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This paper proposes three mathematical models for reliability probability density function modeling the interconnect 
supplied at sub-threshold voltages: spline curve approximations, Gaussian models,and sine interpolation. The proposed 
analysis aims at determining the most appropriate fitting for the switching delay – probability of correct switching for 
sub-powered interconnects. We compare the three mathematical models with the Monte-Carlo simulations of 
interconnects for 45 nm CMOS technology supplied at 0.25V.  
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RELIABILITY ISSUES OF INTERCONNECTS 
 

 One of the most important issues in the today’s nanometer CMOS devices is represented by their low 
reliability. One of the most important causes of the poor reliability is related to the process variations, which means 
that the physical attributes of both transistors and the wires connecting them vary for different components. These 
issues are further augmented by the aggressive voltage scaling performed in order to address the power consumption 
issues in the modern digital circuits. Due to the process and supply voltage variations, as well as the very low supply 
voltages, equal or smaller than the transistors threshold voltages, CMOS circuits present a probabilistic behavior.  

Regarding the interconnects, the most important reliability factors are represented by crosstalk and 
processed variations. Crosstalk (capacitive and inductive) represents the effect of the neighboring wires having on a 
target wire [9]. Capacitive crosstalk is due to the capacitive coupling between the two neighboring wires. Inductive 
crosstalk manifests over multiple wires. In today’s nanometer technology, the capacitive effect is the dominant 
component of the crosstalk.  Crosstalk manifests in two ways: it may determine a glitch on a static wire (a wire 
which does not switches) or it may affect the delay characteristics of switching wires. In both cases, the crosstalk is 
data dependent. The crosstalk effects on wire are aggravated by the process variations. For interconnects, these are 
due: device geometry variations, device material and electrical parameter variations, interconnect geometry and 
material parameter variations [1, 2, 6]. These types of variations affect the electrical measures of the interconnect - 
resistance, capacitance or inductance.  Due to these variations, both the crosstalk effect and the timing characteristics 
of the signals are affected. Thus, an erroneous logic value when the signal is sampled may result [1]. 

In this paper, we aim to model the reliability-delay functions of sub-powered interconnects affected by 
crosstalk effects and process and voltage variations. Our main goal is to determine the probability density functions 
for switching wires.  In the following we’ll establish a connection between matrix vector multiplication using Sine, 
𝐵 − 𝑠𝑠𝑠𝑠𝑠𝑠 and Gauss fit methods and an application having as input data a fair column vector n_Si, n_Sp and n_Ga 
denoting corresponding correct logic values frequencies of appearance in a given division interval as an independent 
variable and the column vector MedInt – dependent variable taken as the reference interval average. 



INTERCONNECT SIMULATIONS 
 

We have performed Monte Carlo SPICE simulations for interconnect consisting of 3 wires driven by 3 
inverter gates. We have utilized a PTM Resistor (R), Inductor (L), Capacitive (C) model for a local interconnect, 
while the drivers have been implemented using 45 nm PTM transistor models [8]. The simulated wires have the 
following dimensions:  50 um length, 70 nm spacing between 2 wires, a 70 nm width, 150 nm thickness and 150 nm 
height from ground plates. The circuit comprising of the 3 wires driven by the 3 CMOS inverter gates has been 
supplied at 0.25 V. We have simulated voltage and process variations. The process variations consisted in the 
variation of RLC parameters. We have applied the process variations only to metal wires and not for the inverter 
drivers. We have performed Monte Carlo consisting of 5000 simulations for each set of switching input 
combinations (35 input combinations for 3 wires). 

 
PROPOSED PROBABILITY DENSITY FUNCTIONS MODELING 

 
Prediction Model Using B-Spline Method  

 
Given 𝑚 real valued 𝑡𝑖, called 𝑘𝑘𝑘𝑘𝑘, with 𝑡0 ≤ 𝑡1 ≤ ⋯ ≤ 𝑡𝑚−1 a 𝐵 − 𝑠𝑠𝑠𝑠𝑠𝑠 of degree 𝑛 is a parametric curve 

𝑆: [𝑡𝑛, 𝑡𝑚−𝑛−1] → ℝ composed of a linear combination of 𝑏𝑏𝑏𝑏𝑏 𝐵 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑖,𝑛 of degree 𝑛  

𝑆(𝑡) = � 𝑃𝑖𝑏𝑖,𝑛(𝑡)
𝑚−𝑛−2

𝑖=0

, 𝑡 ∈ [𝑡𝑛, 𝑡𝑚−𝑛−1] 

The points 𝑃𝑖 ∈ ℝ are called 𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝 or 𝑑𝑑 𝐵𝐵𝐵𝐵 𝑝𝑝𝑝𝑝𝑝𝑝. There are 𝑚 − 𝑛 − 1 control points and the 
convex hull of the control points is a bounding volume of the curve. Note that the first and last 𝑛 knots lie outside 
(or equal to the end) of the defined range of the function parameter 𝑡 [4]. 

The 𝑚 − 𝑛 − 1 basis 𝐵 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑 𝑛 can be defined, for 𝑛 = 0,1, …𝑚 − 2, using the Cox-de Boor 
recursion formula 

𝑏𝑗,0(𝑡) ∶= �1 𝑖𝑖 𝑡𝑗 ≤ 𝑡 < 𝑡𝑗+1
0 𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒

, 𝑗 = 0, …𝑚 − 2,   𝑏𝑗,𝑛(𝑡) ∶=
𝑡 − 𝑡𝑗
𝑡𝑗+𝑛 − 𝑡𝑗

𝑏𝑗,𝑛−1(𝑡) +
𝑡𝑗+𝑛+1 − 𝑡
𝑡𝑗+𝑛+1 − 𝑡𝑗+1

𝑏𝑗+1,𝑛−1(𝑡),

𝑗 = 0, … ,𝑚 − 𝑛 − 2 
Smoothing spline gives 𝑓(𝑥)  =  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓 𝑝, where 𝑥 is normalized by mean 

13.32 and standard deviation 3.174, smoothing parameter 𝑝 =  0.9991119, goodness of fit in Table 1. 
As prediction method, the function-model stated above has a good fit as expressed by SSE, both R-square 

evaluation methods and the RMSE as well. The prediction model offers mostly well distributed points where the 
prediction function has its range with almost the same mean and standard deviation, but having different finite 
differences between consecutive points than the original vector. The graphic of the function is shown in Figure 1. 
 

Prediction model using Sine interpolation method  
 

The band-limited interpolant to 𝛿 is the 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑁: 𝑆𝑁(𝑥) = sin(𝜋𝜋 ℎ)⁄
(2𝜋 ℎ⁄ ) tan(𝑥 2⁄ )

. 

Note that since tan 𝑥 2⁄ ~𝑥 2⁄  as 𝑥 → 0, 𝑆𝑁(𝑥) behaves like the nonperiodic 𝑠𝑠𝑠𝑠 function 
𝑆ℎ(𝑥) = (sin(𝜋𝜋 ℎ⁄ )) (𝜋𝜋 ℎ⁄ )⁄  in the limit 𝑥 → 0 – independently of ℎ [7]. 

An expansion of a periodic grid function 𝑣 in the basis of shifted periodic delta functions takes the form 𝑣𝑗 =
∑ 𝑣𝑚𝛿𝑗−𝑚𝑁
𝑚=1  in analogy to 𝑣𝑗 = ∑ 𝑣𝑚𝛿𝑗−𝑚∞

𝑚=−∞  Thus the band-limited interpolant of  

𝑝(𝑥) =
1
2

� 𝑒𝑖𝑖𝑥𝑗𝑣�𝑘

𝑁/2

𝑘=−𝑁/2

, 𝑗 = 1, …𝑁 

(where the terms 𝑘 = ±𝑁/2 are multiplied by 1
2
), can be written in analogy to 𝑝(𝑥) = ∑ 𝑣𝑚𝑆ℎ(𝑥 − 𝑥𝑚)∞

𝑚=−∞  as 
𝑝(𝑥) = ∑ 𝑣𝑚𝑆𝑁(𝑥 − 𝑥𝑚)𝑁

𝑚=1 . The general model Sin8 is given by: 



𝑓(𝑥) = 𝑎1 sin(𝑏1𝑥 + 𝑐1) + 𝑎2 sin(𝑏2𝑥 + 𝑐2) + 𝑎3 sin(𝑏3𝑥 + 𝑐3) + 𝑎4 sin(𝑏4𝑥 + 𝑐4) + 
+𝑎5 sin(𝑏5𝑥 + 𝑐5) + 𝑎6 sin(𝑏6𝑥 + 𝑐6) + 𝑎7 sin(𝑏7𝑥 + 𝑐7) + 𝑎8 sin(𝑏8𝑥 + 𝑐8) 

Goodness of fit is given in Table 1. 
As prediction method, the function-model stated above has a good fit as expressed by SSE, both R-square 

evaluation methods and the RMSE as well. The prediction model offers mostly well distributed points where the 
prediction function has its range with almost the same mean and standard deviation, but having different finite 
differences between consecutive points than the original vector. The graphic of the function is shown in Figure 1. 

Here the fitness is pursued through the Nonlinear Least Squares using Levenberg-Marquard algorithm with a 
given 400 maximum of iterations. 

 
Prediction Model Using Gauss Interpolation Method  

 
In curve fitting by a sum of Gaussians the objective is to find the minimum number of Gaussians that can 

approximate a data set with a prescribed accuracy. When a data set is represented by a sum of Gaussians, a subset 
containing only very wide Gaussians will generate a coarse representation, and as narrower Gaussians are included, 
finer representations will be obtained [3]. 

In one dimension, the Gaussian function is the probability density function of the normal distribution,  
  sometimes also called the frequency curve (see [11]): 

 
 

 
General model Gauss8 is given by: 
     f(x) = a1*exp(-((x-b1)/c1)^2) + a2*exp(-((x-b2)/c2)^2) + a3*exp(-((x-b3)/c3)^2) + a4*exp(-((x-b4)/c4)^2) + 

a5*exp(-((x-b5)/c5)^2) + a6*exp(-((x-b6)/c6)^2) + a7*exp(-((x-b7)/c7)^2) + a8*exp(-((x-b8)/c8)^2). 
Goodness of fit is given in Table 1. 

 
 

 
 
 
 

TABEL 1. Representation of goodness of fit for the given series for the three methods 

 

 

 
FIGURE 1. Dependence of probability of correctness on the considered delay for the Inverter operating at 25ºC for 0-1 output 

switching (probabilities on the 2 ns - 5 ns interval) . B-spline, Sine and respectively Gauss interpolated prediction functions 
which approximate the probabilities of the output switching on the 2 ns - 5 ns interval depending on the average value MedInt.. 

     Fit 
Method 

SSE R-square Adjusted R-square RMSE 

B-Spline 51.55 0.9296 0.8253  0.16 
Sine  791.5 -0.08047 -0.08546 0.3988 
Gauss 727.5 0.00820 0.003622 0.3824 

http://mathworld.wolfram.com/ProbabilityDensityFunction.html
http://mathworld.wolfram.com/NormalDistribution.html
http://mathworld.wolfram.com/FrequencyCurve.html


 
The dots represented in the above figure are the values of the variable n_Si, n_Sp and n_Ga taken over each 

interval of measurement. The closest functions which could approximate this statistical series are B-spline, Sine and 
respectively Gauss interpolated prediction functions. Their definition domains consist of the continuous reunion of 
all measurement intervals, and their values are also in continuous intervals ranging from the minimum value of all 
intervals to the maximum value of all intervals.  

The blue line figured function represents the B-spline, Sine and respectively Gauss interpolated prediction 
functions which approximate the probabilities of the output switching on the 2 ns - 5 ns interval depending on the 
average value MedInt. Now, for the column vector n_Si, n_Sp and n_Ga as an independent variable and the column 
vector MedInt –  dependent variable as the reference interval average, fit computation did not converge: fitting 
stopped because the number of iterations or function evaluations exceeded the specified maximum ([5], [10]). 

Fit was found when optimization terminated, but as seen below, SSE and RMSE have too big values for the 
Gauss8 method to be considered a good approximation and prediction method (graph in Figure 1).  

 
CONCLUSIONS 

 
It is possible to establish a ranking among previous selected methods of approximation. As seen by RMSE 

and SSE values for the selected discrete variables together with their dependencies, as those values drop the better 
approximation we get. Unfortunately, the known interpolation and approximation methods used above (Gauss, Sine) 
does not provide good fitting. Spline curves method proved itself the best one in low values for RMSE and SSE, but 
also for best curve fitting obtained in a minimum number of iterations.  
 It’s worth studying a combination of the above methods for the given data but also to apply this research to 
a bigger volume of data, thus minimizing error rates and getting less sparse variable values on a greater number of 
division intervals. 
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