
Faulty Stochastic LDPC Decoders Over the Binary

Symmetric Channel
Christiane L. Kameni Ngassa∗†, Valentin Savin∗, David Declercq†

∗CEA-LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble, France
†ETIS ENSEA/UCP/CNRS UMR 8051, 95014 Cergy-Pontoise Cedex, France

{christiane.kameningassa, valentin.savin}@cea.fr, declercq@ensea.fr

Abstract—The analysis of error correction decoders running
on faulty hardware has attracted an increased interest in recent
years, due to the inherent unreliability of emerging nanodevices.
In this paper we investigate the performance of the stochastic
decoder running on faulty hardware. To this end, we first
introduce two error models to describe the noisy components of
the decoder. We then provide a finite-length statistical analysis
for each error model and, based on the obtained performance, we
conclude that stochastic decoders have an inherent fault tolerant
capability.

I. INTRODUCTION

Over the past few years, there has been an increasing

interest on error correcting decoders built out of unreliable

components. The motivation is are twofold. First, it is widely

accepted that future generation of electronic circuit will be

inherently unreliable, due to increase in density integration and

lower power supply voltage scaling. Second, error correcting

decoders play a crucial role both in reliable transmission of

information and in the design of reliable storage systems.

The asymptotic analysis of Gallager A and Gallager B

LDPC decoders running on faulty hardware has been carried

out in [1] and [2]. [3] studied the asymptotic and finite-

length performance of faulty Min-Sum based decoders. The

study has shown that the reliability of the most significant

bit (sign bit) of exchanged messages has a critical impact on

the performance of Min-Sum based decoders, while tolerates

more errors can be tolerated on less significant bits. The

sign bit should then be specifically protected to ensure the

robustness of noisy Min-Sum based decoders. However, it

can be difficult to properly achieve only the reliability of the

most significant bit since errors occurring on less significant

bits propagate to the next level and may affect the sign bit.

On the contrary, in stochastic computation, each bit of a

given stochastic stream has exactly the same significance than

the others. Probabilities are represented by the ratio of 1’s
contained in the sequence of bits and the order of bits in that

sequence does not affect the value of the encoded probability.

Besides, if a small number of bits are in error, the resulting

value of the probability will be close to the correct value, and

errors are expected to have a limited impact on the decoder

performance. Consequently, stochastic decoders may have an

inherent fault tolerance capability. Moreover, [4] demonstrated

that timing errors have a limited impact on the stochastic

decoder performance. It is then important to study the behavior

of the stochastic decoder in a more general hardware error

scenario, in order to determine the amount of errors that can

be tolerated, and which parts of the decoder can be built out

of unreliable components.

In this paper we focus on stochastic decoder using edge-

memories. We propose two error models and for each model

we compare statistical results of noisy finite-length decoders

with their corresponding noiseless versions. We show that in

some cases the additional noise from the hardware can be used

to lower the error floor of the stochastic decoder.

The remainder of the paper is organized as follows. Section

II introduces LDPC codes and stochastic decoding. The error

models of the faulty stochastic decoders are presented in

Section III. The statistical analysis of finite-length faulty

decoders are provided in Section IV. Section V concludes the

paper.

II. LDPC CODES AND STOCHASTIC DECODING

A. LDPC Codes

LDPC codes [5] are linear block codes defined by sparse

parity-check matrices. They can be advantageously represented

by bipartite (Tanner) graphs [6] and decoded by message-

passing iterative algorithms. The Belief-Propagation (BP) de-

coding – also referred to as Sum-Product (SP) – exchanges

probability beliefs as messages between the nodes of the

Tanner graph. However, its main drawbacks are its complexity

ans its numerical instability.

In order to reduce the computation complexity of the

exchanged messages, the Stochastic decoder converts the

probabilistic belief in streams of stochastic bits representing

the encoded probability. The resulting circuitry of the decoder

has a small number of logic gates, thus a reduced hardware-

complexity compared to the BP decoder.

B. Stochastic Decoding Principle

The stochastic decoder is the stochastic implementation

of the Belief Propagation algorithm. Instead of propagating

probability beliefs between the nodes of the factor graph,

the stochastic decoder convert these probabilities in Bernoulli

sequences of bits, each bit being equal to 1 with the probability
to be encoded in the stochastic streams [7]. This representation

is not unique since different sequences of a given length can

contain the same number of 1’s and then represent the same

probability. The value of the encoded probability is the ratio

of bits equal to 1 contained the stochastic sequence. This



stochastic computing allows the use of simple logic gates to

perform complex arithmetic operations on probabilities such

as multiplications and divisions.

The main advantages of the stochastic decoder are the

following.

• Only one bit is exchanged between computational ele-

ments, reducing the number of wire in the circuitry and

allowing high clock frequency.

• The computation hardware area is significantly reduced.

• Computation accuracy can be trade for energy saving

without hardware modification [8].

C. Notations

We consider an LDPC code defined by a bipartite (Tanner)

graph H, with N variable-nodes and M check-nodes [6].

Variable-nodes and check-node are denoted, respectively, by

n ∈ {1, 2, ..., N} and m ∈ {1, 2, ...,M}. H(n) and H(m)
denote the set of neighbor nodes of the variable-node n and

of the check-node m, respectively.

We further consider a codeword (x1, . . . , xN ) that is sent
over a binary-input memoryless noisy channel, and denote by

(y1, . . . , yN) the received word. The following notation will

be used throughout the paper:

• γn is the log-likelihood ratio (LLR) value of xn according

to the received yn value; it is also referred to as the a

priori LLR value of the decoder concerning the variable-

node n;

• pn = Pr(xn = 1|yn) =
1

1 + exp(γn)
;

• Π is a random bit generator used to generate stochastic

streams;

• Γn ← Π(pn) a random generated bit in {0, 1}, with
probability of being 1 equal to pn;

• αm,n is the variable-to-check message (1 bit from the

stochastic stream) sent from variable-node n to check-

node m;

• βm,n is the check-to-variable message (1 bit from the

stochastic stream) sent from check-node m to variable-

node n.

• θn is a counter that counts the number of αm,n messages

equal to 1;

D. Stochastic Decoding Algorithm

As mentioned above, stochastic decoder is the stochastic

computation of Belief-Propagation algorithm. At each decod-

ing iteration, the BP decoder exchanges values of probability

(whose binary representation contains several bits) between

variable and check nodes. Stochastic decoder converts theses

probability in sequences of bits and exchanges only one bit

at each decoding iteration. Therefore iterations in stochastic

decoder does not exactly corresponds to the message passing

iterations and are referred to as decoding cycles instead of

decoding iterations.

The Belief-Propagation algorithm in probability domain can

be found in [8]. Stochastic decoder follows the same steps but

performs multiplications by using AND gates and divisions

using JK flip-flops.

The stochastic decoding algorithm can then be written as

follows.

Initialization

• γn = log

(

Pr(xn = 0|yn)

Pr(xn = 1|yn)

)

, ∀ n ∈ {1, . . . , N};

• pn = Pr(xn = 1|yn) =
1

1 + exp(γn)
, ∀ n ∈ {1, . . . , N};

• Γn ← Π(pn) ∀ n ∈ {1, . . . , N}

• α
(0)
m,n = Γn, ∀ n ∈ {1, . . . , N} and m ∈ H(n);

• θ
(0)
n = 0, ∀ n ∈ {1, . . . , N};

Iteration loop: at cycle ℓ

• CN-processing: ∀ m ∈ {1, . . . ,M} and n ∈ H(m)

β(ℓ)
m,n = XOR

n′∈H(m)\n

(

α
(ℓ−1)
m,n′

)

• Channel random bit update: ∀ n ∈ {1, . . . , N},

Γn ← Π(pn)

• VN-processing: for ∀ n ∈ {1, . . . , N} and m ∈ H(n)

α(ℓ)
m,n =

{

Γn, if β
(ℓ)
m′,n = Γn ∀m

′ ∈ H(n)\m

α
(ℓ−1)
m,n , otherwise

In other words, if the input messages (including

Gamman) agree, the output message is equal to their

common value. Otherwise the output message is not

modified with respect to the previous iteration. Note that

when the inputs disagree the node is said to be in a hold

state. When they agree the decoder is in a nonhold or

regular state.

• Counter update: for ∀ n ∈ {1, . . . , N}

θ(ℓ)n = θ(ℓ−1)
n +

∑

n′∈H(m)

(

2α
(ℓ)
m,n′ − 1

)

Meaning that the counter is incremented if α
(ℓ)
m,n′ = 1

and decremented if α
(ℓ)
m,n′ = 0

• Hard decision: for ∀ n ∈ {1, . . . , N}

x̂n =

{

1, if γ̃n > 0
0, otherwise

• Syndrome check: if x̂ is a codeword then exit iteration

loop

E. Improving the Stochastic Decoder Performance

The problem with the above stochastic decoder is that it

assumes that stochastic streams are independent Bernoulli

sequences. However this is no longer the case when there are

cycles in the factor graph. Besides, a low level of switching

activity in the stochastic decoder can also cause groups of

nodes to lock into fixed states which prevents proper de-

coding and leads to poor performance. In order to increase

the switching activity in the circuitry, the noise-dependent

scaling method have been introduced in [7] . Moreover, a

couple of rerandomization methods have been proposed in

the literature to reduce the correlation between stochastic

bits. Edge-Memories will be used as rerandomization units

in this works because they provide good performance and are

commonly used in the literature.



1) Noise-Dependent Scaling: Noise-dependent Scaling

consist of scaling the channel reliability (LLR) by a factor

proportional to the channel noise power in order to ensure

similar switching activity for different channel noise level.

For the Binary symmetric Channel (BSC), this translates into

making the LLR values independent from the channel error

probability ǫ. This can be achieved by replacing ǫ by a constant

µ in the expression of the a priori information [9]:

γn = (−1)yn log

(

1− ǫ

ǫ

)

=⇒ γn = (−1)yn log

(

1− µ

µ

)

2) Edge-Memories: Edge Memories (EMs) are memory-

based re-randomization units used to decorrelate bits in

stochastic streams. Each EM consists of a M -bit shift register

and is assigned to one edge of the decoder. EMs are initialized

according to the channel error probability (that is, each bit of

an EM adjacent to variable node n is generated by Π(pn)).
The variable-node processing is modified as follows. At

cycle ℓ, for ∀ n ∈ {1, . . . , N} and m ∈ H(n)

if ∀m′ ∈ H(n)\m, β
(ℓ)
m′,n = Γn

α
(ℓ)
m,n = Γn

Γn → EM

otherwise,

α(ℓ)
m,n = EM(i)

where Γn → EM means that the bit Γn is stored in the Edge-

Memory and i is a random position in the Edge-Memory.

When a new Γn bit is stored in the EM, bits in the EM are

shifted first from left to the right, and then Γn is stored in the

left-most position.

III. FAULTY STOCHASTIC DECODERS

In this section we propose two error models for the

faulty stochastic decoders. In the first model, only the Edge-

Memories are unreliable. In the second model the stochastic

stream generators, the variable-node units and the check-node

units are all considered to be noisy.

A. Stochastic Decoders with Noisy Edge-Memories

The main drawback of Edge-Memories as rerandomization

method is their number. There are as many Edge-Memories

in the decoder as the edges of the factor graph. The energy

consumption of the stochastic decoder can be decreased by

reducing the energy consumption of the Edge-Memories. The

latter can be achieved by either voltage scaling or by using

low-quality components for Edge-Memories. But this will

result on a degradation of the reliability of EMs. The objective

of this model is then to analyze the impact of the faulty

Edge-Memories on the decoder performance and to further

determine which level of noise in the EMs can the stochastic

decoder tolerate.

Errors can occur in EMs when a bit is written in the memory

and when a bit is read from the memory. Denote w the

probability that an error occurs during the writing and r the

probability that an error occurs during the reading. The output

of the EM will be in error if the selected bit was either written

with error or read with error. Note that error during the writing

and during the reading at the same address in the memory will

compensate each other. Therefore the error probability of the

Edge-Memory output is pem = w(1 − r) + (1− w)r.
1) Noisy Edge-Memory Model: Denote EM(i) and

EMpr(i) the bit read at address i from the noiseless EM and

from the noisy EM respectively.

EMpr(i) =

{

EM(i), with probability 1− pem

EM(i), with probability pem

2) Variable Node processing with noisy EM: The VN-

processing of noiseless stochastic decoder is modified as

follows.

At cycle ℓ for ∀ n ∈ {1, . . . , N} and m ∈ H(n)

if ∀m′ ∈ H(n)\m, β
(ℓ)
m′,n = Γn

α
(ℓ)
m,n = Γn

Γn → EM

otherwise,

α(ℓ)
m,n = EMpr(i)

B. Error model with noisy logic gates

In this paragraph we propose a more general error model

for stochastic decoders. We suppose that the entire stochastic

decoder is made of faulty components. Except the Counter

update, Hard decision and Syndrome check steps. Note that

syndrome check is not a compulsory step since the maximum

number of cycles ensures the termination of iterations loops.

In order encompass all possible errors into a minimal

number of error probability parameters, we inject errors at

the output of the noisy components.

1) Noisy Stochastic Stream Generator: Recall that Π is the

random bit generator and consider p ∈ [0, 1]. Π(p) = 1 with

probability p. The noisy random bit generator (or stochastic

stream Generator) denoted Πpr is defined by:

Πpr(p) =

{

Π(p), with probability 1− pτ

Π(p), with probability pτ

pτ is referred to as the stochastic stream error probability. It

follows that Πpr behaves like a (noiseless) bit generator with

probability p(1− pτ ) + (1 − p)pτ .
2) Noisy Check Node Processing: Denote C the output of

the noise-free check node unit. The output of the noisy check

node unit denoted Cpr is defined by:

Cpr =

{

C, with probability 1− pc
C, with probability pc

pc is referred to as the check node error probability.

3) Noisy Variable Node Processing: Denote V the output

of the noise-free variable-node unit. The output of the noisy

check node unit denoted Vpr is defined by:

Vpr =

{

V, with probability 1− pv
V, with probability pv

pv is referred to as the variable node error probability.

Note that this error model also takes into account errors that

can occur during each access to decoder memories.



IV. STATISTICAL ANALYSIS OF FINITE-LENGTH

DECODERS

Density-evolution-like analysis is extremely difficult to per-

form for stochastic decoders, because variable-to-check node

messages are computed as functions of dependent random

variables. Precisely, in the VN-processing step of the stochastic

decoding, it can be seen that α
(ℓ)
m,n is a function of Γn,

(β
(ℓ)
m′,n)m′∈H(n)\m, and α

(ℓ−1)
m,n . But (β

(ℓ)
m′,n)m′∈H(n)\m and

α
(ℓ−1)
m,n are dependent random variables, since α

(ℓ−1)
m,n depends

on (β
(ℓ−1)
m′,n )m′∈H(n)\m, and the computation tree [10] of

β
(ℓ−1)
m′,n is included in the computation tree of β

(ℓ)
m′,n.

This dependency between α
(ℓ−1)
m,n and (β

(ℓ)
m′,n)m′∈H(n)\m

has not been taken into account in the density evolution

approach proposed in [11], which explains why the obtained

threshold values in loc. cit. are even better than the Shannon

limit! The problem remains, and is even compounded, with the

use of edge-memories. Indeed when the inputs of the variable

node disagree, the bit extracted from EMs is one of the values

of the variable-node output at a previous non-hold state. The

Markov-chain model for edge-memories proposed in [12] also

neglects the dependency relation between messages sent on the

same edge of the graph at different decoding iterations.

Therefore, to study the impact of hardware noise on the error

correction capability of faulty stochastic decoders Monte-Carlo

simulations have been carried out for a (1008, 504) and (3, 6)-
regular LDPC code [13]. Decoders have been simulated over

the Binary Symmetric Channel (BSC). All decoders use 48-bit
Edge-Memories, channel input probabilities are quantized on

8 bits and the maximum number of cycles is 1000. The scale
factor µ = 0.12.

Error models for the two noisy stochastic decoders verify

the symmetric condition from [1] and thus ensure the concen-

tration and convergence results around the all-zero codeword.

For all the simulations, the all-zero codeword is transmitted

through the channel.

The performance of the noisy decoders is compared with

their noiseless version and with the floating-point Belief Prop-

agation algorithm with maximum number of iterations equals

to 100.

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BSC error probability p
0

B
it
 E

rr
o
r 

R
a
te

s

float−point BP

noiseless STO

noisy STO p
em

 = 5e−2

noisy STO p
em

 = 1e−2

noisy STO p
em

 = 1e−3

noisy STO p
em

 = 1e−6

Figure 1. BER performance with noisy Edge-Memories

A. Numerical Results for the Noisy EM Stochastic Decoder

Fig. 1 shows the performance of stochastic decoders with

noisy Edge-Memories for four values of the EM error prob-

ability: pem ∈ {5.10
−2, 10−2, 10−3, 10−6}. The black curve

and the blue curve represent the noiseless Belief Propagation

decoder and the noiseless stochastic decoder respectively.

The results show that when pem ≤ 10−3, the noisy stochas-

tic decoder performs very close to the noiseless decoder. How-

ever, when the level of the noise is high in EMs (pem = 10−2)

the noisy decoder suffers from a small degradation compared

to the noiseless decoder in the waterfall region but outperforms

it in the error-floor region. This result can be explained by the

fact that the additional noise from the hardware decreases the

correlation between the bits within the stochastic streams, and

thus reduces the occurrence of hold states during the decoding

process. Since hold states occurs more often at high SNR, the

positive impact of the hardware noise become significant at

low values of the channel error probability p0.

As a result, not only stochastic decoder is robust to noise

coming from Edge-Memories, but also an appropriate level of

this noise can be used to lower the error floor.

B. Numerical Results for Full Noisy Stochastic Decoder

Fig. 2 compares the performance of four noisy stochastic

decoders from the second error model with the performance

of BP decoder (black curve) and noiseless stochastic decoder

(blue curve). To better understand the impact of each noisy

unit on the decoder error correction capability, the following

noisy stochastic decoders have been simulated.

• A decoder with hardware noise coming only from

stochastic stream generators (pτ = 0.01).
• A decoder with hardware noise coming only from check

node processing (pc = 0.01).
• A decoder with hardware noise coming only from vari-

able node processing (pv = 0.01). Recall that in this

model the variable node processing also includes the edge

memory.

• A decoder with all the above noisy units (pτ = pc =
pv = 0.01).

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BSC error probability p
0

B
it
 E

rr
o
r 

R
a
te

s

float−point BP

noiseless STO

noisy STO p
τ
 = 0.01

noisy STO p
c
 = 0.01

noisy STO p
v
 = 0.01

noisy STO p
τ
 =p

c
 = p

v
 = 0.01

Figure 2. BER performance for the Full Noisy Stochastic Decoder



0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BSC error probability p
0

B
it
 E

rr
o
r 

R
a
te

s

float−point BP

noiseless STO

noisy STO p
v
 = 0.005

noisy STO p
v
 = 1e−3

noisy STO p
v
 = 1e−6

Figure 3. BER performance with only noisy Variable Node Units

According to the results, the hardware noise coming from

stochastic stream generators and check node units does not de-

grade the performance of the decoder. The noise coming from

variable node units leads to a sensible loss of performance

in the waterfall region, but to a lower error floor (similar to

the behavior observed for the stochastic decoding with noisy

edge memories only). When pτ = pc = pv = 0.01, the
decoder exhibits the same performance than the decoder with

only pv = 0.01. This proves that noise from variable node

units have the most significant impact on the overall decoder

performance.

To determine which value of pv can provide results closed to

the noiseless decoder, further simulations have been carry out

with only noisy variable node units and several values of the

variable node error probability (pv ∈ {5.10
−3, 10−3, 10−6}).

From Fig. 3 pv = 10−3 allows similar waterfall region

performance than the noiseless decoder and a lower error

floor. Note that as for decoder with only noisy edge-memories,

a sufficient level of noise helps to avoid hold states in the

decoding process, but too much noise (pv = 0.01) will

decrease the error correction capability of the decoder in the

waterfall region.

Noisy stochastic decoder with pτ = pc = pv = 10−3

has been simulated and compared to the noiseless stochastic

decoder and the floating-point belief propagation decoder.

According to Fig. 4 this noisy decoder is not only robust

to hardware noise but also has a lower error floor. Further-

more, the noisy stochastic decoder outperforms the noiseless

floating-point Min-Sum decoder (However, it is known that for

the BSC channel, the floating-point min-sum decoder can also

be outperformed by the finite-precision (quantized) Min-Sum

decoder [14]).

V. CONCLUSION

In this paper we investigated the performance of stochastic

decoders in presence of hardware noise. We proposed two

error models to describe the noisy components of the de-

coders. Our results show that stochastic decoders are robust

to hardware noise and that noise in variable node units can

be use to improve the decoder performance in the error floor

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BSC error probability p
0

B
it
 E

rr
o
r 

R
a
te

s

float−point BP

noiseless STO

noisy STO p
τ
 =p

c
 = p

v
 = 0.001

float−point MS

Figure 4. BER performance with pτ = pc = pv = 10
−3

region. This is an important results since the number of edge-

memories in stochastic decoders are the main drawback of

the decoder. This work shows that their energy consumption

can be reduced by diminishing their reliability without any

degradation on the error correction capability of the stochastic

decoder.

ACKNOWLEDGMENT

This work was supported by the Seventh Framework Pro-

gramme of the European Union, under Grant Agreement

number 309129 (i-RISC project).

REFERENCES

[1] L. R. Varshney, “Performance of LDPC codes under faulty iterative
decoding,” IEEE Trans. Inf. Theory, vol. 57, no. 7, pp. 4427–4444, 2011.

[2] S. Yazdi, H. Cho, and L. Dolecek, “Gallager b decoder on noisy
hardware,” IEEE Trans. on Comm., vol. 66, no. 5, pp. 1660–1673, 2013.

[3] C. L. Kameni Ngassa, V. Savin, and D. Declercq, “Min-sum-based
decoders running on noisy hardware,” in proc. of IEEE Global Com-
munications Conference (GLOBECOM), 2013.

[4] I. Perez-Andrade, X. Zuo, R. Maunder, B. Al-Hashimi, and L. Hanzo,
“Analysis of voltage- and clock-scaling-induced timing errors in stochas-
tic ldpc decoders,” in Wireless Communications and Networking Con-
ference (WCNC), 2013 IEEE, April 2013, pp. 4293–4298.

[5] R. G. Gallager, “Low density parity check codes,” MIT Press, Cam-
bridge, 1963, research Monograph series.

[6] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans.
on Inf. Theory, vol. 27, no. 5, pp. 533–547, 1981.

[7] S. Sharifi Tehrani, W. J. Gross, and S. Mannor, “Stochastic decoding
of LDPC codes,” IEEE Communications Letters, vol. 10, no. 10, pp.
716–718, 2006.

[8] S. Sharifi Tehrani, S. Mannor, and W. J. Gross, “Fully parallel stochastic
LDPC decoders,” IEEE Trans. on Signal Processing, vol. 56, no. 11, pp.
5692–5703, 2008.

[9] K.-L. Huang, V. Gaudet, and M. Salehi, “A scaling method for stochastic
ldpc decoding over the binary symmetric channel,” in Information
Sciences and Systems (CISS), 47th Annual Conference on, 2013.

[10] N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation,
Likoping University, Sweden, 1996.

[11] V. Gaudet and W. Gross, “Switching activity in stochastic decoders,” in
Multiple-Valued Logic (ISMVL), 2010 40th IEEE International Sympo-
sium on, May 2010, pp. 167–172.

[12] K.-L. Huang, V. Gaudet, and M. Salehi, “A markov chain model for
edge memories in stochastic decoding of ldpc codes,” in Information
Sciences and Systems (CISS), 45th Annual Conference on, 2011.

[13] D. J. MacKay. Encyclopedia of sparse graph codes. [Online]. Available:
http://www.inference.phy.cam.ac.uk/mackay/codes/data.html

[14] C. L. Kameni Ngassa, V. Savin, and D. Declercq, “Unconventional
behavior of the noisy min-sum decoder over the binary symmetric
channel,” in Information Theory and Applications Workshop (ITA), 2014.


