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Abstract 

In this talk we introduce fault-tolerant memory architecture based on low-density parity check codes and iterative 

decoders. We also present a theoretical analysis of decoders failures. 

Key words: Low-density parity check codes, Memory architectures, Unreliable components 

Synopsis 

Increased integration factor of integrated circuits coupled with stringent energy-efficiency constraints 

necessities a new design paradigm for Very Large Scale Integration (VLSI) technologies in which fully 

reliable operation of hardware components is not guaranteed.  In this presentation we discuss an error 

control coding (ECC) as a method for ensuring fault-tolerance of systems build of unreliable hardware 

with a special focus on fault-tolerant memories. This approach, in contrast to the widely used von 

Neumann’s triple modular redundancy, was introduced in the late sixties and early seventies by Taylor 

[1] and Kuznetsov [2], while the equivalence between Gallager B decoder built from unreliable logic 

gates and Taylor-Kuznetsov fault-tolerant memory architectures was first observed by our research 

group in [3] and [4], and further developed in [5] into a theoretical framework for analysis and design of 

faulty decoders of low-density parity check (LDPC) codes. 

We start by introducing physical reasons for semiconductor devices failures. These reasons depend 

on the technology used but can be broadly divided into: permanent, intermittent and transient. We focus 

on the third type or faults, transient faults (TFs), which also referred to as soft errors and are mainly due 

to single or multiple event upsets or timing errors. These errors have probabilistic behavior and can be 

described statistically. 
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After that, we discuss Taylor’s proof that a memory built from unreliable components can achieve 

storage capacity C for all memory redundancies greater that 1/C. In the Taylor-Kuznetsov (TK) model, 

the information is stored in a coded form, i.e., the stored vector is a codeword of some (n, k) block ECC. 

The memory in which the bits are stored is also assumed to be unreliable. It is connected to a correcting 

circuit, which periodically updates the memory using given decoding scheme. The redundancy 

necessary to ensure memory reliability grows linearly with the memory size.  A memory failure occurs if 

the error pattern in the memory is uncorrectable by a perfect decoder in some maximum number of 

iterations. 

In TK memory architecture the user information is first en-coded by a regular binary LDPC code of 

length n and dimension k.  The stored codeword, denoted as x=(x1,x2,...,xn), consist of n variable bits xi, 

(i=1,...,n) which are involved in exactly J parity-check equations.. The j-th component of the vector 

c=xH
T
, called a syndrome, corresponds to the value of j-th parity-check sum, and can be satisfied if cj=0 

and unsatisfied if cj=1. After encoding, the J identical copies of every coded bit xi, {xi
(1)

, xi
(1)

, ... , xi
(J)

}  are 

stored in J registers. Registers are unreliable. In each iteration, the estimates of each of these copies 

are obtained by using one combination of J-1 checks by the following steps: (i) calculating the parity 

checks for each bit-copy (exclude one distinct parity check from the original set of check for each bit-

copy), (ii) flipping the value of the bit-copy if majority of the parity checks are unsatisfied. The decision 

element in this case is a majority logic gate whose output is 1 if half or more of the parity checks are 

non-zero. We present a theoretical analysis of faulty decoders  
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Outline 

• Prologue: 

– Basics of iterative decoding and low-density parity 

check  (LDPC) codes 

 

• Drama - fault-tolerant memories 

– Motivation 

– History 

– Fault -tolerant architecture based on expander LDPC 

codes 

 

• Epilogue: 

– Guaranteed error correction by LDPC codes 



Information transmission 

 

 
Channel 

 

1 0 1 0 0 … 1 0 1 0 0 … 



Information transmission 

signal 

time 

threshold 

1            0              1 1            0              0 



Simple memoryless channels 

 

• Binary symmetric channel (BSC) 

 

 

 

• Binary erasure channel (BEC) 

 

 

 

• Binary input  additive white Gaussian 
noise (AWGN) channel, s 2 
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Communication channels 

 

• Decoder tries to find x ( or m ) from y so that the 

probability of bit/codeword error is minimal 

• In other words, decoder tries to find a codeword closest 

to y. 

m̂
Encoder Decoder 

 
Channel 

 

x̂m x y
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Error rates in communications systems 
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And genetic channels 
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Global Power Consumption 

• 200 Mega Watt per Hour worldwide for data error 

correction! 

• Data centers only, not counting mobile devices and 

computers. 



Protecting information by coding 

all words of length n 



all words of length n 
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codewords 
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Protecting information by coding 

code C 



Linear codes 



Dimension of a linear code 

h1 
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g1 

{g1,…,gk} the basis for code C 
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Parity check 
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Linear constraints 

• A codeword v satisfies  

• n-k equations in n variables 

• Example: 
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Graphical model for a linear block code 
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Graphical model for a linear block code 
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Graphical model for a linear block code 
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Expanders 

• Definition: A bipartite graph with n variable 

nodes is called an ( ,)-expander if for 

any subset S of the variable nodes of size 

at most n the number of (check node) 

neighbors of S is at least  aS |S|, where aS 

is the average degree of the nodes in S. 

    

        |S|   n    |(S)|   aS |S|  

 

• Remark: if there are many edges going out 

of a subset of message nodes, then there 

should be many different (unshared) 

neighbors. 

 

S (S) 



Decoding on graphs  

• Two basic types of algorithms: 

– Bit flipping 

• If more checks are unsatisfied than satisfied, flip the bit 

• Continue until all checks are satisfied 

– Message passing 

• A variable node sends his value to all neighboring checks 

• A checks computes XOR of all incoming messages and 

sends this along the edges 

• But it excludes the message on the edge the result is send 

along! 

• Variable takes a majority vote of incoming messages and 

sends this along 

• If tie, sends its original value 



Fault-tolerant memories 



Motivation 

• Space systems 

– Radiation of protons, electrons, alpha particles (trapped radiation 
belts, solar proton events), galactic cosmic rays, etc. 

– The frequency of single-event upsets (SEU) per second due to 
cosmic ray ions can be as large as 0.033 ! 

– Europa-Orbiter, currently scheduled to carry only 150 Mbits of 
rad-hard memory! 

• Air systems 

– Neutrons, the radiation effect maximizes at ~55,000 feet high 
latitudes. 

• Terrestrial systems 

– Low-level background radiation from galactic cosmic rays. 

• Emerging nano-scale devices  

– Much less reliable than classical Silicon-based VLSI circuits. 

– Permanent failures (defects) and transient failures. 

• Distributed computing over a network with unreliable links. 

 

 



Why are Memories Interesting? 

 

• A place where the information spends most time. 

• Decoders also use memory. 

• Boolean functions can be reliably computed indirectly 

using memories. 

• The essential component to simulate a Turing machine 

by cellular automata made of on unreliable components 

is storing reliably a single bit on an infinite plane. 

 



Faulty Memory Systems 

• In a classical setting - full control over error correction encoders and 

decoders (errors/noise affects only the memory). 

 

 

 

 

 

• In our setting: both the storage elements and logic gates are faulty. 

– The process of error correction not error-free as assumed in 

classical information theory. 
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Importance 

• Is a reliable memory realizable using only unreliable 
components? 

• We say that reliable information storage is possible in a 

memory if the probability of memory failure can be made 

arbitrarily small. 

• Stronger encoder and decoder are also more complex, 

and may not necessarily improve the performance of a 

system.   

• The same question can be asked for computation of 

Boolean functions. 

 

 



A Fundamental Open Problem 

• Given n memory cells and m universal logic gates which 

fail following a known random mechanism, what is the 

optimal memory architecture which stores the maximum 

number of information bits for the longest period of time 

with arbitrary low probability of error? 

• The answer strongly depends on failure mechanism. 

• We consider von Neumann failure mechanism (the 

elements fail  independently with known probability, i.e., 

the components are reliably unreliable). 

– It is sufficient to assume that only gates and memory 

elements fail, and that the links are perfect, Dobrushin 

and Ortyukov (1977).  

 

 

 

 

 

 

 



Two Approaches to Improve Reliability 

• (i) von Neumann multiplexing (1952):  

     The logic gate resources invested into multiplexing. Build highly 

redundant reliable networks that simulate the function of universal 

logic gates, and then use such better gates to build an error 

correction encoder and decoder. 

• (ii) Taylor-Kuznetsov error correction (1965, 1971): 

 Logic gate resources invested into building more powerful error 

correcting code (i.e., decoder) capable of handling both memory 

elements as well as logic gates errors.  

 
 J. von Neumann, ''Probabilistic logics and the synthesis of reliable organisms from 

unreliable components," In C. E. Shannon and J. McCarthy, Eds. Automata Studies. 
Princeton: Princeton University Press, pp. 43-98, 1956. 

 M. Taylor, ''Reliable Information Storage in Memories Designed from Unreliable 

Components", Bell System Technical Journal, 47, pp 2299-2337, 1968. 

 A. Kuznetsov, ''Information Storage in a Memory Assembled from Unreliable 

Components," Problems of Information Transmission, 9, pp. 254-264, 1973. 

   

 



Assumptions 

• The information is always kept in coded form. 

• If the message bits are extracted by faulty gates, then 

the probability of the message bit error is determined by 

these faulty gates, and cannot be made arbitrary small.  

• Non-zero capacity is possible only until the moment the 

stored information is kept in a coded form.  

• A memory is considered stable if it would be possible to 

correct errors using a perfect decoder. 



A Note on Computational Capacity 

• Memory redundancy is related to computational capacity of 
Boolean functions. 

• Difficult to evaluate computational (and storage) capacity (note 
the similarity with Kolmogorov-Chaitin-Solomonoff computational 
complexity). 

• Pippenger (1988) 

• Proved that general computation with non-zero 
computational capacity is not possible.  

 (a quote from Gacs’s book) 



Taylor (1965) - Summary 

• Realized that von Neumann multiplexing is a special 

type of error correction code (repetition code).  

• Proved that a memory has an associated information 

storage capacity, C, such that arbitrarily reliable 

information storage is possible for all memory 

redundancies greater than 1/C.  

• Showed that faulty memory systems have nonzero 

(!!!) computational capacity (storage capacity). 

• The methodology of the proof, however, does not 

allow explicit calculation of the storage capacity. 

• Proposed construction of fault-tolerant memories 

based on low-density parity-check (LDPC) codes.  

• Considered von Neumann type of error. 
 

 
 

 
 

 



Results of Kuznetsov and Other Important 

Results 

• Kuznetsov – many refinements, the results is what we call Taylor-
Kuznetsov (TK) scheme. 

 

 

 

 

 

 

 

• Hadjicostis - generalized TK scheme to fault tolerant linear finite-state 
machines.   

• Spielman – considered general model of computation, combined von 
Neumann multiplexing with Reed-Solomon (RS) codes, an architecture 
with log-linear complexity. 

   

 



Taylor-Kuznetsov Scheme 

• After encoding, every coded bit xi is replaced with g bit-copies of 

itself {xi
(1)

,, xi
(2)

,, . . . xi
(g)

,} stored in g registers (all bit-copies initially 

have the same value).  

1) Evaluate parity checks for each bit-copy (exclude one distinct parity 

check from the original set of checks for each bit-copy).  

2) Flip the value of a particular bit-copy if half or more of the parity 

checks are unsatisfied.   

3) Iterate 1) and 2). 

 

 ix

Register J-1  Register 1 

XOR Gate XOR Gate 
… 

Majority Logic Gate 

ix

ix
… 

+ 



Another Look at Taylor-Kuznetsov Scheme 

• Assign the g identical copies of the variable x to the 

edges connecting x to check nodes in a Tanner graph of 

the (g,r) regular LDPC code 

• Each bit copy corresponds to the message passed 

along an edge from variable node to check node. 

• TK  Gallager B algorithm. 
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Our Results 

• A decoder architecture based on expander codes. 

• Lower redundancy compared to the TK scheme.  

• Also based on LDPC codes but differs from the TK 

scheme in the decoding algorithm employed. 

• Prove that this architecture achieves exponentially small 

probability of error for the independent failure model. 

– Only a fixed fraction of the components fail at any given time.  

– Expander arguments to show that a fraction of errors can be 

corrected. 

– Codes which can correct a fraction of errors achieve 

exponentially small probability of error on the BSC (extension to 

the independent failure model using Chernoff bounds). 

• Determine the complexity gain over the TK scheme (i.e., 

bounds on memory complexity).  

 

 



The Memory Architecture 

• A storage circuit stores the bits in coded form in 

registers. 

• At t=0, a codeword from (n,g,r) regular LDPC code is 

written into the storage circuit. 

• A correcting circuit updates the contents of the 

storage circuit every  seconds. 

• The update proceeds as follows. 

 

 

 

 

 

 

 

• The update rule - similar to the parallel bit flipping. 

 

1. Each variable node sends its current 
value to neighboring check nodes. 

2. A check node sends  the modulo two 
sum of all incoming messages to a 
variable node excluding the message it 
received from that variable node. 

3. A variable node updates its value based 
on majority of the messages received 
from neighboring checks. 



Complexity and Redundancy 

• A check node sends an estimate of variable node by 
XORing the values of other neighboring variable 
nodes 

– This needs a (r-1)- input XOR gate which can be built from 
(r-2) two-input XOR gates. 

 
• A variable node updates its value based on majority of 

g estimates it receives from neighboring check nodes 
– This needs a g-input majority logic gate. 

 

 

 



The Failure Model 

• Adversarial: at most a fraction of registers/gates can fail. 

          am - fraction of registers that can fail in time   

          a - fraction of two-input XOR gate failures 

          ag  - fraction of g –input majority logic gate failures 

 

 

 

 
 
 



The Main Theorem 

• Let  G  be a (g,r,a, (¾+e)g) expander for any e > 0. The 

proposed memory architecture can tolerate constant 

fraction of errors in all the components if  

 

  

 

• This 4e decrease is due to iterative nature of decoder. 
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Expander Codes 

• Defined using a code and an expander graph: 

– For every check node, the neighboring variable nodes 

are a codeword in some code. 

– LDPC codes are special class, where the code is 

simply the set of all even weight patterns of length r. 
 

• A Tanner graph G of a (n,g,r) LDPC code is a (g, r, a ,) 
expander  if for every subset S of at most an a n variable 
nodes, at least |S| check nodes are incident to S. 

• Expander codes are a class of asymptotically good error 

correcting codes.  
 

  



Parallel Bit Flipping Decoder 

• Theorem, Sipser and Spielman (1996):  

• Let G be a (g, r, a, (¾ +e)g) expander over n variable 

nodes, for any e > 0. Then, parallel decoding algorithm 

will correct any  

 

 

     fraction of error after                               decoding 

rounds. 

• If V is the set of corrupt variables and |V|<a n (1 + 

4e)/2, then the parallel decoding algorithm produces a 

word with at most |V|(1-4e) corrupt variables after one 

decoding round.    
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Total Fraction of Correctable Errors 

• The total fraction of error from all sources must be kept 

below correction capability of the code. 

• The memory can correct am, a  and ag   fraction of errors 

as long as am, +g (r-2) a  + ag <aTotal. 

• The main theorem, together with the existence of 

expanders of sufficient expansion proves the existence 

of memories. which can tolerate am, a  and ag  fraction 

of errors. 

 

 



Other Results and Recent Developments 

• Fault-tolerant decoders 

– One-step majority logic decoders (Chilappagari and 

Vasic, 2006) 

– Bit-flipping (Vasic and Chilappagari, 2007) 

– Density evolution of faulty decoders (Varshney, 2011) 

– Density evolution of faulty Gallager B (Yazdi, 2013) 

– Noisy min-sum (Kameni Ngassa et al. 2013) 

– Gallager B under data dependent errors (Brkic et al., 

2014) 

– Analysis of faulty Gallager B on QC-LDPC codes (Al 

Rasheed, 20013) 

 



General Open Problems 

• The situation is different if failures are permanent or a mixture of 

transient and permanent failures (rerouting or coding). 

• Faulty encoding and wire failures not taken into account, but wires 

have different lengths. 

• Cellular automata. 

• Unreliable computers. 

– Stable memories can be used to construct reliable computers 

made of faulty components.  
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Хвала на пажњи! 



How many errors can a fixed length code 

correct? 



Drawbacks of expander arguments 

• Bounds derived using random graph arguments on the 

fraction of nodes having sufficient expansion are very 

pessimistic 

– Richardson and Urbanke  (2003):  In the (5,6) regular 

code ensemble,  minimum distance is 3% of code 

length. But only 3.375 x 10-11 fraction of nodes have 

expansion of  ( )dv 

• Expansion arguments cannot be used for column-

weight-three codes (dv  5) 

• Determining the expansion of a given graph known to be 

NP hard, and spectral gap methods cannot guarantee an 

expansion factor    

 

 

 



The main idea 

• The expansion arguments rely on properties of random 

graphs and hence do not lead to explicit construction of 

codes.  

• Ii the expansion properties can be related to the 

parameters of the Tanner graph, such as g, and dv , then 

the bounds on guaranteed error correction capability can 

be established as function of these parameters. 

 



The curious case of dv = 3 codes 

• Gallager showed that the minimum distance of 

ensembles of (dv, dc) regular LDPC codes with dv ≥ 3 

grows linearly with the code length 

• This implies that under ML decoding, dv = 3 codes are 

capable of correcting a number of errors linear in the 

code length 

• Gallager  also showed that under his algorithms A and B 

the bit error probability approaches zero whenever we 

operate below the threshold 

• But, the correction of a linear fraction of errors was not 

shown 



Other complications with dv = 3 codes 

• Even for the more complex LP decoding, it has not been 

shown that codes with dv = 3 can correct a fraction of 

errors 

• To correct linear fraction of errors the expansion factor of 

 is necessary, but the best expansion factor achievable 

by dv = 3 codes is 1-1/dv  = 
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Trapping sets - sufficient conditions 

• Theorem 1: Let C be a code in the ensemble of (3, ρ) 

regular LDPC codes. Let  be a subgraph induced by 

the set of variable nodes T. Let the checks in  can be 

partitioned into two disjoint subsets: E consisting of 

checks with even degree, and O consisting of checks 

with odd degree. y is a fixed point if :  

 (a) supp(y)=T,  

 (b) Every variable node in  is connected to at least two 

checks in E , 

 (c) No two checks of O are connected to a variable node 

outside . 

 



Trapping sets: examples 

(3,3) trapping set (5,3) trapping set 

(8,0) Trapping Set 



Trapping set ontology 



A trapping set ontology 

• A database and software for systematic study of failures 

of iterative decoders on BSC 
http://www.ece.arizona.edu/vasiclab/Projects/CodingTheory/Trapping

SetOntology.html 

• Applications: 

 

 

 

 

 

 

Error floor estimation Code construction 



An incidence structure representation 

• A trapping sets can be characterized using incidence 

structure of lines and points. 

   lines  variables, checks  points 

 

 

 

 

 

  

 Tanner graph representation    A point-line representation  

• An (a,b) trapping set is an incidence structure of a lines 

and b white points. 

 

     

even-degree check 

variable 

odd-degree check 



Properties of incidence structures 

• A point is white if it lies on an odd number of lines and is 

black otherwise 

 

 

              

   

 

 

 

 

 

 

 

 



TS #TS g=6 g=8 g=10 g=12 

(3,3) 1 1 

 (4,4) 1 1 

(4,2) 1 1 

 (4,0) 1 1 

(5,5) 1 1 

(5,3) 2 1 1 

(5,1) 1 1 

(6,6) 1 1 

(6,4) 4 2 2 

(6,2) 4 3 1 

(6,0) 2 1 1 

Number of trapping sets 



Creating larger trapping sets from smaller 

• The “reproduction” rule: children are obtained by adding 

lines to parents, changing the color of the points 

accordingly. 

 



Reproduction illustration 



Consequences 

 

• For column weight three codes, the weight of correctable 

error patterns under Gallager A algorithm grows only 

linearly with girth 

 

• For any α>0 and sufficiently large block lengths n, no 

code in the Cn(3, ρ) ensemble can correct all αn errors 

under Gallager A algorithm 

 



The lower bound lemmas 

• Theorem 3: An (n, 3, ρ) code with girth g ≥ 10 can correct 

all error patterns of weight g/2−1 or less in g/2 iterations 

of the Gallager A algorithm. 

• Equivalently, there are no trapping sets with critical 

number less than g/2. 

• Proof: Finding, for a particular choice of k, all 

configurations of g/2−1 or less bad variable nodes which 

do not converge in k+1 iterations and then prove that 

these configurations converge in subsequent iterations. 

 

 

 

 

 



Open Coding Theory Problems 

• Investigating ensemble of irregular graphs.  

– Known to have higher thresholds and approach capacity. 

• Fault tolerant implementation of expander codes. 

– Work by Zemor and Barg and Burshtein and Miller, and 

Guruswami and Indyk let do remarkable improvement in rate 

vs. correction capability tradeoffs.  

– Need less expansion, but more complicated decoding.  

• Explicit construction of expanders. 

– Recent work by Capalbo et.al (2002) gives expander  

construction but has very large degrees. 

  



General Open Problems 

• The situation is different if failures are permanent or a mixture of 

transient and permanent failures (rerouting or coding). 

• Faulty encoding and wire failures not taken into account, but wires 

have different lengths. 

• Cellular automata. 

• Unreliable computers. 

– Stable memories can be used to construct reliable computers 

made of faulty components.  
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Consequences 

• A decoding algorithm and corresponding sufficient 

condition to correct any k errors 

• Possibility to correct a linear fraction of errors for 

column-weight-three codes! 

• Decoders that do not require (3/4)dv expansion to correct 

linear fraction of errors for higher column-weight-codes 

• Bridging the gap between sub-optimal decoders and 

maximum-likelihood decoders 

 



Bounds on aTotal 

 

 

  

  g=9                                                                       

g=35 



Redundancy for g=9 

    



Redundancy for g=35 

  



Bounds for the TK scheme 

• There exists a solution a, 0 a <1 of the equation 

 

 

• The minimum solution amin, 0 · amin · 1 satisfies the 

inequality 
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A Comparison with the TK Scheme for g=8 



Gain over the TK Scheme for g=8 



Gain over the TK Scheme for g=8 



General Comments on the TK Scheme 1/2 

• The work of Taylor and Kuznetsov closely resembles 

Gallager’s work on LDPC codes. 

• Gallager methodology relies on:  
– constructing a class of codes which do not have cycles of length less or equal to 

2l,  

– applying density evolution and determining thresholds, and  

– showing that after l decoding rounds the bit-error probability decreases as e-an
, 

where a and  are constants while operating over a BSC with parameter less 

than the threshold.  

• Contrasted with recent work by Richardson and Urbanke 

(RU) which is based on sequence of ensembles of 

codes. 

• Can the arguments such as concentration, convergence 

to cycle-free case and density evolution be applied to the 

case of faulty gates? 

 

  



Existence of Expanders 

• It is known that a random graph is a good expander 

with high probability. 

• However, we need it to be good in terms of both a and 

. 

• Urbanke and Richardson (2007) give some bounds: 

• Chose a code uniformly at random from LDPC (n, xg-1, 

xr-1). 

• Choose l 2 [0, 1-1/l ), and let amax be the positive 

solution of the equation  

  

 

• Then for 0 < a < amax and =l (1-g)-1 
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Expander arguments 

• Sipser and Spielman (1996): Let G be a                       (dv, 

dc, α, (  +ε) dv) expander over n variable nodes, for any ε 

> 0. Then, the parallel bit flipping algorithm will correct 

any  α0 < α (1+4ε)/2 fraction of error after      log1/(1-4ε)(α0n)  

decoding rounds 

• Burshtein and Miller, (2001): “Expander graph arguments 

for message passing algorithms” 

• Feldman et al. (2003): “ LP Decoding corrects a constant 

fraction of errors” 

 



Expander Codes 

• A Tanner graph G of a (n,g,r) LDPC code is a (g, r, a ,) 
expander  if for every subset S of at most an a n variable 
nodes, at least |S| check nodes are incident to S. 

• Expander codes are a class of asymptotically good error 

correcting codes.  
 

  


