
  

 
Abstract — This paper proposes an FPGA based flooded 

architecture for quasi-cyclic (QC) LDPC decoder. The 
message computation for both check and variable node 
update is done using a parallel scheme of a number of 
processing units equal to the expansion factor of the QC 
matrix. The proposed architecture performs serial processing 
of the messages by dedicated check node and variable node 
processing units. This way, a reduced memory word size is 
used, which lead to a reduction of the BRAM blocks. 
Multiple frame decoding is used in order to both increase the 
throughput and to increase the BRAM usage. 
Implementation results for the WiMAX (1152, 2304) QC 
irregular LDPC code indicate that the proposed architecture 
has up to 4x less slices resource utilization and up to 1 order 
of magnitude less BRAM blocks with respect to other flooded 
architectures, while maintaining a throughput of several 
hundreds of Mbps.  
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I. INTRODUCTION 
DPC codes are error correction schemes used in 
modern telecommunication systems, being adopted in 

a wide range of standards, such as IEEE 802.16 WiMAX 
or DVB-S2 [1][2].  LDPC decoding can be performed 
using two different scheduling strategies: flooded 
scheduling and layered scheduling [1][3][4]. Layered 
decoders require a lower amount of memory bits - due to a 
reduced number of stored messages - , and have better 
convergence – due to the increased number of updates on 
the a-posteriori log likelihood messages. However, the 
layered architecture is subject to patents, which restricts is 
usability [4]. Another advantage of the flooded LDPC 
decoder is represented by its high reliability to hardware 
faults which affect its internal circuitry: the error 
correction capability of the decoder is not affected by a 
certain amount of hardware faults within the decoder [5]. 
This makes the flooded strategy the preferred choice for 
applications with increased fault tolerance requirements. 

LDPC decoders have significant memory requirements, 
of several tens of kilobits [6][7]. Thus, for FPGA 
architectures, implementing the LDPC memories with 
BRAM modules would be preferable rather than 
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distributed RAM. However, several limitations in the 
BRAMs lead to their inefficient use even in LDPC 
decoders with modest throughputs. These include: limited 
number of read/write ports (2 read/write ports) and limited 
memory word size (maximum 72 bits). Therefore, LDPC 
decoders require significant number of BRAM blocks, but 
only a few entries of these blocks are used (less than 30 
entries out of the 512 which are available in 36 kb sized 
BRAM).  

In this paper, we propose a memory efficient 
architecture for FPGA implementation of flooded LDPC 
decoders. In order to obtain reduced cost, while having 
acceptable throughput (of several hundreds of Mbps), 
several techniques are employed: (i) parallel processing 
units (variable node units – VNU and check node units – 
CNU) at B matrix row/column level (ii) serial processing 
of messages corresponding to a VNU/CNU (iii) aggressive 
pipelining (iv) multiple codeword processing. By applying 
these techniques, we use 456 entries out of the 512 
corresponding to a BRAM for the extrinsic message 
memories and 144 entries for the input log likelihood 
ratios (LLR) memory. The obtained throughput is of 
almost 300 Mbps for coded bits, for 20 decoding 
iterations.  

This paper is organized as follows: Section II represents 
a brief introduction into flooded LDPC decoding; related 
work is presented in Section III; the proposed architecture 
is detailed in Section IV; implementation results are 
discussed in Section V; last section is dedicated to the 
concluding remarks.   

II. FLOODED DECODING OF LDPC CODES 
QC LDPC codes are a class of LDPC codes, which 

present highly structured parity check matrix, defined by 
blocks of circulant matrices [3]. Regarding the decoding 
algorithm, Min-Sum (MS) and its variants (such as offset 
MS or normalized MS) are the most used for hardware 
implementations. Because it uses only additions and 
comparisons on a small number of bits (i.e. < 10 bits), it 
has the lowest hardware complexity.   

Flooded decoding requires two type of processing: the 
CNUs compute the check node messages (denoted as β) 
based on the messages received from the VNUs (denoted 
as α); these updated β messages are passed to the VNUs, 
which will update α messages. This message passing is 
performed for several iterations. The flooded MS decoding 
has as inputs the channel LLR messages (denotes as γ), 
and consists of the following steps: 

1. Initialization           i i              (1) 
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2. Check node update      
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4. A-posteriori update  
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The above four steps are repeated until one codeword is 
found (if a stopping criteria circuit is implemented) or a 
maximum number of iterations is reached. A disadvantage 
of the flooded scheduling is represented by the fact that the 
check node update has to wait for the variable node update 
and vice-versa [12]. Thus, during the VNU processing, the 
CNUs are stalled and vice-versa. In order to overcome this 
disadvantage, dual frame decoding is used: VNUs perform 
update on one frame, while CNUs perform the 
corresponding updates on the other frame 

   

III. RELATED WORK 
Fully flooded architectures are the faithful hardware 

implementation of the Tanner graph. This type of decoders 
require a number of VNUs equal to the number of columns 
in the H matrix, and a number of CNUs equal  to the 
number of rows in the H matrix. The main advantage of 
this architecture is represented by the high throughput. 
However, it has a major drawback represented mainly by 
the very high cost of the routing network. Several 
approaches, such as [8][9][11], tried to reduce the 
interconnection size, mainly by reducing the message 
quantization, at the expense of error correction capability. 
FPGA implementations of such architectures present very 
large slice count.  

One way to reduce the complexity of such decoders is to 
serialize the variable node and/or check node updates. 
These approaches require memories in order to partially 
store messages. The approach in [12] uses a number of 
VNU equal to the number of columns in the H matrix, 
while the number of CNU is equal to the circulant size. 
The VNU process β messages in a serial manner: the dv 
messages corresponding to a VNU are read in consecutive 
clock cycles. The CNU process the α messages in a 
parallel manner: the dc α messages corresponding to a 
CNU are read in a single clock cycle. Barrel shifters are 
used for routing messages to the corresponding processing 
node. The implementation is ASIC based. The memory is 
implemented using a dedicated non-refresh DRAM; the 
size of the memory is equal to the number of required bits.  

The architectures in [6][7][10] have been implemented 
in FPGA. The ones in [10]  use a number of VNUs 
proportional to the number of columns in the B matrix, 
while the number of CNUs is proportional to the number 
of rows in the B matrix. It does not use any kind of routing 
network. The number of memory modules required for α 
and β messages is equal to the number of elements in the B 
matrix. One message (4-6 bits) is stored in a BRAM word. 
Thus, the usage of the BRAM for this architecture is rather 
small. Improvements of this architecture have been 
proposed in [6]; these rely on packing multiple messages 

in a single in the same BRAM word (vectorization) or on  
techniques which allow several circulant matrices share 
the same BRAM (folding). However, in both cases, the 
number of BRAM blocks used is high - 80 BRAM for 
(8176,7156) LDPC code using vectorization technique and 
330 BRAM for (3369,3213) LDPC code using folding 
technique. 

IV. PROPOSED ARCHITECTURE 

A. Overall architecture 
The design parameters for the proposed LDPC decoder 

are:   message quantization (γ_quant), β message 
quantization (β_quant), α message quantization (α_quant), 
the size of the circulant matrix m, number of columns in B 
matrix NrCols, and number of rows in B matrix NrRows.  
The proposed architecture is depicted in Fig. 1 and is 
composed of the following modules: 

1. Input LLR memory – a single frame requires a memory 
module with word size of (m x γ_quant) bits and a 
depth of NrCols; the number of BRAM modules for 
this memory is equal to (m x γ_quant)/72; processing a 
single frame for WiMAX ½ rate code will lead to a 
BRAM usage of less than 5%; in the last iteration, this 
memory will be updated with the a-posteriori LLR, 
which will be used for computing the hard decision.  

2. VNU processing block – it consists of m VNUs; the m 
VNUs perform the variable node and a-posteriori 
updates corresponding to a column in the B matrix; 
each VNU process dv  β messages in a serial manner; 
the VNU outputs dv  α messages also in a serial manner 
(one α message per clock cycle); the VNU processing 
blocks requires the reading of m β messages in one 
clock cycles and perform m α messages write 
operations in one clock cycle. 

3. α message memory – the word size for this memory is 
(m x α_quant) bits; for a frame, the depth of this 
memory is equal to the number of non-negative 
elements in the B matrix; for the considered WiMAX 
code, the depth of the α message memory is equal to 
76; the number of BRAM blocks required for this unit 
is equal to (m x α_quant)/72. 

 

 
Fig. 1. LDPC Decoder Architecture 



 

4. α read barrel shifter – it represents the interconnection 
network between the outputs of the VNUs to the inputs 
of the CNUs; for considered WiMAX code, it has 7 
level of multiplexers; the number of multiplexers per 
level is equal to (m x α_quant); the shift amounts are 
provided by the control unit and correspond to the non-
negative values in the B matrix. 

5. CNU processing block - it consists of m CNUs; the m 
CNUs perform the check node updates corresponding 
to a row in the B matrix; each CNU process dc α 
messages in a serial manner; the CNU outputs dc  β 
messages also in a serial manner (one β message per 
clock cycle); the CNU processing blocks requires the 
reading of m α messages in one clock cycles and 
perform m β messages write operations in one clock 
cycle.   

6. β messages memory - the word size for this memory is 
(m x β_quant) bits; for a frame, the depth of this 
memory is equal the depth of the α message memory; 
in many ASIC implementations, but also in some 
FPGA, compressed β message format is stored in the 
memory; using the compressed format, the number of 
memory bits is reduced; for BRAM based 
implementation of this memory module, using the 
compressed format will lead to an increase of BRAM 
blocks used; this is due to the higher memory word 
sized used for storing compressed β messages; using 
the uncompressed form, the β messages, which would 
have been composing the compressed message, are 
stored in separate memory words; this way, the size of 
the memory words is reduced; thus, the number of the 
BRAM blocks used is decreased with respect to the 
compressed format;  

7. β read barrel shifter – it represents the interconnection 
network between the outputs of the CNUs to the inputs 
of the VNUs; it has the same number of multiplexer 
levels as the α read barrel shifter; the number of 
multiplexers per level is equal to (m x β_quant); the 
shift amounts are provided by the control unit and 
correspond to the non-negative values in the B matrix. 

8. Control unit – it provides: (i) memory addresses and 
memory enable signals for all three memories, (ii) the 
shift amounts for the two barrel shifters, (iii) the 
control signals for the processing units, (iv) because the 
used WiMAX LDPC code is irregular, the control unit 
provides the number of β messages which need to be 
processed by the VNUs for each columns in the B 
matrix, as well as the number of α messages which 
need to be processed by the CNUs for each row in the 
B matrix; the addresses, shift amounts and the number 
of processed messages are provided by dedicated ROM 
memories. 

Due to the serial type of processing at both CNU and 
VNU level, the proposed architecture can be easily 
adapted for other LDPC codes.  

B. Multiple frame processing 
Dual frame processing has been employed in flooded 

architectures, such as [12]. It has the goal to improve 
hardware resources efficiency, as well as to double the 

throughput of the LDPC decoder. For the proposed 
architecture, dual frame processing has no cost increase 
with respect to the single frame decoding. Therefore, the 
usage (depth) of the BRAM modules is doubled with 
respect to the single frame decoding.  

In order to further increase the usage of the BRAM 
blocks, we employ a 6 frame processing. The CNUs 
perform updates for 3 frames, while the VNUs perform the 
updates corresponding to the other 3 frames. For the 
BRAM blocks used to implement the α message memory 
and β messages memories a number of 456 memory words 
out of 512 are used. For the input LLR memory, the 
number of entries used is equal to 144 out of the 512. 
Regarding the throughput, the total VNU/CNU processing 
time (the time required to process all the messages 
corresponding to all 3 frames) is increased by a factor of 3 
corresponding to dual frame processing. Therefore, the 
throughput for 6 frames decoding is equal to the one for 
dual frame decoding. Increasing the number of decoding 
frames (such as 8 frames), would lead to the increase in 
the number of BRAM modules. This is due to the fact that 
8 frames would require 608 memory words. 

C. Processing Units 
The CNU and the VNU are depicted in Fig. 2. The CNU 

update is performed according to eq. (2). It consists of 
computing the first two minimums from the absolute 
values of the input α messages, as well as the index of the 
first minimum. The CNU performs the following 
operations: (i) conversion of the input α message from a 
two’s complement format to a sign magnitude format (ii) 
comparison between the incoming α message and the 
previous two minimums, as well as updating the index of 
the first minimum (iv) computing the β message from the 
values of the first two minimums and the current index of 
the β message.The VNU performs the update of the α 
message based on the input LLR message and dv  β 
messages, according to (3). This is performed by 
computing first the a-posteriori LLR, and then subtracting 
the corresponding β message. For a 4-bit β message 
quantization, a-posteriori LLR is computed using a 6-bit 
accumulator. The α message is computed on 6-bits and 
then is saturated to 4 bits for memory storage.  
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Fig.2. VNU Architecture (a) CNU Architecture (b) 



 

Both VNUs and CNUs use dedicated FIFO buffers. For 
VNUs, these buffers are used to synchronize the current α 
message index for β message computation; this index is 
used to select between the first and the second minimum. 
For CNUs, these FIFO buffer are used to synchronize the 
β message for the subtraction from the a-posteriori LLR. A 
fixed size FIFO would have required the introduction of 
stall cycles for both CNU and VNU processing. This is 
due to the irregularity of the considered WiMAX code. We 
tackle this issue by implementing the FIFO buffers using a 
modified register file. For both the CNU and the VNU, the 
number of processed messages is used to address the 
buffer. 

V. SYNTHESIS RESULTS 
We have implemented the proposed architecture for the 

WiMAX (1152, 2304), with the circulant size m=96. The 
decoder has been synthesized using Xilinx ISE and 
implemented on a Virtex-7 VX485T device with speed 
grade -2. Implementation results are depicted in Table I. 
Regarding the comparison with decoders implemented on 
Virtex-4 devices, these are using 4-input LUT instead of 
the 6-input LUT present in Virtex-5 or Virtex-7. Results 
show that the proposed design has the smallest slice count 
with respect to other flooded architectures. Considering 
the non-fully parallel flooded architectures, the proposed 
one has the lowest BRAM count. If we consider the cost 
(slice count and BRAM count) per processing frame, the 
proposed requires less than 7 BRAM blocks and less than 
700 slices per frame. This is due to the fact that 6 frames 
processing has a negligible cost increase with respect to 
dual frame processing. Furthermore, it has a throughput of 
approximately 300 Mbps for 20 iterations, and 400 Mbps 
for 15 iteration, which is comparable to the throughput of 
the decoders in [6], but at a smaller cost both in BRAM 
and slices. The [8][9] approaches try to obtain high 
throughput at reasonable cost by using smaller 
quantization. Thus, these decoders sacrifice error 
correction capability for better cost-throughput trade-off. 
Using smaller quantization will also result in significant 
memory and slice count reduce in the proposed 
architecture. Regarding the working frequencies, Table I 
indicates that the proposed decoder has the highest 
frequency with respect to other flooded architectures.   

 
 

VI.  CONCLUSIONS 
This paper presents a memory efficient flooded 

architecture for QC LDPC decoders for FPGA 
implementations. The main advantages of the proposed 
architecture: efficient BRAM utilization, efficient slice 
based utilization due to the serial nature the processing of 
at both CNU and VNU level, multiple frame decoding - 6 
frames are decoded in the same decoding round, without 
any hardware overhead; this way, we significantly increase 
the usage of BRAM blocks, by taking advantage of the 
generous depth of BRAM modules; efficient processing 
unit implementation – due to serial processing. This also 
favors multi-rate and easiness in changing the code.  
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TABLE I. RESULTS COMPARISON FOR DIFFERENT FPGA ARCHITECTURES 

 Code Quantization Device Frequency 
(MHz) 

Throughput 
(Mbps) 

Resources 
Slices BRAM 

Chandrasetty2012 [9] (576,1152) 4,2 Virtex-5 138 11400 10823  
Balatsoukas-
Stimming2012 [8] (1152,2304) 4,3 

3,2 Virtex-5 154 
211 

8900 
12200 

21688 
11700  

Vector overlapped [6]  
Folded [6] 

(7156,8176) 
(3213,3969) 

6,4 
6,4 Virtex-4 212-228 

200-226 
195-713 
101-460 

4021-17100 
6600-14100 

80 
330 

Torres12 [11] (1723,2048) 4,2 Virtex-6 30 3050 24860  
Proposed  (1152,2304) 6,4 Virtex-7 260 290  3880 38 

 


