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Abstract—In this letter we characterize the effect of data-
dependent gate failures on the performance of the Gallager B
decoder of low density parity check codes. We show that this
type of failures makes the decoder dependent on a transmitted
codeword, thus rendering inapplicable the traditional analysis
tools such as density evolution and trapping sets. By using Monte
Carlo simulations, we identify two operating regions - one in
which hardware unreliability leads to significant performance
degradation, and one in which the performance loss is negligible.
Based on these results, we propose a simple modification of the
decoder that ensures its fault-tolerance.

Index Terms—data-dependence, fault-tolerance, Gallager B
decoder, low-density parity-check codes, timing errors.

I. INTRODUCTION

Increasingly stringent requirements for semiconductor de-
vice energy-efficiency has lead to a point where computation
performed by using these devices is no longer reliable [1].
The need to ensure fault-tolerance on inherently unreliable
hardware has resulted in an increased interest in the analysis
and design of novel and powerful error control schemes.
The main direction of recent research in this area includes
investigation of low-density parity-check (LDPC) codes and
their decoders implemented on unreliable hardware, which
relies on a theoretical framework developed by Vasic and
Chilappagari [2]. The large body of knowledge on the analysis
of codes on graphs and iterative decoding, has enabled further
progress in the analysis of fault-tolerant schemes based on
LDPC codes (see [3]–[7] and references therein).

The majority of the results on decoding by circuits made
of unreliable hardware relies on modelling the logic gate
unreliability as transient, independent failures - a model
proposed by von Neumann [8] in the fifties. In the von
Neumann failure model, in each clock cycle, components of a
(clocked) Boolean network fail with some known probability.
Additionally, failures of a given component are independent
of those in previous clock cycles and independent of failures
of other components. The simplicity of this model makes it
amenable to theoretical analysis, but at same time limits its
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applicability. In new energy-efficient CMOS technologies, the
logic gate failures are highly data-dependent and correlated
in time [9]. The main source of incorrect gate outputs in
these technologies is timing violations, or timing errors. They
depend on logic gate inputs, but they are most damaging when
the gate output changes its value [9], [10].

In order to characterize the hardware unreliability phe-
nomenon accurately, Brkic et al. in [7] used a Markov chain
timing error model, which has enabled them to analyze the
behavior of one-step majority logic decoders. Timing errors
in the context of the stochastic decoders have been considered
recently by Perez-Andrade et al. [11] who have shown an
inherent tolerance to timing errors of these type of decoders.
While the error injection at transistor level was thoroughly
analyzed, the decoder data-dependence was not considered.

In this letter we investigate the effects of timing errors to the
performance of the Gallager B decoder, a simple hard decision
decoder with a good trade off between the complexity and
the error-correcting capability. Based on the Markov model
proposed in [7], we evaluate the frame error rate (FER) for
several classes of LDPC codes. We first demonstrate the in-
adequacy of von Neuman error model, and then show that the
decoder performance is highly dependent on the sequence of
codewords that is being decoded. Finally, we propose a simple
modification of the decoder that increases the robustness to
timing errors. Due to the lack of analytic techniques suitable
to this failure model, we use Monte Carlo simulations.

II. PRELIMINARIES

A. LDPC codes and Decoding Algorithm

Let (N,K) be an LDPC code, with code length N and code
rate K/N , represented by a bipartite graph G = (V ∪ C,E),
where V is the a of N variable nodes, C is a set of check
nodes, and E is a set of edges. An edge is an unordered pair
(v, c) which connects two nodes v ∈ V and c ∈ C. The
parity check matrix H is a bi-adjacency matrix of G. Nodes v
and c are called neighbors iff Hc,v = 1, i.e. there is an edge
between them. Let Nv (Nc) be a set of neighbors of a variable
node v (check node c). In this letter we consider (γ, ρ)-regular
binary LDPC codes which means that |Nv| = γ, ∀v ∈ V and
|Nc| = ρ, ∀c ∈ C, where | · | denotes cardinality.

Let x = (x1, x2, . . . , xN ) denote a codeword of an LDPC
code that is transmitted over a Binary Symmetric Channel
(BSC) with crossover probability α, where xv ∈ {±1} is
the polar representation of a bit value associated with a
variable node v and let a vector received by the Gallager
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B decoder from the BSC be y = {y1, y2, . . . , yN}. Let ν(`)v,c
(ν(`)c,v) be messages passed on an edge (v, c) from(to) variable
node to(from) check node during the `-th decoding iteration,
respectively. We next summarize the Gallager B decoder.
• Variable to check node update: For each variable node
v ∈ V . At iteration ` = 0: ν(0)v,c = yv , ∀c ∈ Nv . At
iteration ` > 0:

ν(`)v,c =

{
−yv if |{c′ ∈ Nv \ c : ν

(`−1)
c′,v = −yv}| > bγ/2c,

yv otherwise.
(1)

• Check to variable node update. For each check node c ∈
C and ∀v ∈ Nc, at iteration ` ≥ 0:

ν(`)c,v =
∏

v′∈Nc\{v}

ν
(`)
v′,c. (2)

The decoding is terminated when all parity-check equations
are satisfied or the maximum number of iterations is reached.

The decoder comprises of the processing units that corre-
spond to the nodes in the bipartite graph representation of
the decoder. Each check node (CN) unit is composed of ρ
XOR gates, each with ρ− 1 inputs, needed for calculation of
the check to variable node messages. A variable node (VN)
processing unit calculates the variable to check node messages,
and employs γ majority logic (MAJ) gates, each with γ − 1
inputs [2]. The decoder also requires additional logic gates
for the final bit estimations and parity-checks calculation. If
we allow these gates to be unreliable, the performance of
the decoder would be determined by the failure probabilities
of these gates, not by the error control scheme. Thus, it is
reasonable to assume that these gates are perfect, and that only
gates used to calculate messages that are passed on edges of
the bipartite graph are faulty. Such reliable gates in the final
decision circuitry can be realized by using larger transistors,
slowing down the clock or using higher voltage supply. Similar
assumption was also used in other relevant literature [2], [7].

Note that we considered that the threshold in the variable-
to-check-node update operations is fixed, opposed to the
original solution proposed by Gallager. Although the threshold
adaptation increases the performance, it requires the additional
logic which makes it more complex than described algorithm.
The use of a fixed threshold value represents a good trade-off
between performance and efficiency, especially if the targeted
error rates are low.

B. The Failure Model

The recent work in the area of low-powered combinatorial
circuits has identified the increased signal propagation delay as
the main cause of the circuits unreliability [10], [12]. Timing
violations happen when the propagation delay is longer than
what can be tolerated by the circuit design, which results in
propagating an outdated output value to the rest of the circuit.

Let f : {±1}m → {±1}, m > 1, be an m-argument
Boolean function, which at time instant ` produces the result
z(`) = f(y

(`)
1 , y

(`)
2 , . . . , y

(`)
m ), where y(`)1 , y

(`)
2 , . . . , y

(`)
m are in-

put arguments at time `. Due to unreliability of the logic gates
used to calculate f , the result is not z(`) but µ(`) = z(`)e(`),

where e(`) ∈ {±1} is the error at time `. In the von Neumann
failure model e(`) is a Bernoulli random variable, and does
not depend on the gate input arguments [8].

In the timing failure model e(`) is data-dependent, and the
probability that the logic gate fails to switch is Pr{e(`) =
−1|z(`) 6= z(`−1)} = ε, where ε > 0. On the other hand,
when the gate output is unchanged during two consecutive
time instants, the function f is always correctly computed as
assumed in [9] and [10], i.e. Pr{e(`) = −1|z(`) = z(`−1)} = 0.
This corresponds to the gate switching probabilistic model
[10], that was shown to have reduced complexity with minor
degradation of accuracy when compared to more complex
models that take into account that different input patterns can
cause gate failures with different probabilities [9], [10].

The value ε depends on the technology parameters and can
be obtained experimentally or by the circuit-level simulations.
It typically differs from a gate type to a gate type. We denote
by ε⊕ and εMAJ the failure rates of XOR and MAJ gates,
respectively. The gate output at time instant `, µ(`), is obtained
by the mapping Υ : {±1}3 → {±1} as follows

µ(`) = Υ(z(`), z(`−1), e(`)) = z(`)(e(`))(z
(`)−z(`−1))/2, (3)

where Pr{e(`) = −1} = ε. Note that the failure model is
being redefined to take advantage of the fact that e(`) = 1
with probability 1, when z(`) = z(`−1).

III. FAILURES OF THE GALLAGER B DECODING
ALGORITHM

The gate failure model introduced in Section II-B acts as a
binary channel with memory. We next explain how that mem-
ory makes the performance of the faulty Gallager B decoder
dependent on the transmitted codewords. Consider the received
vector y = x·n, where “·” denotes pointwise multiplication of
the codeword vector x and the noise vector n. Let ν(−1)v,c and
ν
(−1)
c,v be output values of the update functions sent between

variable node v and check node c in the time instant prior
to the initial decoding iteration of a current codeword. These
are the messages sent in the last iteration of decoding the
previous received word. The following theorem defines the
conditions under which the probability of successful decoding
is independent of the transmitted codeword.

Theorem 1. The frame error rate of the Gallager B decoder in
the presence of timing errors is independent of the transmitted
codeword x iff ν(−1)v,c = xvAv and ν

(−1)
c,v = xvBv , ∀v ∈ V

and ∀c ∈ C, where Av, Bv ∈ {±1}.
Proof: Let µ(`)

c,v(y) and µ
(`)
v,c(y) be, respectively, the mes-

sages passed from a check node c to a variable node v and
from a variable node v to a check node c, at iteration `,
given the received y. They are obtained from Eq. (3) based
on the correctly computed messages ν(`)c,v(y) and ν(`)v,c(y) and
the corresponding error values e(`)c,v and e(`)v,c.

Let us assume ν
(−1)
v,c = xvAv and ν

(−1)
c,v = xvBv , for

some Av, Bv ∈ {±1}. We use mathematical induction to
prove the theorem statement. From the variable node symmetry
condition at iteration ` = 0, we have ν(0)v,c (y) = ν

(0)
v,c (x · n) =

xvν
(0)
v,c (n) [3]. As these values are received from the channel
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(not calculated using the combinatorial circuit), they are passed
without errors to the neighboring check nodes. From the check
node symmetry follows ν(0)c,v (y) = xvν

(0)
c,v (n) [3], and we have

µ(0)
c,v(y) = Υ(ν(0)c,v (y), xvBv, e

(0)
c,v)

= xvν
(0)
c,v (n)(e(0)c,v)

xv(ν
(0)
c,v(n)−Bv)/2

= xvΥ(ν(0)c,v (n), Bv, e
(0)
c,v) = xvµ

(0)
c,v(n). (4)

Similarly, we conclude µ(1)
v,c(y) = xvΥ(ν

(1)
v,c (n), Av, e

(1)
v,c) =

xvµ
(1)
v,c(n).
Let us assume µ

(`)
v,c(y) = xvµ

(`)
v,c(n), ∀v ∈ V , ∀c ∈ C

and ` > 1. From the fact that
∏
v:N (c) xv = 1 and from the

check node symmetry defined in [3], it follows that ν(`)c,v(y) =

xvν
(`)
c,v(n). Then, similarly as in Eq. (4), we have µ(`)

c,v(y) =

Υ(xvν
(`)
c,v(n), xvν

(`−1)
c,v (n), e

(`)
c,v) = xvµ

(`)
c,v(n). Furthermore,

by invoking again the variable node symmetry condition and
applying it to Eq. (3), we obtain µ

(`+1)
v,c (y) = xvµ

(`+1)
v,c (n).

As all messages passed between a node v and its neighbors
are equal to the product of xv and the corresponding message
when n is received, the decoder performance is independent
of the transmitted codeword.

On the other hand, if the theorem conditions were not
satisfied, i.e. if ν(−1)v,c 6= xvAv or ν(−1)c,v 6= xvBv , then it
would follow that µ(1)

v,c(y) 6= xvµ
(1)
v,c(n). As messages µ(1)

v,c

continue to further propagate in the subsequent iterations, the
error correction, and thus FER, depends on x. �

The conditions required for FER independence of x are
highly unrealistic. They can be satisfied only by adjusting the
initial logic gate states to a transmitted codeword, which is
unknown to the decoder. Thus, in the case of timing errors
the decoder error-correction capability is conditional on x.

On the other hand, we have shown that the main reason
for such decoder behavior is related to failing to satisfy the
check and the variable node symmetry conditions in the first
decoding iteration. If the first iteration were free of logic gate
failures, the symmetry conditions would be satisfied. The fault-
free iteration can be achieved by forcing all transistors in the
decoding circuitry to reach a stationary state. Practically, this
can be done by slowing down the clock in the first iteration
and letting the signal level stabilize. Since the clock is slower,
there are no timing errors and the computations are reliable.
The decoder in which the first iteration is reliable in the rest
of the letter is called the modified Gallager B decoder.

IV. NUMERICAL RESULTS

The past work related to the faulty Gallager B decoder was
mostly dedicated to the infinite code length analysis under
independent identically distributed (i.i.d.) failures (von Neu-
mann failure model) [4]–[6]. Due to the decoder asymmetry,
the density evolution technique cannot be applied to the timing
error model, when failures are present in the first iteration. Al-
though, the modified decoder satisfy the symmetry conditions,
the presence of memory in the VN and CN operations cause
the complexity of density evolution computation to grow at
least exponentially with the number of iterations [13]. For that
reason in this letter we focus on the finite length simulation
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Fig. 1: The comparison of i.i.d. and timing error models for
the LS(155,64) code (α=0.01).

analysis, where the maximal number of decoding iterations
is limited to 100. We analyze LDPC codes free of small
trapping sets. Such codes can be constructed, for example,
from Latin Squares (LS) [14], or based on Progressive Edge
Growth (PEG) technique [15]. In order to capture the effects
of data-dependence three simulation modes are used:
• mode M0: only the all-zero codewords are transmitted;
• mode MH : the two codewords with large Hamming

distance are transmitted alternately in a consecutive trans-
missions;

• mode MR: randomly chosen codewords are transmitted.
In Fig. 1 we illustrate the decoder performance for the case

of LS(155,64) code [14] evaluated under two failure models,
when the most realistic setup MR is used. It is a (3,5)-regular
code with |V | = 155 and |C| = 93. We consider two different
scenarios: (i) when CN processing is reliable and only MAJ
gates are faulty, and (ii) when VN processing is reliable
and only XOR gates are faulty. Note that no performance
degradation is observed for logic gate failure rates below 10−3

regardless of the failure model. When logic gates failures
become more frequent, a threshold is reached, and the FER
rapidly increases. The threshold depends on the logic gate type
and has lower values when the MAJ gates are faulty.

The timing error model reduces to the von Neumann model
when a gate is constantly in a “bad state”, i.e. changes its
output value in every clock cycle. In that sense, the von
Neumann model can be seen as pessimistic and misleading,
which is especially pronounced in a case of highly unreliable
XOR logic gates. The use of the timing error model reveals
robustness of the Gallager B decoder to XOR gate failures.
For example, even for the large bad state failure probability
ε⊕ = 0.1 the decoder retains low FER value. On the other
hand, according to the von Neumann model, the faulty decoder
is in average outperformed by an uncoded system.

For low and moderate channel error rates, in most of the
cases only a few of 155 code bits are received incorrectly and
the most of ν(0)v,c messages represent the correct bit estimates.
If during the first iteration the number of gate failures is also
low, most of the variable to check node messages will remain
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Fig. 2: The performance dependence on codeword decoding
order for LS(155,64) LDPC code.

unchanged. However, if the number of gate failures is not
negligible, after the first iteration, the number of incorrect
bit estimates can be significantly increased. The effect of
gate failures in the first iteration is illustrated in Fig. 2. It
can be noticed that these failures have dominant influence on
the decoder performance. When the same word is transmitted
(mode M0) there is no performance degradation even for high
bad state failure rate (ε⊕ = εMAJ = 0.05). On the other hand,
mode MH reveals that the worst case FER degradation can be
of several orders of magnitude. Significant degradation is also
notable in the more realistic scenario, which corresponds to
the successive transmission of randomly chosen codewords.

In Fig. 3 we illustrate the improvement achieved by using
the modified Gallager B decoder in which the first iteration
is fault-free, for several γ = 3 codes. It can be seen that the
modified Gallager B decoder, although built from unreliable
components, performs approximately the same as perfectly
reliable decoder. On the other hand, the FER of the Gallager
B decoder without modification is several magnitude higher.
For example, the code LS(2388,1793) is non-operational for
wide range of channel error probabilities.

V. CONCLUSION

We have shown that the performance degradation of the
Gallager B decoder caused by the timing violations depends
of the sequence of transmitted codewords. In addition, we
proposed the modification that ensures the decoder robustness
to hardware unreliability. This result raises a number of open
questions in analysis of faulty decoders. It is known that
the capacity of LDPC codes under the von Neumann error
model can not be achieved [3], [4]. However, the finite code
length analysis presented in this letter suggests more promising
results for the timing error model. Additionally, in our future
work we will apply the presented framework to investigation
and design of fault-tolerant LDPC code-based memories.
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