
1

Low Complexity Memory Architectures Based on
LDPC Codes: Benefits and Disadvantages

Bane Vasić, Predrag Ivaniš and Srdan Brkic

Abstract—In this paper we investigate the problem of informa-
tion storage in inherently unreliable memory cells. In order to
increase the memory reliability, information is stored in memory
cells as a codeword of a low-density parity-check (LDPC) code,
while the memory content is updated periodically by an error
correction scheme. We first present an overview on the state-of-
the memory architectures based on LDPC codes, and then asses
the benefits of using the coded architectures expressed through
the increased reliability. In addition, we provide upper bounds
on the complexity of such memories.

I. INTRODUCTION

Due to huge density integration increase, lower supply
voltages, and variations in technological process, comple-
mentary metal-oxide-semiconductor (CMOS) and emerging
nanoelectronic devices are inherently unreliable. Moreover,
the demands for energy efficiency require reduction of energy
consumption by several orders of magnitude, which can be
done only by aggressive supply voltage scaling. Consequently,
the signal levels are much lower and closer to the noise level,
which reduces the component noise immunity and leads to
unreliable behavior. It is widely accepted that future genera-
tions of circuits and systems must be designed to deal with
unreliable components [1]. Recently, there has been a surge in
interest in error control schemes that can ensure fault-tolerance
in unreliable hardware.

Von Neumann [2] proposed the first error control scheme
which increases the reliability of faulty logic gates. In his
approach logic units operating under unreliable hardware are
multiplexed, and the majority vote of multiplexed values is
propagated to the rest of the circuit. Von Neumann’s results
are not in the spirit of Shannon’s work, since rely on repetition
codes, which require high redundancy to achieve low error
probability. However, Dobrushin and Ortyukov [3] and Elias
[4] showed that for the majority of 2-input Boolean functions
there is no error coding technique that can provide higher
reliability than the von Neumann multiplexing. On the other
hand, results are much more promising if a coding technique
is used to protect information stored in inherently unreliable
storage devices.

The theoretical fundamentals in this area are given by Taylor
in his pioneering work [5]. In Taylor’s memory architecture

B. Vasić is with the Department of Electrical and Computer Engi-
neering, University of Arizona, Tucson, AZ, 85721 USA (e-mail: va-
sic@ece.arizona.edu).

P. Ivaniš and S. Brkic are with the University of Belgrade, Ser-
bia, School of Electrical Engineering, (e-mails: predrag.ivanis@etf.rs, srd-
jan.brkic@ic.etf.rs).

information are stored in unreliable memory cells as a code-
word of a low-density parity-check (LDPC) code. The memory
cells are updated periodically by an correcting circuit built also
from unreliable logic gates. The significance of Taylor’s work
lies in the fact what he showed that a such memory is able to
preserve all stored information in the asymptotic case, i.e., for
such memory is said to be stable. His work was improved
by Kuznetsov [6] who investigated the same architecture,
and usually their memory is called Taylor-Kuznetsov (TK)
memory.

An update cycle in the TK memory is functionally equiva-
lent to one iteration of Gallager-B decoder, as was observed
by Vasic and Chilappagari [7], who rediscover the original
Taylor’s work and connected it with state-of-the-art research
on codes on graphs. The same authors proposed the memory
architecture based on the bit-flipping decoder [8], [9] and used
expander arguments to show that a such memory is stable.
In addition, Ivkovic et al. [10] showed that the TK memory
can be improved if the reliable syndrome checker is added
into architecture. Recently, Varshney [11] used the density
evolution technique to investigate decoders of LDPC codes
in the presence of hardware failures. He has also proved the
stability of the memory architecture based on the Gallager-A
decoder. The density evolution technique was popular over the
years and it was used to analyzed faulty Gallager-B [12], min-
sum [13], [14] and FAID [15] decoders. However, due to high
complexities of above decoders, novel memory architectures
were not proposed.

In this paper we present an overview on state-of-the-art
research in memory architectures that employ decoders of
LDPC codes, as well as approaches used for modeling failures
in memory cells and logic gates. We consider three stable
memory architectures that are based on Gallager-A, Gallager-
B and bit-flipping decoders. We compare these memories
in terms of complexity, providing new expression for the
complexity of majority logic gates. We then investigate the
performance of the architecture based on the bit-flipping
decoder in terms of the number of component failures that
can be tolerated by the memory. The theoretical derivations
are illustrated by the numerical examples. The similar results
for other types of memories are not known.

The rest of the paper is organized as follows. In Section
II the preliminaries on codes and decoding algorithms on
graphs are discussed. In Section III we give a description
of state-of-the-art approaches to modeling memory cell and
gate failures. Section IV is dedicated to the description of
memory architectures, which includes the conditions needed to
achieve memory stability. The complexity analysis is presented

2

...
..

S NS

...
...

.

1
2

�...

...
1

�

Fig. 1: Illustration of Tanner graph of an LDPC code.

in Section V, together with the reliability analysis of the bit-
flipping-based memory. Finally, some concluding remarks and
open questions are given in Section VI.

II. PRELIMINARIES

A. LDPC codes and Decoding on Graphs

Consider a (γ, ρ)-regular binary LDPC code, denoted by
(N,K), with code rate R = K/N ≥ 1 − γ/ρ and parity
check matrix H. The parity check matrix is the bi-adjacency
matrix of a bipartite (Tanner) graph G = (V ∪C,E), where V
represents the set of N variable nodes, C is the set of Nγ/ρ
check nodes, and E is the set of Nγ edges. The length of
shortest cycle in G is called girth and denoted by g. Bipartite
Tanner graph of an LDPC code is illustrated in Fig. 1. Each
matrix element Hc,v = 1 indicates that there is an edge e =
(v, c) between nodes c ∈ C and v ∈ V , which are referred
as neighbors. Let Nv (Nc) be the set of neighbors of the
variable node v (check node c). Then, |Nv| = γ, ∀v ∈ V and
|Nc| = ρ, ∀c ∈ C, where | · | denotes cardinality. Similarly, a
set of neighbours of a set S is denoted as NS .

We define the iterative decoder by an 5-tuple D =
(B,Y,Φ(v),Φ(c),Φ(a)). A set B defines the alphabet of mes-
sages passed over edges of Tanner graph. In this paper
we focus on hard-decision decoders and thus B = {0, 1}.
Similarly, a set of possible values received from the channel
is also binary, i.e., Y = {0, 1}. Let a sequence of bits received
from the channel be y = (y1, y2, . . . , yN), yi ∈ B, 1 ≤ i ≤ N .
In addition, let x = (x1, x2, . . . , xN) denote a codeword of an
LDPC code that appear at inputs of the channel whose output
is y.

The decoder works by sending binary messages over the
edges of the graph. The messages are calculated based on
the nodes update functions, Φ(v) and Φ(c), where Φ(v) :
{0, 1}γ+1 → {0, 1} denotes an update function performed in
the variable node v, while Φ(c) : {0, 1}ρ → {0, 1} denotes
an update function that corresponds to the check node c. Let
µ

(l)
e be a message passed on edges e = (v, c) from variable

node v to the check node c, during the iteration `, while µ(l)

denote a vector of all messages received by the node c at
time `. Similarly, a message passed from check node c to the
variable node v, during the iteration `, we denote as ν(`)

e , and

a vector of all received messages as ν(`). We next summarize
the operations performed in the variable node v ∈ V and the
check node c ∈ C during the iteration `.
• The outgoing messages from the node v at ` = 0

are initialized by values received from the channel, i.e.,
µ

(0)
e = yv ∀e ∈ Nv . At iteration ` > 0 we have

µ(`)
e = Φ(v)(ν(`), yv). (1)

• The outgoing message from check node c on an edge e
is calculated by

ν(`)
e = Φ(c)(µ(`−1)). (2)

A mapping Φ(a) : {0, 1}γ+1 → {0, 1} is used for the final
decision-making on transmitted bits.

In this paper we assume that hardware unreliability in the
decoder comes from failures of gates used for computation of
functions Φ(c) and Φ(v). The computation of Φ(a) is assumed
to be reliable, and logic gates used for the implementation are
called golden gates. If decision-making gates were faulty the
error probability of the decoding would be determined by the
error probabilities of these gate, not the iterative scheme. Thus,
it is reasonable to protect this part of the decoder, for example
making it from larger transistors, or by slowing the frequency
of operating clock if the timing-related errors are dominant.
The same assumption was used in the original Taylor’s work
[5].

B. Expander Codes and Bit-Flipping Decoding

Expander codes belong to a class of LDPC codes with
asymptotically good performance. Expander codes satisfy cer-
tain structural properties, which enable them to correct a
number of worst case errors by using iterative decoders. We
next formally define the expander codes in the same way they
were originally introduced by Sipser and Spielman in their
classical paper [16].

Definition 1. A Tanner graph G of a (γ, ρ)-regular LDPC
code is a (γ, ρ, α, δ) expander if for every subset S of at most
an αn variable nodes, at least δ|S| check nodes are incident
to S.

Constructing a graph whose subsets of nodes have unusually
high number of neighbours, enables many check nodes to be
unshared between variable nodes that are corrupt. In that way
different iterative decoding algorithms can be chosen, which
reduce the number of erroneous bits during each decoding
iteration. It is known that such decoders are serial and parallel
bit-flipping decoders [16], Gallager-B and min-sum decoders
[17] and linear programming decoders [18]. In this paper we
mostly investigate parallel bit-flipping algorithm, which can
be summarized as follows [16]:
• In parallel, flip each variable that is in more unsatisfied

than satisfied parity checks.
• Repeat until no such variable remains.
It is known that random graphs are good expanders, and that

a desired expansion can be achieved with high probability [16].
The existence of random graphs with the arbitrary expansion
was also considered in [18]. The explicit construction of

3

expanders using the zig-zag graph product was investigated
by Capalbo et al. [19].

The above results describe the sufficient conditions that
guarantee the existence of expander graphs. Recently, Chilap-
pagari et al. [20] directly linked the expansion property with
construction parameters like column (row) weight of a code
or girth, which are usually inputs of LDPC codes construction
algorithms [21], [22]. Their work is presented in the following
theorem.

Theorem 1. Consider a (γ, ρ)-regular LDPC code with Tan-
ner graph with γ ≥ 8 and girth g = 2g0. Then, every set of
|V | variable nodes such that |V | < 3n0(γ/4, g0)/4 has the
expansion higher then 7γ/8 where

n0(γ/4, g0) = n0(γ/4, 2j + 1) = 1 +
γ

4

j−1∑
i=0

(γ
4

)i
, g0 odd,

n0(γ/4, g0) = n0(γ/4, 2j) = 2

j−1∑
i=0

(γ
4

)i
, g0 even. (3)

Proof: See [20], [23]. �

We used the previous theorem to investigate the number
of component failures that can be tolerated by the memory
architecture based on the bit-flipping decoder in Section V.

III. FAILURE MODELING

There are two types of hardware failures considered in this
paper: memory cell failures and logic gate failures. We first
explain the most commonly used memory cell failure models
and then stat-of-the-art modeling approaches of logic gate
failures.

A. Failures of memory cells

Failures in the memory cells are model as so called soft
errors, that appear as a consequence of supply and threshold
voltage variations. These failures are transient and manifest
as random flips that corrupt the values stored in memory
cells without damaging the cells. This means that each value
stored in the memory is periodically passed through the Binary
Symmetric Channel (BSC) with the fixed crossover probability
pm.

There are also other types of memory failures related to
process variations with permanent “stuck-at” defect that cause
hard errors [24], [25]. In [26], [27] the partitioned linear
block codes (PLBC), that efficiently incorporate the stuck-at
defect information in the encoding process, were proposed.
The encoding algorithm masks the defects by choosing a
codeword whose values at the locations of defects match the
stuck-at values at those locations. Another way of dealing with
permanent cell failures is by using error-correction pointers to
specify the addresses of failed cells, and to pair each pointer
with a replacement memory cell [25]. Similar replacement
algorithm was also proposed in [24]. Our memory architecture
is not applicable for the stuck-at defect correction since relies
on the fact that all errors corrected by the error correction
scheme can be correctly written into memory cells. For that
reason here we do not investigate these defects.

B. Modeling Logic Gate Failures

On the other hand, gate failures are dependent on gate input
patterns and can not be represented in the same manner as
memory failures [28]. Here we summarize the gate-state model
recently proposed in [29].

Let f : {0, 1}m → {0, 1}, m > 1, be an m-
argument Boolean function, which at time instant k pro-
duces the result z(k) = f(y

(k)
1 , y

(k)
2 , . . . , y

(k)
m), where y(k) =

[y
(k)
1 , y

(k)
2 , . . . , y

(k)
m] is a vector of input arguments at time k.

This function is realized by a faulty logic gate which actual
output at time k is

ẑ(k) = f(y
(k)
1 , y

(k)
2 , . . . , y(k)

m)⊕ ξ(k), (4)

where an error at time k, ξ(k) ∈ {0, 1},
depends on M successive input arguments
y

(k−M+1)
1 , . . . , y

(k−M+1)
m , . . . , y

(k)
1 , . . . , y

(k)
m , which form

a gate state at time k, denoted by s(k) = {y(j)}j∈[k−(M−1),k].
The value ξ(k) is particular realization of a random variable
Ξ, and can be represented probabilistically as

Pr{ξ(k) = 1} =

∫ X

−∞
wΞ(x; s(k))dx, (5)

where wΞ(x, s(k)) is the probability density function (PDF)
of Ξ, x denotes the technological parameter whose variations
cause failures of the logic gate, X is a parameter threshold
used in the implementation, while the effects of different
inputs are taken into account by PDF parameters, like mean
value, variance, shaping parameters.

The selection of the PDF function depends on the pa-
rameters x that cause failures, such as voltage supply, clock
delay, or transistor thresholds. In general, if the parameter
x is chosen, the PDF can be obtained by measurements
or simulation of the selected semiconductor technology. For
example, in [30], the mathematical model for delay estimation
in the clocked logic circuits is presented. The authors have
shown that, under reduced voltage supply, time (delay) needed
for the output of a logic gate to become stable is a random
variable. The distribution of this delay can be well estimated
using inverse Gaussian distribution given by

wΞ(x;µ(k), λ(k)) =

√
λ(k)

2πx3
e
−λ(k)(x−µ(k))2

2(µ(k))2x , x ≥ 0, (6)

where µ(k) represents the mean value, and λ(k) is the shape
parameter associated to the time instant k. It can be observed
that timing errors depend on gate inputs from two successive
clock intervals, translated to our model M = 2. The values
µ(k) and λ(k) depend on the gate state s(k), and can be evalu-
ated empirically. In addition, these parameters typically differ
form a gate type to a gate type. In [30] circuits composed of
inverters and 2-input AND gates were considered, i.e., circuits
described by AIG (AND-Inverter Graph) representations. In
Table 1 we give the values of parameters for several gate
inputs transitions. These values are for illustration purpose
only and we do not give the technological parameters that
lead to their evaluation. Based on the PDFs the gate output
error probability can be easily obtained, for different gate
states. In Fig. 2 we numerically express the gate output error

4

TABLE I: The parameters of the PDFs for inverter and AND
gates [30].

Logic gate s(k) µ(k) λ(k)

Inverter 1→ 0 0.65× 10−10 0.36× 10−10

AND 10→ 11 2.3× 10−10 3.4× 10−10

AND 11→ 01 1.9× 10−10 3.4× 10−10

AND 00→ 11 2.6× 10−10 3.8× 10−10

AND 11→ 00 1.5× 10−10 3.1× 10−10

1 2 3 4 5 6 7 8 9 10
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Threshold X×10−10 [s]

G
at

e
ou

tp
ut

 e
rro

r p
ro

ba
bi

lit
y,

 P
r{ξ

(k
) =1

}

AND, 10→11

AND, 11→01

AND, 00→11

AND, 11→00

Inverter, 1→0

Fig. 2: Probability of error at output of different gates.

probability as a function of a threshold X , which represents
the time period assigned for the gate output decision-making.
The threshold value is fixed for the specific gate hardware
realization. If the time required that the output signal become
stabile is higher then X an error occurs. It is obvious that if we
prolong the decision-making time, the reliability of the logic
gate increases. From Fig. 2 also follows that the reliability
of different gates can be significantly different. For example,
when X = 100ns, the error rate for the Inverter gate is
approximately 10−1, while for an AND gate, made in the same
technology, the error probability do not exceed 2 × 10−7. In
addition, note that the error probabilities for the same gate can
differ by an order of magnitude. In our example the transition
11 → 00 produces the erroneous AND gate output more
often then other three presented cases. However, analysis that
incorporates different gate states is usually to time consuming,
since the number of states grows exponentially with the length
of input arguments vector, i.e. O(22m). In addition, mean
and the shaping parameter of the distribution need to be
estimated by Monte Carlo simulation for every component
gate in the circuit. Cases where the distribution parameters
increase linearly with the level of the circuit were presented
in [30], but this is not the general conclusion. Different circuit
topologies as well as logic masking effects make the search
for the universal solution difficult.

From the previous discussion follows that the gate failure
model needs to be simplified, in order to be used for the
analysis of faulty LDPC decoders. Note that timing-related
errors occur as consequence of inability of the gate output
to switch. This lead to the gate-output switching (GOS) error

model, proposed in [31]. According to the GOS model

Pr{ξ(k) = 1|z(k) 6= z(k−1)} = ε, ε > 0, (7)

where ε can be chosen as the highest error rate obtained
by simulations for the desired technology, or by some other
criterion. When the gate output remains stable during two
consecutive intervals there is no propagation delay and the
function is always correctly computed, i.e.,

Pr{ξ(k) = 1|z(k) = z(k−1)} = 0. (8)

Observe that timing faults can occur even when the ideal
output remains stable, but multiple inputs change during a
single bit interval. Such a situation is possible when the
difference between delay times of consecutive input signals
is larger than the propagation delay from the first signal to
the output. This case is related to the so-called functional
hazard which in the well known phenomenon in logic circuits.
The GOS model neglect these phenomenon and assumes that
functional hazard is resolved at implementation level. The
GOS model was recently used in the analysis of different hard-
decision decoders [23], [29], [32].

The previous modeling approach incorporates the data-
dependent and correlated nature of logic gate failures. It is
restricted to timing-related errors caused by reduced supply
voltage, which has been recently studied in the context of
energy-efficient VLSI designs. Traditionally logic gates fail-
ures are modeled as spatially and timely independent events,
the model originally proposed by von Neumann [2]. In the von
Neumann error model each component in a circuit fails with
the probability ε. This failure probability is independent of the
gate inputs, as well as of errors in other components. Although
the von Neumann model does not adequately describe physical
processes that lead to gate failures, it simplicity makes it
popular in the literature. The original Taylor’s paper [5] is
based on the von Neumann error model, as well the most of
the recent relevant literature [7], [9], [11], [12], [14], [15], [33],
[34]. In addition, this error model is pessimistic since allows
that every use of a logic gate can be followed by the gate
failure. At the same time the von Neumann model is robust
and can be used if a more precise model is unknown.

There are also some important sources of failures that
are much more complicated to describe mathematically. For
example, new nano-scale CMOS circuits operating under alpha
particle bombardment can not be adequately described by the
previous modeling approaches. Alpha particles can affect the
neighbouring transistors creating spatially correlated errors.
This important failure sources have not been investigated in
the context of memory architectures based on LDPC codes.

IV. SYSTEM MODEL

A. The Memory Architectures

The general scheme of coded memory architecture is
presented in Fig. 3. A collection of Nc � 1 codewords
x(1),x(2), . . . ,x(Nc), denoted as {x(k)}k∈[1,Nc], need to be
stored in unreliable memory cells, which are periodically
updated based on the error correction scheme. If the bit-
flipping correction scheme is used each bit is stored in one

5

memory cell, while if the message-passing scheme is used
γ copies of every bit are stored. We denote the number of
memory cells per a codeword as N ′ ∈ {N, γN}. This means
that in the memory cells values of outgoing massages from
variable nodes X(k) = [µ

(k)
1 , µ

(k)
2 , . . . , µ

(k)
N ′], k ∈ [1, Nc]

are stored. The memory unreliability is modeled by an N ′-
dimensional binary random variable Υ defined over {0, 1}N ′

with independent entries Υj such that Pr{Υj = 1} = pm,
1 ≤ j ≤ N ′. The values read from the memory can be
described by a random variable vector R(k) = Υ ⊕ X(k),
where its particular realizations are denoted as y(k), 1 ≤
k ≤ Nc. The memory cells are updated by the round-robin
scheduling principle, which means that k-th codeword cells
y(k) are updated at (a − 1)Nc + k, a ∈ N, memory update
cycles. During an update cycle the sequence r(k) is decoded
by one iteration of iterative decoder and replaced by the
newly estimated sequence r̂(k). The cells update mechanism
is formally expressed in Algorithm 1.

Algorithm 1 L cycles of memory cells update

Input: {r(k)}k∈[1,Nc]

j ← 1
while j ≤ L do
k ← mod (j,Nc)
for ∀v do
∀e ∈ Nv : ν

(k)
e = Φ(c)(r

(k)
e1 , . . . , r

(k)
eρ), ei ∈ Nc,

n← 1
while n < N ′/N + 1 do
r̂

(k)
en = Φ(v)(ν(k))
n← n+ 1

end while
end for
j ← j + 1

end while
Output: {r̂(k)}k∈[1,Nc]

It was previously stated that the error correction scheme can
be chosen based on two basic approaches originally introduced
by Gallager [35]: bit-flipping (BF) and message passing (MP)
decoding. Recently, memories based on bit-flipping decoding
were analyzed in a number of papers [29], [36], [37]. The
check node c update function of the BF decoder can be
implemented as follows [29]

Φ
(c)
BF (r(k)

e1 , . . . , r
(k)
eρ) =

⊕
e′∈Nc\{e′}

r
(k)
e′ , ∀e ∈ Nc. (9)

Note that in each check node ρ update functions need to
be implemented. Each update function Φ

(c)
BF (r

(k)
e1 , . . . , r

(k)
eρ)

can be implemented as (ρ − 1)-input XOR gate. In the
variable node v, messages received form neighbouring nodes
are compared by the majority voting principle, i.e.,

Φ
(v)
BF (ν(k)) =

{
s, if |{e′ ∈ Nv : ν

(k)
e′ = s}| > dγ/2e,

r
(k)
v , otherwise,

(10)

In each variable node γ-input majority logic (MAJ) gate needs
to be implemented.

The check node operations of MP algorithms are the same
as in the BF decoder, i.e.,

Φ
(c)
BF (r(k)

e1 , . . . , r
(k)
eρ) = Φ

(c)
MP (r(k)

e1 , . . . , r
(k)
eρ). (11)

Differences exist in the variable node operations which can be
defined as follows

Φ
(v)
MP (ν(k)) =

{
s, if|{e′ ∈ {Nv \ e′} : ν

(k)
e′ = s}| ≥ b(k),

r
(k)
v , otherwise,

(12)

We need γ− 1 operations to be implemented in each variable
node. When b(k) = dγ/2e our memory is based on Gallager-
B (GB) decoder, and the variable node operations can be
implemented as (γ−1)-input MAJ gate. On the other hand, for
b(k) = γ−1 the decoder reduces to Gallager-A (GB) decoder,
and variable node operation is implemented as a (γ−1)-input
comparator gate.

Following the original Taylor’s work, Vasic and Chilap-
pagari [7] proposed the memory based on the Gallager-B
decoder, while the memory based on the Gallger-A decoder
was investigated by Varshney [11].

B. The Memory Stability

In this subsection we formally introduce the terms needed
for the theoretical evaluation of memory architectures, pro-
posed by Taylor [5]. Here we assume that only one coded
sequence is stored in the memory cells, i.e. Nc = 1. A such
memory is denoted by MK , where subscript K denotes the
number of information bits, i.e., information capacity. The
information capacity when an LDPC code is used satisfied
K ≥ N(1− γ/ρ). All information is preserved if at any time
no memory failure occurs.

Definition 2. The memory failure at time instant k is declared
if the memory content cannot be successfully decoded by a
noiseless correcting circuit.

Taylor proposed that for the final decoding, the same
correcting circuit is used, as for the memory cell updates, while
Varshney used the Maximum-likelihood decoder.

Definition 3. The complexity of the memory MK is defined
as the total number of memory cells and 2-input logic gates
used in the memory.

Definition 4. The redundancy of the memory architecture R
is the ratio of the complexity of the memory to the complexity
of an irredundant memory built from perfectly reliable cells,
which has the same information capacity.

Definition 5. The memory MK is stable if the following is
satisfied:

i) The complexity of MK must be bounded by θK, where
θ is a fixed parameter.

ii) For every time instant k > 0, and δ > 0, the probability
of memory failure at time k satisfies Pk < δ.

From the first condition follows that the redundancy of the
stable memory must be a constant. When decoders described
in the previous section are used, the first condition always

6

...

...

MAJ
gate

...

...
...

...

... ...
...

...

...

(1)
1µ (1)

2µ (1)
Nµ ′

(2)
1µ (2)

2µ (2)
Nµ ′

(3)
1x (3)

2x (3)
Nµ ′

Memory cells

Error correction scheme

()
1

cNµ ()
2

cNµ ()cN
Nµ ′

(1)r

(1)k +r ()kr (1)k −r

(1) () (1)k k k− +r r r
)))

... ...

(1)r
)

(2)r
)

(3)r
)

()cNr
)

(2)r

(3)r

()cNr

Fig. 3: The block diagram of the memory architecture.

holds, since the node operation complexity do not depend on
the information storage capacity. The second condition assures
that the number of erroneous cells do not uncontrollable
increases over time. It was shown that this condition satisfy
Shannon’s capacity approaching LDPC codes. In the spirit of
the Shannon’s work Taylor also defined the storage capacity
as follows.

Definition 6. The storage capacity, C, of memory is a number
such that there exist the stable memory for all memory
redundancy values θ greater than 1/C.

It is said that all memories that are stable have non-zero
storage capacity.

V. THE RELIABILITY OF MEMORIES

A. The Complexity Analysis

In this subsection we compare redundances of memories
that are based on BF, GA and GA decoders, under the same
information capacity. The check node operations are common
for all three architectures. It is known that a (ρ − 1)-input
XOR gate can be implemented as serial concatenation of ρ−
2 2-input XOR gates. As there are Nγ/ρ check nodes, the
total number of 2-input XOR gates needed for the decoder
implementation is equal to Nγ(ρ− 2).

The complexity of variable node operations is equal to
NDγ , where Dγ denotes the complexity of the γ-input MAJ
gate. The following lemma bounds Dγ .

Lemma 1. The complexity of γ-input MAJ gates, γ ≥ 4,
satisfies

Dγ ≤
(

γ

dγ/2e

)
− 1 +

dγ/2e−2∑
i=0

(
γ − i
dγ/2e − i

)
. (13)

Proof: See Appendix A. �

Since the number of memory cells is equal to N , the
redundancy of the BF-based architecture satisfies

RBF ≤ N(1 +Dγ + γ(ρ− 2))/(RN)

≤ (1 +Dγ + γ(ρ− 2))/((1− γ/ρ)). (14)

On the other hand, γ (γ − 1)-input MAJ gates need
to be implemented in each variable node if the GB-based
architecture is used. In this case we have

RGB ≤ γ(1 +Dγ−1 + γ(ρ− 2))/((1− γ/ρ)). (15)

5 10 15 20
50

100

150

200

250

300

350

400

450

500

ρ

R
ed

un
da

nc
y

BF−based memory
GA−based memory
GB−based memory

Fig. 4: Complexities of different memory architectures (γ =
4).

In the GA-based architecture γ (γ − 1)-input comparator
gates are implemented in each variable node. It is known
that the (γ− 1)-input comparator gate can be implemented as
(γ − 2) 2-input comparator gates, which gives the following
redundancy [11]

RGA ≤ (γρ− 1)/((1− γ/ρ)). (16)

We illustrate the redundancies of different architectures in Fig.
4, for γ = 4. It can be observed that the GA-based architecture
is slightly less complex then the BF-based architecture, while
the GB-based architecture requires much higher redundancy.
However, the GB-based memory enables the strongest pro-
tection against component failures. It can be noted that for
all architectures exist optimal code parameters that guarantee
minimal redundancy. The lowest redundancy is achieved when
the GA-based memory architecture with (3,6)-regular LDPC
code is used and it is upper bound to 34. From Taylor’s
definition follows that the storage capacity satisfies C ≥ 1/34
[11].

B. Guaranteed Error Correction of the BF-Based Memory

All three architectures perform well in the asymptotic
case and are considered to be stable. In this subsection we
investigate the performance of memories that employ finite
length codes, in terms of the number of failures that can be

7

8 10 12 14 16 18 20 22 24 26 28 30
0

20

40

60

80

100

120

140

γ

α to
ta

l N

g=8
g=10
g=12
g=14

Fig. 5: Number of component failures that can be tolerated by
BF-based architecture.

tolerated by the correcting circuit. We consider the BF-based
memories since similar results are not known for the other two
types of memory architectures.

Let αm be a fraction of memory cell failures between two
update cycles. Similarly, let α⊕ and αγ denote fractions of
2-input XOR gates and MAJ logic gates, respectively, that
can fall during and update cycle. Then, the following theorem
gives a fraction of component failures that can be tolerated if
a good expander code is used.

Theorem 2. Consider a (γ, ρ, α, 7/8γ) expander. The BF-
based memory architecture can tolerate a constant fraction of
errors in all the components if

αm + γ(ρ− 2)α⊕ + αγ < 3α/8. (17)

Proof: See [9]. �

Let αtotal = αm + γ(ρ − 2)α⊕ + αγ . Then, αtotalN
represents the total number component failures that can be
tolerated by the BF-based memory. The following theorem
bounds the total number of component failures when the finite-
length code is used.

Theorem 3. Consider a (γ ≥ 8, ρ ≥ γ)-regular LDPC code
whose Tanner graph has girth g = 2g0. Then, the BF-based
memory architecture can tolerate αtotalN component errors
in all the components if

αtotalN < 9n0(γ/4, g0)/32. (18)

Proof: Follows directly from Theorem 1 and Theorem 2. �

We next numerically express αtotalN for different values
of γ and g in Fig. 5. It can be observed that if a code with
low girth value (for example g = 8) is chosen the number
of memory failures that can be tolerated is relatively small
even for large γ. On the other hand, increasing g leads to
polynomial increase of the number of tolerable errors. For
example, if γ = 15 for g = 12 the memory architecture can
tolerate 12 errors, while for g = 14 the number of tolerable
errors is equal to 20.

VI. DISCUSSION

This paper represents a survey on fault-tolerant memories
that are based on LDPC codes. We presented low complexity
memory architectures that show good asymptotic behaviour,
and provided finite-length analysis for the case of the BF-
based memory. The numerical results reveal the number of
component failures that can be tolerated in terms of structural
parameters such as column wight γ and code girth g.

Low complexity, high code rate and guaranteed error cor-
rection are main reason for dominant use of short-length
Hamming codes in modern storage devices. However, the
complexity of LDPC-based memories grows only linearly
with the code length, which makes this memories competitive
when large number of bits need to be stored. In addition,
there is a high level of robustness in selection of code rates
of LDPC codes. Although, for low γ and g the number
of component failures that can be tolerated is rather small,
the BF-based memory architecture outperforms architectures
based on single-error correction Hammnig codes in terms
of guaranteed error correction capability. Implementation of
LDPC-based architectures with higher g or γ is even more
beneficial, if the memory complexity is not the issue. Note also
that decoding of Hammning codes is not resistent to failures
in logic gates, which can significantly degrade the memory
performance.

There is a number of open questions related to the coded
memories. There were little attempts to give closer bounds
on the storage capacity, which remains open research topic.
The more practical results which would incorporate specifics
of data-dependent failure model, presented in Section III-
B, are also welcome. Although, data-dependent failures were
investigated recently by Brkic et al. [23], [29], [32] the explicit
memory reliability analysis were not provided. Recently, it
was shown by Vasic et al. [38] that logic gate failures in
certain scenarios can improve the performance of the Gallager-
B decoder. Harvesting these surprising effects in memory
architectures seams challenging research direction.

APPENDIX A (PROOF OF LEMMA 1)

The Boolean function that performs majority voting over
γ inputs can be decomposed into two parts: the first part
that examines every combinations of dγ/2e inputs and the
second part that collects observations from the first part. For
the first part we require

(
γ
dγ/2e

)
dγ/2e-input AND gates, while(

γ
dγ/2e

)
-input OR gate is used in the second part. We know

that n-input AND gate can be further decomposed into n− 1
2-input AND gates. However, if decompose AND gate in a
such way, some 2-input AND gates would appear more then
ones in the implementation. To avoid this situation and to
calculate what is the the minimal number of gates that is
actually needed, we decompose all AND gates in parallel. Let
fdγ/2e(x1, x2, . . . , xdγ/2e) denote dγ/2e-input AND, where
input arguments x1, x2, . . . , xdγ/2e are chosen from a set of γ
inputs. This function can be divided by

fdγ/2e(x1, x2, . . . , xdγ/2e)

= fdγ/2e−1(x1, x2, . . . , xdγ/2e−1)xdγ/2e, (19)

8

which produces
(

γ
dγ/2e

)
different 2-input AND gates. The

previous decomposition can be continued, and we have
fdγ/2e−1(x1, x2, . . . , xdγ/2e−2)xdγ/2e−2, where a set of possi-
ble inputs is reduced to γ−1. This gives additional

(
γ−1
dγ/2e−1

)
different 2-input AND gates. Further iterative decomposition
of multi-input AND gates leads to Eq. (13).

ACKNOWLEDGEMENT

This work was supported by the Seventh Framework Pro-
gram of the European Union, under Grant Agreement number
309129 (i-RISC project), and in part by the NSF under Grants
CCF-0963726 and CCF-1314147. Bane Vasic acknowledges
generous support of The United States Department of State
Bureau of Educational and Cultural Affairs through the Ful-
bright Scholar Program.

REFERENCES

[1] S. Ghosh and K. Roy, “Parameter variation tolerance and error resiliency:
New design paradigm for the nanoscale era,” Proceedings of the IEEE,
vol. 98, no. 10, pp. 1718–1751, Oct. 2010.

[2] J. Von Neumann, “Probabilistic logics and the synthesis of reliable
organisms from unreliable components,” in Automata Studies, C.E.
Shannon and J. McCarty, eds., Princeton Univ. Press, July 1956, pp.
43–98.

[3] R. Dobrushin and S. Ortyukov, “Upper bound on the redundancy of self-
correcting arrangements of unreliable functional elements,” Problemy
Peredachi Informatsii, vol. 13, no. 3, pp. 82–89, 1958.

[4] P. Elias, “Computation in the presence of noise,” IBM Journal of
Research and Development, vol. 2, no. 4, pp. 346–353, Oct. 1958.

[5] M. Taylor, “Reliable information storage in memories designed from
unreliable components,” Bell System Technical Journal, vol. 47, pp.
2299–2337, 1968.

[6] A. Kuznetsov, “Information storage in a memory assembled from
unreliable components,” Problems of Information Transmission, vol. 9,
pp. 254–264, 1973.

[7] B. Vasic and S. K. Chilappagari, “An information theoretical framework
for analysis and design of nanoscale fault-tolerant memories based on
low-density parity-check codes,” IEEE Transactions on Circuits and
Systems I, Regular Papers, vol. 54, no. 11, pp. 2438–2446, Nov. 2007.

[8] S. K. Chilappagari and B. Vasic, “Reliable memories built from unreli-
able components based on expander graphs,” arXiv:0705.0044v1 [cs.IT],
May 2007.

[9] S. Chilappagari and B. Vasic, “Fault tolerant memories based on ex-
pander graphs,” in Proceedings of IEEE Information Theory Workshop,
Tahoe City, CA, USA, 2–7 Sep. 2007, pp. 126–131.

[10] M. Ivkovic, S. K. Chilappagari, and B. Vasic, “Construction of memory
circuits using unreliable components based on low-density parity-check
codes,” in Proceedings of IEEE Global Telecommunications Conference
(GLOBECOM 06), San Francisco, CA, USA, Nov. 2006, pp. 1–5.

[11] L. Varshney, “Performance of LDPC codes under faulty iterative de-
coding,” IEEE Transactions on Information Theory, vol. 57, no. 7, pp.
4427–4444, July 2011.

[12] S. M. S. Tabatabaei Yazdi, H. Cho, and L. Dolecek, “Gallager B decoder
on noisy hardware,” IEEE Transactions on Communications, vol. 61,
no. 5, pp. 1660–1673, May 2013.

[13] C. Kameni Ngassa, V. Savin, and D. Declercq, “Min-Sum-based de-
coders running on noisy hardware,” in Proceedings of IEEE Global
Telecommunications Conference (GLOBECOM 13), Atlanta, USA, Dec.
2013, pp. 1–5.

[14] A. Balatsoukas-Stimming and A. Burg, “Density evolution for min-
sum decoding of LDPC codes under unreliable message storage,” IEEE
Communications Letters, vol. 18, no. 5, pp. 849–852, May 2014.

[15] E. Dupraz, D. Declercq, B. Vasic, and V. Savin, “Finite alphabet iterative
decoders robust to faulty hardware: Analysis and selection,” in 8th
International Symposioum on Turbo Codes and Iterative Information
Processing (ISTC), Bremen, Germany, Aug. 2014, pp. 1–10.

[16] M. Sipser and D. Spielman, “Expander codes,” IEEE Transactions on
Information Theory, vol. 42, no. 6, pp. 1710–1722, Nov. 1996.

[17] D. Burshtein and G. Miller, “Expander graph arguments for mes-
sagepassing algorithms,” IEEE Transactions on Information Theory,
vol. 47, no. 2, pp. 782–790, Feb. 2001.

[18] J. Feldman, T. Malkin, R. A. Servedio, C. Stein, and M. J. Wainwright,
“LP decoding corrects a constant fraction of errors,” IEEE Transactions
on Information Theory, vol. 53, no. 1, pp. 82–89, Jan. 2007.

[19] M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson, “Random-
ness conductors and constant-degree lossless expanders,” in STOC 02:
Proceedings of the thiry-fourth annual ACM symposium on Theory of
computing, New York, NY, USA: ACM Press, 2002, pp. 659–668.

[20] S. K. Chilappagari, D. V. Nguyen, B. Vasic, and M. W. Marcellin, “On
trapping sets and guaranteed error correction capability of LDPC codes
and GLDPC codes,” IEEE Transactions on Information Theory, vol. 56,
no. 4, pp. 1600–1611, Apr. 2010.

[21] D. V. Nguyen, S. K. Chilappagari, M. W. Marcellin, and B. Vasic, “On
the construction of structured LDPC codes free of small trapping sets,”
IEEE Trans. Inf. Theory, vol. 58, no. 4, pp. 2280–2302, Apr. 2012.

[22] X. Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular pro-
gressive edge-growth tanner graphs,” IEEE Trans. Inf. Theory, vol. 51,
no. 1, pp. 386–398, Jan. 2012.

[23] S. Brkic, P. Ivanis, and B. Vasic, “Majority logic decoding un-
der data-dependent logic gate failures,” submitted for publication,
http://arxiv.org/abs/1507.07155.

[24] S. Mukhopadhyay, H. Mahmoodi, and K. Roy, “Modeling of failure
probability and statistical design of SRAM array for yield enhancement
in nanoscaled CMOS,” IEEE Transactions on Computer-aided Design
of Integreted Circuits and Systems, vol. 24, no. 12, pp. 1859–1880, Dec.
2005.

[25] S. Schechter, G. H. Lohy, K. Strauss, and D. Burger, “Use ECP, not
ECC, for hard failures in resistive memories,” in Proc. International
Symposium on Computer Architecture - ISCA, June 2010.

[26] C. Heegard, “Partitioned linear block codes for computer memory with
’stuck-at’ defects,” IEEE Transactions on Inforamtion Theory, vol. 29,
no. 6, pp. 831–842, Nov. 1983.

[27] Y. Kim and V. K. V. Kumar, “Coding for memory with
stuck-at defects,” [Online Available] http://arxiv.org/ftp/arxiv/papers/
1304/1304.4821.pdf.

[28] S. Zaynoun, M. S. Khairy, A. M. Eltawil, F. J. Kurdahi, and A. Khajeh,
“Fast error aware model for arithmetic and logic circuits,” in Proceedings
of 30th IEEE International Conference on Computer Design (ICCD),
Montreal, QC, Sept.–Oct. 2012, pp. 322–328.

[29] S. Brkic, P. Ivanis, and B. Vasic, “Analysis of one-step majority logic
decoding under correlated data-dependent gate failures,” in Proceedings
of IEEE International Symposium on Information Theory (ISIT 2014),
Honolulu, USA, June–July 2014, pp. 2599–2603.

[30] J. Chen, C. Spagnol, S. Grandhi, E. Popovici, S. Cotofana, and A. Amar-
icai, “Linear compositional delay model for the timing analysis of sub-
powered combinational circuits,” in Proc. of IEEE Comp. Soc. Annual
Symp. on VLSI, July 2014.

[31] A. Amaricai, S. Nimara, O. Boncalo, J. Chen, and E. Popovici, “Prob-
abilistic gate level fault modeling for near and sub-threshold CMOS
circuits,” in Proc. 17th Euromicro Conf. on Digital Syst. Design (DSD),
Verona, Avg. 2014, pp. 473–479.

[32] S. Brkic, O. Al Rasheed, P. Ivanis, and B. Vasic, “On fault tolerance
of the Gallager B decoder under data-dependent gate failures,” IEEE
Communications Letters, vol. 19, no. 8, pp. 1299–1302, Aug. 2015.

[33] O. Al Rasheed, P. Ivanis, and B. Vasic, “Fault-tolerant probabilistic
gradient-descent bit flipping decoder,” IEEE Communications Letters,
vol. 18, no. 9, pp. 1487–1490, Sept. 2014.

[34] F. Leduc-Primeau and W. Gross, “Faulty Gallager-B decoding with
optimal message repetition,” in Proceedings of 50th Allerton Conference
on Communication, Control, and Computing, Monticello, USA, Oct.
2012, pp. 549–556.

[35] R. G. Gallager, Low Density Parity Check Codes. Cambridge, MA,
USA: MIT Press, 1963.

[36] E. Dupraz, Declercq, and B. Vasic, “Analysis of Taylor-Kuznetsov
memory using one-step majority logic decoder,” in Proceed-
ings of 10th Information Theory and Applications Workshop (ITA
2015), San Diego, CA, Feb. 2015, paper 273, [Online Available:]
http://ita.ucsd.edu/workshop/15/files/paper/paper 3446.pdf.

[37] S. Chilappagari, M. Ivkovic, and B. Vasic, “Analysis of one step majority
logic decoders constructed from faulty gates,” in Proceedings of IEEE
International Symposium on Information Theory (ISIT 2006), Seattle,
USA, July 2006, pp. 469–473.

[38] B. Vasic, P. Ivanis, S. Brkic, and R. V., “Fault-resilient de-
coders and memories made of unreliable components,” in Proceed-
ings of 10th Information Theory and Applications Workshop (ITA
2015), San Diego, CA, Feb. 2015, paper 273, [Online Available:]
http://ita.ucsd.edu/workshop/15/files/paper/paper 273.pdf.

