MUDRI: A Fault-Tolerant Decoding Algorithm

Predrag Ivanis
School of Electrical Engineering,
University of Belgrade
Email: predrag.ivanis@etf.rs

Abstract—We propose an improved version of probabilistic
gradient descent bit flipping algorithm for decoding low density
parity check codes, based on MUltiple Decoding attempts and
Random re-Initializations (MUDRI). The proposed algorithm
significantly increases the probability of correcting error patterns
uncorrectable by the existing variants of bit-flipping algorithm.
The performance of the algorithm implemented in noisy hard-
ware is analyzed for various code types and codeword lengths,
and shown to be superior compared to other hard decision
algorithms. The MUDRI decoder is mostly insensitive to the
failures in registers and logic gates and therefore represents a
desirable solution for implementation in unreliable hardware.

I. INTRODUCTION

High integration factor of integrated circuits together with
low power consumption requirements makes emerging semi-
conductor devices inherently unreliable [1]. Traditional von
Neumann-type triple modular redundancy architectures that
ensure fault tolerance are inefficient in handling such increased
unreliability thus requiring solutions based on error control
coding. In traditional models of computer and communications
systems with error correction coding, it is assumed that the
operation of a decoder is deterministic and the randomness (in
the form of noise and/or errors) exists only in the communi-
cation/storage channel elements. While appropriate in systems
where the reliability of registers and logic gates used in the
decoder is many orders of magnitude higher than the reliability
of the channel, this assumption is invalid if digital logic in the
decoder is built of faulty components.

Recently there was a surge in research in fault-tolerant
decoders. Vasic and Chilappagari [2] established and in-
formation theoretical framework for analysis and design of
faulty decoders for low-density parity-check (LDPC) codes.
They have also analyzed bit-flipping decoding [2] or one-
step majority logic (MAJ) decoding [3], [4]. Methods for
performance analysis of more complex decoders built from
unreliable hardware based on the sum-product algorithm (SPA)
[5] and its suboptimal (min-sum algorithm) version [6] have
been also developed for transient failure model. In the similar
context, finite-alphabet decoders (FAID) were analyzed by
Huang and Dolecek in [7]. Density evolution analysis of the
simplest massage-passing algorithm (Gallager-B) implemented
in noisy hardware is given in [8] and [9].

The bit-flipping (BF) decoder is an attractive candidate
for high speed applications when only hard decisions are
available at the channel output, but since its performance is
typically inferior when compared to the Gallager-B algorithm

Omran Al Rasheed
School of Electrical Engineering,
University of Belgrade
Email: omrano84 @hotmail.com

Bane Vasié¢
Department of ECE,
University of Arizona

Email: vasic@ece.arizona.edu

[9], numerous ingenious improvements of the BF algorithms
have been proposed in the literature (see [10] and references
therein) with the aim to close this gap. Recently, we proposed
an modification of Gradient Descent Bit Flipping (GDBF)
[11], appropriate for binary symmetric channel (BSC). The
algorithm incorporates the idea of Probabilistic Bit Flipping
(PBF) [12] in GDBF, with some additional improvements.
The resulting algorithm, that we named Probabilistic Gradient
Descent Bit Flipping (PGDBF) algorithm, was shown to be
resilient to logic gate failures [13].

A probabilistic analysis of the PGDBF performed in this
paper reveals that the PGDBF is not capable of correcting
some low-weight error patterns. Therefore, we propose a mod-
ification of the algorithm, based on the principle of MUItiple
Decoding attempts and Random re-Initializations (MUDRI)
of decoders. A similar approach has resulted in improved
performance of non-faulty (perfect) FAID [14]. The MUDRI
decoder modification combined with new threshold adaptation
method results in significant performance improvement and
high level of immunity to the failures in registers and logic
gates, We also demonstrate the algorithm’s ability to control
logic gate failures on the various code types - quasi-cyclic
(QQC), progressive edge growth (PEG) and Latin squares based
(LS), with different column weights and codeword lengths.

The rest of the paper is organized as follows. Section II
gives the necessary background. In Section III we present the
MUDRI decoder. Section IV gives the performance analysis
in the presence of hardware failures and comparison with the
other decoding algorithms, and Section V concludes the paper.

II. PRELIMINARIES

Let C denote an (N, K) binary LDPC code with rate
R = K/N, defined by the null space of H, an M x N parity
check matrix. Tanner graph representation of C, denoted by G,
consists of the set of variable nodes V' = {v1,vs, ...,un} and
the set of check nodes C' = {c1,¢2,...,cnm}. Two nodes are
neighbors if there is an edge between them. A code represented
by the graph G is said to be have a regular column-weight -y
if all variable nodes in V' have the same number of neighbors
4. The p-regular check regular code is defined analogously.

The set of neighbors of a variable and check nodes is
denoted as A, and A, respectively. Let x = (z1,Z2,...,ZN)
denote a codeword of C, where z, denotes the value of the
bit associated with variable node v. The effect of the BSC
with crossover probability « is modeled by an N-dimensional

binary random variable with independent coordinates F,,, such
that Pr(E, = 1) = o,v = 1,2,..., N where e, is realization of
E,. The vector received by a decoder is y = (y1,¥2, ..., YnN),
where y, = z, ® e, and @ is the modulo-two sum. We shall
refer to variable nodes initially in error as erroneous nodes
and variable nodes initially correct as correct nodes.

We consider iterative decoders which at the [-th iteration
(I € [0, L], where L is maximal number of iterations) produce
the estimate X() as an output. The GDBF algorithm for all
variable nodes v calculates the inverse function [11, Eqn. (6)]

AP OGm) =xPm+ > T x®, (1)
eeN, ueN,
where xg) =1- 2:?:,(,” and 7, = 1 — 2y, denote the “bipolar”
versions of :&9) and y,. The estimate of a variable node v
is initialized as x,(,o) = 1)y, and in the [-th iteration only
the symbols with minimum value of the inverse functions are
inverted to obtain xgH).

In [13], we shown that the GDBF algorithm can be adapted
to the BSC. By using modulo-2 arithmetic, we have shown
that the inverse function for the case of regular column-weight
4 codes can be minimized by maximization of the following
modified inverse function (MIF) [13]

AD&y)=iP oy, + Y P 20, @
ceN, ueN,

In the PGDBF algorithm, the refreshed estimation in the
[-th iteration is calculated as [13]

1 = {

where b() denotes the largest value of the MIF at the I-th
iteration, i.e., b = max(Ag)(ic,y)], and a, denotes a real-

a, ® 29, AP (%,y) = b,

)
89, 10(z,y) <10, @

ization of Bernoulli B(1, p) random variable. The parameter p
introduces a randomness in the flipping process, and if p = 1,
PGDBF corresponds to deterministic GDBF for BSC channel.

In hardware, the calculation of Ag)(i, y) requires: (i) v p-
input exclusive or (XOR) gates which compute the parities in
the neighboring check nodes, (ii) one two-input XOR gate to
check if the v-th bit of the current estimate is the same as
the bit initially estimated from the channel, and (iii) one (y +
1)-input MAJ gate with adaptable threshold. As it is shown
in [13], the calculation of the threshold b(") can be realized
without a global operation of integer maximizations. b(¥) is
initialized to the maximum possible value (b():7%# = ~ 4+ 1),
and decremented every time when all the MAJ gate outputs
are zero. In this decrementation procedure, the first occurrence
of a non-zero MAJ gate output indicates that the threshold
reached the maximal MIF value. After that, a change of at
least one MAJ gate output with respect to its previous value
indicates that maxg (A,[,n(fc, ¥)), the second MIF maximum is

o

reached.

Fig. 1. a) A three-bit pattern, b) the pattern in the second iteration of GDBF.

ITI. THE MUDRI ALGORITHM

In this section, we propose a modification of PGDBF
algorithm presented in [13]. We begin with three illustrative
examples, exhibiting a method used to analyze probabilistic
algorithms and presenting the intuition behind our decoder.

A. Example 1

Due to their very nature, probabilistic BF algorithms render
inapplicable the trapping set analysis method developed for
their deterministic counterparts [10]. In order to analyze the
correctability of low-weight error patterns, let us consider a a
three-bit error pattern shown in Fig. 1(a), where white (black)
circles represent the correct (erroneous) variable nodes, and the
(black) white squares denote (un)satisfied checks. If the GDBF
algorithm is applied (for which p = 1), the largrest MIF value
b(1) = 2 is associated with variable nodes v;, v, v3 and v, in
the first iteration. These variable nodes are dashed-circled. In
the next iteration, the MIF value b(!) = 4 is associated with
the same variable nodes, as presented in Fig. 1(b). Note that
these nodes have different value compared to the initial values.
As it results in the fixed set [15], this error pattern cannot be
corrected by the GDBF algorithm.

On the other hand, if the PGDBF is applied, the four bits
with the largest MIF are not flipped automatically but are only
the candidates for flipping. It can be shown that there is only
one flipping sequence that results in a successful decoding after
exactly two iterations. Denote by s; the probability that a given
error pattern is successfully decoded in the I-th iteration. In our
example, probability of the flipping sequence f = (f1, f2) =
((0,1,0,1),(1)) is s =p3(1 — p)2.

It is clear that s; = 0, as this pattern cannot be corrected
in the first iteration. Note that other flipping choices resulting
in different flipping sequences might lead to the successful
decoding but, possibly, in a larger number of iterations. We
refer to such flipping sequences as suboptimal. In our case
this number of iterations is [> 2. As there may be many
suboptimal flipping sequences, the closed form expression for
s; is complicated. However, its numerical value can be easily
estimated by using Monte Carlo simulation. The probability
of unsuccessful decoding at the L iteration is obtained as

L

preppr(L)=1-> s)
=1

Fig. 2. a) A five-bit error pattern uncorrectable by using GDBF, b) The second
iteration of PGDBF, after the first iteration with the optimal choice.

B. Example 2

As the PGDBF algorithm is probabilistic in nature, success-
ful decoding of certain types of errors cannot be guaranteed
as it is possible for deterministic algorithms (e.g. algorithm in
[10] correct all triple errors for some codes). By using Eq. (4)
we are able to estimate ppgppr(L) for any error pattern, and
the general conclusion is that it can be reduced by increasing
parameter L. However, there are some error patterns which
have high values of ppgppr(L) even for high values of L,
and one such error pattern is shown in Figure 2(a).

In the first iteration, b() = 3 is associated with the
variable nodes vq, v4 and vs. The PGDBF update rule allows
an independent flipping of all these variables (22 possible
choices), but only some of them are actually flipped. If only vy
is flipped (with the probability p(1 — p)?), the error pattern at
the beginning of the second iteration looks like the one shown
in Fig. 3(b). In this case, b?) = 2 and six bits are considered
for flipping, with 26 possibilities for the flipping choices in this
step. If only the bits that are incorrectly received are chosen
for flipping (v1, v3, ve and v7), with the probability p?(1—p)?,
the decoding process is successfully completed. As only one
flipping sequence results in decoding after two iterations,
the corresponding probability is obtained by multiplying the
probabilities in two successive steps as s = p°(1 — p)*.

However, if a wrong choices are made in a few iterations at
the beginning of decoding, it does not have to be completed
successfully even for very large value of L. Therefore, we
propose the modification of the algorithm. If the syndrome
has non-zero value after I, iterations, the decoding is stopped
and repeated | L/ L, | times starting from the received word for
the other flipping random choices. If the random sequences are
independent, the probability that the decoding fails is

L LB/l
pmupri(L, L) = (1 -y 3;) . ®)
=1

In the special case when L; = L, we have a single attempt
with L iterations, and the above expression reduces to Eq. (4).
The probability of unsuccessful decoding can be minimized
with the proper choice of this parameter L.

C. Example 3

Finally, we show that the four bit error pattern presented
in Fig. 3(a) is uncorrectable by the PGDBF, and propose the

(®

Fig. 3. a) A four-bit pattern critical in PGDBEF, b) the second iteration if b(0) =
max(f\s,” (%,¥)). c) the second iteration if b{) = max(AS,” (%,¥)) —1.
v v

appropriate modification. In the first iteration, only vs has two
unsatisfied checks and it has to be flipped. In the next step (Fig.
3(b)) there are three variable nodes with one unsatisfied check,
but only vs has the value different from the value initially
received from the channel. As the same bit has the maximal
MIF value in two successive iterations, and as failing to flip
cannot help when there are only one candidate, we conclude
that PPGDBF(L) =1 for any L.

In such a situation we propose decrementing the threshold
in variable nodes until it reaches the second largest value,

ie. bi,?od = maxz(AE,”(fc, ¥)). In our example bﬁld =1, the

nodes with A{"(%,y)) > 1 are flipped and the decoding is
successful after the second iteration (Fig. 3(c)).

The above modifications are combined with the PGDBF
algorithm [13] to obtain the MUDRI decoding algorithm,
formally given in Algorithm 1. The modification related to the
threshold adaptation (explained in Example 3) is implemented
as a separate function FUN, where in{") denotes the number
of variable nodes that should be flipped in GDBF in the I-
th iteration. The modification is applied under the condition
that in® = in{~1) = 1 and that in two successive iterations
the maximal MIF value corresponds to the same bit in the
codeword (denoted by v?]).

IV. ANALYSIS AND NUMERICAL RESULTS

In this section, the impact of the parameters in the MUDRI
is considered, and the corresponding numerical results are pre-
sented. Then, the performance of the algorithm implemented
in the faulty hardware is presented to illustrate its robustness
to the logic gate failures.

A. Analysis of the MUDRI algorithm

To evaluate the algorithm performance, we first consider
the decoding of the error patterns presented in the motivating
examples, illustrated in Figures 1(a) and 2(a), for the case
when these patterns appear in the Tanner (155,64) code. The
probability of successful decoding at exactly [iterations is esti-
mated by using Monte Carlo simulation, and the corresponding
probability distributions are presented in Fig. 4.

As expected, the probability that a three-bit error pattern is
not successfully decoded steadily decreases with the increase
of the parameter L, and we obtain ppgppr(100) = 3 x 107°
for the standard PGDBF algorithm. On the contrary, the
simulation results show that the five-bit error pattern from Fig.

Algorithm 1 MUDRI decoder

II] t 015 3
wev: i
80 xm)HT (Vc eC: s« D, 0 ur]
n=0,l= Posgr (25181 x 107

. .05 \

while s(*) ;é Oandn < |L/L| do F
P%wf50|161 Rl
1=0,in® =0, 'U(O)_U VweV: 29y, - | NAARAne Sl .
0) (0) ? 2 4 * Rewmlw ﬂumbzgr uf-1aagow5. | it » 2 2
s « %O FT (Vc eC: s+ Ducn, u)

while s¥) £ 0 and | < L, do L
0 b
Vv € V: Compute Ay’ (X,y))

after exactly |

;)
b0, in®,v{) « FUN (A (%,y), inD, 0§) 2 el
for Vo & V" do | e
i % (1) ' \
if 1}(1}_'_’)(y) = b ; (gle“ > 0005) \ ppcwism-oam\
Ty o 4 5w 5 ® T ERE
se Required number of ferations, |
A 1 =
B 40
end if Fig. 4. Probability distribution of the successful decoding in the I-th iteration
end for of PGDBEF, three-bit and five-bit error pattern, Tanner (155,64) code, p = 0.7.
g(+1) g+ gT
l«1+1 "
end while : r,--—e—*—-‘_‘;:_'_‘_‘_'_":_'_.:;
n<n+1 _ Lo R o R
end while 3 piliseninnsinn 7S
Output: %) & e’ AT
I s 7
§ 10° F 1 Zh E
[rd
Algorithm 2 FUN: Adaptation of threshold in MAJ gates i R S i
-1 g '. g — # — 5-bit pattern, L=100
Inpllt A()(X y) %ﬂ,a 1) ‘U() é 107} i *: — © — 5-bit pattern, L=250
¢ U) =~ r — A — 5-hit pattern, L=500
b0+ max(AD) (%,))
in® = 0,0 = £
for V’U(S V do e :
i % =p®) s IS R IS T B
if A’” (x’ y) b then e 0 5 10 15 20 25 30 35 40 45 50
fén(l) = ’e‘:ﬂ“) +]_ Maximum number of iterations in one attempt, L,
'U?) —v
end if Fig. 5. Probability of unsuccessful decoding for the three-bit and five-bit error
end for pattern, MUDRI with | L/L | attempts per L, iterations each, p = 0.7.

if 1 >1and in® = in(-1 =1 and v?) = v?_l) then
b0 maxy(AY (%,)))
end if ?

2(a) is either corrected in 14 or less iterations, or it cannot be
corrected at all (s; =~ 0 for [> 14). In this case, the probability
of decoding failure is estimated as ppgppr(14) = 0.8768.
The increase of L cannot help by itself, but combined with
the proposed modification with multiple attempts, it results
in lowering probability of unsuccessful decoding. Further
optimization of the parameter L; also results in lowering
PMUDRI, as presented in Fig. 5. It can be noticed that the ; : .

best results are obtained for approximately L; = 6 decoding " W e ¢ e
iterations per attempt.

In Fig. 6, the frame error rate (FER) as a function of

number of iterations is presented for o« = 0.01. Although Fig 6. FER as a function of number of iterations I, Tanner (155, 64) code,
a = 0.01, various decoding algorithms.

Frame Error Rate, FER

-6 MUDRI (p=0.7, L =25)

—o—L5(2388,1793), y=3, P, =0, P =0

—e—15(2388,1793), 4=3, P =10, P_=10""
—o—QC(2212,1880), v=4, P, , =0, P =0
—=—QC(2212,1880), =4, P, =107, P =10

Frame Error Rate, FER
-r"“f

Fig. 7. FER as a function of parameter p, LDPC codes with v = 3 and
v =4, a = 0.004.

it is not convenient to adapt parameter L, for every error
pattern, the simulations indicates that the minimal value of
FER (i.e. pmupri(L,Li) averaged over all received error
patterns) is achieved for L, ~ 25 for Tanner (155,64) code
and this parameter is somewhat larger for longer codes.

It is interesting to notice that while the PBF, GDBF and
Gallager-B decoders need not more than 30 iterations to
converge, after which their FER performance has reached the
lowest possible value, the PGDBF continues to improve its
FER performance up to 100 iterations and results in significant
gain compared to the GDBF. The MUDRI, with ten attempts
per each of L, = 25 iterations, results in an order of magnitude
lower FER when compared to the PGDBF. The algorithm
performance further improves with the increase of parameter
L, to approximately FER=6 x 10~7 when L = 2000.

B. Performance in the faulty hardware implementation

With an aim of demonstrating the robustness of the al-
gorithm to the hardware failures, we consider the canonical
transient von-Neumann logic gate failure mechanism in which
the failures in different gates and in different time instants are
independent and identically distributed. The failures manifest
themselves as random bit flips at the gate outputs. All XOR
gates have probability of failure Pg, and failures in the register
where %() is stored occur with probability Pr. We also
assume that MAJ gates are reliable, i.e. Paras = 0. Although
optimistic, this can be readily realized by using, for example,
larger transistors in MAJ gates. Now we present the numerical
results of Monte Carlo simulations for L = 100 and L; = 50.

First, we present the FER performance of two codes with
similar codeword lengths but different column weights. The
performance of (2388,1793) code (code C;) with girth-8
and v = 3 based on Latin Squares [15] and (2212, 1880)
code (code C;) with girth-6 and 4+ = 4 are determined as
a function of parameter p and presented in Fig. 7. When
p = 1, the algorithm realized in faulty hardware has lower
FER than the algorithm implemented in perfect hardware,
and the performance can be further improved by reducing

10° g —w— Tanner (155,64), p=1
—w— Tanner (155,64), p=0.7
—e— LS (2388,1793), p=1
10 1| —o—Ls (2388,1793), p=0.7
—=— QC (5184,4322), p=1
2| | —o— QG (5184,4322), p=0.7

Frame Ermor Rate, FER

Fig. 8. FER as a function of probability of error in XOR gates, o« = 0.004,
Py = 0, LDPC codes with v = 3 and girth-8, with various code rates and
codeword lengths,

—&— QC(155,64), =3

_ M —e— PEG(504,252), y=3

107 H —=— LS(1503,1004), =3
—o— QC(1580,1264), y=4
.|| —&— LS(2388,1793), v=3
| ——QC(2212,1880), y=4| /

o« :
& :
e df .
o :
a _/‘__,_/ :
»é 10 3‘. TTiniiiiiigEiiinn ERE
o HTEHIE H
@ = . . ¥
510“'_. et T Giiis
w priiiiieiiis riimammariiy :

107° : :

107° 107 b 107° 107

Fig. 9. FER as a function of probability of error in registers, a = 0.008,
Pg, = 1073, LDPC codes with v = 3 and girth-8, various codeword lengths.

the parameter p for both codes. For C; the best performance
is obtained for p ~ 0.7 in the non faulty case, while the
lowest FER is obtained for p ~ 0.8 when Py = 1073, and
Pr = 10~%. This corresponds to the previously published
results for short quasi-cyclic codes with girth-8 and v = 3
[13]. For Co (with v = 4), the best performance are obtained
if p = 0.9 for the non-faulty case, while for the faulty
implementation the optimum value of p is slightly larger.

The FER performance of QC and LS codes with various
code rates are presented in Fig. 8, as a function of the
parameter Pg. If p = 1, the best performance is achieved
for the non-zero value of Fg. On the other hand, if p = 0.7
the FER is significantly reduced for small values of Fg, when
compared to the p = 1 case. More importantly, when p = 0.7
the FER is almost insensitive to Pg in a wide range of FPg
values, up to a certain threshold, and is dominantly determined
by the codeword length. The threshold can be estimated as
Pg tn = 5/N for the codes with v = 3 and girth-8.

—o— Gallager-B, L=500
—p— GDBF, L=500
107'|.| —&— PGDBF, L=500
—a— |PGDBF, L=500
—o— IPGDBF, L=5000
102kl SPA, L=500

Gallage r—B-""—F‘J’I .

SPA

Frame Error Rate, FER
sl

—MUDRI, 50x100|

————MUDRI, 5x100

10 107
Crossover probability in BSC, «

Fig. 10. FER as a function of crossover probability in BSC channel. The code
is LS(2388,1793) (C1), the empty markers corresponds to perfect hardware
and full markers to faulty hardware with Py = 10~3, P = 10~1,p = 0.7
in the PGDBF and MUDRI and other decoding algorithms.

In Fig. 9, we present the FER performance for five LDPC
codes with various code constructions (QC, PEG, LS), column
weights and codeword lengths (available in [16]), and for the
case when a = 0.008, Py = 10723 and p = 0.7. It is clear that
the MUDRI decoder has approximately same performance,
up to a certain threshold of Pg. The value of Pr where
FER doubles with respect to the non-faulty case is dominantly
determined by the codeword length. For the codes with v = 3
and girth-8, this threshold is estimated to be Pg ¢, = 1/(2N).
Although the codes with v = 4 and girth-6 have lower error
correction capability, they are somewhat less sensitive to the
logic gate failures.

The FER performance of C; for various decoders is pre-
sented in Fig. 10. It can be noticed that the Gallager-B out-
performs the GDBF for lower values of crossover probability
in BSC channel and the GDBF is more effective in the water-
fall region. In the presence of gate failures, the performance is
degraded for the Gallager-B decoder, but is improved for the
GDBF (p = 1). The performance of MUDRI with p = 0.7
outperforms all hard decision algorithms for the analyzed
crossover probability, and the increase of the parameter L
results in additional performance improvement. In addition, the
MUDRI is less sensitive to hardware failures when compared
to the Gallager-B and PGDBF.

V. CONCLUSION

By analyzing the characteristics trapping sets, we have im-
proved the PGDBF algorithm. The new algorithm is capable of
correcting error patterns uncorrectable by the GDBF algorithm
and its probabilistic variant. The modification results in a
significant performance improvement, especially in the case
when large maximum number of iterations is permitted. It has
been shown that the corresponding decoder is robust to the
logic gate failures. We have shown that the critical probability

of failure in XOR logic gates and registers is rather insensitive
to the code construction method and rate, and it is mostly
determined by the codeword length.

Our future research focuses on identifying the flipping
sequences resulting in minimum number of iterations required
for successful decoding of critical error patterns. As a result,
we expect to design a low complexity deterministic modifica-
tion of GDBF algorithm with fast convergence.

ACKNOWLEDGEMENT

This work was supported by the Seventh Framework Pro-
gramme of the European Union, under Grant Agreement
number 309129 (i-RISC project), and in part by the NSF under
Grants CCF-0963726 and CCF-1314147.

REFERENCES

[1] S. Ghosh and K. Roy, “Parameter variation tolerance and error resiliency:
New design paradigm for the nanoscale era,” Proceedings of the IEEE,
vol. 98, no. 10, pp. 1718-1751, Oct. 2010.

[2] B. Vasic and S. K. Chilappagari, “An information theoretical framework
for analysis and design of nanoscale fault-tolerant memories based on
low-density parity-check codes,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 54, no. 11, pp. 2438-2446, Nov. 2007.

[3] S. Chilappagari, M. Ivkovic, and B. Vasic, “Analysis of one step majority
logic decoders constructed from faulty gates,” in Proc. 2006 IEEE
International Symposium on Information Theory, July, pp. 469—473.

[4] S. Brkic, P. Ivanis, and B. Vasic, “Analysis of one-step majority logic
decoding under correlated data-dependent gate failures,” in Proc. 2014
IEEE International Symposium on Information Theory (ISIT), June, pp.
2599-2603.

[5] L. Varshney, “Performance of LDPC Codes Under Faulty Iterative
Decoding,” IEEE Transactions on Information Theory, vol. 57, no. 7,
pp. 44274444, July 2011.

[6] C. Kameni Ngassa, V. Savin, and D. Declercq, “Min-Sum-based de-
coders running on noisy hardware,” in Proc, 2013 IEEE GLOBECOM,
Dec.

[7] C.-H. Huang and L. Dolecek, “Analysis of finite-alphabet iterative
decoders under processing errors,” in Proc. 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), May,
pp. 5085-5089.

[8] S. Tabatabaei Yazdi, H. Cho, and L. Dolecek, “Gallager B Decoder
on Noisy Hardware,” IEEE Transactions on Communications, vol. 61,
no. 5, pp. 1660-1673, May 2013.

[9] F. Leduc-Primeau and W. Gross, “Faulty Gallager-B decoding with
optimal message repetition,” in Proc. 50th Annual Allerton Conference
on Communication , Control, and Computing, Oct 2012, pp. 549-556.

[10] D. V. Nguyen and B. Vasic, “Two-Bit Bit Flipping Algorithms for LDPC
Codes and Collective Error Correction,” IEEE Trans. Comm., vol. 62,
no. 4, pp. 1153-1163, April 2014.

[11] T. Wadayama, K. Nakamura, M. Yagita, Y. Funahashi, S. Usami, and
L. Takumi, “Gradient Descent Bit Flipping algorithms for decoding
LDPC codes,” IEEE Transactions on Communications, vol. 58, no. 6,
pp. 16101614, June 2010,

[12] N. Miladinovic and M. Fossorier, “Improved Bit-Flipping decoding of
low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 51,
no. 4, pp. 1594-1606, April 2005.

[13] O. A. Rasheed, P. Ivanis, and B. Vasic, “Fault-Tolerant Probabilistic
Gradient-Descent Bit Flipping Decoder,” IEEE Communications Letters,
vol, 18, no. 9, pp. 1487-1490, Sept 2014,

[14] D. Declercq, E. Li, B, Vasic, and S. Planjery, “Approaching maximum
likelihood decoding of finite length LDPC codes via FAID diversity,” in
Proc. 2012 IEEE Information Theory Workshop (ITW), Sept 2012, pp.
487-491.

[15] D. Nguyen, S. Chilappagari, M. Marcellin, and B. Vasic, “On the
Construction of Structured LDPC Codes Free of Small Trapping Sets,”
IEEE Trans. Inform. Theory, vol. 58, no. 4, pp. 2280-2302, April 2012,

[16] L. Danjean and S. K. Planjery, http://www2.engr.arizona.edw/~vasiclab/
tools/LDPC_Code_List.

