotic performance of the MS decoder (p0 = 0.06) 31
1.3 Probability mass function of the a posteriori information C̃(`) (noiseless MS decoder) . 32
1.4 Probability mass function of the a posteriori information C̃(`) (MS decoder with full-

depth noisy adder, pa = 10−15) . 32
1.5 Useful and non-convergence regions of the MS decoder with sign-preserving noisy adder 33

1.6 Decoding error probability P
(`)
e of the noisy MS decoder, for p0 = 0.03 and sign-

preserving noisy adder with various pa values . 33
1.7 Threshold values of noiseless and noisy MS decoders with various channel scale factors 34
1.8 Useful and η-threshold regions of the MS decoder with noisy adder 36
1.9 Illustration of the early plateau phenomenon . 36

1.10 Asymptotic error probability P
(∞)
e as a function of p0; noiseless and noisy MS decoder

with sign-protected noisy adder . 36
1.11 Useful and η-threshold regions of the MS decoder with noisy xor-operator 37
1.12 Useful region and threshold curve of the MS decoder with noisy comparator 38
1.13 Threshold SNR values of noiseless and noisy decoders with various channel scale factors 39
1.14 Useful and η-threshold regions of the MS decoder with noisy adder (bi-awgn) 40

1.15 Asymptotic error probability P
(∞)
e of the MS decoder with noisy-adder as a function of

the SNR . 40
1.16 Useful and η-threshold regions of the MS decoder with noisy xor-operator (bi-awgn) 40
1.17 Useful region and threshold curve of the MS decoder with noisy comparator (bi-awgn) 40
1.18 BER performance of noiseless and noisy MS decoders with various channel scale factors 42
1.19 BER performance with and without early stopping criterion 43
1.20 Average number of decoding iterations with early stopping criterion 43
1.21 BER performance of the noisy MS decoder with various noise parameters 44
1.22 BER performance comparison between noisy MS and noisy SCMS decoders 45

2.1 Examples of trapping sets for regular dv = 3 LDPC codes. 50
2.2 Performance comparisons between various LDPC decoders for a (7807, 7177) QC-LDPC

code . 51
2.3 Performance comparisons between various LDPC decoders for a (2388, 1793) QC-LDPC

code . 52
2.4 Full-Depth Error model seen as a Ns-ary symetric channel. 53
2.5 Sign-Preserving Error model seen as a Ns-ary symetric channel. 53
2.6 Threshold behavior of a FAID decoder around the functional threshold. 57
2.7 Different Dynamical behaviors of noisy DE. 58
2.8 Useful and Functional Regions of the Offset-corrected Min-Sum and FAID 58
2.9 Distribution of the functional noisy DE threshold for 5291 FAIDs. 60
2.10 Distribution of the difference between Noiseless Thresholds and Noisy Thresholds for

5291 FAIDs. This plot, ranging from values close to 0 to values close to the maximum
noiseless thresholds clearly shows that there are robust and non-robust FAIDs. 61

Page 6 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

2.11 Performance of Noiseless and Noisy FAIDs on the (93, 155) Tanner code, with (dv =
3, dc = 5) and (pv = 0.05, pc = 0.05). 63

2.12 Performance of Noiseless and Noisy FAIDs on the (444, 111) QC-LDPC code, with
(dv = 3, dc = 12) and (pv = 0.05, pc = 0.02). 64

3.1 4-bit parallel-prefix CLA architecture . 70
3.2 8 bits Kogge-Stone diagram . 71
3.3 Imprecise adder . 71
3.4 6 bits comparator architecture . 72
3.5 FER for the (504, 252) regular code . 74
3.6 FER for the IEEE 802.16e code . 74
3.7 Gain in complexity . 75
3.8 Relative complexity for the (504,252) regular code . 75
3.9 Relative complexity for the IEEE 802.16e code . 75

c©i-RISC, January 2014 Page 7 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

List of Tables

1.1 Example of sign-preserving bitwise-xor error injection 21
1.2 Asymptotic error probability of the MS decoding with noisy adder (p0 = 0.06) 31

2.1 Boolean map defining the VNU of a 7-level FAID when yn = −C 49
2.2 VNU of a 3-bit offset Min-Sum represented as a FAID 50
2.3 Number of FAID Decoders . 59
2.4 FAID rule Φ(opt)

v reported in [45] optimized for the error floor 59
2.5 FAID rule Φ(robust)

v optimized for the Robustness to Faulty Hardware (minimum differ-
ence between Noiseless and Noisy DE thresholds) . 61

2.6 FAID rule Φ(non-robust)
v not robust to faulty Hardware (maximum difference between

Noiseless and Noisy DE thresholds) . 62

3.1 Example of inexact additions . 71
3.2 Example of inexact comparisons . 72

Page 8 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

List of Algorithms

1 Min-Sum (MS) decoding . 18
2 Noisy Min-Sum (Noisy-MS) decoding . 24
3 Noisy Self-Corrected Min-Sum (Noisy-SCMS) decoding 46

c©i-RISC, January 2014 Page 9 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

List of Abbreviations

BER Bit Error Rate

BI-AWGN Binary Input Additive White Gaussian Noise

BSC Binary Symmetric Channel

BP Belief-Propagation

CN Check Node

FER Frame Error Rate

LDPC Low Density Parity Check

MS Min-Sum

MP Message-Passing

SCMS Self-Corrected Min-Sum

VN Variable Node

Page 10 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

Introduction

The i-RISC project addresses the problem of reliable computing with unreliable components, which is
a crucial issue for the long-term development of computing technology. The novelty of the proposed
research comes from the synergistic utilization of information theory and coding techniques, tradition-
ally utilized to improve the reliability of communication systems, and circuit and system theory and
design techniques in order to create reliable/predictable hardware.

Within i-RISC, the Work-Package 3 (Fault Tolerant Algorithms for Error-Correction) is aimed at
understanding error-correcting codes in the context of unreliable computing systems. This is a new
paradigm in coding theory, since faulty hardware can potentially induce errors during the decoding
process. It is then critical to properly evaluate the robustness of the existing decoders in the presence of
an additional source of noise at the circuit level. The main goal is to propose decoding algorithms that
can effectively deal with the probabilistic behavior of the circuit. We focus on the family of Low-Density
Parity Check (LDPC) codes and several candidates for LDPC decoding will be considered during
the project: Min-Sum-based decoders, Finite-Alphabet Iterative Decoders (FAIDs), and stochastic
decoder. For all considered decoders, both the asymptotic theoretical analysis and the practical
robustness of the algorithms will be studied and benchmarked during the project. As an important
outcome of WP3, we aim at providing a ranking of the considered decoding algorithms in terms of
their ability to be tolerant to the faulty hardware setting. Error correcting codes with fault tolerant
decoder architectures constitute a building block of our approach to fault tolerant chip design. This
building block will be used to address the problem of reliable memories and interconnections (WP4),
and will be integrated into the fault-tolerant implementations of the logical functionality of the circuit
(WP5).

The Gantt chart of WP3 is represented in Figure 1. An overview of the activities carried out
during the first year of the project is presented in the next section.

Deliverables 3.1 3.2 3.3

n n

n

n n

n

n

WP3: FAULT TOLERANT ERROR CORRECTION
YEAR 1 YEAR 2 YEAR 3

T
as

k
s

T3.1: MS/FAID decoders under faulty gates

T3.2: Stochastic decoder under faulty gates

T3.3: Long-term protection under faulty HW

T3.4: Practical fault tolerant encoding

T3.5: Fault-tolerant RM and Polar-codes

Figure 1: Gantt chart of Work-Package 3

c©i-RISC, January 2014 Page 11 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

Executive Summary

This deliverable presents an overview of the activities carried out by the work-package WP3 during the
first year of the project. These activities include mainly the study of iterative decoding under faulty
hardware, in order to understand the limits of fault tolerance techniques based on LDPC forward error
correction.

In order to protect the different parts of the chips from transient defects, the storage and com-
putation units have to be redundant and incorporate a powerful error-correction technique. In this
work-package, we focus on the class of LDPC codes, decoded with iterative message passing decoders,
and our goal is the design of LDPC codes with fault-tolerant encoder and decoder architectures. Our
contribution during this first period of the project has been to develop theoretical analysis and to
propose practical decoding algorithms, which are tolerant to transient errors, coming from the faulty
hardware. Error correcting codes with fault tolerant decoder architectures constitute a building block
of our approach to fault tolerant chip design.

We have conducted study and analysis for 3 types of LDPC decoders, and two different models of
transient errors. The three types of decoders are:

• The finite precision Min-Sum decoder (MS),

• A modified version of the Min-Sum decoder incorporating a dynamical correction of mis-convergence,
called self-corrected Min-Sum (SC-MS),

• More general decoders based on non-linear Boolean function for the message passing updates,
called Finite Alphabet Iterative Decoders (FAID).

In the i-RISC project, we have first focused on the theoretical analysis and understanding of the
noisy versions of these decoders, by conducting a density evolution (DE) study of these decoders. This
will help us to understand, by other means than just Monte Carlo simulations, the limits of iterative
decoding with faulty hardware. A density evolution approach has however some limitations as it can
be defined only for symmetric decoding functions without memory. Therefore, only the MS and the
FAIDs were analyzed using DE. Additionally, the transient error model has also to be symmetric in
order to guarantee the independence of the DE dynamical system with respect to the transmitted
codeword. We have therefore restricted the theoretical study of the MS and the FAIDs to symmetric
error models, which can be far from the real noise present in the low-powered circuits. The analysis
of MS and FAID under symmetric faulty hardware is presented in chapters 1 and 2, respectively.

The main conclusions of this study is that iterative message passing decoders under noisy hardware
can be very robust to transient errors, as they continue to be able to operate when the different
computing units are in defect. This result was already known for theoretical infinite precision decoders
[1], and also for hard-decision decoders (bit-flipping and Gal-B), [2, 3] and our analysis confirms this
property for practical finite-precision iterative decoders. Our study has also focused on means to
improve the decoder reliability, by protecting critical bits of the finite-precision computation flow
within the decoding process. To this end, we defined and investigated sign-preserving error models for
primary arithmetic operations (e.g. adders), or for larger processing units of the decoder (e.g. variable-
node or check-node processing unit). For such models, the sign of the operation (or processing unit)
result is always computed accurately. The benefits of sign-preserving computational models have

Page 12 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

been demonstrated asymptotically through DE analysis, and verified at finite-lengths by Monte Carlo
simulations.

Along the lines of this study, we have also identified some peculiar and very interesting behaviors
of the MS and FAID decoders under noisy hardware: in some cases, the noisy version of a decoder
can have better asymptotic performance (namely can correct a larger fraction of errors) than its
noiseless version. The reasons of this behavior will be further investigated in the second period of the
i-RISC project. Another conclusion of this study is that using the FAID decoders framework, one can
identify message passing update rules which are naturally more robust to transient errors, and more
importantly, that the best update rules for the noisy case are not the same as the best update rules
for the noiseless case. This opens one direction of research as to propose message passing decoders
which are robust to transient errors and should be used in the context of computing in the presence
of errors. We will continue this direction in the second period of the i-RISC project.

Additionally, the practical performance of the considered decoders has also to be verified for the
non-asymptotical case, and for more practical error configurations. We have then also conducted a
finite length statistical analysis of the different decoders to validate the theoretical analysis. In par-
ticular, we have verified in chapters 1 and 2 that the observations made with the DE analysis were
still true for the finite length case. We have then confirmed that the noisy message passing decoders
have error correction performance very close to their noiseless performance, and sometimes can even
surpass the performance of the noiseless case. We have also verified that for sign preserving computa-
tional models, the level of noise that can be tolerated with only negligible performance degradation is
far superior than in the full-depth noise case. Finally, we evaluated the finite-length performance of
the noisy SC-MS decoder, and showed that it provides nearly the same performance as the noiseless
decoder, for a wide range of values of the hardware noise parameters.

We have also conducted a study on a more realistic error scenario, consisting of the imprecise arith-
metic computation framework. In this case, the source of errors comes from the fact that arithmetic
units in the decoders are implemented with a smaller number of logic gates than what is actually
needed, which may result in significant savings in energy. Under this error model, we have shown
in particular that the SC-MS could reach the same error correction performance as the full-precision
decoders. This work is reported in chapter 3. The SC-MS decoder seems to be naturally robust
to hardware errors and we will continue its development and analysis for the more general types of
transient errors in the second phase of the i-RISC project.

The work achieved in WP3 is in line with the work-plan and especially answers fully the objectives
of Task 3.1 “Design and analysis of Min-Sum and FAID decoders under faulty gates models”, and
prepares the continuation of the work toward Task 3.3 “Quasi-error free protection or long-term
protection under faulty hardware setting” and Task 3.4 “Practical encoding of sparse-graph codes under
faulty hardware setting”. We have postponed the study of fault-tolerant encoding of the codewords
to the next stages of the project, as in the noisy computation framework, the only way of having a
fault-tolerant encoder is to rely on the decoder itself. In parallel, the development of Task 3.2 “Design
and Analysis of Stochastic Decoding under faulty gates models” has started and will be reported in
future deliverables.

Let us now describe how this work is related to the development of the other work-packages:

• As said in this introduction and more precisely presented in the deliverable, the error models
that we can use for the asymptotical analysis are limited and could be very far from the more
realistic noises. We will take the outputs of the error models characterization from WP2 and
explore ways to generalize the formal mathematical error models to refine our DE analysis. The
accurate error models will also be used with Monte Carlo estimations and simulations to verify
the validity of our approaches.

• Contrary to the hard-decision decoders, like the Gal-B decoder, which loses error correction
performance under faulty hardware, we have shown in this deliverable that when using more

c©i-RISC, January 2014 Page 13 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

elaborate message passing decoders, one can still recover the same fraction of errors than in
the noiseless case. Related to the work planned in WP4, important gains for Taylor-Kuznetzov
reliable memories are then foreseen using either SC-MS or optimized FAIDs, and we will explore
this direction in the second period of the project.

• Finally, the development of VHDL models for SC-MS and FAIDs has started, and we will provide
them to the i-RISC partners when finalized. These hardware models will be incorporated in the
demonstrators in WP6.

Page 14 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

Chapter 1

Min-Sum-based decoders running on
noisy hardware

Abstract: This chapter deals with Low-Density Parity-Check decoders running on noisy hardware.

The goal is to properly evaluate the robustness of existing decoders in the presence of an additional

source of noise at the circuit level. To this end, we first introduce a new error model approach

and carry out the “noisy” density evolution analysis of the fixed-point Min-Sum decoder. Then, for

different parameters of the noisy components of the decoder, we determine the range of the signal-

to-noise ratio values for which the decoder is able to achieve a target bit error rate performance.

Finally, we evaluate the finite-length performance of the Min-Sum and the Self-Corrected Min-Sum

decoders running on noisy hardware.

1.1 Introduction

In traditional models of communication or storage systems with error correction coding, it is assumed
that the operations of an error correction encoder and decoder are deterministic and that the random-
ness exists only in the transmission or storage channel. However, with the advent of nanoelectronics,
the reliability of the forthcoming circuits and computation devices is becoming questionable. Indeed,
due to huge increases in density integration, lower supply voltages, and variations in the technological
process, MOS and emerging nanoelectronic devices will be inherently unreliable. Besides, a significant
challenge to current CMOS design is to lower the energy consumption by several factors of magnitude,
with the obvious goal of energy preservation. Diminishing the energy consumption can be addressed
by aggressive supply voltage scaling, with the drawback that bringing the signal level closer to the
noise level reduces noise immunity and leads to unreliable computing. It is then becoming crucial to
design and analyze error correcting decoders able to provide reliable error correction even if they are
made of unreliable components.

Except the pioneered works by Taylor and Kuznetsov on reliable memories [2,4,5], later generalized
in [3,6] to the case of hard-decision decoders, this new paradigm of noisy decoders has merely not been
addressed until recently in the coding literature. However, over the last years, the study of error cor-
recting decoders, especially Low-Density Parity-Check (LDPC) decoders, running on noisy hardware
attracted more and more interest in the coding community. In [7] and [8] hardware redundancy is
used to develop fault-compensation techniques, able to protect the decoder against the errors induced
by the noisy components of the circuit. In [9], a class of modified Turbo and LDPC decoders has
been proposed, able to deal with the noise induced by the failures of a low-power buffering memory
that stores the input soft bits of the decoder. Very recently, the characterization of the effect of noisy
processing on message-passing iterative LDPC decoders has been proposed. In [1], the concentration
and convergence properties were proved for the asymptotic performance of noisy message-passing de-
coders, and density evolution equations were derived for the noisy Gallager-A and Belief-Propagation
decoders. In [10–12], the authors investigated the asymptotic behavior of the noisy Gallager-B decoder
defined over binary and non-binary alphabets. However, all these papers deal with very simple error

c©i-RISC, January 2014 Page 15 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

models, which emulate the noisy implementation of the decoder, by passing each of the exchanged
messages through a noisy channel.

In this work we focus on the Min-Sum decoder, which is widely implemented in real communication
systems. In order to emulate the noisy implementation of the decoder, probabilistic error models
are proposed for its arithmetic components (adders and comparators). The proposed probabilistic
components are used to build the noisy fixed-point decoders. We further analyze the asymptotic
performance of the noisy Min-Sum decoder, and provide useful regions and target-BER-thresholds [1]
for a wide range of parameters of the proposed error models. Finally, we investigate the finite-length
performance of the noisy Min-Sum and Self-Corrected Min-Sum decoders.

The remainder of the chapter is organized as follows. Section 1.2 gives a brief introduction to LDPC
codes and iterative decoding. Section 1.3 presents the error models for the arithmetic components. The
density evolution and asymptotic analysis for the noisy quantized Min-Sum algorithm are presented
in Section 1.5 and Section 1.6 respectively. Section 1.7 provides the finite-length performance and
Section 1.8 concludes the chapter.

1.2 LDPC Codes and the Min-Sum Algorithm

1.2.1 LDPC Codes

LDPC codes [13] are linear block codes defined by sparse parity-check matrices. They can be advanta-
geously represented by bipartite (Tanner) graphs [14] and decoded by message-passing (MP) iterative
algorithms. The Tanner graph of an LDPC code is a bipartite graph H, whose adjacency matrix is
the parity-check matrix H of the code. Accordingly, H contains two types of nodes:

• variable-nodes, corresponding to the columns of H, or equivalently to the codeword bits, and

• check-nodes, corresponding to the rows of H, or equivalently to the parity equations the codeword
bits are checked by.

We consider an LDPC code defined by a Tanner graph H, with N variable-nodes and M check-
nodes. Variable-nodes are denoted by n ∈ {1, 2, ..., N}, and check-nodes by m ∈ {1, 2, ...,M}. We
denote by H(n) and H(m) the set of neighbor nodes of the variable-node n and of the check-node m,
respectively. The number of elements of H(n) (or H(m)) is referred to as the node-degree.

The Tanner graph representation allows reformulating the probabilistic decoding initially proposed
by Gallager [13] in terms of Belief-Propagation1 (BP): an MP algorithm proposed by J. Pearl in 1982
[15] to perform Bayesian inference on trees, but also successfully used on general graphical models
[16]. The BP decoding is known to be optimal on cycle-free graphs (in the sense that it outputs the
maximum a posteriori estimates of the coded bits), but can also be successfully applied to decode
linear codes defined by graphs with cycles, which is actually the case of all practical codes. However,
in practical applications, the BP algorithm might be disadvantaged by its computational complexity
and its sensitivity to the channel noise density estimation (inaccurate estimation of the channel noisy
density may cause significant degradation of the BP performance).

1.2.2 Min-Sum Decoding

One way to deal with complexity and numerical instability issues is to simplify the computation of
messages exchanged within the BP decoding. The most complex step of the BP decoding is the
computation of check-to-variable messages, which makes use of computationally intensive hyperbolic
tangent functions. The Min-Sum (MS) algorithm is aimed at reducing the computational complexity
of the BP, by using max-log approximations of the parity-check to coded-bit messages [17–19]. The
only operations required by the MS decoding are additions, comparisons, and sign (±1) products,
which solves the complexity and numerical instability problems. The performance of the MS decoding

1Also referred to as Sum-Product (SP)

Page 16 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

is also known to be independent of the channel noise density estimation, for most of the usual channel
models.

For the sake of simplicity, we only consider transmissions over binary-input memoryless noisy
channels, and assume that the channel input alphabet is {−1,+1}, with the usual convention that
+1 corresponds to the 0-bit, and −1 corresponds to the 1-bit. We further consider a codeword
x = (x1, . . . , xN) ∈ {−1,+1}N and denote by y = (y1, . . . , yN) the received word. The following
notations will be used throughout the chapter, with respect to message passing decoders:

• γn is the log-likelihood ratio (LLR) value of xn according to the received yn value; it is also
referred to as the a priori information of the decoder concerning the variable-node n;

• γ̃n is the a posteriori information (LLR value) of the decoder concerning the variable-node n;

• αm,n is the variable-to-check message sent from variable-node n to check-node m;

• βm,n is the check-to-variable message sent from check-node m to variable-node n.

The (infinite precision) MS decoding is described in Algorithm 1. It consists of an initialization
step (in which variable-to-check messages are initialized according to the a priori information of the
decoder), followed by an iteration loop, where each iteration comprises three main steps as follows:

• CN-processing (check-node processing step): computes the check-to-variable messages βm,n;

• VN-processing (variable-node processing step): computes the variable-to-check messages αm,n;

• AP-update (a posteriori information update step): computes the a posteriori information γ̃n.

Moreover, each iteration also comprises a hard decision step, in which each transmitted bit is
estimated according to the sign of the a posteriori information, and a syndrome check step, in which
the syndrome of the estimated word is computed. The MS decoding stops when whether the syndrome
is +1 (the estimated word is a codeword) or a maximum number of iterations is reached.

The a priori information (LLR) of the decoder is defined by γn = log
Pr(xn = +1 | yn)

Pr(xn = −1 | yn)
, and for

the two following channel models (predominantly used in this work), it can be computed as follows:

• For the Binary Symmetric Channel (BSC), y ∈ {−1,+1}N is obtained by flipping each entry of
x with some probability ε, referred to as the channel’s crossover probability. Consequently:

γn = log

(
1− ε
ε

)
yn (1.1)

• For the Binary-Input Additive White Gaussian Noise (BI-AWGN) channel, y ∈ RN is obtained
by yn = xn + zn, where zn is the white Gaussian noise with variance σ2. It follows that:

γn =
2

σ2
yn (1.2)

Remark: It can be easily seen that if the a priori information vector γ = (γ1, . . . , γN) is multiplied
by a constant value, this value will factor out from all the processing steps in Algorithm 1 (throughout
the decoding iterations), and therefore it will not affect in any way the decoding process. It follows
that for both the BSC and BI-AWGN channel models, one can simply define the a priori information
of the decoder by γn = yn, ∀n = 1, . . . , N .

c©i-RISC, January 2014 Page 17 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

Algorithm 1 Min-Sum (MS) decoding

Input: y = (y1, . . . , yN) ∈ YN (Y is the channel output alphabet) . received word

Output: x̂ = (x̂1, . . . , x̂N) ∈ {−1,+1}N . estimated codeword
Initialization

for all n = 1, . . . , N do γn = log
Pr(xn = +1 | yn)

Pr(xn = −1 | yn)
;

for all n = 1, . . . , N and m ∈ H(n) do αm,n = γn;

Iteration Loop
for all m = 1, . . . ,M and n ∈ H(m) do . CN-processing

βm,n =

 ∏
n′∈H(m)\n

sgn(αm,n′)

(min
n′∈H(m)\n

|αm,n′ |
)

;

for all n = 1, . . . , N and m ∈ H(n) do . VN-processing

αm,n = γn +
∑

m′∈H(n)\m

βm′,n;

for all n = 1, . . . , N do . AP-update

γ̃n = γn +
∑

m∈H(n)

βm,n;

for all {vn}n=1,...,N do x̂n = sgn(γ̃n); . hard decision

if x̂ is a codeword then exit the iteration loop . syndrome check

End Iteration Loop

1.3 Error Injection and Probabilistic Models for Noisy Computing

1.3.1 Noisy Message-Passing decoders

The model for noisy MP decoders proposed in [1] incorporates two different sources of noise: compu-
tation noise due to noisy logic in the processing units, and message-passing noise due to noisy wires
(or noisy memories) used to exchange messages between neighbor nodes.

• The computation noise is modeled as a random variable, which the variable-node or the check-
node processing depends on. Put differently, an outgoing message from a (variable or check) node
depends not only on the incoming messages to that node (including the a priori information for
the variable-node processing), but also on the realization of a random variable which is assumed
to be independent of the incoming messages.

• The message-passing noise is simply modeled as a noisy channel. Hence, transmitting a message
over a noisy wire is emulated by passing that message through the corresponding noisy channel.

However, in [1] it has been noted that “there is no essential loss of generality by combining com-
putation noise and message-passing noise into a single form of noise” (see also [20, Lemma 3.1]).
Consequently, the approach adopted has been to merge noisy computation into message-passing noise,
and to emulate noisy decoders by passing the exchanged messages through different noisy channel
models. Thus, the noisy Gallager-A decoder has been emulated by passing the exchanged messages
over independent and identical BSC wires, while the noisy BP decoder has been emulated by corrupt-
ing the exchanged messages with bounded and symmetrically distributed additive noise (e.g. uniform
noise or truncated Gaussian noise).

The approach we follow in this work differs from the one in [1] in that the computation noise
is modeled at the lower level of arithmetic and logic operations that compose the variable-node and
check-node processing units. This finer-grained noise modeling is aimed at determining the level of
noise that can be tolerated in each type of operation. As the main focus of this work is on computation
noise, we shall consider that messages are exchanged between neighbor nodes through error-free wires

Page 18 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

(or memories). However, we note that this work can readily be extended to include different error
models for the message-passing noise (as defined in [1]). Alternatively, we may assume that the
message-passing noise is merged into the computation noise, in the sense that adding noise in wires
would modify the probabilistic model of the noisy logic or arithmetic operations.

1.3.2 Error Injection Models

We only consider the case of finite-precision operations, meaning that the inputs (operands) and the
output of the operator are assumed to be bounded integer numbers. We simulate a noisy operator
by injecting errors into the output of the noiseless one. In the following, V ⊂ Z denotes a finite set
consisting of all the possible outputs of the noiseless operator.

Definition 1 An error injection model on V, denoted by (E , pE , ı | V), is given by:

• A finite error set E ⊂ Z together with a probability mass function pE : E → [0, 1], referred to as
the error distribution;

• A function ı : V × E → V, referred to as the error injection function.

For a given set of inputs, the output of the noisy operator is the random variable defined by ı(v, e),
where v ∈ V is the corresponding output of the noiseless operator, and e is drawn randomly from E
according to the probability distribution pE .

The error injection probability is defined by

p0 =
1

|V|
∑
v

∑
e

δ̄vı(v,e)pE(e), (1.3)

where δ̄vı(v,e) = 0 if v = ı(v, e), and δ̄vı(v,e) = 1 if v 6= ı(v, e). In other word, p0 = Pr(v 6= ı(v, e)),
assuming that v is drawn uniformly from V and e is drawn from E according to pE .

The above definition makes some implicit assumptions which are discussed below.

• The set of possible outputs of the noisy operator is the same as the set of possible outputs of the
noiseless operator (V). This is justified by the fact that, in most common cases, V is the set of
all (signed or unsigned) integers that can be represented by a given number of bits. Thus, error
injection will usually alter the bit values, but not the number of bits.

• The injected error does not depend on the output value of the noiseless operator and, conse-
quently, neither on the given set of inputs. In other words, the injected error is independent
on the data processed by the noiseless operator. The validity of this assumption does actually
depend on the size of the circuit implementing the operator. Indeed, this assumption tends to
hold fairly well for large circuits [21], but becomes more tenuous as the circuit size decreases.

Obviously, it would be possible to define more general error injection models, in which the injected
error would depend on the data (currently and/or previously) processed by the operator. Such an
error injection model would certainly be more realistic, but it would also make it very difficult to
analytically characterize the behavior of noisy MP decoders. As a side effect, the decoding error
probability would be dependent on the transmitted codeword, which would prevent the use of the
density evolution technique for the analysis of the asymptotic decoding performance (since the density
evolution technique relies on the all-zero codeword assumption).

However, the fact that the error injection model is data independent does not guarantee that the
decoding error probability is independent of the transmitted codeword. In order for this to happen,
the error injection model must also satisfy a symmetry condition that can be stated as follows.

Definition 2 An error injection model (E , pE , ı | V) is said to be symmetric if V is symmetric around
the origin (meaning that v ∈ V ⇔ −v ∈ V, but 0 does not necessarily belong to V), and the following
equality holds ∑

{e| ı(v,e)=w}

pE(e) =
∑

{e| ı(−v,e)=−w}

pE(e), ∀v, w ∈ V (1.4)

c©i-RISC, January 2014 Page 19 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

The meaning of the symmetry condition is as follows. Let V be a random variable on V. Let φ
(ı)
V

and φ
(ı)
−V denote the probability mass functions of the random variables obtained by injecting errors

in the output of V and −V , respectively. Then the above symmetry condition is satisfied if and only
if for any V the following equality holds

φ
(ı)
V (w) = φ

(ı)
−V (−w), ∀w ∈ V (1.5)

A particular case in which the symmetry condition is fulfilled is when ı(−v, e) = −ı(v, e), for all v ∈ V
and e ∈ E . In this case, the error injection model is said to be highly symmetric.

Messages exchanged within message-passing decoders are generally in belief-format, meaning that
the sign of the message indicates the bit estimate and the magnitude of the message the confidence
level. As a consequence, errors occurring on the sign of the exchanged messages are expected to be
more harmful than those occurring on their magnitude. This motivates the following definition, which
will be used in the following section (see also the discussion in Section 1.4.3).

Definition 3 An error injection model (E , pE , ı | V) is said to be sign-preserving if for any v ∈ V and
e ∈ E, v and ı(v, e) are either both non-negative (≥ 0) or both non-positive (≤ 0).

1.3.3 Bitwise-XOR Error Injection

We focus now on the two main symmetric error injection models that will be used in this work. Both
models are based on a bitwise xor operation between the noiseless output v and the error e. The two
models differ in the definition of the error set E , which is chosen such that the bitwise xor operation
may or may not affect the sign of the noiseless output. In the first case, the bitwise xor error injection
model is said to be full-depth, while in the second it is said to be sign-preserving. These error injection
models are rigorously defined below.

In the following, we fix θ ≥ 2 and set V = {−Θ, . . . ,−1, 0,+1, . . . ,+Θ}, where Θ = 2θ−1 − 1 ≥ 1.
We also fix a signed number binary representation, which can be any of the sign-magnitude, one’s
complement, or two’s complement representation. There are exactly 2θ signed numbers that can be
represented by θ bits in any of the above formats, one of which does not belong to V (note that V
contains only 2Θ + 1 = 2θ − 1 elements for symmetry reasons!). We denote this element by ζ. Hence:

• In sign-magnitude format, ζ = −0, with binary representation 10 · · · 0;

• In one’s complement format, ζ = −0, with binary representation 11 · · · 1;

• In two’s complement format, ζ = −(Θ + 1), with binary representation 10 · · · 0.

For any u, v ∈ V, we denote by u ∧ v the bitwise xor operation between u and v. From the above
discussion, it follows that u ∧ v ∈ V ∪ {ζ}.

Full-depth error injection

For this error model, the error set is E = V. The error injection probability is denoted by p0, and
all the possible error values e 6= 0 are assumed to occur with the same probability (for symmetry
reasons). It follows that the error distribution function is given by pE(0) = 1 − p0 and pE(e) = p0

2Θ ,
∀e 6= 0. Finally, the error injection function is defined by:

ı(v, e) =

{
v ∧ e, if v ∧ e ∈ V
e, if v ∧ e = ζ

(1.6)

Page 20 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

Table 1.1: Example of sign-preserving bitwise-xor error injection
integer 2’s complement binary representation

noiseless output: v −11 1 0 1 0 1

error: e 6 0 1 1 0

noisy output: ı(v, e) −13 1 0 0 1 1

bit position θ=5 4 3 2 1

Sign-preserving error injection

For this error model, the error set is E = {0,+1, . . . ,+Θ}. The error injection probability is denoted
by p0, and all the possible error values e 6= 0 are assumed to occur with the same probability (for
symmetry reasons). It follows that the error distribution function is given by pE(0) = 1 − p0 and
pE(e) = p0

Θ , ∀e 6= 0. Finally, the error injection function is defined by:

ı(v, e) =


v ∧ e, if v 6= 0 and v ∧ e ∈ V
±e, if v = 0
0, if v ∧ e = ζ

(1.7)

In the above definition, ı(0, e) is randomly set to either −e or +e, with equal probability (this is due
once again to symmetry reasons). Note also that the last two conditions, namely v = 0 and v ∧ e = ζ,
cannot hold simultaneously (since e 6= ζ).

Finally, we note that both of the above models are highly symmetric, if one of the sign-magnitude
or the one’s complement representation is used. In case that the two’s complement representation is
used, they are both symmetric, but not highly symmetric.

An example of sign-preserving bitwise-xor error injection is given in Table 1.1. The number of
bits is θ = 5 and two’s complement binary representation is used. The sign bit of the error is not
displayed, as it is equal to zero for any e ∈ E . The positions of 1’s in the binary representation of e
correspond to the positions of the erroneous bits in the noisy output.

Remark: It is also possible to define a variable depth error injection model, in which errors are
injected in only the λ least significant bits, with λ ≤ θ. Hence, λ = θ corresponds to the above
full-depth model, while λ = θ − 1 corresponds to the sign-preserving model. However, for λ < θ − 1
such a model will not be symmetric, if the the two’s complement representation is used.

1.3.4 Output-Switching Error Injection

A particular case is represented by error injection on binary output. Assuming that V = {0, 1}, the bit-
flipping error injection model is defined as follows. The error set is E = {0, 1}, with error distribution
function given by pE(0) = 1 − p0 and pE(1) = p0, where p0 is the error injection probability, and the
error injection function is given by ı(v, e) = v ∧ e. Put differently, the error injection model flips the
value of a bit in V with probability p0.

Clearly, the above error injection model can be applied on any set V with two elements, by switching
one value to another with probability p0. In this case, we shall refer to this error injection model as
output-switching, rather than bit-flipping.

Moreover, if one takes V = {−1,+1} (with the usual 0,1 to ±1 conversion), it can be easily verified
that this error injection model is highly symmetric.

1.3.5 Probabilistic models for noisy adders, comparators and XOR-gates

In this section we describe the probabilistic models for noisy adders, comparators and xor-gates, built
upon the above error injection models. These probabilistic models will be used in the next section, in
order to emulate the noisy implementation of the quantized (finite-precision) MS decoder.

c©i-RISC, January 2014 Page 21 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

Noisy adder model

We consider a θ-bit adder, with θ ≥ 2. The inputs and the output of the adder are assumed to be in
V = {−Θ, . . . ,−1, 0,+1, . . . ,+Θ}, where Θ = 2θ−1 − 1.

We denote by sV : Z→ V, the θ-bit saturation map, defined by:

sV(v) =


−Θ, if v < −Θ
v, if v ∈ V

+Θ, if v > +Θ
(1.8)

For inputs (x, y) ∈ V, the output of the noiseless adder is defined as sV(x+ y). Hence, for a given
error injection model (E , pE , ı | V), the output of the noisy adder is given by:

apr(x, y) = ı (sV(x+ y), e) , (1.9)

where e is drawn randomly from E according to the probability distribution pE . The error probability
of the noisy adder, assuming uniformly distributed inputs, is equal to the error injection probability
(parameter p0 defined in (1.3)), and will be denoted in the sequel by pa.

Noisy comparator model

Let lt denote the noiseless less than operator, defined by lt(x, y) = 1 if x < y, and lt(x, y) = 0
otherwise. The noisy less than operator, denoted by ltpr, is defined by injecting errors on the output
of the noiseless one, according to the bit-flipping model defined in Section 1.3.4. In other words, the
output of the noiseless lt operator is flipped with some probability value, which will be denoted in the
sequel by pc.

Finally, the noisy minimum operator is defined by:

mpr(x, y) =

{
x, if ltpr(x, y) = 1
y, if ltpr(x, y) = 0

(1.10)

Noisy XOR model

The noisy xor operator, denoted by xpr is defined by flipping the output of the noiseless operator
with some probability value, which will be denoted in the sequel by px (according to the bit-flipping
error injection model in Section 1.3.4). It follows that:

xpr(x, y) =

{
x ∧ y, with probability 1− px
x ∧ y, with probability px

(1.11)

Assumption: We further assume that the inputs and the output of the xor operator may take values
in either {0, 1} or {−1,+1} (using the usual 0,1 to ±1 conversion). This assumption will be implicitly
made throughout the chapter.

Remark: As a general rule, we shall refer to a noisy operator according to its underlying error
injection model. For instance, a sign-preserving (resp. full-depth or sign-preserving bitwise-xored)
noisy adder, is a noisy adder whose underlying error injection model is sign-preserving (resp. one
of the bitwise-xor error injection models defined in Section 1.3.3). We shall also say that a noisy
operator is (highly) symmetric if its underlying error injection model is so.

1.3.6 Nested Operators

As it can be observed from Algorithm 1, several arithmetic/logic operations must be nested2 in order
to compute the exchanged messages. Since all these operations (additions, comparisons, xor) are

2For instance, (dn − 1) additions – where dn denotes the degree of the variable-node n – are required in order to
compute each αm,n message. Similarly, each βm,n message requires (dm − 2) xor operations and (dm − 2) comparisons.

Page 22 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

commutative, the way they are nested does not have any impact on the infinite-precision MS decoding.
However, this is no longer true for finite-precision decoding, especially in case of noisy operations.
Therefore, one needs an assumption about how operators extend from two to more inputs.

Our assumption is the following. For n ≥ 2 inputs, we randomly pick any two inputs and apply
the operator on this pair. Then we replace the pair by the obtained output, and repeat the above
procedure until there is only one output (and no more inputs) left.

The formal definition goes as follows. Let Ω ⊂ Z and ω : Ω × Ω → Ω be a noiseless or noisy
operator with two operands. Let {xi}i=1:n ⊂ Ω be an unordered set of n operands. We define:

ω ({xi}i=1:n) = ω(· · · (ω(xπ(1), xπ(2)), · · ·), xπ(n)),

where π is a random permutation of 1, . . . , n.

1.4 Noisy Min-Sum Decoding

1.4.1 Finite-Precision Min-Sum Decoder

We consider a finite-precision MS decoder, in which the a priori information (γn) and the exchanged
messages (αm,n and βm,n) are quantized on q bits. The a posteriori information (γ̃n) is quantized on
q̃ bits, with q̃ > q (usually q̃ = q + 1, or q̃ = q + 2). We further denote:

• M = {−Q, . . . ,−1, 0,+1, . . . , Q}, where Q = 2q−1 − 1, the alphabet of both the a priori infor-
mation and the exchanged messages;

• M̃ = {−Q̃, . . . ,−1, 0,+1, . . . , Q̃}, where Q̃ = 2q̃−1 − 1, the alphabet of the a posteriori informa-
tion;

• q : Y →M, a quantization map, where Y denotes the channel output alphabet;

• sM : Z→M, the q-bit saturation map (defined in a similar manner as in (1.8));

• sM̃ : Z→ M̃, the q̃-bit saturation map

Remark: The quantization map q determines the q-bit quantization of the decoder soft input. Since
q is defined on the channel input (i.e. yn values), it must also encompass the computation of the
corresponding LLR values, whenever is necessary (see also the Remark at the end of Section 1.2.2).

Saturation maps sM and sM̃ define the finite-precision saturation of the exchanged messages and
of the a posteriori information, respectively.

1.4.2 Noisy Min-Sum Decoder

The noisy (finite-precision) MS decoding is presented in Algorithm 2. We assume that q̃-bit adders are
used to compute both αm,n messages in the VN-processing step, and γ̃n values in the AP-update
processing step. This is usually the case in practical implementations3, and allows us to use the same
type of adder in both processing steps. This assumption explains as well the q-bit saturation of αm,n
messages in the VN-processing step. Note also that the saturation of γ̃n values is actually done
within the adder (see Equation (1.9)).

Finally, we note that the hard decision and the syndrome check steps in Algorithm 2 are assumed
to be noiseless. We note however that the syndrome check step is optional, and if missing, the decoder
stops when the maximum number of iterations is reached.

3In practical implementation, the γ̃n is computed first, and then αm,n is obtained from γ̃n by subtracting the incoming
βm,n message

c©i-RISC, January 2014 Page 23 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

Algorithm 2 Noisy Min-Sum (Noisy-MS) decoding

Input: y = (y1, . . . , yN) ∈ YN (Y is the channel output alphabet) . received word

Output: x̂ = (x̂1, . . . , x̂N) ∈ {−1,+1}N . estimated codeword
Initialization

for all n = 1, . . . , N do γn = q(yn);

for all n = 1, . . . , N and m ∈ H(n) do αm,n = γn;

Iteration Loop
for all m = 1, . . . ,M and n ∈ H(m) do . CN-processing

βm,n = xpr

(
{sgn(αm,n′)}n′∈H(m)\n

)
mpr

(
{|αm,n′ |}n′∈H(m)\n

)
;

for all n = 1, . . . , N and m ∈ H(n) do . VN-processing
αm,n = apr

(
{γn} ∪ {βm′,n}m′∈H(n)\m

)
;

αm,n = sM (αm,n) ;

for all n = 1, . . . , N do . AP-update
γ̃n = apr

(
{γn} ∪ {βm,n}m∈H(n)

)
;

for all {vn}n=1,...,N do x̂n = sgn(γ̃n); . hard decision

if x̂ is a codeword then exit the iteration loop . syndrome check

End Iteration Loop

1.4.3 Sign-Preserving Properties

Let U denote any of the VN-processing or CN-processing units of the noiseless MS decoder. We denote
by Upr the corresponding unit of the noisy MS decoder. We say that Upr is sign-preserving if for any
incoming messages and any noise realization, the outgoing message is of the same sign as the message
obtained when the same incoming messages are supplied to U.

Clearly, CNpr is sign-preserving if and only if the xor-operator is noiseless (px = 0). In case
that the noisy xor-operator severely degrades the decoder performance, it is possible to increase its
reliability by using classical fault-tolerant techniques (as for instance modular redundancy, or multi-
voltage design by increasing the supply voltage of the corresponding xor-gate). The price to pay,
when compared to the size or the energy consumption of the whole circuit, would be reasonable.

Concerning the VN-processing, it is worth noting that the VNpr is not sign-preserving, even if
the noisy adder is. This is due to the fact that multiple adders must be nested in order to complete
the VN-processing. However, a sign-preserving adder might have several benefits. First, the error
probability of the sign of variable-node messages would be lowered, which would certainly help the
decoder. Second, if the noisy adder is sign-preserving and all the variable-node incoming messages
have the same sign, then the VNpr does preserve the sign of the outgoing message. Put differently,
in case that all the incoming messages agree on the same hard decision, the noisy VN-processing
may change the confidence level, but cannot change the decision. This may be particularly useful,
especially during the last decoding iterations.

Finally, the motivation behind the sign-preserving noisy adder model is to investigate its possible
benefits on the decoder performance. If the benefits are worth it (e.g. one can ensure a target
performance of the decoder), the sign-bit of the adder could be protected by using classical fault-
tolerant solutions.

Page 24 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

1.5 Density Evolution

1.5.1 Concentration and Convergence Properties

First, we note that our definition of symmetry is slightly more general than the one used in [1]. Indeed,
even if all the error injection models used within the noisy MS decoder are symmetric, the noisy MS
decoder does not necessarily verify the symmetry property from [1]. However, this property is
verified in case of highly symmetric fault injection4. Nevertheless, the concentration and convergence
properties proved in [1] for symmetric noisy message-passing decoders, can easily be generalized to
our definition of symmetry.

We summarize below the most important results; the proof relies essentially on the same arguments
as in [1]. We consider an ensemble of LDPC codes, with length N and fixed degree distribution
polynomials [22]. We choose a random code C from this ensemble and assume that a random codeword
x ∈ {−1,+1}N is sent over a binary-input memoryless symmetric channel. We fix some number of

decoding iterations ` > 0, and denote by E
(`)
C (x) the expected fraction of incorrect messages5 at

iteration `.

Theorem 1 Assume that all the error injection models used within the MS decoder are symmetric.
Then, the following properties hold:

1. [Conditional Independence of Error] For any decoding iteration ` > 0, the expected fraction of

incorrect messages E
(`)
C (x) does not depend on x. Therefore, we may define E

(`)
C := E

(`)
C (x).

2. [Cycle-Free Case] If the graph of C contains no cycles of length 2` or less, the expected fraction

of incorrect messages E
(`)
C does not depend on the code C or the code-length N , but only on the

degree distribution polynomials; in this case, it will be further denoted by E
(`)
∞ (x).

3. [Concentration Around the Cycle-Free Case] For any δ > 0, the probability that E
(`)
C lies outside

the interval
(
E

(`)
∞ (x)− δ, E(`)

∞ (x) + δ
)

converges to zero exponentially fast in N .

1.5.2 Density Evolution Equations

In this section we derive density evolution equations for the noisy finite-precision MS decoding for a
regular (dv, dc) LDPC code. The study can be easily generalized to irregular LDPC codes, simply by
averaging according to the degree distribution polynomials.

The objective of the density evolution technique is to recursively compute the probability mass
functions of exchanged messages, through the iterative decoding process. This is done under the
independence assumption of exchanged messages, holding in the asymptotic limit of the code length,
in which case the decoding performance converges to the cycle-free case. Due to the symmetry of the
decoder, the analysis can be further simplified by assuming that the all-zero codeword is transmitted
through the channel. We note that our analysis applies to any memoryless symmetric channel.

Let ` > 0 denote the decoding iteration. Superscript (`) will be used to indicate the messages and
the a posteriori information computed at iteration `. To indicate the value of a message on a randomly
selected edge, we drop the variable and check node indexes from the notation (and we proceed in a
similar manner for the a priori and a posteriori information). The corresponding probability mass
functions are denoted as follows.

C(z) = Pr(γ = z), ∀z ∈M
C̃(`)(z̃) = Pr(γ̃(`) = z̃), ∀z̃ ∈ M̃
A(`)(z) = Pr

(
α(`) = z

)
, ∀z ∈M

B(`)(z) = Pr
(
β(`) = z

)
, ∀z ∈M

4According to the probabilistic models introduced in Section 1.3.5, the noisy comparator and the noisy xor-operator
are highly symmetric, but the noisy adder does not necessarily be so!

5Here, “messages” may have any one of the three following meanings: “variable-node messages”, or “check-node
messages”, or “a posteriori information values”.

c©i-RISC, January 2014 Page 25 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

Expression of the input probability mass function C

The probability mass function C depends only on the channel and the quantization map q : Y →M,
where Y denotes the channel output alphabet (Section 1.4.1). We also note that for ` = 0, we have
A(0) = C.

We give below the expression of C for the BSC and the BI-AWGN channel models (see Sec-
tion 1.2.2). For the BSC, the channel output alphabet is Y = {−1,+1}, while for the BI-AWGN
channel, Y = R.

Let µ be a positive number, such that µ ≤ Q. The quantization map qµ is defined as follows:

qµ : Y →M, qµ(y) = sM([µ·y]), (1.12)

where [µ·y] denotes the nearest integer to µ·y, and sM is the saturation map (Section 1.4.1). For the
BSC, we will further assume that µ is an integer. It follows that qµ(y) = µ·y, ∀y ∈ Y = {−1,+1}.

Considering the all-zero (+1) codeword assumption, the probability mass function C can be com-
puted as follows.

• For the BSC with crossover probability ε:

C(z) =


1− ε, if z = µ
ε, if z = −µ
0, otherwise

(1.13)

• For the BI-AWGN channel with noise variance σ2:

C(z) =


1− q

(
−Q+0.5−µ

µσ

)
, if z = −Q

q
(
z−0.5−µ

µσ

)
− q

(
z+0.5−µ

µσ

)
, if −Q < z < +Q

q
(
Q−0.5−µ

µσ

)
, if z = +Q

(1.14)

where q(x) =
1√
2π

∫ +∞

x
exp

(
−u

2

2

)
du is the tail probability of the standard normal distribu-

tion (also known as the Q-function).

Expression of B(`) as a function of A(`−1)

In the sequel, we make the convention that Pr(sgn(0) = 1) = Pr(sgn(0) = −1) = 1/2. The
following notation will be used:

• A[x,y] =

y∑
z=x

A(z), for x ≤ y ∈M

• A[0+,y] =
1

2
A(0) +

y∑
z=1

A(z), for y ∈M, y > 0

• A[x,0−] =
1

2
A(0) +

−1∑
z=x

A(z), for x ∈M, x < 0

For the sake of simplicity, we drop the iteration index, thus B := B(`) and A := A(`−1). We
proceed by recursion on i = 2, . . . , dc − 1, where dc denotes the check-node degree.

Let β1 := α1, and for i = 2, . . . , dc − 1 define:

βi = xpr(sgn(βi−1), sgn(αi))mpr(|βi−1|, |αi|)

Page 26 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

Let also Bi−1 and Bi denote the probability mass functions of βi−1 and βi, respectively (hence,
B1 = A).

First of all, for z = 0, we have:
Bi(0) = Pr(βi = 0) = A(0)Bi−1(0) + [Bi−1(0)(1−A(0)) +A(0)(1−Bi−1(0))] (1− pc).

For z 6= 0, we proceed in several steps as follows:

For z > 0:

F ′i (z)
def
= Pr(βi ≥ z | px = 0)

=
[
Bi−1[0+,z−1]A[z,Q−1] +A[0+,z−1]Bi−1[z,Q−1]

]
pc

+
[
Bi−1[1−z,0−]A[−Q,−z] +A[1−z,0−]Bi−1[−Q,−z]

]
pc

+ Bi−1[z,Q−1]A[z,Q−1] +Bi−1[−Q,−z]A[−Q,−z]

Fi(z)
def
= Pr(βi ≥ z)
= (1− px).F ′i (z) + px.G

′
i(−z)

Bi(z) = Pr(βi = z) = Fi(z)− Fi(z + 1)

For z < 0:

G′i(z)
def
= Pr(βi ≤ z | px = 0)

=
[
Bi−1[0+,−z−1]A[−Q,z] +A[0+,−z−1]Bi−1[−Q,z]

]
pc

+
[
Bi−1[−z,Q−1]A[z+1,0−] +A[−z,Q−1]Bi−1[z+1,0−]

]
pc

+ Bi−1[−z,Q−1]A[−Q,z] +A[−z,Q−1]Bi−1[−Q,z]

Gi(z)
def
= Pr(βi ≥ z)
= (1− px).G′i(z) + px.F

′
i (−z)

Bi(z) = Pr(βi = z) = Gi(z)−Gi(z + 1)

Finally, we have that B = Bdc−1.

Expression of A(`) as a function of B(`) and C

We derive at the same time the expression of C̃(`) as a function of B(`) and C.

For simplicity, we drop the iteration index, so A := A(`), B := B(`), and C̃ := C̃(`). We denote

by
(
E , pE , ı | M̃

)
the error injection model used to define the noisy adder. We decompose each noisy

addition into three steps (noiseless infinite-precision addition, saturation, and error injection), and
proceed by recursion on i = 0, 1, . . . , dv, where dv denotes the variable-node degree:

• For i = 0:

Ω0
def
= γ ∈M ⊆ M̃, C̃0(z̃)

def
= Pr(Ω0 = z̃) =

{
C(z̃), if z̃ ∈M

0, if z̃ ∈ M̃ \M

• For i = 1, . . . , dv:

ωi
def
= Ωi−1 + βmi,n ∈ Z, ci(w)

def
= Pr(ωi = w) =

∑
u C̃i−1(u)B(w − u),∀w ∈ Z

ω̃i
def
= sM̃(ωi) ∈ M̃, c̃i(w̃)

def
= Pr(ω̃i = w̃) =


ci(w̃), if w̃ ∈ M̃ \ {±Q̃}∑

w≤−Q̃ ci(w), if w̃ = −Q̃∑
w≥+Q̃

ci(w), if w̃ = +Q̃

Ωi
def
= ı(ω̃i, e) ∈ M̃, C̃i(z̃)

def
= Pr(Ωi = z̃) =

∑
ω̃

∑
e δ

z̃
ı(ω̃,e)pE(e)c̃i(ω̃),∀z̃ ∈ M̃

where δyx = 1 if x = y, and δyx = 0 if x 6= y.

Note that in the definition of Ωi above, e denotes an error drown from the error set E according to
the error probability distribution pE .

Finally, we have:

• A = sM

(
C̃dv−1

)
• C̃ = C̃dv

In the first equation above, applying the saturation operator sM on the probability mass function C̃dv−1

means that all the probability weights corresponding to values w̃ outside M must be accumulated to
the probability of the corresponding boundary value of M (that is, either −Q or +Q, according to
whether w̃ < −Q or w̃ < +Q).

c©i-RISC, January 2014 Page 27 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

Remark: If the noisy adder is defined by one of the bitwise-xor error injection models (Section
1.3.3), then the third equation from the above recursion (expression of C̃i as a function of c̃i) may be
rewritten as follows:

• Sign-preserving bitwise-xored noisy adder

C̃i(z̃) =



(1− pa)c̃i(z̃) +
1

Q̃
pa
(
c̃i [≤ 0−] − c̃i(z)

)
, if z̃ < 0

(1− pa)c̃i(0) +
1

Q̃
pa (1− c̃i(0)) , if z̃ = 0

(1− pa)c̃i(z̃) +
1

Q̃
pa
(
c̃i [≥ 0+] − c̃i(z)

)
, if z̃ > 0

(1.15)

where c̃i [≤ 0−] =
∑

ω̃<0 c̃i(ω̃) + 1
2 c̃i(0), and c̃i [≥ 0+] = 1

2 c̃i(0) +
∑

ω̃>0 c̃i(ω̃).

• Full-depth bitwise-xored noisy adder

C̃i(z̃) = (1− pa)c̃i(z̃) +
1

2Q̃
pa (1− c̃i(z̃)) (1.16)

Finally, we note that the density evolution equations for the noiseless finite-precision MS decoder
can be obtained by setting pa = pc = px = 0.

1.5.3 Error Probability and Useful and Target-BER regions

Decoding Error Probability

The error probability at decoding iteration `, is defined by:

P (`)
e =

−1∑
z̃=−Q̃

C̃(`)(z̃) +
C̃(`)(0)

2
(1.17)

Proposition 1 The error probability at decoding iteration ` is lower-bounded as follows:

(a) For the sign-preserving bitwise-xored noisy adder: P
(`)
e ≥ 1

2Q̃
pa.

(b) For the full-depth bitwise-xored noisy adder: P
(`)
e ≥ 1

2
pa +

1

4Q̃
pa.

Proof. (a) Using C̃ = C̃dv and equations (1.17) and (1.15), it follows that P
(`)
e = (1 − pa)c̃dv [≤ 0−] +

1

2Q̃
pa
(
1− 2c̃dv [≤ 0−]

)
+pa

(
c̃dv [≤ 0−] − 1

2 c̃dv(0)
)
≥ (1−pa)c̃dv [≤ 0−] +

1

2Q̃
pa
(
1− 2c̃dv [≤ 0−]

)
≥ 1

2Q̃
pa, since

the function (1− pa)x+ 1

2Q̃
pa (1− 2x) is an increasing function of x ∈ [0, 1].

(b) Equations (1.17) and (1.16) imply that P
(`)
e = 1

2pa + (1 − pa)c̃dv [≤ 0−] + 1

4Q̃
pa
(
1− 2c̃dv [≤ 0−]

)
≥

1
2pa + 1

4Q̃
pa �

Note that the above lower bounds are actually inferred from the error injection in the last (the
dv-th) addition performed when computing the a posteriori information value. Therefore, these lower
bounds are not expected to be tight. However, if the channel error probability is small enough, the
sign-preserving lower bound proves to be tight in the asymptotic limit of ` (this will be discussed in
more details in Section 1.6). Note also that by protecting the sign of the noisy adder, the bound is
lowered by a factor of roughly Q̃, which represents an exponential improvement with respect to the
number of bits of the adder.

Page 28 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

In the asymptotic limit of the code-length, P
(`)
e gives the probability of the hard bit estimates

being in error at decoding iteration `. For the (noiseless, infinite-precision) BP decoder, the error
probability is usually a decreasing function of `. This is no longer true for the noiseless, infinite-
precision MS decoder, for which the error probability may increase with `. However, both decoders
exhibit a threshold phenomenon, separating the region where error probability goes to zero (as the
number of decoding iterations goes to infinity), from that where it is bounded above zero [22].

Things get more complicated for the noisy (finite-precision) MS decoder. First, the error proba-
bility have a more unpredictable behavior. It does not always converge and it may become periodic6

when the number of iterations goes to infinity. Second, the error probability is always bounded above
zero (Proposition 1), since there is a non-zero probability of fault injection at any decoding iteration.
Hence, a decoding threshold, similar to the noiseless case, cannot longer be defined.

Following [1], we define below the notions of useful decoder and target error rate threshold. We
consider a channel model depending on a channel parameter χ, such that the channel is degraded
by increasing χ (for example, the crossover probability for the BSC, or the noise variance for the
BI-AWGN channel). We will use subscript χ to indicate a quantity that depends on χ. Hence, in

order to account that P
(`)
e depends also on the value of the channel parameter, it will be denoted in

the following by P
(`)
e,χ.

Useful Region

The first step is to evaluate the channel and hardware parameters yielding a final probability of error
(in the asymptotic limit of the number of iterations) less than the input error probability. The latter

probability is given by P
(0)
e,χ =

∑−1
z=−QC(z) + 1

2C(0), where C is the probability mass function of the
quantized a priori information of the decoder (see Section 1.5.2).

Following [1], the decoder is said to be useful if
(
P

(`)
e,χ

)
`>0

is convergent, and:

P (∞)
e,χ

def
= lim

`→∞
P (`)
e,χ < P (0)

e,χ (1.18)

The ensemble of the parameters that satisfy this condition constitutes the useful region of the
decoder.

Target Error Rate Threshold

For noiseless-decoders, the decoding threshold is defined as the supremum channel noise, such that
the error probability converges to zero as the number of decoding iterations goes to infinity. However,
for noisy decoders this error probability does not converge to zero, and an alternative definition of
the decoding threshold has been introduced in [1]. Accordingly, for a target bit-error rate η, the
η-threshold is defined7 by:

χ∗(η) = sup
{
χ | P (∞)

e,χ′ exists and P
(∞)
e,χ′ < η, ∀χ′ ∈ [0, χ]

}
(1.19)

6In fact, for both BSC and BI-AWGN channels, the only cases we observed, in which the sequence
(
P

(`)
e

)
`>0

does

not converge, are those cases in which this sequence becomes periodic for ` large enough.
7In [1], the η-threshold is defined by χ∗(η) = sup

{
χ | P (∞)

e,χ exists and P
(∞)
e,χ < η

}
, and consequently, there might

exist a channel parameter value χ′ < χ∗(η), for which P
(∞)

e,χ′ does not exist. In order to avoid this happening, our
definition is slightly different from the one in [1].

c©i-RISC, January 2014 Page 29 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

1.6 Asymptotic analysis of the noisy Min-sum decoder

In this section, the density evolution equations derived previously are used to analyze the asymptotic
performance (i.e. in the asymptotic limit of both the code length and number of iterations) of the
noisy MS decoder.

Unless specified otherwise, the following parameters are used throughout this section:

Code parameters:

• We consider the ensemble of regular LDPC codes with variable-node degree dv = 3 and check-
node degree dc = 6

Quantization parameters:

• The a priori information and exchanged messages are quantized on q = 4 bits; hence, Q = 7 and
M = {−7, . . . ,+7}.

• The a posteriori information is quantized on q̃ = 5 bits; hence, Q̃ = 15 and M̃ = {−15, . . . ,+15}.

We analyze the decoding performance depending on:

• The quantization map qµ : Y →M, defined in Equation (1.12). The factor µ will be referred to
as the channel-output scale factor, or simply the channel scale factor.

• The parameters of the noisy adder, comparator, and xor-operator, defined respectively in Equa-
tions (1.9), (1.10), and (1.11).

1.6.1 Numerical results for the BSC

For the BSC, the channel output alphabet is Y = {−1,+1} and the quantization map is defined by
qµ(−1) = −µ and qµ(+1) = +µ, with µ ∈ {1, . . . , Q}.

The infinite-precision MS decoder (Algorithm 1), is known to be independent of the scale factor
µ. This is because µ factors out from all the processing steps in Algorithm 1, and therefore does not
affect in any way the decoding process. This is no longer true for the finite precision decoder (due to
saturation effects), and we will show in this section that, even in the noiseless case, the scale factor µ
can significantly impact the performance of the finite precision MS decoder.

We start by analyzing the performance of the MS decoder with quantization map q1, and then we
will analyze its performance with an optimized quantization map qµ.

Min-Sum decoder with quantization map q1

The case µ = 1 leads to an “unconventional” behavior, as in some particular cases the noise introduced
by the device can help the MS decoder to escape from fixed points attractors, and may actually result in
an increased correction capacity with respect to the noiseless decoder. This behavior will be discussed
in more details in this section.

We start with the noiseless decoder case. Figure 1.1 shows the asymptotic error probability P
(∞)
e

as a function of p0. It can be seen that P
(∞)
e decreases slightly with p0, until p0 reaches a threshold

value pth = 0.039, where P
(∞)
e drops to zero. This is the classical threshold phenomenon mentioned

in Section 1.5.3: for p0 > pth, the decoding error probability is bounded far above zero (P
(∞)
e > 0.31),

while for p0 < pth, one has P
(∞)
e = 0.

Now, we consider a p0 value slightly greater than the threshold of the noiseless decoder, and
investigate the effect of the noisy adder on the decoder performance. Let us fix p0 = 0.06. Figure 1.2(a)
shows the decoding error probability at iteration `, for different parameters pa ∈ {10−30, 10−15, 10−5}
of the noisy adder. For each pa value, there are two superimposed curves, corresponding to the full-
depth (“fd”, solid curve) and sign-preserving (“sp”, dashed curve) error models of the noisy adder.

Page 30 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

p
0
 (crosseover probability)

P
e(∞

) (
d

e
c
o

d
in

g
 e

rr
o

r
p

ro
b

a
b

ili
ty

)

(3,6)−regular LDPC; (4,5)−quantization; noiseless MS

P
e

(∞)
 as function of p

0

p
th

 = 0.039

Figure 1.1: Asymptotic error probability P
(∞)
e of the noiseless MS decoder as a function of p0

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Iteration number (l)

P
e(l
) (

d
e
c
o
d
in

g
 e

rr
o
r

p
ro

b
a
b
ili

ty
 a

t
it
e
ra

ti
o
n
 l
)

(3,6)−regular LDPC, (4,5)−quantization, noisy adder

Noiseless MS

add
pr

[fd, p
a
=1e−30]

add
pr

[sp, p
a
=1e−30]

add
pr

[fd, p
a
=1e−15]

add
pr

[sp, p
a
=1e−15]

add
pr

[fd, p
a
=1e−5]

add
pr

[sp, p
a
=1e−5]

p
a
 = 1E−15

p
a
 = 1E−5

p
a
 = 1E−30

(a) P
(`)
e plotted in linear scale

0 20 40 60 80 100
10

−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

Iteration number (l)

P
e(l
) (

d
e
c
o
d
in

g
 e

rr
o
r

p
ro

b
a
b
ili

ty
 a

t
it
e
ra

ti
o
n
 l
)

(3,6)−regular LDPC, (4,5)−quantization, noisy adder

Noiseless MS

add
pr

[fd, p
a
=1e−30]

add
pr

[sp, p
a
=1e−30]

add
pr

[fd, p
a
=1e−15]

add
pr

[sp, p
a
=1e−15]

add
pr

[fd, p
a
=1e−5]

add
pr

[sp, p
a
=1e−5]

p
a
 = 1E−15

p
a
 = 1E−5

p
a
 = 1E−30

(b) P
(`)
e plotted in logarithmic scale

Figure 1.2: Effect of the noisy adder on the asymptotic performance of the MS decoder (p0 = 0.06)

Table 1.2: Asymptotic error probability of the MS decoding with noisy adder (p0 = 0.06)
pa 10−30 10−15 10−5

full P
(∞)
e 8.500× 10−31 8.500× 10−16 8.507× 10−6

depth lower-bound 5.167× 10−31 5.167× 10−16 5.167× 10−6

sign P
(∞)
e 3.333× 10−32 3.333× 10−17 3.333× 10−7

protected lower-bound 3.333× 10−32 3.333× 10−17 3.333× 10−7

The error probability of the noiseless decoder is also plotted (solid black curve): it can be seen that it

increases rapidly from the initial value P
(0)
e = p0 and closely approaches the limit value P

(∞)
e = 0.323

after a few number of iterations. When the adder is noisy, the error probability increases during
the first decoding iterations, and behaves similarly as in the noiseless case. It may approach the
limit value from the noiseless case, but starts decreasing after some number of decoding iterations.
However, it remains bounded above zero, according to the lower bounds from Proposition 1. This can

be seen in Figure 1.2(b), where P
(`)
e plotted in logarithmic scale. The asymptotic values P

(∞)
e and

the corresponding lower-bounds values from Proposition 1 are shown in Table 1.2. It can be seen that
these bounds are tight, especially in the sign-preserving case.

c©i-RISC, January 2014 Page 31 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

−15 −10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Alphabet (M̃)

A
P
os
te
ri
or
i
In
fo
rm

at
io
n
P
D
F
(C̃

)
(3,6)−regular LDPC, (4,5)−quantization, noiseless MS, iter = 0

(a) Iteration ` = 0

−15 −10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Alphabet (M̃)

A
P
os
te
ri
or
i
In
fo
rm

at
io
n
P
D
F
(C̃

)

(3,6)−regular LDPC, (4,5)−quantization, noiseless MS, iter = 5

(b) Iteration ` = 5

−15 −10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Alphabet (M̃)

A
P
os
te
ri
or
i
In
fo
rm

at
io
n
P
D
F
(C̃

)

(3,6)−regular LDPC, (4,5)−quantization, noiseless MS, iter = 20

(c) Iteration ` = 20

Figure 1.3: Probability mass function of the a posteriori information C̃(`) (noiseless MS decoder)

−15 −10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Alphabet (M̃)

A
P
os
te
ri
or
i
In
fo
rm

at
io
n
P
D
F
(C̃

)

(3,6)−regular LDPC, (4,5)−quantization, noisy MS, iter = 20

(a) Iteration ` = 20

−15 −10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Alphabet (M̃)

A
P
os
te
ri
or
i
In
fo
rm

at
io
n
P
D
F
(C̃

)

(3,6)−regular LDPC, (4,5)−quantization, noisy MS, iter = 23

(b) Iteration ` = 23

−15 −10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Alphabet (M̃)

A
P
os
te
ri
or
i
In
fo
rm

at
io
n
P
D
F
(C̃

)

(3,6)−regular LDPC, (4,5)−quantization, noisy MS, iter = 30

(c) Iteration ` = 30

Figure 1.4: Probability mass function of the a posteriori information C̃(`) (MS decoder with full-depth
noisy adder, pa = 10−15)

The above behavior of the MS decoder is explained by the fact that the noise present in the adder
helps the MS decoder to escape from fixed points attractors. Figure 1.3 illustrates the evolution of
the probability mass function C̃(`) for the noiseless decoder. At iteration ` = 0, C̃(0) is supported in
±1, with C̃(0)(−1) = p0 and C̃(0)(+1) = 1− p0. It evolves during the iterative decoding, and reaches
a fixed point of the density evolution for ` = 20. Note that since all variable-nodes are of degree
dv = 3, it can be easily seen that, for ` ≥ 1, C̃(`) is supported only on even values. These “gaps” in
the probability mass function seem lead to favorable conditions for the occurrence of density-evolution
fixed-points.

Figure 1.4 illustrates the evolution of the probability mass function C̃(`) when the full-depth noisy
adder with pa = 10−15 is used within the MS decoder. At iteration ` = 20, C̃(`) is virtually the same
as in the noiseless case. However, the noisy adder allows the decoder to escape from this fixed-point,
as it can be seen for iterations ` = 23 and ` = 30. For ` > 30, the C̃(`) moves further on the right,

until the corresponding error probability P
(`)
e reaches the limit value P

(∞)
e = 8.5× 10−16.

It is worth noting that neither the noisy comparator nor the xor-operator can help the decoder
to escape from fixed-point distributions, as they do not allow “filling the gaps” in the support of C̃(`).

We focus now on the useful region of the noisy MS decoder. We assume that only the adder is
noisy, while the comparator and the xor-operator are noiseless.

The useful region for the sign-protected noisy adder model is shown in Figure 1.5. The useful
region is shaded in gray and delimited by either a solid black curve or a dashed red curve. Although

one would expect that P
(∞)
e = p0 on the border of the useful region, this equality only holds on the

solid black border. On the dashed red border, one has P
(∞)
e < p0. The reason why the useful region

does not extend beyond the dashed red border is that for points located on the other side of this

border the sequence (P
(`)
e)`>0 is periodic, and hence it does not converge! The region shaded in brown

Page 32 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Adder Error Probability (p
a
)

B
S

C
 C

ro
s
s
o

v
e

r
P

ro
b

a
b

ili
ty

 (
p

0
)

(3,6)−regular LDPC, (4,5)−quantization, µ = 1

non−convergence region

non−convergence region

Non−Convergence Region

Useful Reg Border: P
e

∞
 = p

0

Useful Reg Border: P
e

∞
 < p

0

Useful
Region

A

B

C

D
P∞

e > p0

P∞

e < p0

Figure 1.5: Useful and non-convergence regions of the MS decoder with sign-preserving noisy adder

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

Iteration number (ℓ)

P
(ℓ
)

e
(e
rr
or

p
ro
b
ab

il
it
y
at

it
er
at
io
n
ℓ
)

(3,6)−regular LDPC, (4,5)−quantization, sign−protected noisy adder

P
(∞)
e = 9.11 E-4

(a) Point A(p0 = 0.03, pa = 0.027)

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

Iteration number (ℓ)

P
(ℓ
)

e
(e
rr
or

p
ro
b
ab

il
it
y
at

it
er
at
io
n
ℓ
)

(3,6)−regular LDPC, (4,5)−quantization, sign−protected noisy adder

(b) Point B(p0 = 0.03, pa = 0.03)

0 100 200 300 400 500
0.02

0.04

0.06

0.08

0.1

0.12

0.14

Iteration number (ℓ)

P
(ℓ
)

e
(e
rr
or

p
ro
b
ab

il
it
y
at

it
er
at
io
n
ℓ
)

(3,6)−regular LDPC, (4,5)−quantization, sign−protected noisy adder

(c) Point C(p0 = 0.03, pa = 0.039)

0 100 200 300 400 500 600 700 800
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Iteration number (ℓ)

P
(ℓ
)

e
(e
rr
or

p
ro
b
ab

il
it
y
at

it
er
at
io
n
ℓ
)

(3,6)−regular LDPC, (4,5)−quantization, sign−protected noisy adder

P
(∞)
e = 6.05 E-2

(d) Point D(p0 = 0.03, pa = 0.042)

Figure 1.6: Decoding error probability P
(`)
e of the noisy MS decoder, for p0 = 0.03 and sign-preserving

noisy adder with various pa values

in Figure 1.5 is the non-convergence region of the decoder. Note that the non-convergence region
gradually narrows in the upper part, and there is a small portion of the useful region delimited by
the non-convergence region on the left and the black border on the right. Finally, we note that points
with pa = 0 (noiseless decoder) and p0 > 0.039 (threshold of the noiseless decoder) – represented by
the solid red line superimposed on the vertical axis in Figure 1.5 – are excluded from the useful region.

Indeed, for such points P
(∞)
e > p0; however, for pa greater than but close to zero, we have P

(∞)
e ≈ pa

2Q̃

(see Figure 1.2 and related discussion).

c©i-RISC, January 2014 Page 33 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

We exemplify the decoder behavior on four points located on one side and the other of the left and
right boundaries of the non-convergence region. These points are indicated in Figure 1.5 by A,B,C,
and D. For all the four points p0 = 0.03, while pa = 0.027, 0.03, 0.039, and 0.042, respectively.

The error probability (P
(`)
e)`>0 is plotted for each one of these points in Figure 1.6. The point

A belongs to the useful region, and it can be seen from Figure 1.6(a) that (P
(`)
e)`>0 converges to

P
(∞)
e = 9.11×10−4 < p0. For the point B, located just on the other side of the dashed red border of the

useful region, (P
(`)
e)`>0 exhibits a periodic behavior (although we only plotted the first 500 iterations,

we verified the periodic behavior on the first 5× 104 iterations). Crossing the non-convergence region

from left to the right, the amplitude between the inferior and superior limits of (P
(`)
e)`>0 decreases

(point C), until it reaches again a convergent behavior (point D). Note that D is outside the useful

region, as (P
(`)
e)`>0 converges to P

(∞)
e = 0.0605 > p0.

The non-convergence region gradually narrows in the upper part, and for 0 ≤ pa < 0.01 it takes

the form of a discontinuity line: P
(∞)
e takes values close to 10−4 just below this line, and values greater

than 0.05 above this line.
Note that points (pa, p0) with p0 < pa

2Q̃
= pa

30 cannot belong to the useful region, since from

Proposition 1 we have P
(∞)
e ≥ pa

2Q̃
> p0. Moreover, we note that the bottom border of the useful

region (solid black curve) is virtually identical to, but slightly above, the line defined by p0 = pa
2Q̃

.

Optimization of the quantization map

In this section we show that the decoder performance can be significantly improved by using an
appropriate choice of the channel scale factor µ. Figure 1.7 shows the threshold values for the noiseless
and several noisy decoders with channel scale factors µ ∈ {1, 2, . . . , 7}. For the noisy decoders, the
threshold values are computed for a target error probability η = 10−5 (see Equation (1.19)).

1 2 3 4 5 6 7
0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

Channel Scale Factor (µ)

T
h

re
s
h

o
ld

 V
a

lu
e

(3,6)−regular LDPC, (4,5)−quantization

Noiseless MS

add[’sp’, p
a
 = 1e−4]

add[’fd’, p
a
 = 1e−5]

comp[p
c
 = 5e−3]

XOR[p
x
 = 3e−4]

XOR[p
x
 = 2e−4]

Figure 1.7: Threshold values of noiseless and noisy MS decoders with various channel scale factors
(for noisy decoders, threshold values correspond to a target error probability η = 10−5)

The solid black curve in Figure 1.7 correspond to the noiseless decoder. The solid red curve and
the dotted blue curve correspond to the MS decoder with sign-protected noisy adder and full-depth
noisy adder, respectively. The adder error probability is pa = 10−4 for the sign-protected noisy adder,
and pa = 10−5 for the full-depth adder8. The two curves are superimposed for 1 ≤ µ ≤ 6, and differ
only for µ = 7. The corresponding threshold values are equal to those obtained in the noiseless case
for µ ∈ {2, 4, 6}. For µ ∈ {1, 3, 5}, the MS decoders with noisy-adders exhibit better thresholds than

8Note that according to Proposition 1, a necessary condition to achieve a target error probability P
(∞)
e ≤ η = 10−5

is pa ≤ 2Q̃η = 3× 10−4 for the signed-protected adder, and pa ≤ 2η 2Q̃+1

2Q̃
= 2.07× 10−5 for the full-depth adder.

Page 34 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

the noiseless decoder. This is due to the fact that the messages alphabet M is underused by the
noiseless decoder, since all the exchanged messages are necessarily odd (recall that all variable-nodes
are of degree dv = 3). For the MS decoders with noisy adders, the noise present in the adders leads
to a more efficient use of the messages alphabet, which allows the decoder to escape from fixed-point
attractors and hence results in better thresholds (Section 1.6.1).

Figure 1.7 also shows a curve corresponding to the MS decoder with a noisy comparator having
pc = 0.005, and two curves for the MS decoder with noisy xor-operators, having respectively px =
2× 10−4 and px = 3× 10−4.

Concerning the noisy xor-operator, it can be seen that the threshold values corresponding to
px = 2× 10−4 are very close to those obtained in the noiseless case, except for µ = 7 (the same holds
for values px < 2× 10−4). However, a significant degradation of the threshold can be observed when
slightly increasing the xor error probability to px = 3 × 10−4. Moreover, although not shown in the
figure, it is worth mentioning that for px ≥ 5 × 10−4, the target error probability η = 10−5 can no
longer be reached (thus, all threshold values are equal to zero).

Finally, we note that except for the noisy xor-operator with px = 3 × 10−4, the best choice of
the channel scale factor is µ = 6. For the noisy xor-operator with px = 3 × 10−4, the best choice of
the channel scale factor is µ = 3. This is rather surprising, as in this case the messages alphabet is
underused by the decoder: all the exchanged messages are odd, and the fact that the xor-operator is
noisy does not change their parity.

Assumption: In the following sections, we will investigate the impact of the noisy adder, comparator
and xor-operator on the MS decoder performance, assuming that the channel scale factor is µ = 6.

Study of the impact of the noisy adder (quantization map q6)

In order to evaluate the impact of the noisy adder on the MS decoder performance, the useful region
and the η-threshold regions have been computed, assuming that only the adders within the VN-
processing step are noisy (pa > 0), while the CN-processing step is noiseless (px = pc = 0). This
regions are represented in Figure 1.8, for both sign-protected and full-depth noisy adder models.

The useful region is delimited by the solid black curve. The vertical lines delimit the η-threshold
regions, for η = 10−3, 10−4, 10−5, 10−6 (from right to the left).

Note that unlike the case µ = 1 (Section 1.6.1), there is no non-convergence region when the channel
scale factor is set to µ = 6. Hence, the border of the useful region corresponds to points (pa, p0) for

which P
(∞)
e = p0. However, it can be observed that there is still a discontinuity line (dashed red curve)

inside the useful region. This discontinuity line does not hide a periodic (non-convergent) behavior,

but it is due to the occurrence of an early plateau phenomenon in the convergence of (P
(`)
e)`. This

phenomenon is illustrated in Figure 1.9, where the error probability (P
(`)
e)` is plotted as a function

of the iteration number `, for the two points A and B from Figure 1.8(a). For point A, it can be

observed that the error probability P
(`)
e reaches a first plateau for ` ≈ 50, then drops to 3.33 × 10−6

for ` ≥ 250. For point B, P
(`)
e behaves in a similar manner during the first iterations, but it does not

decrease below the plateau value as ` goes to infinity. Although we have no analytic proof of this fact,
it was numerically verified for ` ≤ 5× 105.

In Figure 1.10, we plotted the asymptotic error probability P
(∞)
e as a function of p0, for the noiseless

decoder (pa = 0), and for the sign-protected noisy adder with error probability values pa = 10−4 and

pa = 0.05. In each plot we have also represented two points p
(U)
0 and p

(DL)
0 , corresponding respectively

to the values of p0 on the upper-border of the useful region, and on the discontinuity line. Hence, p
(DL)
0

coincides with the classical threshold of the MS decoder in the noiseless case, and it can be seen as an
appropriate generalization of the classical threshold to the case of noisy decoders. In the following,

p
(DL)
0 will be referred to as the functional threshold of the noisy decoder, and the sub-region of

the useful region located below the discontinuity line will be referred to as the functional region.
Within this region, if the adder error probability is small enough, it can be observed that:

c©i-RISC, January 2014 Page 35 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Adder Error Probability (p
a
)

B
S

C
 C

ro
s
s
o

v
e

r
P

ro
b

a
b

ili
ty

 (
p

0
)

(3,6)−regular LDPC, (4,5)−quantization, MS/ sign−protected noisy adder

1
0

−
4
 <

 P
e(∞

) <
 1

0
−

3

1
0

−
5
 <

 P
e(∞

) <
 1

0
−

4

1
0

−
6
 <

 P
e(∞

) <
 1

0
−

5

P
e(∞

) <
 1

0
−

6

P
e

(∞)
 < p

0

A

B

Discontinuity Line
(Functional Threshold)

Useful Reg Border (P
e

(∞)
 = p0)

(a) Sign-protected noisy adder

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Adder Error Probability (p
a
)

B
S

C
 C

ro
s
s
o

v
e

r
P

ro
b

a
b

ili
ty

 (
p

0
)

(3,6)−regular LDPC, (4,5)−quantization, MS/ sign−protected noisy adder

1
0

−
4
 <

 P
e(∞

) <
 1

0
−

3

1
0

−
5
 <

 P
e(∞

) <
 1

0
−

4

1
0

−
6
 <

 P
e(∞

) <
 1

0
−

5

P
e(∞

) <
 1

0
−

6

P
e

(∞)
 < p

0

Useful Reg Border (P
e

(∞)
 = p0)

(Functional Threshold)
Discontinuity Line

(b) Full-depth noisy adder

Figure 1.8: Useful and η-threshold regions of the MS decoder with noisy adder

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Iteration number (ℓ)

P
(ℓ
)

e
(e
rr
o
r
p
ro
b
a
b
il
it
y
a
t
it
er
a
ti
o
n
ℓ
) (3,6)−regular LDPC, (4,5)−quantization, sign−protected noisy adder

P
(∞)
e = 3.33 E-6

(a) Point A(p0 = 0.0770, pa = 10−4)

0 50 100 150 500 000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Iteration number (ℓ)

P
(ℓ
)

e
(e
rr
o
r
p
ro
b
a
b
il
it
y
a
t
it
er
a
ti
o
n
ℓ
) (3,6)−regular LDPC, (4,5)−quantization, sign−protected noisy adder

P
(∞)
e = 4.74 E-2

(b) Point B(p0 = 0.0772, pa = 10−4)

Figure 1.9: Illustration of the early plateau phenomenon (points A and B from Figure 1.8(a))

0 0.02 0.04 0.06 0.08 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

p
0
 (BSC crossover probability)

P
e(∞

) (
d

e
c
o

d
in

g
 e

rr
o

r
p

ro
b

a
b

ili
ty

)

(3,6)−LDPC, (4,5)−quantization, MS/ noiseless, µ = 6

p
0(D

L
) =

 0
.0

7
7

p
0(U

) =
 0

.0
8
5

P
e

(∞)

P
e

(∞)
 = 0

(a) pa = 0 (noiseless decoder)

0 0.02 0.04 0.06 0.08 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

p
0
 (BSC crossover probability)

P
e(∞

) (
d

e
c
o

d
in

g
 e

rr
o

r
p

ro
b

a
b

ili
ty

)

(3,6)−LDPC, (4,5)−quantization, MS/ sign protect. noisy adder, µ = 6

p
0(D

L
) =

 0
.0

7
7

p
0(U

) =
 0

.0
8
5

P
e

(∞)

P
e

(∞)
 ≈ 3.33 E−6

(b) pa = 10−4

0 0.02 0.04 0.06 0.08 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

p
0
 (BSC crossover probability)

P
e(∞

) (
d

e
c
o

d
in

g
 e

rr
o

r
p

ro
b

a
b

ili
ty

)

(3,6)−LDPC, (4,5)−quantization, MS/ sign protect. noisy adder, µ = 6

p
0(D

L
) =

 0
.0

6
5

p
0(U

) =
 0

.0
7
2

0.0017 ≤ P
e

(∞)
 ≤ 0.0033

P
e

(∞)

(c) pa = 0.05

Figure 1.10: Asymptotic error probability P
(∞)
e as a function of p0; noiseless and noisy MS decoder

with sign-protected noisy adder

(a) For the sign-protected adder: P
(∞)
e ≈ pa

30 , for pa / 3× 10−2, which corresponds to the value given
by the lower-bound (1

2Q̃
pa = 1

30pa) from Proposition 1.

Page 36 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

(b) For the full-depth adder: P
(∞)
e ≈ 1.17pa, for pa / 10−3, which is about twice higher than the value

given by the lower-bound (1
2pa + 1

4Q̃
pa = 0.52pa) from Proposition 1.

Finally, we note that by protecting the sign of the noisy adder, the useful region is expanded by a
factor of roughly 2Q̃, representing an exponential improvement with respect to the number of bits of
the adder (see also the discussion following the proof of Proposition 1).

Study of the impact of the noisy XOR-operator (quantization map q6)

The useful region and the η-threshold regions of the decoder, assuming that only the xor-operator
used within the CN-processing step is noisy, are plotted in Fig. 1.11. Similar to the noisy-adder case,
a discontinuity line can be observed inside the useful region, which delimits the functional region of
the decoder.

Comparing the η-threshold regions from Figure 1.8 and Figure 1.11, it can be observed that in

order to achieve a target error probability P
(∞)
e ≤ 10−6, the error probability parameters of the noisy

adder and of the noisy xor-operator must satisfy:

• pa < 1.17× 10−6, for the full-depth noisy-adder;

• pa < 3× 10−5, for the sign-protected noisy-adder;

• px < 7× 10−5, for the noisy xor-operator.
(moreover, values of px up to 1.4× 10−4 are tolerable if p0 is sufficiently small)

The most stringent requirement concerns the error probability of the full-depth noisy-adder, thus we
may consider that it has the most negative impact on the decoder performance. On the other hand,
the less stringent requirement concerns the error probability of the noisy xor-operator.

Finally, it is worth noting that in practical cases the value of px should be significantly lower
than the value of pa (given the high number of elementary gates contained in the adder). Moreover,
since the xor-operators used to compute the signs of CN messages represent only a small part of the
decoder, this part of the circuit could be made reliable by using classical fault-tolerant methods, with
a limited impact on the overall decoder design.

10
−4

10
−3

10
−2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

XOR Error Probability (p
x
)

B
S

C
 C

ro
s
s
o
v
e
r

P
ro

b
a
b
ili

ty
 (

p
0
)

(3,6)−regular LDPC, (4,5)−quantization, MS/ noisy XOR−operator

1
0−

4
 <

 P
e(∞

) <
 1

0
−

3

1
0−

5
 <

 P
e(∞

) <
 1

0
−

4

1
0−

6
 <

 P
e(∞

) <
 1

0
−

5

P
e(∞

) <
 1

0
−

6

P
e

(∞)
 < p

0

Useful Reg Border (P
e

(∞)
 = p0) Discontinuity Line

(Functional Threshold)

Figure 1.11: Useful and η-threshold regions of the MS decoder with noisy xor-operator

Study of the impact of the noisy comparator (quantization map q6)

This section investigates the case when comparators used within the CN-processing step are noisy
(pc > 0), but pa = px = 0. Contrary to the previous cases, this case exhibits a “classical” threshold
phenomenon, similar to the noiseless case: for a given pc > 0, there exists a p0-threshold value, denoted

by p
(TH)
0 , such that P

(∞)
e = 0 for any p0 < p

(TH)
0 .

c©i-RISC, January 2014 Page 37 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Comparator Error Probability (p
c
)

B
S

C
 C

ro
s
s
o
v
e
r

P
ro

b
a
b
ili

ty
 (

p
0
)

(3,6)−regular LDPC, (4,5)−quantization, MS / noisy comparator

Useful Reg Border Threshold (p
0

(TH)
)

0 < P
e

(∞)
 < p

0

P
e

(∞)
 = 0

P
e

(∞)
 > p

0

Figure 1.12: Useful region and threshold curve of the MS decoder with noisy comparator

The threshold value p
(TH)
0 is plotted as a function of pc in Figure 1.12. The functional region of

the decoder is located below the threshold curve, and P
(∞)
e = 0 for any point within this region. In

particular, it can be seen that P
(∞)
e = 0 for any p0 / 0.039 and any pc > 0. Although such a threshold

phenomenon might seem surprising for a noisy decoder, it can be easily explained. The idea behind is
that in this case the crossover probability of the channel is small enough, so that in the CN-processing
step only the sign of check-to-variable messages is important, but not their amplitudes. In other words
a decoder that only computes (reliably) the signs of check-node messages and randomly chooses their
amplitudes, would be able to perfectly decode the received word.

Finally, we note that the useful region of the decoder extends slightly above the threshold curve:

for pc close to 0, there exists a small region above the threshold curve, within which 0 < P
(∞)
e < p0.

1.6.2 Numerical results for the BI-AWGN channel

For the BI-AWGN, the channel output is given by y = x+z, where x ∈ {±1} is the channel input and
z is the additive white Gaussian noise with variance σ2. Threshold values and useful regions of the
decoder will be described in terms of Signal to Noise Ratio (SNR), defined by SNR = −10 log10(σ2).

For a given channel scale factor µ, the quantization map qµ is defined by qµ(y) = sM([µ·y]), where
[µ·y] denotes the nearest integer to µ·y, and sM is the saturation map (see also Equation (1.12)).

Similar to the BSC case, the choice of the channel scale factor µ may significantly impact the
decoder performance. Hence, we start first by optimizing the channel scale factor value, and then we
investigate the impact of the different noisy components on the decoder performance.

Remark: For the BI-AWGN channel we denote by p0
def
= P

(0)
e the error probability at iteration 0,

which is, by definition, the probability of the a priori information γ = qµ(y) being in error. Hence,
p0 =

∑−1
z=−QC(z) + 1

2C(0). Using Equation (1.14) it follows that:

p0 = 1− 1

2

[
q

(
−0.5− µ

µσ

)
+ q

(
0.5− µ
µσ

)]
(1.20)

Optimization of the quantization map

The goal of this section is to provide an optimal choice of the channel scale factor µ. Figure 1.13
shows the threshold SNR values for the noiseless and several noisy decoders for channel scale factors
µ varying within the interval [1, 7]. For the noisy decoders, the threshold values are computed for a
target error probability η = 10−5 (see Equation (1.19)).

The solid black curve in Figure 1.13 correspond to the noiseless decoder. The dashed red curve and
the dotted blue curve correspond to the MS decoder with sign-protected noisy adder and full-depth

Page 38 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

1 2 3 4 5 6 7

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Channel Scale Factor (µ)

T
h

re
s
h

o
ld

 S
N

R
 V

a
lu

e
 (

d
B

)

(3,6)−regular LDPC; (4,5)−quantization

Noiseless MS

add[’sp’, p
a
 = 2e−4]

add[’fd’, p
a
 = 1e−5]

XOR[p
x
 = 3e−4]

comp[p
c
 = 5e−3]

Figure 1.13: Threshold SNR values of noiseless and noisy decoders with various channel scale factors
(for noisy decoders, threshold values correspond to a target error probability η = 10−5)

noisy adder, respectively. The adder error probability is pa = 2 × 10−4 for the sign-protected noisy
adder, and pa = 10−5 for the full-depth adder9. These three curves are virtually indistinguishable.

Figure 1.13 also shows two curves corresponding respectively to the MS decoder with a noisy xor-
operator (px = 2 × 10−4) and to the MS decoder with a noisy comparator (pc = 0.005). Finally, we
note that in all cases the best choice of the channel scale factor is µ ≈ 5.5.

Assumption: In the following sections, we will investigate the impact of the noisy adder, comparator
and xor-operator on the MS decoder performance, assuming that the channel scale factor is µ = 5.5.

Study of the impact of the noisy adder

Useful and η-regions of the MS decoder with noisy adders are represented in Figure 1.14, for both
sign-protected and full-depth noisy adder models. The useful region is delimited by the solid black
curve, while vertical lines delimit the η-threshold regions, for η = 10−3, 10−4, 10−5, 10−6 (from right
to the left). The functional threshold of the decoder is also displayed by a red dashed curve.

Figure 1.15 shows the input and output error probabilities of the decoder (p0 and P
(∞)
e) as functions

of the SNR value, for the sign-protected and full-depth noisy adder models with pa = 10−4. The two
intersection points between the two curves correspond to the points on the lower and upper borders of

the useful region in Figure 1.14, for pa = 10−4. The discontinuity point of the P
(∞)
e curve corresponds

to the functional threshold value in Figure 1.14, for pa = 10−4.

Study of the impact of the noisy XOR-operator and noisy comparator

The useful region and the η-threshold regions of the MS decoder, assuming that only the xor-operator
used within the CN-processing step is noisy, are plotted in Fig. 1.16. The functional threshold of the
decoder is also displayed by a red dashed curve.

The case of a noisy comparator is illustrated in Figure 1.17. Similar to the BSC channel, this case
exhibits a “classical” threshold phenomenon: for any SNR value above the functional threshold curve,

one has P
(∞)
e = 0.

9Note that according to Proposition 1, a necessary condition to achieve a target error probability P
(∞)
e ≤ η = 10−5

is pa ≤ 2Q̃η = 3× 10−4 for the signed-protected adder, and pa ≤ 2η 2Q̃+1

2Q̃
= 2.07× 10−5 for the full-depth adder.

c©i-RISC, January 2014 Page 39 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

2

4

6

8

10

12

14

16

Adder Error Probability (p
a
)

S
N

R
 (

d
B

)

(3,6)−regular LDPC; (4,5)−quantization, sign−protected noisy adder

1
0

−
4
 <

 P
e(∞

) <
 1

0
−

3

1
0

−
5
 <

 P
e(∞

) <
 1

0
−

4

1
0

−
6
 <

 P
e(∞

) <
 1

0
−

5

P
e(∞

) <
 1

0
−

6

Useful Reg Border (P
e

(∞)
 = p

0
)

Functional Threshold

P
e

(∞)
 > p

0

P
e

(∞)
 < p

0

(a) Sign-protected noisy adder

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

0

2

4

6

8

10

12

14

16

Adder Error Probability (p
a
)

S
N

R
 (

d
B

)

(3,6)−regular LDPC; (4,5)−quantization, full−depth noisy adder

1
0

−
4
 <

 P
e(∞

) <
 1

0
−

3

1
0

−
5
 <

 P
e(∞

) <
 1

0
−

4

1
0

−
6
 <

 P
e(∞

) <
 1

0
−

5

P
e(∞

) <
 1

0
−

6

Useful Reg Border (P
e

(∞)
 = p

0
)

Functional Threshold

P
e

(∞)
 < p

0

P
e

(∞)
 > p

0

(b) Full-depth noisy adder

Figure 1.14: Useful and η-threshold regions of the MS decoder with noisy adder (bi-awgn)

0 2 4 6 8 10 12 14 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

E
rr

o
r

P
ro

b
a

b
ili

ty

(3,6)−regular LDPC; (4,5)−quantization, sign−protected noisy adder

S
N

R
(F

T
) =

 1
.6

4
5

p
0

P
e

(∞)

P
e

(∞)
 ≈ 3.33 E−6

p
0

(a) sign-protected noisy adder, pa = 10−4

0 2 4 6 8 10 12 14 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

E
rr

o
r

P
ro

b
a

b
ili

ty
(3,6)−regular LDPC; (4,5)−quantization, full−depth noisy adder

S
N

R
(F

T
) =

 1
.6

5
6

p
0

P
e

(∞)

p
0

P
e

(∞)
 ≈ 8.6 E−5

(b) full-depth noisy adder, pa = 10−4

Figure 1.15: Asymptotic error probability P
(∞)
e of the MS decoder with noisy-adder as a function of

the SNR

10
−4

10
−3

10
−2

0

2

4

6

8

10

12

14

16

XOR Error Probability (p
x
)

S
N

R
 (

d
B

)

(3,6)−regular LDPC; (4,5)−quantization, noisy XOR−operator

1
0

−
4
 <

 P
e(∞

) <
 1

0
−

3

1
0

−
5
 <

 P
e(∞

) <
 1

0
−

4

1
0

−
6
 <

 P
e(∞

) <
 1

0
−

5

P
e(∞

) <
 1

0
−

6

Useful Reg Border (P
e

(∞)
 = p

0
)

Functional Threshold

P
e

(∞)
 > p

0

P
e

(∞)
 < p

0

Figure 1.16: Useful and η-threshold regions of the
MS decoder with noisy xor-operator (bi-awgn)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50.5
0

1

2

3

4

5

6

7

8

Comparator Error Probability (p
c
)

S
N

R
 (

d
B

)

(3,6)−regular LDPC; (4,5)−quantization, noisy comparator

Useful Reg Border

Functional Threshold

P
e

(∞)
 = 0

0 < P
e

(∞)
 < p

0

P
e

(∞)
 > p

0

Figure 1.17: Useful region and threshold curve of
the MS decoder with noisy comparator (bi-awgn)

Page 40 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

1.7 Finite Length Performance of Min-Sum based decoders

The goal of this section is twofold:

(1) To corroborate the asymptotic analysis through finite-length simulations;

(2) To investigate ways of increasing the robustness of the MS decoder to hardware noise.

Assumption: Unless otherwise stated, the (3, 6)-regular LDPC code with length N = 1008 bits from
[23] will be used for finite length simulations throughout this section.

1.7.1 Practical implementation and early stopping criterion

First of all, we note that the practical implementation of the noisy MS decoder differs slightly from
the one presented in Algorithm 2:

• The order of the VN-processing and AP-update steps is inverted;

• The variable-to-check node messages are computed by subtracting the incoming check-to-variable
message from the corresponding a posteriori information value:

for all n = 1, . . . , N do B AP-update
γ̃n = apr

(
{γn} ∪ {βm,n}m∈H(n)

)
;

for all n = 1, . . . , N and m ∈ H(n) do B VN-processing
αm,n = apr (γ̃n,−βm,n) ;
αm,n = sM (αm,n) ;

For floating-point noiseless decoders, the two ways of computing the variable-to-check messages
are completely equivalent. However, this equivalence does not hold anymore for finite-precision (noisy
or noiseless) decoders, because of saturation effects and, in case of noisy decoders, of probabilistic
computations. We note that the practical implementation might result in a degradation of the decoder
performance compared to the “Density-Evolution like” implementation (Algorithm 2), since each
variable-to-check node message encompasses dv + 1 additions (dv additions to compute γ̃n and one
subtraction).

Finally, it is worth noting that the density-evolution analysis cannot be applied to the practical
implementation, due to the fact that in the VN-processing step, the computation of variable-to-check
messages αm,n = apr ({γn},−βm,n) involves two correlated variables, namely γn and βm,n.

Early stopping criterion (syndrome check)

As described in Algorithm 2, each decoding iteration also comprises a hard decision step, in which
each transmitted bit is estimated according to the sign of the a posteriori information, and a syndrome
check step, in which the syndrome of the estimated word is computed.

Both steps are assumed to be noiseless, and the syndrome check step acts as an early stopping
criterion: the decoder stops when whether the syndrome is +1 (the estimated word is a codeword)
or a maximum number of iterations is reached. We note however that the syndrome check step is
optional and, if missing, the decoder stops when the maximum number of iterations is reached.

Remark: The reason why we stress the difference between the MS decoder with and without the
syndrome check step is because, as we will see shortly, the noiseless early stopping criterion may
significantly improve the bit error rate performance of the noisy decoder in the error floor region.

Assumptions:

• Unless otherwise stated, the MS decoder is assumed to implement the noiseless stopping criterion
(syndrome check step).

• The maximum number of decoding iterations is fixed to 100 throughout this section.

c©i-RISC, January 2014 Page 41 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

1.7.2 Corroboration of the asymptotic analysis through finite-length simulations

We start by analyzing the finite-length decoder performance over the BSC channel. Figure 1.18 shows
the bit error rate (BER) performance of the finite-precision MS decoder (both noiseless and noisy)
with various channel scale factors. For comparison purposes, we also included the BER performance
of the Belief-Propagation decoder (solid black curve, no markers) and of the infinite-precision MS
decoder (dashed blue curve, no markers).

It can be observed that the worst performance is achieved by the infinite-precision MS decoder (!)
and the finite-precision noiseless MS decoder with channel scale factor µ = 1 (both curves are virtually
indistinguishable). The BER performance of the latter improves significantly when using a sign-
preserving noisy adder with error probability pa = 0.001 (dashed red curve with empty circles).

For a channel scale factor µ = 6, both noiseless and noisy decoders have almost the same perfor-
mance (solid and dashed green curves, with triangular markers). Remarkably, the achieved BER is
very close to the one achieved by the Belief-Propagation decoder!

These results corroborate the asymptotic analysis from Section 1.6.1 concerning the channel scale
factor optimization.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Crossover probability (p
0
)

B
it
 E

rr
o
r

R
a
te

(3,6)−regular LDPC, N = 1008; (4,5)−quantization

BP, float−point (noiseless)

MS, float−point (noiseless)

MS, noiseless, µ = 1

MS, add[’sp’, p
a
 = 0.001], µ = 1

MS, noiseless, µ = 6

MS, add[’sp’, p
a
 = 0.001], µ = 6

Figure 1.18: BER performance of noiseless and noisy MS decoders with various channel scale factors

Error floor performance

Surprisingly, the BER curves of the noisy decoders from Figure 1.18 do not show any error floor down
to 10−7. However, according to Proposition 1, the decoding error probability should be lower-bounded

by P
(`)
e ≥ 1

2Q̃
pa = 3.33× 10−5 (see also the η-threshold regions in Figure 1.8(a)).

The fact that the observed decoding error probability may decrease below the above lower-bound
is due to the early stopping criterion (syndrome check step) implemented within the MS decoder.
Indeed, as we observed in the previous section, the above lower-bound is tight, when ` (the iteration
number) is sufficiently large. Therefore, as the iteration number increases, the expected number of
erroneous bits gets closer and closer to 1

2Q̃
paN = 0.034, and the probability of not having any erroneous

bit within one iteration approaches
(

1− 1

2Q̃
pa

)N
= 0.967. As the decoder performs more and more

iterations, it will eventually reach an error free iteration. The absence of errors is at once detected by
the noiseless syndrome check step, and the decoder stops.

To illustrate this behavior, we plotted the Figure 1.19 the BER performance of the noisy MS
decoder, with and without early stopping criterion. The noisy MS decoder comprises a sign-preserving
noisy adder with pa = 0.001, while the comparator and the xor-operator are assumed to be noiseless
(pc = px = 0). Two codes are simulated, the first with length N = 1008 bits, and the second with

Page 42 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Crossover probability (p
0
)

B
it
 E

rr
o
r

R
a
te

(3,6)−regular LDPC, (4,5)−quantization, sign−protected noisy adder, p
a
 = 0.001

N
 =

 1
0
0
0
0

F
u

n
c

.
T

h
r
e

s
h

o
ld

 =
 0

.0
7

7

N
 =

 1
0
0
8

N = 1008, with syndrome check

N = 1008, wout syndrome check

N = 10000, with syndrome check

N = 10000, wout syndrome check

Figure 1.19: BER performance with and without
early stopping criterion (MS decoder with sign-
preserving noisy adder, pa = 0.001)

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

10

20

30

40

50

60

70

80

90

100

Crossover probability (p
0
)

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f
It
e
ra

ti
o
n
s

(3,6)−regular LDPC, (4,5)−quantization, sign−protected noisy adder, p
a
 = 0.001

N = 1008, with syndrome check

N = 10000, with syndrome check

Figure 1.20: Average number of decoding itera-
tions with early stopping criterion (MS decoder
with sign-preserving noisy adder, pa = 0.001)

length N = 10000 bits. In case that the noiseless early stopping criterion is implemented (solid curves),
it can be seen that none of the BER curves show any error floor down to 10−8. However, if the early
stopping criterion is not implemented (dashed curves), corresponding BER curves exhibit an error
floor at ≈ 3.33× 10−5, as predicted by Proposition 1.

In Figure 1.20 we plotted the average number of decoding iterations in case that the early stopping
criterion is implemented. It can be seen that the average number of decoding iterations decreases with
the channel crossover probability p0, or equivalently, with the achieved bit error rate. However, for
a fixed BER – say BER = 10−6, achieved either at p0 ≈ 0.04 for the code with N = 1008, or at
p0 ≈ 0.063 for the code with N = 10000 – the average number of iterations is about 8 for the first
code and about 21 for the second. Note that in case the early stopping criterion is not implemented,
both codes have nearly the same performance for the above p0 values. Thus, when the early stopping
criterion is implemented, the decoder needs to perform more iterations to eventually reach an error
free iteration when N = 10000, which explains the increased average number of decoding iterations.

Further results on the finite-length performance

In this section we investigate the finite-length performance when all the MS components (adder,
comparator, and xor-operator) are noisy. In order to reduce the number of simulations, we assume
that pa = pc ≥ px. Concerning the noisy adder, we evaluate the BER performance for both the sign-
preserving and the full-depth error models. Simulation results are presented in Figure 1.21. The error
probability of the xor-operator is px = 0.0001 in sub-figures 1.21(a) and 1.21(b), and px = 0.001 in
sub-figures 1.21(c) and 1.21(d). The noisy adder is sign-preserving in sub-figures 1.21(a) and 1.21(c),
and full-depth in sub-figures 1.21(b) and 1.21(d).

In case the noisy-adder is sign-preserving, it can be seen that the MS decoder can provide reliable
error protection for all the noise parameters that have been simulated. Of course, depending on the
error probability parameters of the noisy components, there is a more or less important degradation
of the achieved BER with respect to the noiseless case. But in all cases the noisy decoder can achieve
a BER less than 10−7. This is no longer true for the full-depth noisy adder: it can be seen that for
pc = pa ≥ 0.005, the noisy decoder cannot achieve bit error rates below 10−2.

c©i-RISC, January 2014 Page 43 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Crossover probability (p
0
)

B
it
 E

rr
o
r

R
a
te

(3,6)−regular LDPC, (4,5)−quantization, add[sign−protected], p
c
 = p

a
, p

x
 = 0.0001

Noiseless Min−Sum

p
a
 = p

c
 = 0.0001, p

x
 = 0.0001

p
a
 = p

c
 = 0.001, p

x
 = 0.0001

p
a
 = p

c
 = 0.005, p

x
 = 0.0001

p
a
 = p

c
 = 0.01, p

x
 = 0.0001

(a) sign-preserving noisy adder, pc = pa, px = 0.0001

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Crossover probability (p
0
)

B
it
 E

rr
o
r

R
a
te

(3,6)−regular LDPC, (4,5)−quantization, add[full−depth], p
c
 = p

a
, p

x
 = 0.0001

Noiseless Min−Sum

p
a
 = p

c
 = 0.0001, p

x
 = 0.0001

p
a
 = p

c
 = 0.001, p

x
 = 0.0001

p
a
 = p

c
 = 0.005, p

x
 = 0.0001

p
a
 = p

c
 = 0.01, p

x
 = 0.0001

(b) full-depth noisy adder, pc = pa, px = 0.0001

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Crossover probability (p
0
)

B
it
 E

rr
o
r

R
a
te

(3,6)−regular LDPC, (4,5)−quantization, add[sign−protected], p
c
 = p

a
, p

x
 = 0.001

Noiseless Min−Sum

p
a
 = p

c
 = 0.001, p

x
 = 0.001

p
a
 = p

c
 = 0.005, p

x
 = 0.001

p
a
 = p

c
 = 0.01, p

x
 = 0.001

(c) sign-preserving noisy adder, pc = pa, px = 0.001

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Crossover probability (p
0
)

B
it
 E

rr
o
r

R
a
te

(3,6)−regular LDPC, (4,5)−quantization, add[full−depth], p
c
 = p

a
, p

x
 = 0.001

Noiseless Min−Sum

p
a
 = p

c
 = 0.001, p

x
 = 0.001

p
a
 = p

c
 = 0.005, p

x
 = 0.001

p
a
 = p

c
 = 0.01, p

x
 = 0.001

(d) full-depth noisy adder, pc = pa, px = 0.001

Figure 1.21: BER performance of the noisy MS decoder with various noise parameters

1.7.3 Noisy Self-Corrected Min-Sum decoder

In this section we investigate the finite-length performance of the Self-Corrected Min-Sum (SCMS)
decoder [24]. The objective is to determine if a correction circuit “plugged into” the noisy MS decoder
can improve the robustness of the decoder to hardware noise.

The specificity of the SCMS decoder is to erase (i.e. set to zero) any variable-to-check message that
changes its sign between two consecutive iterations. However, in order to avoid erasures propagation,
a message cannot be erased if it has also been erased at the previous iteration. Hence, the SCMS
decoder performs the same computations as the noisy MS, except that the VN processing step
further includes a correction step, as follows10:

for all n = 1, . . . , N and m ∈ H(n) do B VN-processing

α
(`)
m,n = sM

(
apr

(
γ̃

(`)
n ,−β(`)

m,n

))
;

if sgn
(
α

(`)
m,n

)
6= sgn

(
α

(`−1)
m,n

)
and α

(`−1)
m,n 6= 0

α
(`)
m,n = 0 ;

end

10Superscript (`) used to denote the iteration number

Page 44 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

The body enclosed between the if condition and the matching end is referred to as the correction
step. In practical implementations, one needs to store the signs of the variable-to-check node messages
and to keep a record of messages that have been erased by the self-correction step. We use the following
notation:

• s(`)
m,n = sgn

(
α

(`)
m,n

)
, the sign of the message α

(`)
m,n;

• e(`)
m,n ∈ {0, 1}, with e

(`)
m,n = 1 if and only if the corresponding variable-to-check message has been

erased at iteration `; for ` = 0, these values are all initialized as zero.

• scu(s1, s2, e)
def
= (s1⊕ s2)⊗ (1⊕ e), for any s1, s2, e ∈ {0, 1}, where ⊕ denotes the xor operation

(sum modulo 2) and ⊗ denotes the and operation (product). Clearly scu(s1, s2, e) = 1 if and
only if s1 6= s2 and e = 0.

Therefore, the VN-processing step of the SCMS decoder can be rewritten as follows:

for all n = 1, . . . , N and m ∈ H(n) do B VN-processing

α
(`)
m,n = sM

(
apr

(
γ̃

(`)
n ,−β(`)

m,n

))
;

e
(`)
m,n = scu

(
s

(`)
m,n, s

(`−1)
m,n , e

(`−1)
m,n

)
;

if e
(`)
m,n = 1 then α

(`)
m,n = 0 ; end

This reformulation of the VN-processing step allows defining a noisy self-correction step, by in-
jecting errors in the output of the scu operator. The noisy scu operator with error probability pscu

is defined by:

scupr(s1, s2, e) =

{
scu(s1, s2, e), with probability 1− pscu

1− scu(s1, s2, e), with probability pscu
(1.21)

This error model captures the effect of the noisy logic or of the noisy storage of sm,n and em,n values
on the scu operator. The SCMS decoder with noisy self-correction step is detailed in Algorithm 3.

The finite length performance of the noisy SCMS decoder is presented in Figure 1.22, for both
BSC and BI-AWGN channels. For comparison purposes, Figure 1.22 also shows the performance of
the noisy MS decoder. The parameters of the different noisy components are as follows:

[P1] sign-preserving adder with pa = 0.01, pc = 0.01, px = pscu = 0.001 (red curves, diamond markers);

[P2] full-depth adder with pa = 0.001, pc = 0.001, px = pscu = 0.001 (blue curves, circle markers).

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Crossover probability (p
0
)

B
it
 E

rr
o
r

R
a
te

(3,6)−regular LDPC, (4,5)−quantization

MS, Noiseless

MS, Noise Params [P1]

MS, Noise Params [P2]

SCMS, Noiseless

SCMS, Noise Params [P1]

SCMS, Noise Params [P2]

MS

SCMS

(a) BSC channel (µ = 6)

1 1.5 2 2.5 3 3.5 4 4.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

B
it
 E

rr
o
r

R
a
te

(3,6)−regular LDPC, (4,5)−quantization

MS, Noiseless

MS, Noise Params [P1]

MS, Noise Params [P2]

SCMS, Noiseless

SCMS, Noise Params [P1]

SCMS, Noise Params [P2]

MS

SCMS

(b) BI-AWGN channel (µ = 5.5)

Figure 1.22: BER performance comparison between noisy MS and noisy SCMS decoders

c©i-RISC, January 2014 Page 45 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

Algorithm 3 Noisy Self-Corrected Min-Sum (Noisy-SCMS) decoding

Input: y = (y1, . . . , yN) ∈ YN (Y is the channel output alphabet) . received word

Output: x̂ = (x̂1, . . . , x̂N) ∈ {−1,+1}N . estimated codeword
Initialization

for all n = 1, . . . , N do γn = q(yn);

for all n = 1, . . . , N and m ∈ H(n) do { αm,n = γn; sm,n = sgn(γn); em,n = 0;}
Iteration Loop

for all m = 1, . . . ,M and n ∈ H(m) do . CN-processing
βm,n = xpr

(
{sgn(αm,n′)}n′∈H(m)\n

)
mpr

(
{|αm,n′ |}n′∈H(m)\n

)
;

for all n = 1, . . . , N do . AP-update
γ̃n = apr

(
{γn} ∪ {βm,n}m∈H(n)

)
;

for all n = 1, . . . , N and m ∈ H(n) do . VN-processing
αm,n = sM (apr (γ̃n,−βm,n)) ;

em,n = scupr (sgn(αm,n), sm,n, em,n) ;

sm,n = sgn(αm,n);

if em,n = 1 then αm,n = 0;

for all {vn}n=1,...,N do x̂n = sgn(γ̃n); . hard decision

if x̂ is a codeword then exit the iteration loop . syndrome check

End Iteration Loop

Solid and dashed curves correspond respectively to the MS and SCMS performance. While the
hardware noise alters the performance of the MS decoder, it can be seen that the noisy SCMS decoder
exhibits very good performance, very close to that of the noiseless decoder. Therefore, one can think
of the self-correction circuit as a noisy patch applied to the noisy MS decoder, in order to improve its
robustness to hardware noise. The robustness of the SCMS decoder to hardware noise is explained by
the fact that it has an intrinsic capability to detect unreliable messages, and discards them from the
iterative decoding process [24].

1.8 Conclusion

In this chapter we investigated the performance of MS-based decoders on noisy hardware. We derived
density evolution equations for the noisy MS decoder, and analyzed the decoder performance in terms
of useful regions and target-BER thresholds. We also revealed the existence of a different threshold
phenomenon, which was referred to as functional threshold. We further evaluated the finite-length
performance of the MS and SCMS decoders, for various parameters of the hardware noise models. We
highlighted the excellent performance of the noisy SCMS decoder, which provides virtually the same
performance as the noiseless decoder, for a wide range of values of the hardware noise parameters.
Finally, the results of this work may serve as guidelines for the design of noisy arithmetic components
for Min-Sum-based decoders.

Page 46 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

Chapter 2

The Finite-Alphabet Iterative
Decoding Framework for Faulty
Hardware

Abstract: Recently, a new type of decoders referred to as finite alphabet iterative decoders (FAIDs),

were introduced for LDPC codes [43, 45]. In these decoders, the messages are represented by alpha-

bets with a very small number of levels, and the variable-to-check (v-to-c) messages are derived from

the check-to-variable (c-to-v) messages and channel information through a predefined Boolean map.

Although originally introduced to specifically address the error floor problem and designed to correct

error events located on Trapping sets that usual decoders (Min-Sum, BP-based) cannot correct, the

FAIDs offer also an excellent framework for the questions raised in the i-RISC project about fault-

tolerant iterative decoding and long-term storage on reliable memories. One aspect of the advantages

offered by the FAID framework is the ability to define a large collection of boolean maps, each defining

a different decoding algorithm, but with potentially different behaviors in terms of tolerance to tran-

sient errors. In this deliverable, we will present the current stage of development of fault-tolerance

for noisy-FAIDs, based on the techniques developed for the noisy Min-Sum decoders presented in the

previous chapter. We show in particular that the behavior of noisy FAIDs is typically the same as

the noisy Min-Sum with optimized channel amplitude. We also make the analogy between FAIDs and

the offset-corrected Min-Sum and show similar behaviors. Finally, we show that within the diversity

of multiple FAIDs, there are boolean maps which are naturally more robust to the hardware errors.

2.1 Brief introduction of FAID decoders

It has been shown in [43, 45] that with an alphabet size of only seven levels in the message quanti-
zation, which translates to messages of 3-bit word length, the FAIDs can outperform floating-point
BP decoders in the error-floor region over the binary symmetric channel (BSC). Although the current
stage of development of FAIDs is restricted to column-weight-three LDPC codes and the BSC channel,
this particular case is important for the i-RISC project since the errors in hardware typically occur as
hard-decision errors, although certainly more complex than just a BSC model.

Let us give a brief presentation of the FAID decoders in this section.

2.1.1 Definitions

We now describe the general framework of FAIDs that was introduced in [45] for LDPC codes. An Ns-
level FAID denoted by D is defined as a 4-tuple given by D = (M,Y,Φv,Φc). The message alphabet
is finite and can be defined as M = {−Ls, . . . ,−L1, 0, L1, . . . , Ls}, where Li ∈ R+ and Li > Lj for
any i > j. It thus consists of Ns = 2s+ 1 levels to which the message values are confined to. The sign
of a message x ∈ M can be interpreted as the estimate of the bit associated with the variable node
for which x is being passed to or from (positive for zero and negative for one), and the magnitude |x|

c©i-RISC, January 2014 Page 47 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

as a measure of how reliable this value is. In the case of the BSC, the set Y, which denotes the set of
possible channel values, is defined as Y = {±C}. For the n-th symbol of the codeword, the channel
value yn ∈ Y corresponding to node vn is determined based on its received value. Here, we use the
mapping 0→ C and 1→ −C.

Let m1, · · · ,ml−1 denote the extrinsic incoming messages to a node of degree l. The CNU function
Φc :Mdc−1 →M used for the update at a check node of degree dc is given by

Φc(m1, . . . ,mdc−1) =

dc−1∏
j=1

sgn(mj)

 min
j∈{1,...,dc−1}

(|mj |), (2.1)

where sgn denotes the sign function. The VNU function Φv : Y ×Mdv−1 →M used for the update at
a variable node vn, n = 0 . . . N − 1 of degree dv, can be described as a closed-form function given by

Φv(m1,m2, · · · ,mdv−1, yi) = Q

dv−1∑
j=1

mj + ωn · yn

 , (2.2)

where the function Q(.) is defined based on a threshold set T = {Ti : 1 ≤ i ≤ s+1} such that Ti ∈ R+

and Ti > Tj if i > j, and Ts+1 =∞.

Q(x) =

{
sgn(x)Li, if Ti ≤ |x| < Ti+1

0, otherwise

The weight ωi assigned to the channel value in Eq. (2.2) is one of the main differences of FAIDs
compared to the state-of-the-art decoders. It is computed from a symmetric function Ω : Mdv−1 →
R≥0 whose input arguments are the dv − 1 incoming messages of a VNU. The function Ω could be
linear or non-linear, and its purpose is to modify the output of the VNU update in order to prevent
the failure of the message passing decoder on specific small topologies of error events referred to as
trapping sets. The careful design of Ω through a systematic analysis of the dominant Trapping sets of
regular dv = 3 LDPC codes is the key feature of the FAID framework (see next section). As a result,
the Ω function, and the corresponding FAID, are designed to improve the error-rate performance in
the error floor region.

Note that a particular FAID is uniquely specified by the choice of the map for Φv as the function
Φc is the same for all the considered FAIDs. Furthermore, the function Φv must satisfy the following
two properties.

Property 1 (Property of symmetry)
Φv(yn,m1, ...,mdv−1) = −Φv(−yn,−m1, ...,−mdv−1)

Property 2 (Property of monotonicity)
Φv(yn,m1, . . . ,mdv−1) ≥ Φv(yn,m

′
1, . . . ,m

′
dv−1) when mj ≥ m′j ∀ j ∈ {1, . . . , dv − 1}.

Alternatively, for column-weight-three codes, the VNU function Φv can be represented as a simple
two-dimensional Boolean map or look-up table (LUT) that is defined for a specific channel value.
Table 2.1 shows an example of a Boolean map defining the function Φv of a 7-level FAID when the
channel value is −C. The corresponding map for +C can be deduced by symmetry.

At the end of each decoding iteration, the hard-decision bit corresponding to each variable node
vi is determined as the sign of yi +

∑dv
j=1mj .

2.1.2 Min-Sum-Based Decoders: Instances of FAIDs

Here, for performance comparisons with FAIDs, we consider two quantized Min-Sum-based decoders:
the standard Min-Sum decoder, and the offset Min-Sum decoder. The VNU function Φ′v used in these
two decoders is given by

Φ′v(yn,m1, . . . ,mdv−1) = yn +

dv−1∑
j=1

mj . (2.3)

Page 48 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

Table 2.1: Boolean map defining the VNU of a 7-level FAID when yn = −C

m1/m2 −L3 −L2 −L1 0 +L1 +L2 +L3

−L3 −L3 −L3 −L3 −L3 −L3 −L3 0

−L2 −L3 −L3 −L3 −L2 −L2 −L1 L1

−L1 −L3 −L3 −L2 −L2 −L1 0 L2

0 −L3 −L2 −L2 −L1 0 L1 L2

L1 −L3 −L2 −L1 0 0 L1 L2

L2 −L3 −L1 0 L1 L1 L2 L3

L3 0 L1 L2 L2 L2 L3 L3

For the BSC channel considered here, the value yn can take 2 values {−C,+C}.

For the standard min-sum decoder, the CNU is the same as the function (2.1) used in FAIDs.
From (2.1), it is clear that the c-to-v messages can only have two possible magnitudes, which are the
minimum and the second minimum among the magnitudes of all incoming v-to-c messages. Let the
two magnitudes be denoted by Min1 and Min2 respectively. As a result, only four values need to be
recorded for each check node: Min1, Min2, S =

∏dc
j=1 sgn(mj), and the index of the variable node, I,

that provides Min1. Then the message to the variable node with index I has magnitude Min2 and
the message to all other variable nodes have magnitude Min1. The sign of each c-to-v message can be
computed by multiplying S with the sign of the corresponding v-to-c message.

For the offset Min-Sum decoder [44], the CNU involves the introduction of an offset factor γ, and
is given by

Φ′c(m1, . . . ,mdc−1) =

dc−1∏
j=1

sgn(mj)


max

(
min

j∈{1,...,dc−1}
(|mj |)− γ, 0

) (2.4)

It is evident from (2.4) that in addition to the calculation of the four values Min1, Min2, S, and
the index I, the offset factor γ must be subtracted from each magnitude in order to determine the
outgoing message. The offset factor γ serves at reducing the overestimate of the outgoing message
produced by a check node using (2.1), especially when the magnitudes of the incoming messages are
small. Therefore, the offset factor is also often referred to as a correction factor. An appropriate choice
of the offset factor enables the decoder to achieve a performance approaching the performance of BP
in the waterfall region while also offering possible improvement in the error floor region.

Note that for the offset Min-Sum decoder, an equivalent representation can be obtained by intro-
ducing the offset factor at the VNU instead. Using this equivalent representation, it can be shown
that both the standard Min-Sum and the offset Min-Sum decoders are instances of FAIDs. This is
due to the properties of symmetry and monotonicity that the VNU function Φv must satisfy. As an
example, Table 2.2 represents the VNU function of a 3-bit offset Min-Sum decoder as a Boolean map
which can also be treated as an instance of a 7-level FAID.

As can be seen in Table 2.2, the offset corrected Min-Sum has a very regular organization in its
LUT representation, and the only non-linearity can be seen in the sequence of three zeros in each
column of the LUT. This non-linearity is due to the offset correction and is already of great help in
the iterative decoding process since the offset corrected Min-Sum provide much greater error correction
capability than the simple Min-Sum. The LUT of the FAID decoder in Table 2.1 shows even more
non-linearities than the offset corrected Min-Sum. One example is the fact that the amplitude gaps
between two adjacent squares could be greater than one, with the extreme case that l1,6 = −L3 and
l1,7 = 0. Although it is difficult to directly relate those non-linearities to a particular effect in terms
of improved error correction, the FAID analysis that we provide in [45, 46] and in this report, shows

c©i-RISC, January 2014 Page 49 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

that a specific organization of these non-linearities in the LUT can lead to better iterative decoders
than the classical ones, especially in the error floor region.

Table 2.2: VNU of a 3-bit offset Min-Sum represented as a FAID

m1/m2 −L3 −L2 −L1 0 +L1 +L2 +L3

−L3 −L3 −L3 −L3 −L3 −L3 −L2 −L1

−L2 −L3 −L3 −L3 −L3 −L2 −L1 0

−L1 −L3 −L3 −L3 −L2 −L1 0 0

0 −L3 −L3 −L2 −L1 0 0 0

L1 −L3 −L2 −L1 0 0 0 L1

L2 −L2 −L1 0 0 0 L1 L2

L3 −L1 0 0 0 L1 L2 L3

2.1.3 Discussion on the Design of FAIDs

The methodology used for designing FAIDs relies on the knowledge of potentially harmful structures
called trapping sets [47] that can be present in the Tanner graph of the code and usually cause
conventional iterative decoders to fail for certain low-weight error patterns. A notation typically used
to denote a trapping set (TS) is (a, b) where a is the number of variable nodes and b is the number of
odd-degree check nodes in the subgraph induced by the variable nodes [47].

Figure 2.1 shows the example of two trapping sets that are known to be dominant in the error
floor region for regular dv = 3 LDPC codes. The (5, 3) TS is a subgraph consisting of 5 variable nodes
and 3 odd-degree check nodes while the (6, 4) TS is a subgraph consisting of 6 variable nodes and 4
odd-degree check nodes. If such structures are contained in the Tanner graph of the code, they cause
iterative decoders (BP-based as well as Min-Sum-based) to fail when errors are located in the variable
nodes of the trapping sets. The presence of these structures is the source of the error floors for LDPC
decoders.

v
5

v
2

v
4

v
1

v
3

(a) (5, 3)

v
1

v
2

v
5

v
3

v
4

v
6

(b) (6, 4)

Figure 2.1: Examples of trapping sets for regular dv = 3 LDPC codes.

The trapping set ontology is a database of trapping sets with a hierarchical organization established
by the topological relations between trapping sets [48]. The selection method for FAIDs begins by
identifying such harmful trapping sets from the trapping set ontology, and then analyzing the message
passing algorithm of a given FAID on each of these isolated structures in order to examine its error
correction capability. Moreover, the influence of an arbitrary neighborhood of the harmful structure
during message passing is partially captured by considering different possible messages that enter the
trapping set. Based on this analysis on each trapping set, the FAID with the best error correction
capability is chosen. For the design of the FAID defined by Table 2.1, the analysis of the message

Page 50 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

passing was done on the (5, 3) TS as well as on the (6, 4) TS. More details on the strategies and
algorithms used to design good FAIDs can be found in [45].

Using the above approach, it is possible to design 7-level FAIDs that are capable of outperforming
the floating-point BP as well as the quantized Min-Sum-based decoders in the error floor on a given
code. Moreover, a single particularly good 7-level FAID identified from the selection methodology is
capable of surpassing BP on several codes.

2.1.4 Simulation Results

In order to illustrate the efficiency of FAIDs, Figure 2.2 shows the frame-error-rate (FER) performance
comparisons between the BP, the Min-Sum-based decoders, and the 7-level FAID as a function of the
cross-over probability α over the BSC on a (7807, 7177) QC-LDPC code with L = 211, r = dc = 37,
and t = dv = 3. Table 2.1 was used as the VNU function Φv for the 7-level FAID.

The parameters for the 3-bit offset Min-Sum decoder and the 6-bit offset Min-Sum decoders are
(C = 2, γ = 1) and (C = 10, γ = 3) respectively. Note that the offset correction values and the channel
value of the Min-Sum decoders have been adapted to our particular simulation settings, and optimized
through a density-evolution analysis by maximizing their decoding threshold for regular dv = 3 codes
on the BSC channel, combined with the selection procedure that was proposed for FAIDs based on
trapping sets in order to obtain a better performance in the error floor region. To the best of our
knowledge, we are not aware of any other decoder designs in the literature that specifically optimize
the performance on the BSC.

From Figure 2.2, it is evident that the 7-level FAID clearly outperforms the 5-bit Min-Sum (which
exhibits very poor performance), the 3-bit offset Min-Sum, and the floating-point BP decoder in the
error-floor region. Remark that the 6-bit offset Min-Sum decoder approaches the performance of BP
in the waterfall while achieving significantly improved performance in the error floor. For this code,
the 7-level FAID with only 3 bits of precision is able to perform close to the 6-bit offset Min-Sum
decoder in the error floor region.

10
−4

10
−3

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Cross-over probability (α)

F
ra

m
e

er
ro

r
ra

te
(F

E
R

)

Min-Sum (5-bit)

Offset Min-Sum (3-bit)

Offset Min-Sum (6-bit)

BP (floating-point)

7-level FAID (3-bit)

Figure 2.2: Performance comparisons between various LDPC decoders for a (7807, 7177) QC-LDPC
code

c©i-RISC, January 2014 Page 51 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

Additional simulation results are provided in Figure 2.3 to show that the good 7-level FAID
depicted in Table 2.1 is capable of surpassing BP on other codes. These results were obtained on a
(2388, 1793) QC-LDPC code that was designed for the best BP performance (for that code rate and
length) by avoiding certain harmful trapping sets during the code construction [49]. Even for such
a code, the 7-level FAID provides superior FER performance in the error floor region compared to
the floating-point BP. Note that for this code, the 7-level FAID surpasses the 6-bit offset Min-Sum
decoder in the error-floor regions. Hence 7-level FAIDs, which are 3-bit decoders, are capable of
outperforming not only the floating-point BP decoders but also 6-bit Min-Sum-based decoders. The
number of maximum decoding iterations used for all the decoders is set to 100 in our simulations.

10
−2

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Cross-over probability (α)

F
ra

m
e

er
ro

r
ra

te
(F

E
R

)

Offset Min-sum (3-bit)

Offset Min-Sum (6-bit)

BP (floating-point)

7-level FAID (3-bit)

Figure 2.3: Performance comparisons between various LDPC decoders for a (2388, 1793) QC-LDPC
code

2.2 Faulty FAID Decoding and Analysis

2.2.1 Definition of Faulty FAID decoders

The introduction of error models in FAID decoders is different than for the Min-Sum based decoders,
as the FAID rely on Boolean maps update rules and not arithmetic units. The question whether
the FAID update rules should be implemented using local memories (with Look-Up tables) or with a
circuit implementation of the boolean maps is still under investigation, and of course has an impact
on the error model which should be used.

As a first step in this deliverable, we have decided to put the errors due to faulty hardware at
the “message level” at the output of each elementary operation. With this assumption, the output
of functions Φv, Φc and the decision step will be corrupted by a transient noise, following the models
presented in the first chapter of this deliverable. We restrict the discussion and the study in the i-RISC
project to FAID implemented in Ns = 7 states, with messages and error events stored on 3 quantization
bits. Following the description of the full-depth and sign-preserving error models presented in chapter
1, the error models can be interpreted and represented as the concatenation of the update functions

Page 52 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

Φv and Φc with a Ns-ary symmetric channel. The full-depth and the sign-preserving error models are
presented as noisy channels on Figures 2.4 and 2.5.

Message
Noiseless

Message
Noisy

Message
Noiseless

p0/6 p0/6 p0/6 p0/6 p0/6 p0/6

p0/6

Possible
Error Events

0

0(1−p)

(1−p)
−3

−2

−1

 0

+1

+2

+3

−3

−2

−1

 0

+1

+2

+3

−3 −3

−3

−3

−3

−3

−3

−3

−1

−1

−1

−1

−1

−2 −2

−1 −1

 0 0

+1 +1

+2 +2

+3 +3

−2

−2

−2

−2

−2

−2

−1 0

0

0

0

0

0

+1

+1

+1

+1

+1 +2

+2

+2

+2

+2

+2

+1

+3

+3

+3

+3

+3

+3

Figure 2.4: Full-Depth Error model seen as a Ns-ary symetric channel.

Message
Noiseless

Message
Noisy

Message
Noiseless

p0/3 p0/3 p0/3

p0/3

/6p0

/6p0 /6p0 /6p0 /6p0 /6p0 /6p0

Possible

Error Events

0

0(1−p)

(1−p)

0(1−p)

−3

−2

−1

 0

+1

+2

+3

−3

−2

−1

 0

+1

+2

+3

−3 −3

−3

−3

−1−2 −2

−1 −1

−2

−2

−1 0

0

0

+1 +1

+2 +2

+3 +3

0

0

0

+1

+1

+2

+2

+3

+3

−3 −1 0 0 −2 +2+1 +3

Figure 2.5: Sign-Preserving Error model seen as a Ns-ary symetric channel.

In the case of FAIDs, only the output of the Φv, Φc and the APP computation are supposed to
be noisy, while the decision step is supposed to be noiseless and implemented in perfect hardware.
As can be seen From figures 2.4 and 2.5, the error model can be interpreted itself as an additional
Boolean map that is put on top of the maps Φv and Φc. Let us denote by Ep0FD(.) and Ep0SP (.) the error
models expressed as Boolean functions for the full-depth and the sign-preserving cases, respectively.
The noisy versions of the FAID update rules obtained from equations (2.1) and (2.2) are:

Φ̃c(m1, . . . ,mdc−1) = Epc
dc−1∏

j=1

sgn(mj)

 min
j∈{1,...,dc−1}

(|mj |)

 (2.5)

Φ̃v(m1,m2, · · · ,mdv−1, yi) = Epv
Q

dv−1∑
j=1

mj + ωn · yn

 (2.6)

c©i-RISC, January 2014 Page 53 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

where E can be any of the error model considered, and different error probabilities can be used for
the two functions. Note that here pv stands for the variable node update, and pc for the check node
update. Note that since the APP calculation is performed at the variable node in a message passing
decoder, Epv will be used as a model to corrupt the APP computation, prior to the decision step.

Finally, and as already explained in Chapter 1, we stress the fact that the error models presented in
this deliverables are far from being realistic and are not based on outputs of the WP2. In fact, in order
to perform a theoretical and asymptotical analysis of iterative decoders, the local update functions
and their noisy versions need to be symmetric, in the sense that they treat the binary values ”0” and
”1” equally. From the first analysis of WP2, it turns out that the error models that effectively come
from faulty hardware are both non-symmetric and data dependent, which prevents any theoretical
analysis based on the usual tools of Density Evolution or EXIT charts. However, in the rest of the
i-RISC project, we will continue to explore means of incorporating the non-symmetries of the error
models into our analysis.

2.2.2 Density Evolution for Faulty FAID

The main tool that we will use for the analysis of Faulty FAID is the noisy version of Density Evolution
(DE) over the BSC. The DE is the description of the behavior of a decoding algorithm as a dynamical
system representing the probability density function of the messages in the Tanner graph. This
analysis is performed under the local independence assumption. The advantage of a DE analysis is
that it both alleviates the dependence of the analysis from a particular LDPC code structure, and is
valid on average over all possible LDPC code constructions, when infinite-lengths LDPC graphs are
considered.

In the case of full precision messages, the DE is initialized with the probability density function
of the channel noise, and has two typical dynamical behaviors: (i) either the recursion converges to a
fixed point that is a Dirac mass on +∞, in which case the decoder has successfully removed all the
noise and converged to the correct stable solution, (ii) or the recursion converges to a stable fixed
point that is a distribution different from a Dirac mass at +∞, in which case the decoder failed to
converge and to remove all the noise from the codeword. More details on DE convergence and the
conditions under which the fixed point of DE can be stable or not can be found in [22].

For message passing decoders analyzed with DE, the threshold is defined as the level δ of channel
noise which separates the two typical behaviors mentioned above. The parameter δ can represent
either an SNR or a channel error probability indicating the noise level on the channel. The threshold
characterizes the fact that the transition between the two different behaviors of DE is not smooth: for
all the channels with noise level greater than δ, the DE does not converge, and for all the channels
with noise level lower than δ, the DE successfully converges to the correct fixed point. The parameter
δ is usually called DE threshold in the literature.

The DE recursion is usually not defined in a closed-form equation and requires heavy numerical
evaluation techniques to be approximated. The only known exceptions are for the erasure channel
model, for which DE can be expressed in closed-form, and for the BSC channel and hard-decision
decoders (Gal-A and Gal-B decoders). For all other channels or more complex decoders, the DE
thresholds has to be be numerically approximated using Monte Carlo or quadrature methods.

However, for quantized message passing decoders, for which the update rules are described as
simple LUT operations, writing a program which computes exactly the DE recursion is quite simple
and straightforward, especially for the case of dv = 3 LDPC codes, where the variable node update
is defined only by a 2D rule (see section 2.1). Since the error models that we consider are also
described as LUT (see figures 2.4 and 2.5), the DE recursion for Faulty FAID is also simple to im-
plement. In this section, we present a short description on the way to implement DE for Faulty FAIDs.

The density evolution is initialized with the density p0 of the channel likelihood, that is, if C = ±L1

p0(−L1) = 1− α p0(+L1) = α p0(i) = 0 elsewhere

Page 54 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

The density of the output of a check node is obtained by recursions of an elementary step with

only 2 incoming messages having the same density. Let p̃
(`)
vtoc represent the density of the noisy v-to-c

messages in the graph at iteration `. The density p
(`)
vtoc of the noiseless v-to-c messages is composed

by Ns values in [0, 1] which sum up to 1, meaning
∑+Ls

i=−Ls p
(`)
vtoc(i) = 1. The output density p

(`)
ctov of

an elementary update from the look-up table definition of Φc is:

p
(`)
ctov(k) =

∑
(i,j):Φc(i,j)=k

p
(`)
vtoc(i) p

(`)
vtoc(j) ∀k ∈ {−Ls, . . . ,+Ls} (2.7)

This equation holds for the check node recursive implementation with dc− 2 steps for any check-node
of degree dc.

In the case of a faulty decoder, the function Φc in equation (2.7) needs to be replaced by the
function Φ̃c of equation (2.5). As Φ̃c is defined as the concatenation of Φc and of the error model

Epc defined as a Boolean map, we proceed the following way. Let p̃
(`)
ctov be the density of the output

messages of a noisy parity-check node update, we have:

p̃
(`)
ctov(k) =

∑
(i):Epc (p

(`)
ctov(i))=k

p
(`)
ctov(i) pEpc (i, k) ∀k ∈ {−Ls, . . . ,+Ls} (2.8)

where pEpc (i, k) is the error transition probability between the noiseless message value i and the noisy
message value k. For example, in the case of the sign-preserving model of Figure 2.5, pEpc (i, k) can
take only 3 values that are pc/3, pc/6 or (1− pc).

We proceed the same way to obtain the DE equation through a variable node. Let p̃
(`)
ctov be the

density of the noisy inputs of a dv = 3 variable node, and p
(`+1)
vtoc be the density of its noiseless output.

From equation (2.2) we get:

p
(`+1)
vtoc (k) =

∑
(i,j):Φv(i,j,C=−L1)=k

p̃
(`)
ctov(i) p̃

(`)
ctov(j) p0(−L1) +

∑
(i,j):Φv(i,j,C=+L1)=k

p̃
(`)
ctov(i) p̃

(`)
ctov(j) p0(+L1) ∀k ∈ {−Ls, . . . ,+Ls} (2.9)

As for the check-node update, the error model Epv is then applied at the output of the variable
node update:

p̃
(`+1)
vtoc (k) =

∑
(i):Epv (p

(`+1)
vtoc (i))=k

p
(`)
vtoc(i) pEpv (i, k) ∀k ∈ {−Ls, . . . ,+Ls} (2.10)

Applying recursively the sequence of 4 equations (2.7), (2.8), (2.9) and (2.10) implements one
recursion of the exact Noisy Density Evolution for FAIDs over the BSC channel.

2.2.3 Noisy Density Evolution Analysis

As said in Chapter 1 for the Min-Sum based decoders, noisy DE is very different from the noiseless
DE in the sense that the noise cannot be totally removed by the decoder due to the faulty hardware
that is used even at the final decision step. As a result, the threshold of noisy DE cannot be defined as
the limit channel parameter for which the zero-error probability is reached by the decoder. Similarly
to the definitions given in chapter 1, we will propose two kinds of noisy DE thresholds.

Following [1], we define first the useful thresholds as the limit channel parameter for which the error
probability at the end of the DE equation is lower than the initial error probability from the channel

initialization. Let P
(`)
e be the probability of error deduced from the distribution of the APPs at the

end of ` DE recursions. As P
(`)
e is a function of the decoder parameters, and in the case of FAIDs, of

c©i-RISC, January 2014 Page 55 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

the particular FAID update rule Φv, we will denote the probability of error P
(`)
e (pv, pc, α,Φv). The

useful threshold is thus defined as:

δUR = max(α) such that P (∞)
e (pv, pc, α,Φv) < α (2.11)

The region of channel values α < δUR and decoder parameters (pv, pc) that satisfy this condition
constitutes the useful region of the decoder.

For the BSC channel, finding the useful decoding threshold corresponds to finding the maximum
value of α such that equation (2.11) is verified in less than a given number of iterations. The threshold
value of α can be found quickly by dichotomic search.

Although the useful region is a good indicator which tells what are the faulty hardware conditions
(error probabilities (pv, pc)), and the maximum channel noise that a noisy decoder can tolerate to
reduce the level of noise, it might not be sufficient to define and identify strong faulty decoders, that
is faulty decoders which on top of reducing the channel noise, can correct the maximum number of
errors.

In this deliverable, as an alternative to the useful threshold and region, we introduce another
threshold definition, which relies on more stringent convergence conditions of the noisy DE recursion.
Following the analysis proposed in Chapter 1 (see Proposition 1), the error probability at decoding
iteration ` is lower-bounded as follows:

Proposition 2 (a) For the sign-preserving error model: P
(`)
e ≥ 1

Ns − 1
pv = P+∞

e,SP .

(b) For the full-depth error model: P
(`)
e ≥ 1

2
pv +

1

2(Ns − 1)
pv = P+∞

e,FD.

We define the “Functional Threshold”, with respect to these lower bounds as the limit channel
parameter at which the probability of error converges in the vicinity of these lower bounds, i.e.:

δFR = max(α) such that P+∞
e,. < P (∞)

e (pv, pc, α,Φv) < a P+∞
e,. (2.12)

The region of channel values α < δFR and decoder parameters (pv, pc) that satisfy this condition
constitutes the functional region of the decoder. The value of the parameter a > 1 can be adapted to
the other parameters (pv, pc) such that the range between P+∞

e,. and a P+∞
e,. is small enough to reflect

the dynamical behavior described in the rest of this section. Throughout this deliverable, we have
chosen a value of a = 2.

In the rest of this section, only the analysis using the sign-preserving error model is presented,
but this study can be generalized to any other symmetric error model, including the full-depth error
model, with possibly different conclusions.

The difference between the useful and the functional region might not be clear from these definitions
and we provide now an explanation why this distinction is important. We show on Figures 2.6(a)-2.7(a)
the sharp transition effect that appears around the functional threshold value. Figure 2.7(a) draws the

evolution of P
(`)
e (pv, pc, α,Φv) under DE for different parameter values and Φv being defined as the

offset-corrected min-sum on 3 quantization bits (see Table 2.2). Figures 2.6(a) and 2.6(b) represent
also the probability of error for various parameters, but for the FAID decoder defined in Table 2.1.
As can be noticed, for a given choice of pv and pc, the values of α have been carefully chosen so as
to be close to δFR and reflect the sharp transition behavior of faulty decoders around the functional
threshold.

Let us first discuss the figures 2.6(a) and 2.6(b) on FAID. For the case of pv = 1e−3 and pc = 0.0,
the value of the functional threshold is δFR = 0.1026 while the value of the useful threshold is larger,
equal to δUR = 0.1149. However, when the channel error probability α is slightly below the functional
threshold δFR = 0.1026, the error probability has the early plateau phenomenon mentioned in Chapter
1 for the Min-Sum decoder. The error probability flattens around 0.0500 for some iterations before
eventually converging to a very small error probability, close to P+∞

e,. . In this case, the decoder behavior

Page 56 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

is in accordance with what we can expect from an error correcting decoder, that is converging to the
minimum error probability after successful decoding, that is 0 in the case of noiseless decoders, and
P+∞
e,. in the case of noisy decoders. On the contrary, when α is slightly larger than the functional

threshold δFR = 0.1026, the error probability flattens indefinitely and never reaches the minimum
achievable error probability. Although α = 0.1028 is a value which belongs to the useful region, as
after decoding the error probability is reduced to 0.0555, we can argue the fact that this is not a good
situation for the decoder, as it converges to a fixed point which is clearly not the desired one. Note
that this is indeed a threshold behavior as the difference in α values to switch from one behavior to
another is very small. This threshold behavior around δFR is also observed for the case of a more
noisy FAID decoder, with pv = 0.03.

In our opinion, for these reasons, the functional threshold δFR represents a better measure of
robustness of faulty decoders than the useful threshold δUR. This observation is new and has not been
reported in the literature. We do not understand yet how P+∞

e,. and the limiting error probability
value in the neighborhood of δFR are linked to the other parameters or the type of decoder. Note
that for the case of the offset-corrected Min-Sum that is drawn in figure 2.7(a), the same threshold
behavior is observed, but in this case, the value of δFR = 0.0997 and the limit error probability 0.0995
are very close, which in turns indicates that both thresholds δFR and δUR are almost equal. When
this difference is large, as for the FAID case, it means that the difference between δFR and δUR can
be large.

0 50 100 150 200 250 300 350 400 450 500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of Iterations

B
it
 E

rr
o

r
P

ro
b

a
b
ili

ty
 o

f
N

o
is

y
 F

A
ID

p

v
=1e−3 ; p

c
=0 ; alpha=0.1020

p
v
=1e−3 ; p

c
=0 ; alpha=0.1025

p
v
=1e−3 ; p

c
=0 ; alpha=0.1028

Limit Value = 0.0555

(a) pv = 1e−3

0 50 100 150 200 250 300 350 400 450 500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of Iterations

B
it
 E

rr
o

r
P

ro
b

a
b
ili

ty
 o

f
N

o
is

y
 F

A
ID

p

v
=0.03 ; p

c
=0 ; alpha=0.0920

p
v
=0.03 ; p

c
=0 ; alpha=0.0925

p
v
=0.03 ; p

c
=0 ; alpha=0.0927

Limit Value = 0.0389

(b) pv = 0.03

Figure 2.6: Threshold behavior of a FAID decoder around the functional threshold.

Finally, another kind of dynamical behavior has been observed when the error probability of the
faulty hardware at the variable node update pv is very large, as indicated on figure 2.7(b) for a FAID
with pv = 0.08. In this case the plateau phenomenon does not appear, and there is a smooth transition
from the functional region to the useful region.

Considering the analysis and the different definitions of thresholds proposed in this section, we will
now draw some useful and functional region for the two different decoders that we have compared in
this section, i.e. the offset corrected Min-Sum of table 2.2, and the FAID decoder of table 2.1. On
figure 2.8(a), we show the two regions for both decoders, when the check-node update is noiseless,
pc = 0.0. The useful region of the FAID is greater than the one of the offset Min-Sum, which seems
to indicate that the FAID is more robust to faulty hardware than the Min-Sum. Note however that
we have the opposite conclusion with respect to the functional regions, which would then indicate
that the offset Min-Sum is more robust. As we can see, relying only on the useful region might be
problematic when we wish to compare different decoders together.

This is confirmed in the next figure 2.8(b), where the useful and functional regions are now drawn
for a value of pc = 0.1. Although pc = 0.1 might appear as an extremal case since 10% of error
at the check-node update can seem too large, it clearly shows that the FAID regions are very much

c©i-RISC, January 2014 Page 57 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Iterations

B
it
 E

rr
o
r

P
ro

b
a
b
ili

ty
 o

f
N

o
is

y
 M

S

p

v
=1e−3 ; p

c
=0 ; alpha=0.0990

p
v
=1e−3 ; p

c
=0 ; alpha=0.0997

p
v
=1e−3 ; p

c
=0 ; alpha=0.0998

Limit value = 0.0995

(a) Threshold behavior of the 3-bit Offset Min-Sum De-
coder around the functional threshold

0 50 100 150 200 250 300 350 400 450 500
0

0.02

0.04

0.06

0.08

0.1

0.12

Number of Iterations

B
it
 E

rr
o

r
P

ro
b

a
b

ili
ty

 o
f

N
o

is
y
 F

A
ID

p

v
=0.08 ; p

c
=0 ; alpha=0.075

p
v
=0.08 ; p

c
=0 ; alpha=0.070

p
v
=0.08 ; p

c
=0 ; alpha=0.065

p
v
=0.08 ; p

c
=0 ; alpha=0.060

Minimum Value of Pe

(b) Dynamical behavior of FAID without the plateau
phenomenon - pv = 0.08

Figure 2.7: Different Dynamical behaviors of noisy DE.

worse (smaller) than the Min-Sum ones, showing that the FAID is probably less robust to faulty
hardware than the offset Min-Sum. This observation clearly demonstrates that the useful region does
not characterize nor predict the fault-tolerance of decoders, and that relying on the functional region
(or the functional thresholds in general) might be more predictive. This is however a work in progress
and we do not claim that all issues are solved in this deliverable. We plan to continue in this direction
during the second period of the i-RISC project.

10
−3

10
−2

10
−1

10
0

0

0.02

0.04

0.06

0.08

0.1

0.12

"p
v
" variable node update error probability − "p

c
=0

D
e

c
o

d
in

g
 T

h
re

s
h

o
ld

Offset−MS − Useful Region

Offset−MS − Functional Region

FAID − Functional Region

FAID − Useful Region

(a) case of pc = 0.0

10
−3

10
−2

10
−1

10
0

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

"p
v
" variable node update error probability − "p

c
=0.1

D
e

c
o

d
in

g
 T

h
re

s
h

o
ld

Offset−MS − Useful Region

Offset−MS − Functional Region

FAID − Useful Region

FAID − Functional Region

(b) case of pc = 0.1

Figure 2.8: Useful and Functional Regions of the Offset-corrected Min-Sum and FAID

2.2.4 Selection of FAIDs based on the Functional Region

As shown in the previous section, the useful and functional regions for FAIDs can vary and have
different shapes and areas. As a result, the FAID framework allows us to look for specific Boolean
update rules that are less sensitive than other to faulty-hardware. From our first analysis of this
problem, we have identified several possible ways of defining FAID robust to faulty hardware, and we
present a first set of results and conclusions in this section, based on the computation of the functional
thresholds δFR.

like in the previous section, only the analysis using the sign-preserving error model is presented, but
this study can be generalized to any other symmetric error model, with possible different conclusions.

Page 58 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

One of the core idea of our previous works on FAIDs was to rely on the huge multiplicity of
potentially good iterative decoders, with the aim of identifying the best ones, which are not necessarily
deduced from Belief-Propagation equations or Min-Sum equations. In [45], our goal was to identify
FAIDs which are good decoders in the error floor, by searching for the update rules Φv which correct
the largest number of errors on the problematic topologies of the Tanner graph, the trapping sets.
In the i-RISC project, we still want to capitalize on the diversity of FAID update rules and behavior
to identify if there are iterative decoders which are naturally more robust than others under faulty-
hardware implementation.

The total number of all possible FAIDs with Ns levels can be deduced from the following theorem
[50,51].

Theorem 2.1 (Number of FAIDs) The total number KA(Ns) of symmetric lexicographically or-
ders Ns-level FAIDs is given by

KA(Ns) =
H2(3Ns)H1(Ns)H2(Ns − 1)

H2(2Ns + 1)H1(2Ns − 1)
(2.13)

where Hk(n) = (n− k)! (n− 2k)! (n− 3k)! . . . is the staggered hyper-factorial function.

Based on theorem 2.1, the total numbers of FAIDs for Ns = 5, Ns = 7, and Ns = 9 levels are shown
in Table 2.3.

Table 2.3: Number of FAID Decoders

Total number of variable node LUTs (Ns = 5) 28 314

Total number of variable node LUTs (Ns = 7) 530 803 988

Total number of variable node LUTs (Ns = 9) 230 316 871 499 560

Even by restricting the message alphabet size to Ns = 7, the number of possible FAIDs is too
large for a systematic analysis. Instead, we will rely on our previous work on FAID, and start with
a collection of ND = 5291 FAIDs which have been selected by the analysis on noisy-trapping sets
presented in [45]. As a result of this selection process, all of these ND FAIDs have both good DE
thresholds (noiseless case), and good performance in the error floor. From this collection of FAIDs,
we select one of the best in the error floor, which is described in the following Table 2.4, and that we
will denote Φ(opt)

v in the rest of this chapter.

Table 2.4: FAID rule Φ(opt)
v reported in [45] optimized for the error floor

m1/m2 −L3 −L2 −L1 0 +L1 +L2 +L3

−L3 −3 −3 −3 −3 −3 −3 −1

−L2 −3 −3 −3 −2 −1 +1

−L1 −2 −2 −1 −1 +1

0 −1 0 0 +1

+L1 0 +1 +2

+L2 +1 +3

+L3 +3

We now conduct a faulty DE analysis on this set of ND = 5291 FAIDs by computing, for each
of them, the values of their functional threshold under different error model parameters (pv, pc). For

c©i-RISC, January 2014 Page 59 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

the ND FAIDs, we have drawn on Figure 2.9 the distribution of their functional thresholds, computed
with noisy DE for the ensemble of (dv = 3, dc = 5) LDPC codes. The right distribution in blue shows
the distribution of the noiseless DE, and it can be seen that almost all decoders have good decoding
thresholds concentrated around δ = 0.1. As we introduce more and more noise in the hardware, both
at the check node and at the variable node updates, the shape of the distribution moves to the left,
and eventually will reach δ = 0.0, which means that the decoder is too noisy to correct even a small
fraction of errors. More importantly, we can notice that the shapes of these distribution differ, and
in particular the one corresponding to (pv = 0.05, pc = 0.03) is very wide, ranging from δ = 0.02 to
δ = 0.08. This is a first good sign of the interest of our approach, as it shows that different FAIDs have
different behaviors when hardware noise is introduced. Otherwise the blue right distribution would
have only shifted to the left, but without change in its shape.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
0

500

1000

1500

2000

2500

Noisy Threshold Value

N
u

m
b

e
r

o
f

F
A

ID
s

δ(p

v
=0,p

c
=0)

δ(p
v
=0.01,p

c
=0.01)

δ(p
v
=0.05,p

c
=0.03)

δ(p
v
=0.1,p

c
=0.05)

Figure 2.9: Distribution of the functional noisy DE threshold for 5291 FAIDs.

In principle, the FAIDs in the right tail of the distribution are the best decoders, as they have
the highest noisy decoding threshold. However, a decoder which is in the right tail of the noiseless
distribution may not be in the tail of the noisy distribution, and vice-versa. In order to figure out the
decoders which are good in all noise situation (noiseless or noisy decoders), we have plotted on Figure
2.10 the distribution of the difference between the noiseless DE threshold and the noisy DE functional
threshold with (pv = 0.05, pc = 0.03). The result presented on this figure is highly interesting. The
distribution ranges from 0.005 to 0.08, which is almost the same range as the difference between the
right tail of the blue (noiseless) distribution and the left tail of the magenta (noisy) distribution on
Figure 2.9.

This shows the following unexpected and promising result, and is a first step toward a clean
definition of the robustness of FAID to faulty-hardware:

• the FAIDs for which the difference δFR(pv = 0.0, pc = 0.0) − δFR(pv = 0.05, pc = 0.03) is the
minimum corresponds to decoders which are in the right tail of both distributions, and is then
expected to be a good decoder in both situations when the decoder is noiseless or noisy. We
will qualify those decoders as robust, and we show on Table 2.5 one of the most robust FAID,
combining good thresholds for the noiseless and noisy DE. It will be denoted Φ(robust)

v in the rest
of the chapter.

Page 60 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

• more surprinsingly, the FAID for which the difference is the maximum corresponds to a decoder
in the right tail of the noiseless thresholds, but in the left tail of the noisy thresholds. In
other words, this would be a good decoder on noiseless hardware, but a catastrophic decoder
on noisy hardware. Such an extreme behavior was unexpected, and we plan to continue the
characterization and analysis of these cases. We will qualify such decoders as non-robust. One
example, which will be denoted Φ(non-robust)

v in the rest of the chapter, is given in Table 2.6.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

200

400

600

800

1000

1200

1400

1600

1800

2000

δ(p
v
=0,p

c
=0) − δ(p

v
=0.05,p

c
=0.03)

N
u

m
b

e
r

o
f

F
A

ID
s

Good Noiseless FAID
Non Robust to

Faulty Hardware
Good Noiseless FAIDs

Robust to
Noisy Hardware

Figure 2.10: Distribution of the difference between Noiseless Thresholds and Noisy Thresholds for 5291
FAIDs. This plot, ranging from values close to 0 to values close to the maximum noiseless thresholds
clearly shows that there are robust and non-robust FAIDs.

Table 2.5: FAID rule Φ(robust)
v optimized for the Robustness to Faulty Hardware (minimum difference

between Noiseless and Noisy DE thresholds)

m1/m2 −L3 −L2 −L1 0 +L1 +L2 +L3

−L3 −3 −3 −3 −3 −3 −2 0

−L2 −3 −3 −3 −2 −2 +1

−L1 −3 −2 −1 −1 +1

0 −1 −1 0 +1

+L1 0 +1 +2

+L2 +2 +2

+L3 +3

c©i-RISC, January 2014 Page 61 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

Table 2.6: FAID rule Φ(non-robust)
v not robust to faulty Hardware (maximum difference between Noiseless

and Noisy DE thresholds)

m1/m2 −L3 −L2 −L1 0 +L1 +L2 +L3

−L3 −3 −3 −3 −3 −3 −3 0

−L2 −3 −3 −3 −2 0 +2

−L1 −2 −2 −1 0 +2

0 −1 0 +1 +3

+L1 0 +1 +3

+L2 +1 +3

+L3 +3

2.3 Finite length Simulation Results

Finally, in this section, we give some simulation results with the best noisy FAIDs that have been
identified by the noisy DE analysis. This finite length study will also confirm our interpretation from
the outcome of the noisy DE analysis. Our main purpose is to compare the following three FAID
decoders:

• Φ(opt)
v , which has been optimized for noiseless decoding with low error floor,

• Φ(robust)
v , which has been optimized for robustness to faulty hardware,

• Φ(non-robust)
v , which has been selected with the maximum discrepancy between noiseless and noisy

decoding.

All results in this section have iteration number of 100. The considered channel is a BSC. We have
compared the three defined decoders on two different codes, the (155, 93) Tanner code from [25], with
degrees (dv = 3, dc = 5), and a quasi-cyclic LDPC code (444, 111) with degrees (dv = 3, dc = 12). The
simulation results are presented on Figures 2.11 and 2.12.

Let us first discuss the noiseless simulations first. Since Φ(opt)
v has been optimized for low error

floor, it seems natural to see that it performs better on the two codes compared to the two other
FAIDs. Also, since the two FAIDs Φ(robust)

v and Φ(non-robust)
v belong to a pre-determined set of good

FAID decoders, they have reasonable performance in the noiseless case, Φ(non-robust)
v being even very

close to Φ(opt)
v for the (444, 111) QC-LDPC code.

Now, taking a look at the noisy curve, one can see that the results are in compliance with the
conclusions from the noisy functional thresholds analysis. Indeed, Φ(robust)

v has been chosen for mini-
mum difference between the noiseless case and the noisy case, while Φ(non-robust)

v has been selected for
the maximum difference. We observe the same behaviors on both codes for finite length simulations.
Another interesting remark is that it seems that the error floor of Φ(robust)

v under noiseless and noisy
cases will eventually cöıncide as the FER slope seems better for the Φ(robust)

v under faulty hardware.
This raises the question of the behavior of these decoders in the error floor region and the possibility
that noisy decoders could even outperform their noiseless version in the deep error floor. This study
is planned in the DoW of the i-RISC project. Finally, we note that the question that we addressed at
the beginning of this chapter, that is whether it makes sense to search for iterative decoders which are
naturally robust to faulty hardware and could be specifically designed for fault-tolerance, is positively
answered by both the noisy DE analysis and the finite length simulations. As a matter of fact, Φ(opt)

v

would be the natural first choice for the implementation of a powerful FAID on a device, but we can see
here that there also exists other FAIDs update rules, which have a slight performance degradation in

Page 62 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Channel Error Probability

F
ra

m
e

 E
rr

o
r

R
a

te

(93,155) Tanner Code − BSC channel − (p
v
=0.05,p

c
=0.05)

Φ
v

(opt)
 − Noiseless

Φ
v

(non−robust)
 − Noiseless

Φ
v

(robust)
 − Noiseless

Φ
v

(opt)
 − Noisy

Φ
v

(non−robust)
 − Noisy

Φ
v

(robust)
 − Noisy

Figure 2.11: Performance of Noiseless and Noisy FAIDs on the (93, 155) Tanner code, with (dv =
3, dc = 5) and (pv = 0.05, pc = 0.05).

the noiseless case, but can outperform Φ(opt)
v in the noisy case. In this way, Φ(robust)

v is a demonstrative
example of the existence of such decoder.

2.4 Conclusion and future developments in the i-RISC project

To conclude this chapter, we confirm that with respect to the theoretical analysis of FAID iterative
decoding with simple symmetric error models, the FAID framework provides a useful tool for selecting
iterative decoders with maximum fault-tolerance features. In particular, we have already shown that
some FAIDs are naturally more robust than others to transient noise, and therefore more adapted
to be implemented on faulty-hardware. Although at its preliminary stage, this study raised several
interesting issues that we plan to explore in the rest of the i-RISC project. In particular:

• the introduction of non-symmetric error models in our analysis, or at least in the Monte-Carlo
simulation. The added complexity is that asymptotical analysis with non-symmetric decoding
rule is much more problematic (and not solved in the literature to the best of our knowledge).
A coset-like analysis would maybe be helpful for the characterization, but not necessarily the
design of the decoders,

• include memory in the FAIDs to help combating the circuit noise, and especially study the
self-corrected FAIDs (SC-FAIDs),

• include in our analysis real hardware implementations of FAIDs, starting from the promising
work in [52], and including error models from WP2 that fits to the particular hardware imple-
mentation. A VHDL model of the FAID implementation will be developed and tested under
faulty hardware.

c©i-RISC, January 2014 Page 63 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

2 4 6 8 10 12 14

x 10
−3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Channel Error Probability

F
ra

m
e

 E
rr

o
r

R
a

te

(111,444) QC−LDPC Code − BSC channel − (p
v
=0.05,p

c
=0.02)

Φ
v

(opt)
 − Noiseless

Φ
v

(non−robust)
 − Noiseless

Φ
v

(robust)
 − Noiseless

Φ
v

(opt)
 − Noisy

Φ
v

(non−robust)
 − Noisy

Φ
v

(robust)
 − Noisy

Figure 2.12: Performance of Noiseless and Noisy FAIDs on the (444, 111) QC-LDPC code, with
(dv = 3, dc = 12) and (pv = 0.05, pc = 0.02).

Page 64 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

Chapter 3

Design of Min-Sum-based LDPC
decoders using imprecise arithmetic

Abstract: This chapter evaluates the robustness of Low-Density Parity-Check decoders against er-

rors due to imprecise arithmetic. While the use of imprecise arithmetic is motivated by savings in

energy, delay and area, it also causes errors during the decoding process. We design imprecise arith-

metic operators and investigate their use within several Min-Sum-based decoders. We show that all

decoders are able to provide error protection, but most of them suffer a performance penalty compared

to the exact arithmetic implementation. Remarkably, the Self-Corrected Min-Sum decoder incurs no

performance penalty when imprecise arithmetic is used.

3.1 Introduction

In order to support the sustainable development of future communication systems, energy efficiency
became one of the most important issues to be addressed. Traditionally, the power consumption has
been interpreted as the transmit power. This is mainly due to long-range communications, which
greatly contributed to the development of information and coding theory, for which the transmit
power dominates the total power consumed by the system. Forward error correction (FEC) codes
have been key components to design reliable communication systems, while limiting the transmit
power to acceptable low levels. Moreover, spectacular advances in the domain of graph-based codes
and iterative decoding techniques, made possible the development of new families of error correcting
codes ensuring reliable communication at transmit powers closer and closer to the theoretical Shannon
limit [22,26].

Nowadays, there is an increased interest in shorter range communications, from a few meters
(femto-cells, wireless sensor networks, etc.) to a few millimeters (inter-chip and on-chip communica-
tions). For such applications, it is commonly accepted that the processing power (the power consumed
in processing the signals) might represent a substantial fraction of the total power [27, 28]. In this
context, power consumption of the FEC decoder module is often a bottleneck, as it can require an
important part of the processing power, or even more power than the receiver can supply (e.g. in case
of low-power systems).

For applications that can trade the accuracy of the circuit for the power consumption, two main
approaches are currently investigated. The first approach consists in using aggressive voltage scaling as
the basis for reliability and energy tradeoffs. This brings the signal level close to the noise level, which
reduces the noise immunity of the circuit and leads to probabilistic computational models [29, 30].
Such models were used to derive low-energy computational platforms for probabilistic algorithms of
for applications from the domain of image and video processing, which tolerate probabilistic behavior
at the circuit level [31].

The second approach consists in using imprecise (also referred to as inexact) circuits, obtained by
pruning the exact circuit. This amounts to removing a certain number of logic gates from the circuit
(depending on the application’s tolerance to errors), which may result in significant savings in energy,

c©i-RISC, January 2014 Page 65 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

delay and area [32]. Imprecise arithmetic (e.g. adders, multipliers) proved to be particularly useful
for applications from the domain of image and video processing [33–35].

This chapter investigates the robustness of FEC decoders against errors due to imprecise arith-
metic. This is a new paradigm in coding theory, which traditionally assumes that the operations
of a FEC decoders are exact, and errors can only be introduced by the channel. While the use of
imprecise arithmetic is motivated by savings in energy, delay and area, the first question we have to
answer is whether or not FEC decoders are able to provide reliable error protection when they operate
on imprecise hardware.

We focus on Low-Density Parity-Check (LDPC) codes [13], a class of error correcting codes that
feature low complexity message-passing (MP) iterative decoding and can be optimized for a broad
class of channels, with performance approaching the theoretical Shannon limit [26]. We evaluate
the performance of several LDPC decoders using imprecise arithmetic operators. While the perfor-
mance penalty due to imprecise arithmetic depends on the considered decoder, we show that the
Self-Corrected Min-Sum decoder is inherently robust, and does not suffer any performance penalty
due to imprecise arithmetic.

The remainder of the chapter is organized as follows. Related works are discussed in Section 3.2.
Section 3.3 gives a brief introduction to LDPC codes and iterative decoding algorithms. Section 3.4
is concerned with the design of imprecise Min-Sum-based decoders and their imprecise arithmetic
components. Simulation results are provided in Section 3.5 and Section 3.6 concludes the chapter.

3.2 Related works

Over the last few years, there has been an increased interest in investigating the behavior of LDPC
decoders operating on circuits built from probabilistic components. The motivation is two-fold. On
the one hand, as mentioned in the Introduction, aggressive voltage scaling can be used to reduce the
power consumption of the circuit, leading to probabilistic computational models. On the other hand,
it is now widely accepted that emerging nano-electronic devices will be inherently unreliable, due to
ineluctable increases in density integration and imperative requirements of low-energy consumption.
Recent works studied the performance of Gallager A and Gallager B decoders on faulty hardware
[1, 11, 12]. Moreover, in Chapter 1 of this Deliverable, we investigated the performance of Min-Sum-
based decoders running on noisy hardware.

The focus of this chapter differs from the above researches in several ways:

1. In this chapter, LDPC decoders are implemented on circuits built from imprecise components.
Both imprecise and probabilistic components causes errors during the decoding process, but
imprecise behavior is deterministic and can be “tuned” to a desired level of errors.

2. In [1, 11, 12], the authors investigate the asymptotic behavior of the decoder, while we are
concerned with finite-length performance.

3. Previous works were concerned with Gallager A and Gallager B decoders, while we are interested
in Min-Sum-based decoders, which are widely implemented in real communication systems.

3.3 LDPC codes and iterative decoding

Low-Density Parity-Check (LDPC) codes, have been introduced by Gallager in the early 60’s [13], as
a class of linear block codes defined by sparse parity-check matrices, suitable for decoding by message-
passing (MP) iterative algorithms. Tanner described LDPC codes in terms of sparse bipartite graphs
[14], containing two types of nodes: variable-nodes corresponding to coded bits and check-nodes
corresponding to parity checks. Equivalently, variable and check nodes correspond respectively to
columns and rows of the parity check matrix H, while edges connecting variable and check nodes
correspond to the non-zero entries of H.

Page 66 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

The graphical representation proposed by Tanner proved to be particularly suitable for MP decod-
ing algorithms. Such a decoding algorithm consists of an exchange of messages along the edges of the
bipartite graph. Each message provides an estimation of either the sender or the recipient variable-
node (the variable-node incident to the edge), and the exchange of messages takes place in several
rounds, or iterations. At each new iteration, new messages are computed in an extrinsic manner,
meaning that a message that is sent on an edge does not depend on the message just received on the
same edge. Consequently, variable-nodes collect more and more information with each new decoding
iteration, which gradually improves the estimation of the sent codeword.

The use of Tanner graphs allowed reformulating the probabilistic decoding initially proposed by
Gallager in terms of Belief-Propagation (BP) – also referred to as Sum-Product (SP) – a MP algorithm
that performs Bayesian inference on graphical models [15, 16]. The BP decoding is known to be
optimal for codes defined by cycle-free bipartite graphs, in the sens it outputs the Maximum A
Posteriori (MAP) estimates of the coded bits. It is also known to achieve an excellent performance on
general sparse bipartite graphs, even if it deviates from the MAP in practical cases (because bipartite
graphs associated with practical codes contain cycles). However, the decoding performance is not
the only relevant criterion when it comes to practical system implementation, and the BP algorithm
is disadvantaged by its complexity, numerical instability, and the fact that it requires the perfect
knowledge of the channel parameter (e.g. SNR), which may be imprecisely estimated in practical
situations.

One way to deal with complexity and numerical instability issues is to simplify the computation
of messages exchanged within the BP decoding. The most complex step of the BP decoding is
the computation of check-to-variable node messages, which makes use of computationally intensive
hyperbolic tangent functions. The Min-Sum (MS) algorithm is aimed at reducing the computational
complexity of the BP, by using max-log approximations of the parity check to coded bit messages
[17, 19]. The only computations required by the MS decoding are additions and comparisons, which
solves the complexity and numerical instability problems. The performance of the MS decoding is also
known to be independent of the knowledge of the channel parameter, for most of the usual channel
models.

However, the max-log approximation used in the MS decoding leads to a performance degradation
with respect to the BP decoding. Several “correction” methods were proposed in the literature in
order to mitigate this performance degradation [19,24,36–39]. These decoding algorithms are referred
to as MS-based algorithms: they are improved versions of the MS algorithm, with only a very limited
increase of complexity.

In this chapter we investigate the use of imprecise arithmetic circuits for the following decoders:
MS decoder, Normalized-MS (NMS) decoder [36], Offset-MS decoder [36], Self-Corrected-MS (SCMS)
decoder [24]. They will be described in the following paragraphs.

3.3.1 Notation

The following notation will be used throughout the chapter:

• H, Tanner graph of an LDPC code,

• N , number of variable-nodes,

• M , number of check-nodes,

• dn, degree of the variable-node n,

• dm, degree of the check-node m,

• n ∈ {1, 2, ..., N}, a variable node of H,

• m ∈ {1, 2, ...,M}, a check node of H,

• H(n), set of check-nodes connected to the variable-node n,

c©i-RISC, January 2014 Page 67 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

• H(m), set of variable-nodes connected to the check-node m,

• γn, a priori log-likelihood ratio (LLR) of variable-node n,

• γ̃n, a posteriori LLR of variable-node n,

• αm,n, variable-to-check message sent from n to m,

• βm,n, check-to-variable message sent from m to n.

3.3.2 Min-Sum decoding

Assume that a codeword (xn)n=1,...,N is sent over a memoryless noisy channel, and let (yn)n=1,...,N

denote the received word. The MS decoding algorithm works as follows.

Initialization

• A priori LLRs

γn = log
Pr(xn = 0 | yn)

Pr(xn = 1 | yn)

• Variable-to-check messages initialization

αm,n = γn

Iterations

• Check-node processing

βm,n =

 ∏
n′∈H(m)\n

sgn(αm,n′)

 min
n′∈H(m)\n

(
|αm,n′ |

)
• A posteriori LLRs

γ̃n = γn +
∑

m∈H(n)

βm,n

• Variable-node processing

αm,n = γ̃n − βm,n

In the above description, γn and γ̃n are computed for each variable-node n, while messages αm,n
and βm,n are computed for each graph edge (m,n). Finally, at each iteration, coded bit estimates are
computed by x̂n = (1− sgn(γ̃n))/2, and decoding stops when whether (x̂n)n=1,...,N is a codeword or a
maximum number of iterations has been reached.

3.3.3 Normalized Min-Sum decoding

As discussed in Introduction, MS decoding can be seen as a low-complex approximate version of the BP
decoding. This approximation is known to result in an overestimation of check-to-variable messages.
The aim of the NMS decoding is to compensate this overestimation, by introducing a normalization
(scaling) factor λ ∈]0, 1[within the check-node processing step. Hence, all the other decoding steps
remain unchanged, and only the check-node processing step is modified as follows:

βm,n =

 ∏
n′∈H(m)\n

sgn(αm,n′)

 min
n′∈H(m)\n

(
|αm,n′ |

)
βm,n = λ · βm,n

Page 68 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

3.3.4 Offset Min-Sum decoding

Similar to the the NMS decoding, the OMS attempts to compensate the overestimation of the check-
to-variable messages. This time an offset factor δ > 0 is used, and the check-node processing step is
modified as follows:

βm,n =

 ∏
n′∈H(m)\n

sgn(αm,n′)

 min
n′∈H(m)\n

(
|αm,n′ |

)
βm,n = sgn(βm,n) ·max(|βm,n| − δ, 0)

3.3.5 Self-Corrected Min Sum decoding

The SCMS addresses the overestimation issue at the variable-node processing side of the algorithm.
The rationale behind the SCMS is that the overestimation of check-to-variable messages is not critical,
unless any given variable-to-check message is updated to map a different bit state. In the log likelihood
ratio domain, this corresponds to a sign change. In the SCMS, any variable-to-check message that
would experience a sign change is erased (that is, it is set to zero). Hence, check-node processing step
is modified as shown below, while all the decoding steps are the same as for MS decoding.

αtmp
m,n = γ̃n − βm,n

αm,n =

{
0, if sgn(αtmp

m,n) 6= sgn(αm,n) and αm,n 6= 0

αtmp
m,n, otherwise

So, the variable-to-check message is first stored in a temporary value αtmp
m,n, and its sign is compared

against the sign of the variable-to-check messages from the previous iteration (stored in αm,n). If a
sign change is detected and αm,n 6= 0, the value of the new variable-to-check message is set to zero.
Otherwise, the value the new variable-to-check message is set (as it would usually be) to αtmp

m,n.

In [24], the author pointed out that a variable-to-check message changes its sign between two
consecutive iterations if and only if its computation tree [40] contains unreliable information. As a
consequence, it has been shown that the SCMS decoding behaves as the MS decoding on a computation
tree that has been pruned of its unreliable branches. The SCMS decoding ability to detect unreliable
messages will prove to be particularly useful when the decoder is implemented on imprecise circuits.

3.4 Imprecise Min-Sum-based decoders

In order to evaluate the impact of the imprecise arithmetic components on the performances of MS-
based LDPC decoders, all the messages in the decoders must be quantized. Since the a posteriori
LLR is computed as the sum of the a priori LLR and the incoming check-to-variable messages, more
quantization bits have to be used to represent its value. Hence, Q bits are used for the quantization
of the a priori LLRs (γn), as well as exchanged messages (αm,n, βm,n), while Q + 1 bits are used for
the quantization of the a posteriori LLRs (γ̃n). The imprecise arithmetic components used within the
MS-based LDPC decoders are:

• Q-bit comparators, used for the implementation of the check-node processing step.

• (Q+2)-bit adders used for the implementation of the a posteriori LLRs update and the variable-
node processing step.

Note that an extra bit is used for the adder in order to detect the overflow. At the entry of the
adder, the (Q + 1)-bit input operands get an extra bit by repeating their most significant (sign) bit.
Throughout this chapter, we shall use Q = 6. The design of imprecise 6-bit comparator and 8-bit
adder is addressed in the following sections.

c©i-RISC, January 2014 Page 69 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

3.4.1 Kogge-Stone Adder

Consider two integers A and B, and let S denote their sum and C the corresponding carry. The
simplest type of adder that can be used to compute S is the ripple carry adder which computes
successively the sum and the carry for each bit starting from the least significant bit (LSB). However,
this type of adder is very slow and the Carry Lookahead adders have been developed to reduce the
computation time. In order to compute the sum S, they introduce two binary parameters G and P .
For each bit position i, Gi is 1 if Ai and Bi are both equal to 1. The bit position i is then said to
generate a carry. If only one of Ai or Bi is equal to 1, Pi is equal to 1 and the bit position i is said to
propagate a carry.

All carry-lookahead adders (CLA) perform binary addition in three steps: precomputation, prefix
and postcomputation. For all adder architectures, the precomputation and postcomputation steps
are similar: Pi and Gi are computed for each position bit in the precomputation, while the sum
S is computed in the postcomputation step. However, the prefix step is different for each adder
architecture and those architectures can be classified into three categories: serial-prefix, group-prefix
and parallel-prefix. Fig. 3.1 represents a 4-bits parallel-prefix CLA architecture.

Figure 3.1: 4-bit parallel-prefix CLA architecture

Kogge-Stone adder is a parallel-prefix CLA architecture [41], which generates the carry in aO(log n)
time. It is one of the fastest existing adder architectures and provides the highest performances [32].
The Prefix Diagram of a 8-bit Kogge-Stone adder is represented in Fig. 3.2. As shown in the top of
the figure, a grey cell corresponds to one OR and one AND gate, while a black cell corresponds to one
OR and two AND gates.

Kogge-Stone adders have been selected as a basis for the implementation of imprecise adders.
Imprecise comparators are also derived from Kogee-Stone adders, but only the path that computes
the most significant (sign) bit will be used.

3.4.2 The imprecise adder

In order to design inexact arithmetic components, we suppress several logic gates in all the adders
and in the comparators of the circuit. However, the objective is to control the errors introduced
by pruning the circuit, hence some constraints might be defined according to the desired level of
errors. For example, the magnitude of the errors can be bounded or the paths of the circuit with
lower probability of being used can be deleted [32]. In this work the main constraints are as follows.
First, we require that the changes to the exact circuit do not impact the most significant (sign) bit.
Protecting the sign of each addition from errors reduces the impact of the inexact circuit. Secondly,
we require that for operands x and y, such that the value of the exact addition x+y is small, the error
made by the imprecise adder when computing x+y must also be small (close to 0). The reason is that
we do not want to give any extra confidence to the decoder, when its degree of confidence should be
low. Note however that if the exact value of x+ y is relatively large, the error made by the imprecise
adder when computing x+ y may also be large (but the sign is always correct).

In order to meet the above requirements, the path that computes the sign bit is kept unchanged
and logic gates are suppressed starting from the least significant bit (LSB)to the most significant bit

Page 70 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

Figure 3.2: 8 bits Kogge-Stone diagram Figure 3.3: Imprecise adder

(MSB). The adder is simulated to check if all the requirements are met or not. The procedure is
repeated until all the requirements are met and the suppression of any of the remainder logic gates
will fail to comply with the requirements. The designed imprecise adder is shown in Fig. 3.3, and it
has the following characteristics:

• 3 grey cells have been deleted.

• 4 black cells have been replaced by 4 grey cells.

• 288 erroneous outputs are generated out of 16129 possible additions.

• The sign bit of any output is always correct.

• For a given x, the adder always correctly computes x− x.

Some examples of imprecise additions are given in Table 3.1.

Table 3.1: Example of inexact additions
A -29 -25 -21 3 7 11 -31 -27 -23 -29

B -27 -23 -19 5 9 13 7 11 15 13

Output -24 -16 -8 40 48 56 -56 -48 -40 -48

3.4.3 The imprecise comparator

Comparators are used to implement the check-node processing step. The sign path of a 6-bit Kogge-
Stone adder is used to design the imprecise comparator. For any two operands x and y, we allowed
the output of the imprecise comparator to be in error only if x and y have relatively close values.
As for the imprecise adder, logic gates are suppressed starting from the LSB to the MSB until the
suppression of any of the remainder logic gates will fail to comply with the requirements. The designed
imprecise comparator is shown in Fig. 3.4(b), and it has the following characteristics:

c©i-RISC, January 2014 Page 71 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

(a) Ideal 6 bits comparator (b) Imprecise Comparator

Figure 3.4: 6 bits comparator architecture

• 1 black cell and 2 grey cells have been deleted.

• 2 black cells have been replaced by 2 grey cells.

• 96 erroneous outputs are generated out of 961 possible comparisons.

• Errors happen only when | x− y |< 22.

Some examples of imprecise comparisons are given in Table 3.2. The comparator’s output is 1 iff
x <imprecise y.

Table 3.2: Example of inexact comparisons
A 7 -29 -21 -9 -5 -1 -5 2 3 6

B -7 -31 -23 -11 -7 -3 -6 1 2 5

Output 1 1 1 1 1 1 1 1 1 1

3.4.4 Implementation of imprecise Min-Sum-based decoders

Let q denote theQ-bit quantizer used at the decoder input, and s denote theQ-bit saturation operation
(s(x) = 1 − 2(Q−1) if x < 1 − 2(Q−1), s(x) = 2(Q−1) − 1 if x > 2(Q−1) − 1, and s(x) = x otherwise).
We also denote by mimp the imprecise minimum computation, and by aimp the imprecise adder. The
Imprecise-MS decoder is implemented as follows:

Initialization

• A priori LLRs

γn = q

(
log

Pr(xn = 0 | yn)

Pr(xn = 1 | yn)

)
• Variable-to-check messages initialization

αm,n = γn

Iterations

• Check-node processing
Let H(m)\{n} = {n1, . . . , ndm−1}

βm,n =

 ∏
i=1,...,dc−1

sgn(αm,ni)

 ·mimp(· · · (mimp(|αm,n1 |, |αm,n2 |), · · · , |αm,ndm−1
|)

Page 72 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

• A posteriori LLRs
Let H(n) = {m1, . . . ,mdn−1}

γ̃n = aimp(· · · (aimp(γn, βm1,n), · · · , βmdn−1,n)

• Variable-node processing

αm,n = s (aimp(γ̃n,−βm,n))

We note that in order to implement the check-node processing step it is actually sufficient to
compute the first and the second minima of |αm,ni |, for all i = 1, . . . , dm.

For the OMS decoder (Section 3.3.4), the offset factor δ is subtracted from |βm,n| by using the
imprecise adder aimp. We use δ = 1, which is the optimal value for the exact OMS decoding.

For the NMS decoder (Section 3.3.3), we use λ = 0.75 and the multiplication between λ and βm,n is
implemented as the sum 0.75 · βm,n = aimp(βm,n, βm,n/2), where the exact value of βm,n/2 is obtained
by a right-shift of bits of βm,n.

Finally, we note that the SCMS decoder does not use any extra arithmetic operation compared to
the MS decoder.

3.5 Simulation Results

The performance of Min-Sum-based decoders has been evaluated for two different codes.

• The first code is a short (504, 252) LDPC code, constructed by Mackay and available online at
[23]. It is a regular code, with all variable-nodes of degree 3 and all check-nodes of degree 6.

• The second code is a longer (2304, 1152) and irregular quasi-cyclic LDPC code, specified by the
IEEE 802.16e (WiMAX) standard [42].

Both codes have been simulated over the Additive White Gaussian Noise (AWGN) channel with
Quadrature Phase-Shift Keying (QPSK) modulation. The above MS-based decoders have been sim-
ulated for both exact and imprecise arithmetic components, and the maximum number of decoding
iterations was fixed to 100. Imprecise arithmetic components have been simulated through lookup
tables.

3.5.1 Decoders’ performance

The Frame Error Rate (FER) performance of MacKay and WiMAX LDPC codes are shown respec-
tively in Fig. 3.5 and Fig. 3.6. The FER curves of the MS, NMS, OMS and SCMS decoders are plotted
respectively in red, green, blue and black. In addition, for each decoder, the dashed curve (empty
markers) was obtained by using exact arithmetic components, and the solid curve (full markers) was
obtained by using imprecise arithmetic components.

Analysis of results for the Mackay code

At FER = 10−4 the use of the imprecise arithmetic results in a loss of about 1.3 dB for the MS
decoder and 0.6 dB for the OMS. The imprecise SCMS provides almost the same performance as the
exact SCMS, and even outperforms it in the error floor region, while the imprecise NMS outperforms
the exact NMS in the waterfall region. Both SCMS and NMS can be considered robust to imprecise
arithmetic components.

c©i-RISC, January 2014 Page 73 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

10
-4

10
-3

10
-2

10
-1

10
0

1 2 3 4 5

F
ra

m
e

E
rr

o
r

R
at

es

SNR (dB)

exact SCMS

imprecise SCMS

exact NMS

imprecise NMS

exact OMS

imprecise OMS

exact MS

imprecise MS

Figure 3.5: FER for the (504, 252) regular code

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

1 2 3 4 5 6

F
ra

m
e

E
rr

o
r

R
at

es

SNR (dB)

exact SCMS

imprecise SCMS

exact NMS

imprecise NMS

exact OMS

imprecise OMS

exact MS

imprecise MS

Figure 3.6: FER for the IEEE 802.16e code

Analysis of results for the WiMAX code

At FER = 10−4 the use of the imprecise arithmetic results in a loss of about 3.3 dB for the MS
algorithm, 1.8 dB for the OMS algorithm, and only 0.8 dB for the NMS algorithm. As previously, the
performance of the imprecise SCMS is almost identical to the exact SCMS.

The excellent performance of the SCMS decoder under imprecise arithmetic settings is explained
by its inherent ability to detect unreliable messages during the iterative decoding process. These
results bring empirical evidence that the SCMS decoder is able to provide efficient error protection
even if it operates on imprecise hardware, which represents the main contribution of this work.

3.5.2 Complexity analysis

The exact evaluation of the savings in energy, delay and area is out the scope of this work (but will
be addressed in future works). However, we include a complexity analysis of the different decoders,
where the complexity is expressed in terms of the number of logic gates of the circuit.

Let Ca be the relative complexity of the imprecise adder with respect to the exact adder, and Cc
be the relative complexity of the imprecise comparator with respect to the exact comparator. They
are defined as follows:

Ca =
number of logic gates of imprecise adder

number of logic gates of exact adder

Cc =
number of logic gates of imprecise comparator

number of logic gates of exact comparator

For the imprecise adder and comparator designed in Section 3.4, we have Ca = 0.86 and Cc = 0.57.
In order to evaluate the gain in complexity when imprecise arithmetic is used, we consider the

ratio between the number of arithmetic operations (additions and comparisons) for imprecise and
exact arithmetic. Moreover, in case of imprecise arithmetic, the number of additions is weighted by
Ca and the number of comparisons in weighted by Cc. Hence, we obtain:

gain =
2(Ca + Cc)dv − 3Cc(1− r)

4dv − 3(1− r)
,

where dv is the average variable-node degree and r is the coding rate. Fig. 3.7 shows the evolution of
the gain when dv = 3 and the rate r varies. As it can be seen, the gain decreases slowly from 0.715 to
0.71, as the rate increases from 0 to 1.

The average decoding complexity per codeword of the exact MS, the exact SCMS, and the imprecise
SCMS has also been evaluated. This complexity is defined as the average number of arithmetic
operations (additions and comparisons) required to decode 1 codeword. Again, in case of imprecise
arithmetic, the number of additions is weighted by Ca and the number of comparisons in weighted

Page 74 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.715

0.72

0.725

0.73

0.735

0.74

0.745

0.75

0.755

0.76

0.765

rate of the code

Figure 3.7: Gain in complexity

0.5 1 1.5 2 2.5 3 3.5 4

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

SNR (dB)

MS exact

SCMS exact

SCMS inexact

Figure 3.8: Relative complexity
for the (504,252) regular code

0 0.5 1 1.5 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

SNR (dB)

MS exact

SCMS exact

SCMS inexact

Figure 3.9: Relative complexity
for the IEEE 802.16e code

by Cc. Fig. 3.8 and Fig. 3.9 plot the relative complexities of these decoders with respect to the
exact MS (which is used as the reference). The complexity of the exact SCMS is much lower than
those of the exact MS in the waterfall region, because SCMS needs in average a smaller number of
decoding iterations. The imprecise SCMS exhibits the lowest complexity and the difference between
its complexity and those of the exact SCMS complexity is due to the use of imprecise components.

3.6 Conclusion

In this work we investigated the performance of several Min-Sum-based decoders on devices with
imprecise arithmetic circuits. Imprecise adders and comparators have been specially designed for this
purpose, by pruning the exact circuits. The pruning operation has been constrained to meet specific
requirements, such as to avoid a number of undesirable errors.

Simulation results have shown that MS, NMS, and OMS decoders manage to provide error protec-
tion, but the imprecise arithmetic circuits significantly degrade their performance. On the contrary,
the imprecise SCMS proved to be robust to imprecise arithmetic circuits, due to its ability to detect
unreliable messages during the decoding process. Hence, this work demonstrated that the SCMS
decoder provides efficient error protection on devices with imprecise arithmetic circuits.

In addition, the complexity of the decoders has been evaluated in terms of number of logic gates
of the circuits. For a code rate of 1/2 the use of imprecise arithmetic circuits yields a complexity
decrease of about 27%. Moreover, the imprecise SCMS provides a complexity reduction between 30%
and 60% with respected to the exact MS decoder.

c©i-RISC, January 2014 Page 75 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

Chapter 4

General Conclusion and Next Steps

As a general conclusion of the activities in WP3 for this first year of i-RISC project, we have made
considerable progress with respect to the state-of-the-art related to the design and analysis of faulty
iterative decoders, with a special focus on the quantized Min-Sum decoder, the FAID decoders, and
the self-corrected Min-Sum decoder.

Compared to the expected milestone at this stage, which was “Faults tolerant LDPC decoders,
first release”, we have made progress beyond what was expected and planned after the first year of
the project. Not only we are able to provide to the other WPs and all the i-RISC partners efficient
message passing decoders, which seem to be robust to faulty-hardware, but we also developped some
new analysis and tools for the theoretical understanding of the faulty-decoders behaviors, with a
predictive analysis which opens the avenue to the design of decoders which are specifically optimized
for fault-tolerance.

On top of the partial conclusions of each chapter in this deliverable, the summary of our main
contributions follows:

1. although we have considered very limited error models, which are memoryless and symmetric,
and far from being realistic, our models are broader and more general than what is usually
proposed in the litterature. The added complexity comes from the fact that we consider practical
decoders as a base of our analysis. The decoders are supposed to be implemented with messages
in finite precision, while the SoA usually propose works based on either hard decision decoders
(bit-flipping and Gallager-B decoders), or non-realistic infinite precision Belief Propagation.

2. we have progressed toward a deep understanding of the dynamics of faulty decoders, with in
particular the new concept of functional thresholds and functional region, to replace the existing
useful region. We have also linked this new threshold to the observations made from finite length
Monte-Carlo simulations,

3. we have identification that the noise can help iterative decoder to avoid unwanted fixed points.
This was the case for example of the DE fixed points for the noisy Min-Sum decoder, and most
probably the case of finite length fixed points located on trapping sets, from our first sets of
simulations,

4. we provided evidence of the compliance between the asymptotical noisy DE analysis and the
finite length performance of noisy decoders, so that the noisy DE analysis can be seen and used
as a predictive tool,

5. we have shown first evidence that using memory in faulty decoders can be of great help for the
robustness to transient errors, in particular, the SC-MS has been shown to tolerate much more
noise coming from the hardware, both in the probabilistic model, and the inexact arithmetic
model.

New challenges for the rest of the project in WP3 include:

Page 76 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

1. continue to develop the theoretical analysis of faulty decoders with analytical tools, and try to
incorporate more and more complex noise models,

2. explore the systematic use of memory (from one iteration to another) in the faulty decoders to
even improve their robustness to transient errors,

3. propose new direction of decoder design (specifically under the FAID framework), to maximize
fault-tolerance,

4. apply fault-tolerant decoders to design fault-tolerant encoders.

c©i-RISC, January 2014 Page 77 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

Bibliography

[1] L. R. Varshney, “Performance of LDPC codes under faulty iterative decoding,” IEEE Trans. Inf.
Theory, vol. 57, no. 7, pp. 4427–4444, 2011.

[2] M. G. Taylor, “Reliable information storage in memories designed from unreliable components,”
Bell System Technical Journal, vol. 47, pp. 2299–2337, 1968.

[3] B. Vasic and S. K. Chilappagari, “An information theoretical framework for analysis and design
of nanoscale fault-tolerant memories based on low-density parity-check codes,” IEEE Trans. on
Circuits and Systems I: Regular Papers, vol. 54, no. 11, pp. 2438–2446, 2007.

[4] M. G. Taylor, “Reliable computation in computing systems designed from unreliable compo-
nents,” Bell System Technical Journal, vol. 47, pp. 2339–2366, 1968.

[5] A. V. Kuznetsov, “Information storage in a memory assembled from unreliable components,”
Problemy Peredachi Informatsii, vol. 9, no. 3, pp. 100–114, 1973.

[6] S. K. Chilappagari, M. Ivkovic, and B. Vasic, “Analysis of one step majority logic decoders
constructed from faulty gates,” in Proc. of IEEE Int. Symp. on Information Theory, 2006, pp.
469–473.

[7] C. Winstead and S. Howard, “A probabilistic LDPC-coded fault compensation technique for
reliable nanoscale computing,” IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 56,
no. 6, pp. 484–488, 2009.

[8] Y. Tang, C. Winstead, E. Boutillon, C. Jego, and M. Jezequel, “An ldpc decoding method for
fault-tolerant digital logic,” in IEEE Int. Symp. on Circuits and Systems (ISCAS), 2012, pp.
3025–3028.

[9] A. M. Hussien, M. S. Khairy, A. Khajeh, A. M. Eltawil, and F. J. Kurdahi, “A class of low power
error compensation iterative decoders,” in IEEE Global Telecom. Conf. (GLOBECOM), 2011,
pp. 1–6.

[10] S. Yazdi, H. Cho, Y. Sun, S. Mitra, and L. Dolecek, “Probabilistic analysis of Gallager B faulty
decoder,” in IEEE Int. Conf. on Communications (ICC), 2012, pp. 7019–7023.

[11] S. Yazdi, C. Huang, and L. Dolecek, “Optimal design of a Gallager B noisy decoder for irregular
LDPC codes,” IEEE Comm. Letters, vol. 16, no. 12, pp. 2052–2055, 2012.

[12] S. Yazdi, H. Cho, and L. Dolecek, “Gallager b decoder on noisy hardware,” IEEE Trans. on
Comm., vol. 66, no. 5, pp. 1660–1673, 2013.

[13] R. G. Gallager, “Low density parity check codes,” MIT Press, Cambridge, 1963, research Mono-
graph series.

[14] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. on Inf. Theory, vol. 27,
no. 5, pp. 533–547, 1981.

Page 78 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

[15] J. Pearl, “Reverend Bayes on inference engines: A distributed hierarchical approach,” in Proc. of
the 2nd National Conference on Artificial Intelligence (AAAI-82), 1982, pp. 133–136.

[16] ——, Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan
Kaufmann Publishers, 1988.

[17] M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative decoding of low-density
parity check codes based on belief propagation,” IEEE Trans. on Communications, vol. 47, no. 5,
pp. 673–680, 1999.

[18] S. Chung, “On the construction of some capacity-approaching coding schemes,” Ph.D. disserta-
tion, Massachusetts Institute of Technology, 2000.

[19] E. Eleftheriou, T. Mittelholzer, and A. Dholakia, “Reduced-complexity decoding algorithm for
low-density parity-check codes,” IET Electronics Letters, vol. 37, no. 2, pp. 102–104, 2001.

[20] R. L. Dobrushin and S. Ortyukov, “Lower bound for the redundancy of self-correcting arrange-
ments of unreliable functional elements,” Problemy Peredachi Informatsii, vol. 13, no. 1, pp.
82–89, 1977.

[21] A. Amaricai et al., “Circuit level fault models for sub-powered CMOS circuits for uncorrelated
and correlated errors,” FP7 / FET OPEN / 309129, i-RISC project, Deliverable D2.1, January
2014.

[22] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check codes under
message-passing decoding,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 599–
618, 2001.

[23] D. J. MacKay. Encyclopedia of sparse graph codes. [Online]. Available:
http://www.inference.phy.cam.ac.uk/mackay/codes/data.html

[24] V. Savin, “Self-corrected min-sum decoding of LDPC codes,” in Proc. of IEEE Int. Symp. on
Information Theory (ISIT), 2008, pp. 146–150.

[25] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello Jr, “LDPC block and
convolutional codes based on circulant matrices,” IEEE Trans. on Inf. Theory, vol. 50, no. 12,
pp. 2966–2984, 2004.

[26] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-approaching irregular low-
density parity-check codes,” IEEE Trans. on Information Theory, vol. 47, no. 2, pp. 619–637,
2001.

[27] P. Grover and A. Sahai, “Green codes: Energy-efficient short-range communication,” in IEEE
Int. Symp. on Inf. Theory (ISIT), 2008, pp. 1178–1182.

[28] A. Sahai and P. Grover, “The price of certainty: “waterslide curves” and the gap to capacity,”
EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2008-1, Jan 2008.
[Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-1.html

[29] K. V. Palem, “Energy aware computing through probabilistic switching: A study of limits,” IEEE
Trans. on Computers, vol. 54, no. 9, pp. 1123–1137, 2005.

[30] L. N. B. Chakrapani, K. K. Muntimadugu, A. Lingamneni, J. George, and K. V. Palem, “Highly
energy and performance efficient embedded computing through approximately correct arithmetic:
A mathematical foundation and preliminary experimental validation,” in Proc. of Int. Conf. on
Compilers, Architectures and Synthesis for Embedded Systems. ACM, 2008, pp. 187–196.

c©i-RISC, January 2014 Page 79 of (81)

D3.1: Fault tolerant LDPC encoding and decoding

[31] B. E. Akgul, L. N. Chakrapani, P. Korkmaz, and K. V. Palem, “Probabilistic CMOS technology:
a survey and future directions,” in Proc. of IFIP/IEEE International Conference on VLSI, 2006,
pp. 1–6.

[32] A. Lingamneni, C. Enz, J. L. Nagel, K. Palem, and C. Piguet, “Energy parsimonious circuit
design through probabilistic pruning,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2011, pp. 1–6.

[33] I. Chong and A. Ortega, “Hardware testing for error tolerant multimedia compression based on
linear transforms,” in IEEE Int. Symp. on Defect and Fault Tolerance in VLSI Systems (DFT),
2005, pp. 523–531.

[34] H. Chung and A. Ortega, “Analysis and testing for error tolerant motion estimation,” in IEEE
Int. Symp. on Defect and Fault Tolerance in VLSI Systems (DFT), 2005, pp. 514–522.

[35] N. Zhu, W. Goh, W. Zhang, K. Yeo, and Z. Kong, “Design of low-power high-speed truncation-
error-tolerant adder and its application in digital signal processing,” IEEE Trans. on Very Large
Scale Integration (VLSI) Systems, vol. 18, no. 8, pp. 1225–1229, 2010.

[36] J. Chen and M. P. Fossorier, “Near optimum universal belief propagation based decoding of low
density parity check codes,” IEEE Trans. on Communications, vol. 50, no. 3, pp. 406–414, 2002.

[37] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, and X. Hu, “Reduced-complexity decoding of
ldpc codes,” IEEE Trans. on Communications, vol. 53, no. 8, pp. 1288–1299, 2005.

[38] J. Chen, R. Tanner, C. Jones, and Y. Li, “Improved min-sum decoding algorithms for irregular
LDPC codes,” in IEEE Int. Symp. on Inf. Theory (ISIT), 2005, pp. 449–453.

[39] J. Zhang, M. Fossorier, and D. Gu, “Two-dimensional correction for min-sum decoding of irregular
LDPC codes,” IEEE Communications Letters, vol. 10, no. 3, pp. 180–182, 2006.

[40] N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation, Likoping University,
Sweden, 1996.

[41] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient solution of a general class of
recurrence equations,” IEEE Tran. on Computers, vol. C-22, no. 8, pp. 786–793, 1973.

[42] IEEE-802.16e, “Physical and medium access control layers for combined fixe and mobile operation
in licensed bands,” 2005, amendment to Air Interface for Fixed Broadband Wireless Access
Systems.

[43] S. K. Planjery, D. Declercq, L. Danjean, and B. Vasic, “Finite alphabet iterative decoders for
LDPC codes surpassing floating-point iterative decoders,” Electronics Letters, vol. 47, no. 16, pp.
919-921, Aug. 2011.

[44] J. Chen, et. al., ”Reduced-complexity decoding of LDPC codes,” IEEE Trans. on Commun., vol.
53, pp. 1288-1299, Aug. 2005.

[45] S.K. Planjery, D. Declercq, L. Danjean and B. Vasic, ”Finite Alphabet Iterative Decoders, Part
I: Decoding Beyond Belief Propagation on the BSC”, IEEE Trans. on Commun., vol. 61, no. 10,
pp. 4033-4045, Oct. 2013.

[46] D. Declercq, B. Vasic, S.K. Planjery and E. Li, ”Finite Alphabet Iterative Decoders, Part II:
Towards Guaranteed Error Correction of LDPC Codes via Iterative Decoder Diversity”, IEEE
Trans. on Commun., vol. 61, no. 10, pp. 4046-4057, Oct. 2013.

[47] T. Richardson, “Error floors of LDPC codes,” Proc. 41st Annual Allerton Conf on Communica-
tions Control and Comuting, 2003.

Page 80 of (81) c©i-RISC, January 2014

D3.1: Fault tolerant LDPC encoding and decoding

[48] B. Vasic, S. K. Chilappagari, D. V. Nguyen, and S. K. Planjery, “Trapping set ontology,” Proc.
47th Annual Allerton Conf. on Commun., Control, and Computing, Sep. 2009.

[49] D. V. Nguyen, S. K. Chilappagari, M. W. Marcellin, and B. Vasic, “On the construction of
structured LDPC codes free of small trapping sets,” IEEE Trans. Inf. Theory, vol. 58, no. 4, pp.
2280–2302, Apr. 2012.

[50] S. K. Planjery, D. Declercq, S. K. Chilappagari, and B. Vasic, “Multilevel decoders sur-
passing belief propagation on the binary symmetric channel,” Preprint. [Online]. Available:
http://arxiv.org/abs/1001.3421, 2010.

[51] G. Kuperberg, “Symmetries of plane partitions and the permanent - determinant method,” J.
Comb. Theory, Ser. A, pp. 115–151, 1994.

[52] F. Cai, X. Zhang, D. Declercq, S. Planjery and B. Vasic, “Finite Alphabet Iterative Decoders for
LDPC codes: Optimization, Architecture and Analysis”, submitted in IEEE Trans. Circuits and
Systems (Series-I), 2013.

c©i-RISC, January 2014 Page 81 of (81)

