

Abstract — This paper proposes an FPGA based flooded

architecture for quasi-cyclic (QC) LDPC decoder. The
message computation for both check and variable node
update is done using a parallel scheme of a number of
processing units equal to the expansion factor of the QC
matrix. The proposed architecture performs serial processing
of the messages by dedicated check node and variable node
processing units. This way, a reduced memory word size is
used, which lead to a reduction of the BRAM blocks.
Multiple frame decoding is used in order to both increase the
throughput and to increase the BRAM usage.
Implementation results for the WiMAX (1152, 2304) QC
irregular LDPC code indicate that the proposed architecture
has up to 4x less slices resource utilization and up to 1 order
of magnitude less BRAM blocks with respect to other flooded
architectures, while maintaining a throughput of several
hundreds of Mbps.

Keywords —Flooded scheduling; FPGA; LDPC decoding

I. INTRODUCTION
DPC codes are error correction schemes used in
modern telecommunication systems, being adopted in

a wide range of standards, such as IEEE 802.16 WiMAX
or DVB-S2 [1][2]. LDPC decoding can be performed
using two different scheduling strategies: flooded
scheduling and layered scheduling [1][3][4]. Layered
decoders require a lower amount of memory bits - due to a
reduced number of stored messages - , and have better
convergence – due to the increased number of updates on
the a-posteriori log likelihood messages. However, the
layered architecture is subject to patents, which restricts is
usability [4]. Another advantage of the flooded LDPC
decoder is represented by its high reliability to hardware
faults which affect its internal circuitry: the error
correction capability of the decoder is not affected by a
certain amount of hardware faults within the decoder [5].
This makes the flooded strategy the preferred choice for
applications with increased fault tolerance requirements.

LDPC decoders have significant memory requirements,
of several tens of kilobits [6][7]. Thus, for FPGA
architectures, implementing the LDPC memories with
BRAM modules would be preferable rather than

This work has been supported by the European Commission’s project
“I-Risc - Innovative Reliable Chip Design from Low Power Unreliable
Components”, grant number 309129.

Alexandru Amaricai, Oana Boncalo and Ioana Mot are with the
Computer Engineering Department, University Politehnica Timisoara,
Vasile Parvan, Blvd, Nr. 2, Timisoara, Romania (email:
alexandru.amaricai@cs.upt.ro)

distributed RAM. However, several limitations in the
BRAMs lead to their inefficient use even in LDPC
decoders with modest throughputs. These include: limited
number of read/write ports (2 read/write ports) and limited
memory word size (maximum 72 bits). Therefore, LDPC
decoders require significant number of BRAM blocks, but
only a few entries of these blocks are used (less than 30
entries out of the 512 which are available in 36 kb sized
BRAM).

In this paper, we propose a memory efficient
architecture for FPGA implementation of flooded LDPC
decoders. In order to obtain reduced cost, while having
acceptable throughput (of several hundreds of Mbps),
several techniques are employed: (i) parallel processing
units (variable node units – VNU and check node units –
CNU) at B matrix row/column level (ii) serial processing
of messages corresponding to a VNU/CNU (iii) aggressive
pipelining (iv) multiple codeword processing. By applying
these techniques, we use 456 entries out of the 512
corresponding to a BRAM for the extrinsic message
memories and 144 entries for the input log likelihood
ratios (LLR) memory. The obtained throughput is of
almost 300 Mbps for coded bits, for 20 decoding
iterations.

This paper is organized as follows: Section II represents
a brief introduction into flooded LDPC decoding; related
work is presented in Section III; the proposed architecture
is detailed in Section IV; implementation results are
discussed in Section V; last section is dedicated to the
concluding remarks.

II. FLOODED DECODING OF LDPC CODES
QC LDPC codes are a class of LDPC codes, which

present highly structured parity check matrix, defined by
blocks of circulant matrices [3]. Regarding the decoding
algorithm, Min-Sum (MS) and its variants (such as offset
MS or normalized MS) are the most used for hardware
implementations. Because it uses only additions and
comparisons on a small number of bits (i.e. < 10 bits), it
has the lowest hardware complexity.

Flooded decoding requires two type of processing: the
CNUs compute the check node messages (denoted as β)
based on the messages received from the VNUs (denoted
as α); these updated β messages are passed to the VNUs,
which will update α messages. This message passing is
performed for several iterations. The flooded MS decoding
has as inputs the channel LLR messages (denotes as γ),
and consists of the following steps:

1. Initialization i i (1)

Memory efficient FPGA implementation for
flooded LDPC decoder

Alexandru Amaricai, Member, IEEE, Oana Boncalo, Member, IEEE, and Ioana Mot

L

mailto:alexandru.amaricai@cs.upt.ro)

2. Check node update

 , , ,
()\

sgn() minz i z j z j
j H z i

 (2)

3. Variable node update ,
()\

z i i j
j H z i

 (3)

4. A-posteriori update
()

i i j
j H z

 (4)

The above four steps are repeated until one codeword is
found (if a stopping criteria circuit is implemented) or a
maximum number of iterations is reached. A disadvantage
of the flooded scheduling is represented by the fact that the
check node update has to wait for the variable node update
and vice-versa [12]. Thus, during the VNU processing, the
CNUs are stalled and vice-versa. In order to overcome this
disadvantage, dual frame decoding is used: VNUs perform
update on one frame, while CNUs perform the
corresponding updates on the other frame

III. RELATED WORK
Fully flooded architectures are the faithful hardware

implementation of the Tanner graph. This type of decoders
require a number of VNUs equal to the number of columns
in the H matrix, and a number of CNUs equal to the
number of rows in the H matrix. The main advantage of
this architecture is represented by the high throughput.
However, it has a major drawback represented mainly by
the very high cost of the routing network. Several
approaches, such as [8][9][11], tried to reduce the
interconnection size, mainly by reducing the message
quantization, at the expense of error correction capability.
FPGA implementations of such architectures present very
large slice count.

One way to reduce the complexity of such decoders is to
serialize the variable node and/or check node updates.
These approaches require memories in order to partially
store messages. The approach in [12] uses a number of
VNU equal to the number of columns in the H matrix,
while the number of CNU is equal to the circulant size.
The VNU process β messages in a serial manner: the dv
messages corresponding to a VNU are read in consecutive
clock cycles. The CNU process the α messages in a
parallel manner: the dc α messages corresponding to a
CNU are read in a single clock cycle. Barrel shifters are
used for routing messages to the corresponding processing
node. The implementation is ASIC based. The memory is
implemented using a dedicated non-refresh DRAM; the
size of the memory is equal to the number of required bits.

The architectures in [6][7][10] have been implemented
in FPGA. The ones in [10] use a number of VNUs
proportional to the number of columns in the B matrix,
while the number of CNUs is proportional to the number
of rows in the B matrix. It does not use any kind of routing
network. The number of memory modules required for α
and β messages is equal to the number of elements in the B
matrix. One message (4-6 bits) is stored in a BRAM word.
Thus, the usage of the BRAM for this architecture is rather
small. Improvements of this architecture have been
proposed in [6]; these rely on packing multiple messages

in a single in the same BRAM word (vectorization) or on
techniques which allow several circulant matrices share
the same BRAM (folding). However, in both cases, the
number of BRAM blocks used is high - 80 BRAM for
(8176,7156) LDPC code using vectorization technique and
330 BRAM for (3369,3213) LDPC code using folding
technique.

IV. PROPOSED ARCHITECTURE

A. Overall architecture
The design parameters for the proposed LDPC decoder

are: message quantization (γ_quant), β message
quantization (β_quant), α message quantization (α_quant),
the size of the circulant matrix m, number of columns in B
matrix NrCols, and number of rows in B matrix NrRows.
The proposed architecture is depicted in Fig. 1 and is
composed of the following modules:

1. Input LLR memory – a single frame requires a memory
module with word size of (m x γ_quant) bits and a
depth of NrCols; the number of BRAM modules for
this memory is equal to (m x γ_quant)/72; processing a
single frame for WiMAX ½ rate code will lead to a
BRAM usage of less than 5%; in the last iteration, this
memory will be updated with the a-posteriori LLR,
which will be used for computing the hard decision.

2. VNU processing block – it consists of m VNUs; the m
VNUs perform the variable node and a-posteriori
updates corresponding to a column in the B matrix;
each VNU process dv β messages in a serial manner;
the VNU outputs dv α messages also in a serial manner
(one α message per clock cycle); the VNU processing
blocks requires the reading of m β messages in one
clock cycles and perform m α messages write
operations in one clock cycle.

3. α message memory – the word size for this memory is
(m x α_quant) bits; for a frame, the depth of this
memory is equal to the number of non-negative
elements in the B matrix; for the considered WiMAX
code, the depth of the α message memory is equal to
76; the number of BRAM blocks required for this unit
is equal to (m x α_quant)/72.

Fig. 1. LDPC Decoder Architecture

4. α read barrel shifter – it represents the interconnection
network between the outputs of the VNUs to the inputs
of the CNUs; for considered WiMAX code, it has 7
level of multiplexers; the number of multiplexers per
level is equal to (m x α_quant); the shift amounts are
provided by the control unit and correspond to the non-
negative values in the B matrix.

5. CNU processing block - it consists of m CNUs; the m
CNUs perform the check node updates corresponding
to a row in the B matrix; each CNU process dc α
messages in a serial manner; the CNU outputs dc β
messages also in a serial manner (one β message per
clock cycle); the CNU processing blocks requires the
reading of m α messages in one clock cycles and
perform m β messages write operations in one clock
cycle.

6. β messages memory - the word size for this memory is
(m x β_quant) bits; for a frame, the depth of this
memory is equal the depth of the α message memory;
in many ASIC implementations, but also in some
FPGA, compressed β message format is stored in the
memory; using the compressed format, the number of
memory bits is reduced; for BRAM based
implementation of this memory module, using the
compressed format will lead to an increase of BRAM
blocks used; this is due to the higher memory word
sized used for storing compressed β messages; using
the uncompressed form, the β messages, which would
have been composing the compressed message, are
stored in separate memory words; this way, the size of
the memory words is reduced; thus, the number of the
BRAM blocks used is decreased with respect to the
compressed format;

7. β read barrel shifter – it represents the interconnection
network between the outputs of the CNUs to the inputs
of the VNUs; it has the same number of multiplexer
levels as the α read barrel shifter; the number of
multiplexers per level is equal to (m x β_quant); the
shift amounts are provided by the control unit and
correspond to the non-negative values in the B matrix.

8. Control unit – it provides: (i) memory addresses and
memory enable signals for all three memories, (ii) the
shift amounts for the two barrel shifters, (iii) the
control signals for the processing units, (iv) because the
used WiMAX LDPC code is irregular, the control unit
provides the number of β messages which need to be
processed by the VNUs for each columns in the B
matrix, as well as the number of α messages which
need to be processed by the CNUs for each row in the
B matrix; the addresses, shift amounts and the number
of processed messages are provided by dedicated ROM
memories.

Due to the serial type of processing at both CNU and
VNU level, the proposed architecture can be easily
adapted for other LDPC codes.

B. Multiple frame processing
Dual frame processing has been employed in flooded

architectures, such as [12]. It has the goal to improve
hardware resources efficiency, as well as to double the

throughput of the LDPC decoder. For the proposed
architecture, dual frame processing has no cost increase
with respect to the single frame decoding. Therefore, the
usage (depth) of the BRAM modules is doubled with
respect to the single frame decoding.

In order to further increase the usage of the BRAM
blocks, we employ a 6 frame processing. The CNUs
perform updates for 3 frames, while the VNUs perform the
updates corresponding to the other 3 frames. For the
BRAM blocks used to implement the α message memory
and β messages memories a number of 456 memory words
out of 512 are used. For the input LLR memory, the
number of entries used is equal to 144 out of the 512.
Regarding the throughput, the total VNU/CNU processing
time (the time required to process all the messages
corresponding to all 3 frames) is increased by a factor of 3
corresponding to dual frame processing. Therefore, the
throughput for 6 frames decoding is equal to the one for
dual frame decoding. Increasing the number of decoding
frames (such as 8 frames), would lead to the increase in
the number of BRAM modules. This is due to the fact that
8 frames would require 608 memory words.

C. Processing Units
The CNU and the VNU are depicted in Fig. 2. The CNU

update is performed according to eq. (2). It consists of
computing the first two minimums from the absolute
values of the input α messages, as well as the index of the
first minimum. The CNU performs the following
operations: (i) conversion of the input α message from a
two’s complement format to a sign magnitude format (ii)
comparison between the incoming α message and the
previous two minimums, as well as updating the index of
the first minimum (iv) computing the β message from the
values of the first two minimums and the current index of
the β message.The VNU performs the update of the α
message based on the input LLR message and dv β
messages, according to (3). This is performed by
computing first the a-posteriori LLR, and then subtracting
the corresponding β message. For a 4-bit β message
quantization, a-posteriori LLR is computed using a 6-bit
accumulator. The α message is computed on 6-bits and
then is saturated to 4 bits for memory storage.

(a)

(b)

Fig.2. VNU Architecture (a) CNU Architecture (b)

Both VNUs and CNUs use dedicated FIFO buffers. For
VNUs, these buffers are used to synchronize the current α
message index for β message computation; this index is
used to select between the first and the second minimum.
For CNUs, these FIFO buffer are used to synchronize the
β message for the subtraction from the a-posteriori LLR. A
fixed size FIFO would have required the introduction of
stall cycles for both CNU and VNU processing. This is
due to the irregularity of the considered WiMAX code. We
tackle this issue by implementing the FIFO buffers using a
modified register file. For both the CNU and the VNU, the
number of processed messages is used to address the
buffer.

V. SYNTHESIS RESULTS
We have implemented the proposed architecture for the

WiMAX (1152, 2304), with the circulant size m=96. The
decoder has been synthesized using Xilinx ISE and
implemented on a Virtex-7 VX485T device with speed
grade -2. Implementation results are depicted in Table I.
Regarding the comparison with decoders implemented on
Virtex-4 devices, these are using 4-input LUT instead of
the 6-input LUT present in Virtex-5 or Virtex-7. Results
show that the proposed design has the smallest slice count
with respect to other flooded architectures. Considering
the non-fully parallel flooded architectures, the proposed
one has the lowest BRAM count. If we consider the cost
(slice count and BRAM count) per processing frame, the
proposed requires less than 7 BRAM blocks and less than
700 slices per frame. This is due to the fact that 6 frames
processing has a negligible cost increase with respect to
dual frame processing. Furthermore, it has a throughput of
approximately 300 Mbps for 20 iterations, and 400 Mbps
for 15 iteration, which is comparable to the throughput of
the decoders in [6], but at a smaller cost both in BRAM
and slices. The [8][9] approaches try to obtain high
throughput at reasonable cost by using smaller
quantization. Thus, these decoders sacrifice error
correction capability for better cost-throughput trade-off.
Using smaller quantization will also result in significant
memory and slice count reduce in the proposed
architecture. Regarding the working frequencies, Table I
indicates that the proposed decoder has the highest
frequency with respect to other flooded architectures.

VI. CONCLUSIONS
This paper presents a memory efficient flooded

architecture for QC LDPC decoders for FPGA
implementations. The main advantages of the proposed
architecture: efficient BRAM utilization, efficient slice
based utilization due to the serial nature the processing of
at both CNU and VNU level, multiple frame decoding - 6
frames are decoded in the same decoding round, without
any hardware overhead; this way, we significantly increase
the usage of BRAM blocks, by taking advantage of the
generous depth of BRAM modules; efficient processing
unit implementation – due to serial processing. This also
favors multi-rate and easiness in changing the code.

REFERENCES
[1] T. Richardson and R. Urbanke, "The Renaissance of Gallager’s

Low-Density Parity-Check Codes", IEEE Comm. Magazine, Aug.
2003.

[2] IEEE-802.16e, “Physical and medium access control layers for
combined fixed and mobile operation in licensed bands,” 2005,
amendment to Air Interface for Fixed Broadband Wireless Access
Systems

[3] M.P.C. Fossorier, “Quasicyclic Low-Density Parity-Check Codes
from Circulant Permutation Matrices,” IEEE Trans. on Information
Theory, vol. 50, no. 8, pp. 1788–1793, 2004.

[4] D. Hocevar “Layered decoding of low density parity check (LDPC)
codes” European Patent EP 1622276 A3, 2006

[5] CK Ngassa, V Savin, D Declercq “Min-Sum-based decoders
running on noisy hardware” IEEE Global Communications
Conference (GLOBECOM), 2013

[6] X. Chen, J. Kang and S. Lin and V. Akella, "Memory System
Optimization for FPGA Based Implementation of Quasi-Cyclic
LDPC Codes Decoders", IEEE Trans. on CAS, 2011

[7] Z. Wang, Z. Cui, “A Memory Efficient Partially Parallel Decoder
Architecture for Quasi-Cyclic LDPC Codes”, IEEE Trans. on VLSI
Systems, Vol. 15, No. 4, April 2007

[8] A. B. Stimming and A. Dollas, "FPGA-based design and
implementation of a multi - GBPS LDPC decoder", FPL, 2012.

[9] V. A. Chandrasetty and S. M. Aziz, "An area efficient LDPC
decoder using a reduced complexity min-sum algorithm", VLSI
Journal, 2012.

[10] Y. Dai, Z. Yan, and N. Chen, “Optimal overlapped message passing
decoding of quasi-cyclic LDPC codes,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 16, no. 5, pp. 565–578, May 2008.

[11] V.Torres, A. Perez-Pascual, T. Sansaloni, J. Valls “Fully-parallel
LUT-based (2048,1723) LDPC Code Decoder for FPGA” Proc 19th
Int. Conf. on Electronic Circuits and Systems (ICECS), 2012

[12] YS Park, D Blaauw, D Sylvester, Z Zhang “Low-Power High-
Throughput LDPC Decoder Using Non-Refresh Embedded
DRAM” IEEE Journal of Solid State Circuits, Vol. 49, Issue 3,
2014

TABLE I. RESULTS COMPARISON FOR DIFFERENT FPGA ARCHITECTURES

 Code Quantization Device Frequency
(MHz)

Throughput
(Mbps)

Resources
Slices BRAM

Chandrasetty2012 [9] (576,1152) 4,2 Virtex-5 138 11400 10823
Balatsoukas-
Stimming2012 [8] (1152,2304) 4,3

3,2 Virtex-5 154
211

8900
12200

21688
11700

Vector overlapped [6]
Folded [6]

(7156,8176)
(3213,3969)

6,4
6,4 Virtex-4 212-228

200-226
195-713
101-460

4021-17100
6600-14100

80
330

Torres12 [11] (1723,2048) 4,2 Virtex-6 30 3050 24860
Proposed (1152,2304) 6,4 Virtex-7 260 290 3880 38

