
Fault Tolerant Decoders

Predrag Ivaniš1, Bane Vasić2

1
School of Electrical Engineering, University of Belgrade, Serbia

2
Department of ECE, University of Arizona, Tucson, USA

E-mail:
1
predrag.ivanis@etf.rs,

2
vasic@ece.arizona.edu

Abstract

In this talk we introduce a novel class of fault-tolerant decoders for low-density parity check codes, based on bit-

flipping decoding algorithm. Presented decoding algorithm is not only superior to other decoding algorithms of this

type, but also robust to logic gate failures.

Key words: Bit flipping, Fault tolerance, Iterative decoders, Low density parity check codes

Synopsis

According to new design paradigm for Very Large Scale Integration (VLSI) technologies, due to lower

supply voltages and variations in technological process, fully reliable operations are not guaranteed in

nano-scale devices [1]. A hardware component is assumed to be unreliable if it is subject to so-called

transient faults, i.e. faults that manifest themselves at particular time instants but do not necessarily

persist for later times [2]. An integral part of many such systems, designed for communications or

computing, is error-control coding whose role is to maintain the data integrity. Thus, analysis of different

decoding algorithms for low density parity check (LDPC) codes under unreliable hardware is meaningful.

The density evolution analysis of sum-product algorithm (SPA) [3] and Gallager B algorithm [4]

demonstrate robustness of these algorithms to the transient failures.

The reliable storage of data in a memory built from unreliable logic gates under transient failures can

be achieved by employing LDPC codes and simple bit-flipping (BF) decoding [5]. In this talk we focus on

modifications of BF algorithms that are suitable if only bit hard decisions are available. Although the

performances of BF decoder are typically inferior when compared to the Gallager-B algorithm, we report

the decoding algorithm based on BF with significant performance improvement, that has large immunity

to the gate failures.

11

Fault tolerant decoders for BSC

We start by a overview of hard decision decoders based on BF and Gallager A/B algorithms. The

structure of variable node processors will be explained and implementation of these decoders in

unreliable hardware will be considered. Further, we will explain Gradient Descent Bit Flipping (GDBF)

algorithm [6], where the inverse function is represented in the form that is more suitable for BSC. In this

algorithm, the most critical value of the inverse function determines the bits that should be flipped in the

current iteration. This algorithm is suitable for hardware implementation as it can be designed by using

XOR and ML gates. Then, we propose version of GDBF decoder where the probabilistic mechanism is

incorporated in the decoder structure by using generator of uniform random numbers. In this algorithm,

the most critical value of the modified function represents only necessary condition for flipping.

We will show that the logic gate failures can improve performances of GDBF decoder, in contrary to

classical BF decoders. By using the knowledge about trapping sets, we optimize the probabilistic

mechanism to improve the performance of GDBF decoder realized in faulty hardware. It will be shown

that the proposed solution outperforms Gallager-B algorithm and have performances compared to more

complex massage passing algorithms. This is a hard-decision algorithm with the best known

performances in the water-fall region on BSC, robust to the failures in logic gates.

Acknowledgment

This work was supported by the Seventh Framework Programme of the European Union, under Grant

Agreement number 309129 (i-RISC project). It is also funded in part by the Ministry of Education,

Science and Technological Development of the Republic of Serbia under grant TR32028 and NSF

under grants CCF-0963726 and CCF-1314147.

References

[1] S. Ghosh and K. Roy, “Parameter variation tolerance and error resiliency: New design paradigm for the
nanoscale era,” Proceedings of the IEEE, vol. 98, no. 10, pp. 1718–1751, Oct. 2010.

[2] C. N. Hadjicostis and G. C. Verghese, “Coding Approaches to Fault Tolerance in Linear Dynamic Systems,” IEEE
Transactions on Information Theory, vol. 51, no. 1, pp. 210-228, Jan. 2005.

[3] L. Varshney, “Performance of LDPC Codes Under Faulty Iterative Decoding,” IEEE Transactions on Information
Theory, vol. 57, no. 7, pp. 4427–4444, July 2011.

[4] S. Tabatabaei Yazdi, H. Cho, and L. Dolecek, “Gallager B Decoder on Noisy Hardware,” IEEE Transactions
on Communications, vol. 61, no. 5, pp. 1660–1673, May 2013.

[5] B. Vasic and S. K. Chilappagari, “An information theoretical framework for analysis and design of nanoscale fault-
tolerant memories based on low-density parity-check codes,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54,
no. 11, pp. 2438–2446, Nov. 2007.

[6] T. Wadayama, K. Nakamura, M. Yagita, Y. Funahashi, S. Usami, and I. Takumi, “Gradient Descent Bit Flipping
algorithms for decoding LDPC codes,” IEEE Transactions on Communications, vol. 58, no. 6, pp. 1610–1614,

12

Fault Tolerant Decoders

Predrag Ivaniš, predrag.ivanis@etf.rs

Bane Vasić, vasic@ece.arizona.edu

School of Electrical Engineering, University of Belgrade, Serbia

Department of Electrical and Computer Engineering, University of Arizona, USA

TINKOS 2014, Niš, June 2014

Why faulty decoders?

• The Second Shannon theorem - the reliable transmission can be

provided if the code rate R=k/n is smaller than the transmitted

information I(X,Y) for a given channel.

• Increased integration factor of integrated circuits, stringent energy-

efficiency constraints -> a new design paradigm for Very Large

Scale Integration (VLSI) technology.

• Fully reliable operation of hardware components is not guaranteed!

Source

Error control

coder (n,k)

User
Error control

decoder (n,k)

Channel

Iv (/)b Iv v k n

i c

r=c+ei'

eResidual error

rate (BER, FER)

Overview

• Linear block codes, LDPC codes

• Gallager-B algorithm

• Performance evaluation of QC-LDPC codes with

Gallager-B decoding with transient failures

• Faulty bit-flipping algorithm

• Faulty gradient descent bit flipping (GDBF)

• Faulty Probabilistic GDBF

Linear block codes

• (3,2) code, field GF(2)

• Vector space with 2n ellements with length n=3.

• Vector subspace with 2k elemens with length n=3. This vector

subspace (set of codewords) is linear block code (3,2).

000
001

110

010

111

011

100

101

Vector subspace

LBC (3,2) Vector

space

11 12 1

21 22 2

1 2

, .

n

n

k k kn

g g g

g g g

g g g

 
 
  
 
 
  

 c iG G

1,1 1,2 1,

2,1 2,2 2, T

,1 ,2 ,

, .

n

n

n k n k n k n

h h g

h h g

h h g  

 
 
  
 
 
  

 S rH H

LDPC codes - properties

• Completely defined by

parity check matrix H.

• Regular or irregular (fixed
or variable number of ones
per row/column)

• Sparse matrix (low density

of binary one in matrix H)

1

1

1

1

1

1 1

1

1

1

1

 
 
 
 
 
 
 

  
 
 
 
 
 
 
  

H

6

Tanner bipartite graph

• QC LDPC – suitable for hardware implementation

• Regular code with girth equal to 4!

1d 2d 6d 8d
4d

3d 7
d

4h
2h1h 3h 5h

5d 9d
10d

7

Gallager-B, iterative decoding

• The simplest massage-passing algorithm

8

An example

• Regular Euclidean

geometry LDPC code

with:
 r=4 (weight of check node -

number of ones in every

row),

 g=4 (weight of variable node

- number of ones in every

column)

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

9

Gallager-B, initialization

• For variable node d12 incident edges are d12->h1, d12->h2, d12->h10 and d12->h14

and messages that are initially sent are:

 m1(d12->h1)= m1(d12->h2)= m1(d12->h10)= m1(d12->h14)=r(12)=1,

 and the messages sent over all other edges are equal to binary zero (as the other

bits in received vector are equal to zero).

10

Gallager-B,

step (i)- check-node update

• Update for check node 1:

 

 

2 1 12 1 3 1 1 11 1 1 14 1() () () () mod2

 0 0 0 mod2 0.

m h d m d h m d h m d h           

   

1d 2d 6d 8d
4d

3d 7
d

4h
2h1h 3h 5h

5d 9d
10d 11d

13d
12

d
14d 15d

9h7h6h
8h 10h 14h

12h
11h 13h 15h

0
0

0
4cd 

11

Gallager-B,

step (i)- check-node update

• Update for check node 2:

 

 

2 2 12 1 4 2 1 13 1 1 15 1() () () () mod2

 0 0 0 mod2 0.

m h d m d h m d h m d h           

   

1d 2d 6d 8d
4d

3d 7
d

4h
2h1h 3h 5h

5d 9d
10d 11d

13d
12

d
14d 15d

9h7h6h
8h 10h 14h

12h
11h 13h 15h

0

0

0

12

Gallager-B,

step (i)- check-node update

• Update for check node 10:

 

 

2 10 12 1 5 10 1 6 10 1 8 10() () () () mod2

 0 0 0 mod2 0.

m h d m d h m d h m d h           

   

1d 2d 6d 8d
4d

3d 7
d

4h
2h1h 3h 5h

5d 9d
10d 11d

13d
12

d
14d 15d

9h7h6h
8h 10h 14h

12h
11h 13h 15h

0
0

0

13

Gallager-B,

step (i)- check-node update

• Update for check node 14:

  

 

2 14 12 1 1 14 1 9 14 1 10 14() () () () mod2

 0 0 0 mod2 0.

m h d m d h m d h m d h           

   

1d 2d 6d 8d
4d

3d 7
d

4h
2h1h 3h 5h

5d 9d
10d 11d

13d
12

d
14d 15d

9h7h6h
8h 10h 14h

12h
11h 13h 15h

0 0
0

14

Gallager-B,

step (ii)- variable-node update

 12 1

2 2 2 12 2 10 12 2 14 12 2 12 1

(12)\

(') () () () 0 () 0
e E d h

m e m h d m h d m h d m d h
 

                

 12 2

2 2 1 12 2 10 12 2 14 12 2 12 2

(12)\

(') () () () 0 () 0
e E d h

m e m h d m h d m h d m d h
 

                

 12 10

2 2 1 12 2 2 12 2 14 12 2 12 10

(12)\

(') () () () 0 () 0
e E d h

m e m h d m h d m h d m d h
 

                

 12 14

2 2 1 12 2 2 12 2 10 12 2 12 14

(12)\

(') () () () 0 () 0
e E d h

m e m h d m h d m h d m d h
 

                

For variable node v=12 and set E(12)={ h1->d12, h2->d12, h10->d12 and h14->d12} we obtain

1d 2d 6d 8d
4d

3d 7
d

4h
2h1h 3h 5h

5d 9d
10d 11d

13d
12

d
14d 15d

9h7h6h
8h 10h 14h

12h
11h 13h 15h

0 0 0
04vd 

15

Taylor-Kuznetsov memory – updating bit 5 in

the second register

d1=0 d13=0 d14=0

Register 1

(h3 - copy of

neighbors of d5)

+

Majority Logic

Gate

2. iteration

3. iteration

1 2 dc-1=3

d6=0 d8=0 d12=1

Register dv=4

(h10 - copy of

neighbors of d5)

+

d2=0 d3=0 d9=0

Register 2

(h7 - copy of

neighbors of d5)

+

d4=0 d7=0 d11=0

Register 3

(h9 - copy of

neighbors of d5)

+
0 0

(2)

5 0

 (new estimation of the 5th

symbol bit in

the 2nd regi

r

ste)

d 

1

d1
(2) d15

(2)d1
(1)

... d15
(1)

d1
(4)

... d15
(4)

d1
(3) ... d15

(3)
d5

(2)

0

0

16

Taylor-Kuznetsov memory architecture

with failures

d3=0 d11=0 d14=0

Register 1

(h1 - copy of

neighbors of d12)

+

Majority Logic

Gate

2. iteration

3. iteration

1 2 dc-1=3

d1=0 d9=0 d10=0

Register dv=4

(h14 - copy of

neighbors of d12)

+

d4=0 d13=0 d15=0

Register 2

(h2 - copy of

neighbors of d12)

+

d5=0 d6=0 d8=0

Register 3

(h10 - copy of

neighbors of d12)

+

0 0
2 1 12' () 0m h d  

2 14 12' () 0m h d  

d1
(1) d15

(1) d1
(4) ... d15

(4)
d1

(2) ... d15
(2)

d1
(3) ... d15

(3)
d12

(1)

FAULTY FAULTY FAULTY FAULTY

FAULTY
+

17

Faulty Gallager-B

- Transient failures due to the noise or timing errors

- Decisions made in variable nodes and parity check nodes are

unreliable (variable node is faulty with probability p, parity

check node is faulty with probability q).

Information

source

LDPC

encoder

Channel
Noise

source

LDPC

decoder

Noise

source

Destination

18

Faulty Gallager-B

• Let the failures are uncorrelated and data independent.

• Rate of number of incorrectly decoded codewords and number of

transmitted codewords (frame error rate – FER) is determined for

– variable crossover probability in BSC channel (or memory)

– fixed probability of faulty in variable node, p

– fixed probability of faulty in check node, q

– fixed number of iterations during the decoding process

– various QC codes are considered:

• Tanner code (155,64) with n=155, r=5 and g=3,

• QC code with n=305, r =5 and g =3,

• QC code with n=155, r =5 and g =4,

19

Faulty Gallager-B, Tanner (155,64), MaxIt=5

• Variable nodes are much more sensitive to processing noise and they

should be realized by using more reliable hardware.

20

Faulty Gallager-B, iterations

• Performances can be improved by increasing the number of iterations, but

variable nodes are still more critical.

21

Faulty Gallager-B, codeword length

• Although the code with longer codewords has better correcting

capabilities, it is also more prone to processing errors.

22

Faulty Gallager-B, impact of g

• It is interesting to notice that performance of code with lower code rate

are less degraded by decoder failures.

Parallel BF decoder

BSC

 The channel output (as well as the

input) has two levels.

 Crossover probability a.

For every variable node we check

if it is satisfied:

Valid codeword:

+ +

MAJ

+

0 1

()
1̂

lx

(1)ˆ 0l
vx  

1

()ˆ l
Nx

1

2 

...

 1 ...  / 2T g   

BSC

0 1 1 0 1 ... 1 0



()ˆ / 2
c

vc N

l
v

u N
x g



    

()ˆ 0
c

vc N

l
v

u N
x



 

GDBF for BSC

+ +

MAJ with adaptable

threshold

+

0 1

()
1̂

l
x

(1)ˆ 0l
vx  

+

(0)ˆ

(

 1

)

vx

initial estimation



0

1

()ˆ l
vx

()ˆ l
Nx

1

2 r

...

0 1 ... g () 1lT 

BSC

0 1 1 0 1 ... 1 0

a

() () ()ˆ ˆ() 2 2() 2 min
c

vc N

l l l
v v v v u

u N
x y xg




    d

() ()

() ()

1 0.5

ˆ ˆ 0.5
c

vc N

l l
v v

l l
v v u v

u N
x y x g




 





   

GBDF designed for AWGN

Substitution:

Modified inverse function

 Irregular:

 Regular:

() ()ˆ1 2 1 2, l l
v v v vx y    

() () ()ˆ ˆ
c

vc N

l l l
v v v v

u N
x y x




   

() () ()

v cv N u N

l l l
v v v u  

 

  

Tanner (155,64), faulty BF/PBF/GDBF

10
-4

10
-3

10
-2

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Cross-over probability, a

F
ra

m
e

 e
rr

o
r

ra
te

 (
F

E
R

)

BF,P

M
=0,P

R
=0

BF,P
M

=10
-3

,P
R

=10
-2

PBF,P
M

=0,P
R

=0

PBF,P
M

=10
-3

,P
R

=10
-2

GDBF,P
M

=0,P
R

=0

GDBF,P
M

=10
-3

,P
R

=10
-2

PGDBF for BSC, faulty decoder

(memory, XOR, ML)

Paralel bit-flipping:

Valid codeword:

Probabibistic GDBF (PGDBF):

 - Necessary condition for flipping

 - One additional two-input AND gate

 - Additional random number generator

Special cases:

 - Parallel BF, probabilistic BF,

 GDBF for BSC (p=1)

+ +

MAJ with adaptable

threshold

+

1 1

()
1̂

l
x

(1)ˆ 1l
vx  

, 0 MAJ v 

+

×

(0)ˆ

(

 1

)

vx

initial estimation



+

 0, Pr 1v va a p  

1

0

1

0

()ˆ l
vx

()ˆ l
Nx

1

2 r

...

0 1 ... g

, 0 R v
g 

() 1lT 

BSC

0
, 0R v 

1
, 1R v 

0 1 1 0 1 ... 1 0

a

() ()ˆ()
c

vc N

l l
v v

u N
x




 d

()ˆ 0
c

vc N

l
v

u N
x



 

() ()
()

l l
v T d

Faulty XOR and memory,

the impact of probabilism

10
-3

10
-2

10
-1

10
-7

10
-6

10
-5

10
-4

Probability of faulty in parity-check nodes, P
R

F
ra

m
e

 e
rr

o
r

ra
te

 (
F

E
R

)

p=1, P
M

=0

p=1, P
M

=0.003

p=0.8, P
M

=0

p=0.8, P
M

=0.003

Tanner (155,64), faulty PGDBF,

the impact of parameter p for a=4×10-3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

-7

10
-6

10
-5

10
-4

p

F
ra

m
e

 E
rr

o
r

R
a

te
,
F

E
R

Non-faulty, P
X
=0, P

M
=0

Faulty XOR, P
X
=0.02, P

M
=0

Faulty XOR and MAJ, P
X
=0.02, P

M
=0.002

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Cross-over probability, a

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
It
e

ra
ti
o

n
s

PGDBF, non-faulty & faulty XOR

PGDBF, faulty XOR, MAJ

Frame Error Rate: Average number of iterations:

QC-732, BF/PBF/GDBF/PGDBF/SPA

10
-3

10
-2

10
-1

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Cross-over probability, a

F
ra

m
e

 e
rr

o
r

ra
te

 (
F

E
R

)

PBF, perfect

PBF, faulty

Gallager-B, perfect

Gallager-B, faulty

GDBF, perfect

GDBF, faulty

PGDBF, p=0.8, perfect

PGDBF, p=0.8, faulty

SPA, perfect

30

Conclusion

• We considered:

 - uncorrelated errors (von-Noyman type), different probability of injected

failures in

 - check nodes (XOR gates), denoted by q

 - variable nodes (ML gates), denoted by p

 - data dependent failures – what if probability of injected failures depend of

current (and previous) inputs of XOR gates and ML gates?

• Hard decision decoders:

- Variable nodes are more critical than parity check nodes. Values of q=1/n,

p=q/10 can be tolerated.

- Gallager-B decoder outperforms BF algorithm and it is more immune to

hardware failures.

- In some cases GDBF work better in the presence of transient failures!

- PGDBF has large immunity to hardware failures.

31

THANK YOU!

