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Abstract 

In this talk we introduce a novel class of fault-tolerant decoders for low-density parity check codes, based on bit-

flipping decoding algorithm. Presented decoding algorithm is not only superior to other decoding algorithms of this 

type, but also robust to logic gate failures. 
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Synopsis 

According to new design paradigm for Very Large Scale Integration (VLSI) technologies, due to lower 

supply voltages and variations in technological process, fully reliable operations are not guaranteed in 

nano-scale devices [1]. A hardware component is assumed to be unreliable if it is subject to so-called 

transient faults, i.e. faults that manifest themselves at particular time instants but do not necessarily 

persist for later times [2]. An integral part of many such systems, designed for communications or 

computing, is error-control coding whose role is to maintain the data integrity. Thus, analysis of different 

decoding algorithms for low density parity check (LDPC) codes under unreliable hardware is meaningful. 

The density evolution analysis of sum-product algorithm (SPA) [3] and Gallager B algorithm [4] 

demonstrate robustness of these algorithms to the transient failures.  

The reliable storage of data in a memory built from unreliable logic gates under transient failures can 

be achieved by employing LDPC codes and simple bit-flipping (BF) decoding [5]. In this talk we focus on 

modifications of BF algorithms that are suitable if only bit hard decisions are available. Although the 

performances of BF decoder are typically inferior when compared to the Gallager-B algorithm, we report 

the decoding algorithm based on BF with significant performance improvement, that has large immunity 

to the gate failures. 
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Fault tolerant decoders for BSC 
 

We start by a overview of hard decision decoders based on BF and Gallager A/B algorithms. The 

structure of variable node processors will be explained and implementation of these decoders in 

unreliable hardware will be considered. Further, we will explain Gradient Descent Bit Flipping (GDBF) 

algorithm [6], where the inverse function is represented in the form that is more suitable for BSC. In this 

algorithm, the most critical value of the inverse function determines the bits that should be flipped in the 

current iteration. This algorithm is suitable for hardware implementation as it can be designed by using 

XOR and ML gates. Then, we propose version of GDBF decoder where the probabilistic mechanism is 

incorporated in the decoder structure by using generator of uniform random numbers. In this algorithm, 

the most critical value of the modified function represents only necessary condition for flipping. 

We will show that the logic gate failures can improve performances of GDBF decoder, in contrary to 

classical BF decoders. By using the knowledge about trapping sets, we optimize the probabilistic 

mechanism to improve the performance of GDBF decoder realized in faulty hardware. It will be shown 

that the proposed solution outperforms Gallager-B algorithm and have performances compared to more 

complex massage passing algorithms. This is a hard-decision algorithm with the best known 

performances in the water-fall region on BSC, robust to the failures in logic gates. 

Acknowledgment 
 
This work was supported by the Seventh Framework Programme of the European Union, under Grant 

Agreement number 309129 (i-RISC project). It is also funded in part by the Ministry of Education, 

Science and Technological Development of the Republic of Serbia under grant TR32028 and NSF 

under grants CCF-0963726 and CCF-1314147. 

 
References 
 

[1] S. Ghosh and K. Roy, “Parameter variation tolerance and error resiliency: New design paradigm for the 
nanoscale era,” Proceedings of the IEEE, vol. 98, no. 10, pp. 1718–1751, Oct. 2010. 

[2] C. N. Hadjicostis and G. C. Verghese, “Coding Approaches to Fault Tolerance in Linear Dynamic Systems,” IEEE 
Transactions on Information Theory, vol. 51, no. 1, pp. 210-228, Jan. 2005. 

[3] L. Varshney, “Performance of LDPC Codes Under Faulty Iterative Decoding,” IEEE Transactions on Information 
Theory, vol. 57, no. 7, pp. 4427–4444, July 2011. 

[4] S. Tabatabaei Yazdi,  H.  Cho, and  L.  Dolecek,  “Gallager  B  Decoder on Noisy Hardware,” IEEE Transactions 
on Communications, vol. 61, no. 5, pp. 1660–1673, May 2013. 

[5] B. Vasic and S. K. Chilappagari, “An information theoretical framework for analysis and design of nanoscale fault-
tolerant memories based on low-density parity-check codes,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, 
no. 11, pp. 2438–2446, Nov. 2007. 

[6] T. Wadayama, K. Nakamura, M. Yagita, Y. Funahashi, S. Usami, and I. Takumi, “Gradient Descent Bit Flipping 
algorithms for decoding LDPC codes,” IEEE Transactions on Communications, vol. 58, no. 6, pp. 1610–1614, 

12



Fault Tolerant Decoders 

 

Predrag Ivaniš, predrag.ivanis@etf.rs 

Bane Vasić, vasic@ece.arizona.edu  
 

School of Electrical Engineering, University of Belgrade, Serbia 

Department of Electrical and Computer Engineering, University of Arizona, USA 

 

 

TINKOS 2014, Niš, June 2014 



Why faulty decoders? 

• The Second Shannon theorem - the reliable transmission can be 

provided if the code rate R=k/n is smaller than the transmitted 

information I(X,Y) for a given channel. 

• Increased integration factor of integrated circuits, stringent energy-

efficiency constraints -> a new design paradigm for Very Large 

Scale Integration (VLSI) technology. 

• Fully reliable operation of hardware components is not guaranteed! 
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Overview 

 

• Linear block codes, LDPC codes 

• Gallager-B algorithm 

• Performance evaluation of QC-LDPC codes with 

Gallager-B decoding with transient failures 

• Faulty bit-flipping algorithm  

• Faulty gradient descent bit flipping (GDBF) 

• Faulty Probabilistic GDBF 



Linear block codes 

• (3,2) code, field GF(2) 

 

 

 

 

 

 

 

 

• Vector space with 2n ellements with length n=3. 

• Vector subspace with 2k elemens with length n=3. This vector 

subspace (set of codewords) is linear block code (3,2). 
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LDPC codes - properties 

 
• Completely defined by 

parity check matrix H. 
 
 

• Regular or irregular (fixed 
or variable number of ones 
per row/column) 
 

 
• Sparse matrix (low density 

of binary one in matrix H) 
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Tanner bipartite graph 

• QC LDPC – suitable for hardware implementation 

 

 

 

 

 

 

• Regular code with girth equal to 4! 
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Gallager-B, iterative decoding 

• The simplest massage-passing algorithm 
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An example  

• Regular Euclidean 

geometry LDPC code 

with: 
 r=4 (weight of check node - 

number of ones in every 

row),  

 g=4 (weight of variable node 

- number of ones in every 

column) 
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Gallager-B, initialization 

• For variable node d12 incident edges are d12->h1, d12->h2, d12->h10 and d12->h14 

and messages that are initially sent are: 

                   m1(d12->h1)= m1(d12->h2)= m1(d12->h10)= m1(d12->h14)=r(12)=1, 

     and the messages sent over all other edges are equal to binary zero (as the other 

bits in received vector are equal to zero). 
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Gallager-B,  

step (i)- check-node update 

• Update for check node 1: 
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Gallager-B,  

step (i)- check-node update 

• Update for check node 2: 
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Gallager-B,  

step (i)- check-node update 

• Update for check node 10: 
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Gallager-B,  

step (i)- check-node update 

• Update for check node 14: 
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Gallager-B,  

step (ii)- variable-node update 
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Taylor-Kuznetsov memory – updating bit 5 in 

the second register 
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Taylor-Kuznetsov memory architecture 

with failures 

d3=0 d11=0 d14=0

Register 1

(h1 - copy of 

neighbors of d12)

+

Majority Logic 

Gate

2. iteration

3. iteration

1 2 dc-1=3

d1=0 d9=0 d10=0

Register dv=4

(h14 - copy of 

neighbors of d12)

+

d4=0 d13=0 d15=0

Register 2

(h2 - copy of 

neighbors of d12)

+

d5=0 d6=0 d8=0

Register 3

(h10 - copy of 

neighbors of d12)

+

0 0
2 1 12' ( ) 0m h d  

2 14 12' ( ) 0m h d  

d1
(1) d15

(1) d1
(4) ... d15

(4)
d1

(2) ... d15
(2)

d1
(3) ... d15

(3)
d12

(1) ......

FAULTY FAULTY FAULTY FAULTY

FAULTY
+



17 

Faulty Gallager-B 

- Transient failures due to the noise or timing errors 

-  Decisions made in variable nodes and parity check nodes are 

unreliable (variable node is faulty with probability p, parity 

check node is faulty with probability q). 

Information 

source

LDPC 

encoder

Channel
Noise

source

LDPC 

decoder

Noise

source

Destination



18 

Faulty Gallager-B 

• Let the failures are uncorrelated and data independent. 

• Rate of number of incorrectly decoded codewords and number of 

transmitted codewords (frame error rate – FER) is determined for  

– variable crossover probability in BSC channel (or memory) 

– fixed probability of faulty in variable node, p 

– fixed probability of faulty in check node, q 

– fixed number of iterations during the decoding process 

– various QC codes are considered: 

• Tanner code (155,64) with n=155, r=5 and g=3,  

• QC code with n=305, r =5 and g =3, 

•  QC code with n=155, r =5 and g =4, 
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Faulty Gallager-B, Tanner (155,64), MaxIt=5 

• Variable nodes are much more sensitive to processing noise and they 

should be realized by using more reliable hardware. 
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Faulty Gallager-B, iterations 

• Performances can be improved by increasing the number of iterations, but 

variable nodes are still more critical.  
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Faulty Gallager-B, codeword length 

• Although the code with longer codewords has better correcting 

capabilities, it is also more prone to processing errors.  
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Faulty Gallager-B, impact of g 

• It is interesting to notice that performance of code with lower code rate 

are less degraded by decoder failures.  



Parallel BF decoder 

BSC 

    The channel output (as well as the 

input) has two levels. 

    Crossover probability a. 

 

For every variable node we check 

if it is satisfied: 

 

 

Valid codeword: 
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GDBF for BSC 
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Substitution: 
 

 

 
 

Modified inverse function  
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Tanner (155,64), faulty BF/PBF/GDBF  
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PGDBF for BSC, faulty decoder  

(memory, XOR, ML) 

Paralel bit-flipping: 

 

Valid codeword: 
 

 

Probabibistic GDBF (PGDBF):  

   - Necessary condition for flipping 

 

    - One additional two-input AND gate 

    - Additional random number generator 

Special cases: 

    - Parallel BF, probabilistic BF,  

      GDBF for BSC (p=1) 
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Faulty XOR and memory,  

the impact of probabilism 
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Tanner (155,64), faulty PGDBF,                             

the impact of parameter p for a=4×10-3 
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PGDBF, non-faulty & faulty XOR

PGDBF, faulty XOR, MAJ

Frame Error Rate: Average number of iterations: 



QC-732, BF/PBF/GDBF/PGDBF/SPA 
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Conclusion 

• We considered: 

    - uncorrelated errors (von-Noyman type), different probability of injected 

failures in 

            - check nodes (XOR gates), denoted by q 

     - variable nodes (ML gates), denoted by p 

    - data dependent failures – what if  probability of injected failures depend of 

current (and previous) inputs of XOR gates and ML gates? 

 

• Hard decision decoders:  

- Variable nodes are more critical than parity check nodes. Values of q=1/n, 

p=q/10 can be tolerated. 

- Gallager-B decoder outperforms BF algorithm and it is more immune to 

hardware failures. 

- In some cases GDBF work better in the presence of transient failures! 

- PGDBF has large immunity to hardware failures. 
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