

Reliable Memories From Unreliable

Components: Theory and Connections

With Codes On Graphs

Bane Vasić 1, Predrag Ivaniš 2

1
 Department of ECE, University of Arizona, Tucson

2
 School of Electrical Engineering, University of Belgrade

E-mail:
1
vasic@ece.arizona.edu,

2
predrag.ivanis@etf.rs

Abstract

In this talk we introduce fault-tolerant memory architecture based on low-density parity check codes and iterative

decoders. We also present a theoretical analysis of decoders failures.

Key words: Low-density parity check codes, Memory architectures, Unreliable components

Synopsis

Increased integration factor of integrated circuits coupled with stringent energy-efficiency constraints

necessities a new design paradigm for Very Large Scale Integration (VLSI) technologies in which fully

reliable operation of hardware components is not guaranteed. In this presentation we discuss an error

control coding (ECC) as a method for ensuring fault-tolerance of systems build of unreliable hardware

with a special focus on fault-tolerant memories. This approach, in contrast to the widely used von

Neumann’s triple modular redundancy, was introduced in the late sixties and early seventies by Taylor

[1] and Kuznetsov [2], while the equivalence between Gallager B decoder built from unreliable logic

gates and Taylor-Kuznetsov fault-tolerant memory architectures was first observed by our research

group in [3] and [4], and further developed in [5] into a theoretical framework for analysis and design of

faulty decoders of low-density parity check (LDPC) codes.

We start by introducing physical reasons for semiconductor devices failures. These reasons depend

on the technology used but can be broadly divided into: permanent, intermittent and transient. We focus

on the third type or faults, transient faults (TFs), which also referred to as soft errors and are mainly due

to single or multiple event upsets or timing errors. These errors have probabilistic behavior and can be

described statistically.

9

After that, we discuss Taylor’s proof that a memory built from unreliable components can achieve

storage capacity C for all memory redundancies greater that 1/C. In the Taylor-Kuznetsov (TK) model,

the information is stored in a coded form, i.e., the stored vector is a codeword of some (n, k) block ECC.

The memory in which the bits are stored is also assumed to be unreliable. It is connected to a correcting

circuit, which periodically updates the memory using given decoding scheme. The redundancy

necessary to ensure memory reliability grows linearly with the memory size. A memory failure occurs if

the error pattern in the memory is uncorrectable by a perfect decoder in some maximum number of

iterations.

In TK memory architecture the user information is first en-coded by a regular binary LDPC code of

length n and dimension k. The stored codeword, denoted as x=(x1,x2,...,xn), consist of n variable bits xi,

(i=1,...,n) which are involved in exactly J parity-check equations.. The j-th component of the vector

c=xH
T
, called a syndrome, corresponds to the value of j-th parity-check sum, and can be satisfied if cj=0

and unsatisfied if cj=1. After encoding, the J identical copies of every coded bit xi, {xi
(1)

, xi
(1)

, ... , xi
(J)

} are

stored in J registers. Registers are unreliable. In each iteration, the estimates of each of these copies

are obtained by using one combination of J-1 checks by the following steps: (i) calculating the parity

checks for each bit-copy (exclude one distinct parity check from the original set of check for each bit-

copy), (ii) flipping the value of the bit-copy if majority of the parity checks are unsatisfied. The decision

element in this case is a majority logic gate whose output is 1 if half or more of the parity checks are

non-zero. We present a theoretical analysis of faulty decoders

Acknowledgment

This work was supported by the Seventh Framework Pro-gramme of the European Union, under

Grant Agreement number 309129 (i-RISC project). It is also funded in part by the NSF under grants

CCF-0963726 and CCF-1314147.

References

[1] M. Taylor, “Reliable information storage in memories designed from unreliable components,” Bell System
Technical Journal, 47, pp. 2299-2337, 1968.

[2] A. Kuznetsov, “Information storage in a memory assembled from unreliable components,” Problems of
Information Transmission, 9, pp. 254-264, 1973.

[3] B. Vasic, S. K. Chilappagari, S. Sankaranarayanan, and R. Radhakrishnan, “Failures of the Gallager B decoder:
analysis and applications,” in Proceedings of 2nd Information Theory and Applications Workshop (ITA 2006), San
Diego, CA, Feb. 2006, paper 160, [Online Available:] http://ita.ucsd.edu/workshop/06/papers/160.pdf

[4] S. K. Chilappagari, B. Vasic, “Fault tolerant memories based on expander graphs,” in Proc. of IEEE Information
Theory Workshop, pp. 126–131, Tahoe City, CA, USA, Sep. 2–6 2007..

[5] B. Vasic and S. K. Chilappagari, “An information theoretical framework for analysis and design of nanoscale fault-
tolerant memories based on low-density parity-check codes,” IEEE Transactions on Circuits and Systems I,
Regular Papers, vol. 54, no. 11, pp. 2438-2446, Nov. 2007.

10

Reliable Memories

Made of (Only!) Faulty Logic Gates

Bane Vasić

Department of Electrical and Computer Engineering

Department of Mathematics

University of Arizona, Tucson

USA

Predrag Ivaniš

Faculty of Electrical Engineering

University of Belgrade

Serbia

Supported by the NSF under Grant CCF-0963726 and CCF-1314147 and the Seventh

Framework Programme of the European Union, under Grant Agreement number 309129 (i-

RISC project)

Collaborators

• David Declercq, ENSEA

• Valentin Savin, CEA

• Elsa Dupraz, ENSEA

• Srdjan Brkić, ETF Belgrade

• Omran Al Rasheed, ETF Belgrade

• Alexander Kuznetsov, Seagate Research

• Erozan Kurtas, Standard & Poor’s

• Shashi Kiran Chilappagari, Marvell Semiconductor

• Milos Ivkovic, Cornell

• Rathnakumar Radhakrishnan, Marvell Semiconductor

• Anantha Raman Krishnan, Western Digital

• Dariush Divsalar, Fabrizio Polara, Ken Andrews, NASA-JPL

• Misha Chertkov, Los Alamos National Laboratory

Outline

• Prologue:

– Basics of iterative decoding and low-density parity

check (LDPC) codes

• Drama - fault-tolerant memories

– Motivation

– History

– Fault -tolerant architecture based on expander LDPC

codes

• Epilogue:

– Guaranteed error correction by LDPC codes

Information transmission

Channel

1 0 1 0 0 … 1 0 1 0 0 …

Information transmission

signal

time

threshold

1 0 1 1 0 0

Simple memoryless channels

• Binary symmetric channel (BSC)

• Binary erasure channel (BEC)

• Binary input additive white Gaussian
noise (AWGN) channel, s 2

a
a

1-a

1-a

0

1

0

1

e

e

1-e

1-e

0

1

0

1

E

p(y|0)

0

1

0

1

p(y|1)

y

Communication channels

• Decoder tries to find x (or m) from y so that the

probability of bit/codeword error is minimal

• In other words, decoder tries to find a codeword closest

to y.

m̂
Encoder Decoder

Channel

x̂m x y

coded

Error rate performance

FER

SNR
10-1

10-6

10-15

Shannon limit
uncoded

Error rates in communications systems

10-6

10-9

10-12

10-15

10-18

error rate

Magnetic tape 10-17

Wireless phones 10-6

Optical communications links 10-12

DVD 10-15

CD 10-14

Flash memories, hard drives 10-15

And genetic channels

10-6

10-9

10-12

10-15

10-18

error rate

Genetic channels 10-10

Wireless phones 10-6

Optical communications links 10-12

DVD 10-15

CD 10-14

Hard drives 10-15

Magnetic tape 10-17

Global Power Consumption

• 200 Mega Watt per Hour worldwide for data error

correction!

• Data centers only, not counting mobile devices and

computers.

Protecting information by coding

all words of length n

all words of length n

Protecting information by coding

codewords

Minimum distance

Protecting information by coding

code C

Linear codes

Dimension of a linear code

h1

g2

g1

{g1,…,gk} the basis for code C

{h1,h2,…,hn-k} the basis of C^

v  HT =0

Parity check

g1

g2

h1

v vHT =0

Parity check

g1

g2

h1

v

vHT =0

Parity check

g1

g2

h1

v

vHT =0

Syndrome

y HT 0

y

h1

g1

g2

Linear constraints

• A codeword v satisfies

• n-k equations in n variables

• Example:

0Tv H× =

 1 0 0 1 0 1 1

 0 1 0 1 1 1 0

 0 0 1 0 1 1 1

H

 
 
 
  

1 1 4 6 7

2 2 4 5 6

3 3 5 6 7

: 0

: 0

: = 0

c v v v v

c v v v v

c v v v v

+ + + =

+ + + =

+ + +

Graphical model for a linear block code

1 1 4 6 7

2 2 4 5 6

3 3 5 6 7

: 0

: 0

: = 0

c v v v v

c v v v v

c v v v v

+ + + =

+ + + =

+ + +

Graphical model for a linear block code

 Variables

1 1 4 6 7

2 2 4 5 6

3 3 5 6 7

: 0

: 0

: = 0

c v v v v

c v v v v

c v v v v

+ + + =

+ + + =

+ + +

Checks

Graphical model for a linear block code

 Variables

1 1 4 6 7

2 2 4 5 6

3 3 5 6 7

: 0

: 0

: = 0

c v v v v

c v v v v

c v v v v

+ + + =

+ + + =

+ + +

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3

Checks

Expanders

• Definition: A bipartite graph with n variable

nodes is called an (,)-expander if for

any subset S of the variable nodes of size

at most n the number of (check node)

neighbors of S is at least  aS |S|, where aS

is the average degree of the nodes in S.

 |S|  n  |(S)|   aS |S|

• Remark: if there are many edges going out

of a subset of message nodes, then there

should be many different (unshared)

neighbors.

S (S)

Decoding on graphs

• Two basic types of algorithms:

– Bit flipping

• If more checks are unsatisfied than satisfied, flip the bit

• Continue until all checks are satisfied

– Message passing

• A variable node sends his value to all neighboring checks

• A checks computes XOR of all incoming messages and

sends this along the edges

• But it excludes the message on the edge the result is send

along!

• Variable takes a majority vote of incoming messages and

sends this along

• If tie, sends its original value

Fault-tolerant memories

Motivation

• Space systems

– Radiation of protons, electrons, alpha particles (trapped radiation
belts, solar proton events), galactic cosmic rays, etc.

– The frequency of single-event upsets (SEU) per second due to
cosmic ray ions can be as large as 0.033 !

– Europa-Orbiter, currently scheduled to carry only 150 Mbits of
rad-hard memory!

• Air systems

– Neutrons, the radiation effect maximizes at ~55,000 feet high
latitudes.

• Terrestrial systems

– Low-level background radiation from galactic cosmic rays.

• Emerging nano-scale devices

– Much less reliable than classical Silicon-based VLSI circuits.

– Permanent failures (defects) and transient failures.

• Distributed computing over a network with unreliable links.

Why are Memories Interesting?

• A place where the information spends most time.

• Decoders also use memory.

• Boolean functions can be reliably computed indirectly

using memories.

• The essential component to simulate a Turing machine

by cellular automata made of on unreliable components

is storing reliably a single bit on an infinite plane.

Faulty Memory Systems

• In a classical setting - full control over error correction encoders and

decoders (errors/noise affects only the memory).

• In our setting: both the storage elements and logic gates are faulty.

– The process of error correction not error-free as assumed in

classical information theory.

Error

Correction

Encoder

Write Data

Memory

 Coded

Data

Error

Correction

Decoder Corrupted

Data

Read Data

Noise /

Errors

Error

Correction

Encoder

Write Data

Memory

 Coded

Data

Error

Correction

Decoder Corrupted

Data

Read Data

Noise /

Errors

Importance

• Is a reliable memory realizable using only unreliable
components?

• We say that reliable information storage is possible in a

memory if the probability of memory failure can be made

arbitrarily small.

• Stronger encoder and decoder are also more complex,

and may not necessarily improve the performance of a

system.

• The same question can be asked for computation of

Boolean functions.

A Fundamental Open Problem

• Given n memory cells and m universal logic gates which

fail following a known random mechanism, what is the

optimal memory architecture which stores the maximum

number of information bits for the longest period of time

with arbitrary low probability of error?

• The answer strongly depends on failure mechanism.

• We consider von Neumann failure mechanism (the

elements fail independently with known probability, i.e.,

the components are reliably unreliable).

– It is sufficient to assume that only gates and memory

elements fail, and that the links are perfect, Dobrushin

and Ortyukov (1977).

Two Approaches to Improve Reliability

• (i) von Neumann multiplexing (1952):

 The logic gate resources invested into multiplexing. Build highly

redundant reliable networks that simulate the function of universal

logic gates, and then use such better gates to build an error

correction encoder and decoder.

• (ii) Taylor-Kuznetsov error correction (1965, 1971):

 Logic gate resources invested into building more powerful error

correcting code (i.e., decoder) capable of handling both memory

elements as well as logic gates errors.

 J. von Neumann, ''Probabilistic logics and the synthesis of reliable organisms from

unreliable components," In C. E. Shannon and J. McCarthy, Eds. Automata Studies.
Princeton: Princeton University Press, pp. 43-98, 1956.

 M. Taylor, ''Reliable Information Storage in Memories Designed from Unreliable

Components", Bell System Technical Journal, 47, pp 2299-2337, 1968.

 A. Kuznetsov, ''Information Storage in a Memory Assembled from Unreliable

Components," Problems of Information Transmission, 9, pp. 254-264, 1973.

Assumptions

• The information is always kept in coded form.

• If the message bits are extracted by faulty gates, then

the probability of the message bit error is determined by

these faulty gates, and cannot be made arbitrary small.

• Non-zero capacity is possible only until the moment the

stored information is kept in a coded form.

• A memory is considered stable if it would be possible to

correct errors using a perfect decoder.

A Note on Computational Capacity

• Memory redundancy is related to computational capacity of
Boolean functions.

• Difficult to evaluate computational (and storage) capacity (note
the similarity with Kolmogorov-Chaitin-Solomonoff computational
complexity).

• Pippenger (1988)

• Proved that general computation with non-zero
computational capacity is not possible.

 (a quote from Gacs’s book)

Taylor (1965) - Summary

• Realized that von Neumann multiplexing is a special

type of error correction code (repetition code).

• Proved that a memory has an associated information

storage capacity, C, such that arbitrarily reliable

information storage is possible for all memory

redundancies greater than 1/C.

• Showed that faulty memory systems have nonzero

(!!!) computational capacity (storage capacity).

• The methodology of the proof, however, does not

allow explicit calculation of the storage capacity.

• Proposed construction of fault-tolerant memories

based on low-density parity-check (LDPC) codes.

• Considered von Neumann type of error.

Results of Kuznetsov and Other Important

Results

• Kuznetsov – many refinements, the results is what we call Taylor-
Kuznetsov (TK) scheme.

• Hadjicostis - generalized TK scheme to fault tolerant linear finite-state
machines.

• Spielman – considered general model of computation, combined von
Neumann multiplexing with Reed-Solomon (RS) codes, an architecture
with log-linear complexity.

Taylor-Kuznetsov Scheme

• After encoding, every coded bit xi is replaced with g bit-copies of

itself {xi
(1)

,, xi
(2)

,, . . . xi
(g)

,} stored in g registers (all bit-copies initially

have the same value).

1) Evaluate parity checks for each bit-copy (exclude one distinct parity

check from the original set of checks for each bit-copy).

2) Flip the value of a particular bit-copy if half or more of the parity

checks are unsatisfied.

3) Iterate 1) and 2).

 ix

Register J-1 Register 1

XOR Gate XOR Gate
…

Majority Logic Gate

ix

ix
…

+

Another Look at Taylor-Kuznetsov Scheme

• Assign the g identical copies of the variable x to the

edges connecting x to check nodes in a Tanner graph of

the (g,r) regular LDPC code

• Each bit copy corresponds to the message passed

along an edge from variable node to check node.

• TK  Gallager B algorithm.

 xi

xi
(g-2)

xi
(1) xi

(2)

xi
(g-3)

xi
(g) xi

(k)

xi
(g-2)

xi

n(x)\{ci
(k)}

n(ci
(k))\{xi}

xl

Copies used to update xi
(k)

Copies not used to update xi
(k)

e xi
(j)

ci
(j)

ci
(k)

xl
(k)

Our Results

• A decoder architecture based on expander codes.

• Lower redundancy compared to the TK scheme.

• Also based on LDPC codes but differs from the TK

scheme in the decoding algorithm employed.

• Prove that this architecture achieves exponentially small

probability of error for the independent failure model.

– Only a fixed fraction of the components fail at any given time.

– Expander arguments to show that a fraction of errors can be

corrected.

– Codes which can correct a fraction of errors achieve

exponentially small probability of error on the BSC (extension to

the independent failure model using Chernoff bounds).

• Determine the complexity gain over the TK scheme (i.e.,

bounds on memory complexity).

The Memory Architecture

• A storage circuit stores the bits in coded form in

registers.

• At t=0, a codeword from (n,g,r) regular LDPC code is

written into the storage circuit.

• A correcting circuit updates the contents of the

storage circuit every  seconds.

• The update proceeds as follows.

• The update rule - similar to the parallel bit flipping.

1. Each variable node sends its current
value to neighboring check nodes.

2. A check node sends the modulo two
sum of all incoming messages to a
variable node excluding the message it
received from that variable node.

3. A variable node updates its value based
on majority of the messages received
from neighboring checks.

Complexity and Redundancy

• A check node sends an estimate of variable node by
XORing the values of other neighboring variable
nodes

– This needs a (r-1)- input XOR gate which can be built from
(r-2) two-input XOR gates.

• A variable node updates its value based on majority of

g estimates it receives from neighboring check nodes
– This needs a g-input majority logic gate.

The Failure Model

• Adversarial: at most a fraction of registers/gates can fail.

 am - fraction of registers that can fail in time 

 a - fraction of two-input XOR gate failures

 ag - fraction of g –input majority logic gate failures

The Main Theorem

• Let G be a (g,r,a, (¾+e)g) expander for any e > 0. The

proposed memory architecture can tolerate constant

fraction of errors in all the components if

• This 4e decrease is due to iterative nature of decoder.

m

1
(2) + < (1 4) 4

2
ga g r a a a e eÅ+ × - × × × + ×

Expander Codes

• Defined using a code and an expander graph:

– For every check node, the neighboring variable nodes

are a codeword in some code.

– LDPC codes are special class, where the code is

simply the set of all even weight patterns of length r.

• A Tanner graph G of a (n,g,r) LDPC code is a (g, r, a ,)
expander if for every subset S of at most an a n variable
nodes, at least |S| check nodes are incident to S.

• Expander codes are a class of asymptotically good error

correcting codes.

Parallel Bit Flipping Decoder

• Theorem, Sipser and Spielman (1996):

• Let G be a (g, r, a, (¾ +e)g) expander over n variable

nodes, for any e > 0. Then, parallel decoding algorithm

will correct any

 fraction of error after decoding

rounds.

• If V is the set of corrupt variables and |V|<a n (1 +

4e)/2, then the parallel decoding algorithm produces a

word with at most |V|(1-4e) corrupt variables after one

decoding round.

0

1 1
 < (1)

2 4
a a e× × +

01/ (1 4)log () ne a-

Total Fraction of Correctable Errors

• The total fraction of error from all sources must be kept

below correction capability of the code.

• The memory can correct am, a and ag fraction of errors

as long as am, +g (r-2) a + ag <aTotal.

• The main theorem, together with the existence of

expanders of sufficient expansion proves the existence

of memories. which can tolerate am, a and ag fraction

of errors.

Other Results and Recent Developments

• Fault-tolerant decoders

– One-step majority logic decoders (Chilappagari and

Vasic, 2006)

– Bit-flipping (Vasic and Chilappagari, 2007)

– Density evolution of faulty decoders (Varshney, 2011)

– Density evolution of faulty Gallager B (Yazdi, 2013)

– Noisy min-sum (Kameni Ngassa et al. 2013)

– Gallager B under data dependent errors (Brkic et al.,

2014)

– Analysis of faulty Gallager B on QC-LDPC codes (Al

Rasheed, 20013)

General Open Problems

• The situation is different if failures are permanent or a mixture of

transient and permanent failures (rerouting or coding).

• Faulty encoding and wire failures not taken into account, but wires

have different lengths.

• Cellular automata.

• Unreliable computers.

– Stable memories can be used to construct reliable computers

made of faulty components.

Boolean

Function

(F)

Computer

X - Message Bits

Encoded

 Z

Rows of G

Stable

Memory

for X

Stable

Memory

for Y Y - Message Bits

Stable

Memory

for F

F - Message Bits

Z - Message

 Bits

Stable

Memory

for G

Encoder
Stable

Memory

for Z

Хвала на пажњи!

How many errors can a fixed length code

correct?

Drawbacks of expander arguments

• Bounds derived using random graph arguments on the

fraction of nodes having sufficient expansion are very

pessimistic

– Richardson and Urbanke (2003): In the (5,6) regular

code ensemble, minimum distance is 3% of code

length. But only 3.375 x 10-11 fraction of nodes have

expansion of  ()dv

• Expansion arguments cannot be used for column-

weight-three codes (dv  5)

• Determining the expansion of a given graph known to be

NP hard, and spectral gap methods cannot guarantee an

expansion factor 

The main idea

• The expansion arguments rely on properties of random

graphs and hence do not lead to explicit construction of

codes.

• Ii the expansion properties can be related to the

parameters of the Tanner graph, such as g, and dv , then

the bounds on guaranteed error correction capability can

be established as function of these parameters.

The curious case of dv = 3 codes

• Gallager showed that the minimum distance of

ensembles of (dv, dc) regular LDPC codes with dv ≥ 3

grows linearly with the code length

• This implies that under ML decoding, dv = 3 codes are

capable of correcting a number of errors linear in the

code length

• Gallager also showed that under his algorithms A and B

the bit error probability approaches zero whenever we

operate below the threshold

• But, the correction of a linear fraction of errors was not

shown

Other complications with dv = 3 codes

• Even for the more complex LP decoding, it has not been

shown that codes with dv = 3 can correct a fraction of

errors

• To correct linear fraction of errors the expansion factor of

 is necessary, but the best expansion factor achievable

by dv = 3 codes is 1-1/dv =

2
3

1 1 1 1 1 1

 Corrupt variable

Variable decoded correctly

Variable decoded wrongly

Correct variable

(5,3) Trapping set: illustration

1 1 1 1 1 1

 Corrupt variable

Variable decoded correctly

Variable decoded wrongly

Correct variable

(5,3) Trapping set: illustration

1 1 1 1 1 1

 Corrupt variable

Variable decoded correctly

Variable decoded wrongly

Correct variable

1 1 1

Oscillations in the decoder

1

1
1 1

 Corrupt variable

Variable decoded correctly

Variable decoded wrongly

Correct variable

1 1

Oscillations in the decoder

1 1 1 1 1 1

 Corrupt variable

Variable decoded correctly

Variable decoded wrongly

Correct variable
1

1
1

Oscillations in the decoder

1 1 1 1 1 1

 Corrupt variable

Variable decoded correctly

Variable decoded wrongly

Correct variable

1 1 1

Oscillations in the decoder

1
1 1 1 1 1

 Corrupt variable

Variable decoded correctly

Variable decoded wrongly

Correct variable

1 1 1

1 1
1

Oscillations in the decoder

Trapping sets - sufficient conditions

• Theorem 1: Let C be a code in the ensemble of (3, ρ)

regular LDPC codes. Let  be a subgraph induced by

the set of variable nodes T. Let the checks in  can be

partitioned into two disjoint subsets: E consisting of

checks with even degree, and O consisting of checks

with odd degree. y is a fixed point if :

 (a) supp(y)=T,

 (b) Every variable node in  is connected to at least two

checks in E ,

 (c) No two checks of O are connected to a variable node

outside .

Trapping sets: examples

(3,3) trapping set (5,3) trapping set

(8,0) Trapping Set

Trapping set ontology

A trapping set ontology

• A database and software for systematic study of failures

of iterative decoders on BSC
http://www.ece.arizona.edu/vasiclab/Projects/CodingTheory/Trapping

SetOntology.html

• Applications:

Error floor estimation Code construction

An incidence structure representation

• A trapping sets can be characterized using incidence

structure of lines and points.

 lines  variables, checks  points

 Tanner graph representation A point-line representation

• An (a,b) trapping set is an incidence structure of a lines

and b white points.

even-degree check

variable

odd-degree check

Properties of incidence structures

• A point is white if it lies on an odd number of lines and is

black otherwise

TS #TS g=6 g=8 g=10 g=12

(3,3) 1 1

 (4,4) 1 1

(4,2) 1 1

 (4,0) 1 1

(5,5) 1 1

(5,3) 2 1 1

(5,1) 1 1

(6,6) 1 1

(6,4) 4 2 2

(6,2) 4 3 1

(6,0) 2 1 1

Number of trapping sets

Creating larger trapping sets from smaller

• The “reproduction” rule: children are obtained by adding

lines to parents, changing the color of the points

accordingly.

Reproduction illustration

Consequences

• For column weight three codes, the weight of correctable

error patterns under Gallager A algorithm grows only

linearly with girth

• For any α>0 and sufficiently large block lengths n, no

code in the Cn(3, ρ) ensemble can correct all αn errors

under Gallager A algorithm

The lower bound lemmas

• Theorem 3: An (n, 3, ρ) code with girth g ≥ 10 can correct

all error patterns of weight g/2−1 or less in g/2 iterations

of the Gallager A algorithm.

• Equivalently, there are no trapping sets with critical

number less than g/2.

• Proof: Finding, for a particular choice of k, all

configurations of g/2−1 or less bad variable nodes which

do not converge in k+1 iterations and then prove that

these configurations converge in subsequent iterations.

Open Coding Theory Problems

• Investigating ensemble of irregular graphs.

– Known to have higher thresholds and approach capacity.

• Fault tolerant implementation of expander codes.

– Work by Zemor and Barg and Burshtein and Miller, and

Guruswami and Indyk let do remarkable improvement in rate

vs. correction capability tradeoffs.

– Need less expansion, but more complicated decoding.

• Explicit construction of expanders.

– Recent work by Capalbo et.al (2002) gives expander

construction but has very large degrees.

General Open Problems

• The situation is different if failures are permanent or a mixture of

transient and permanent failures (rerouting or coding).

• Faulty encoding and wire failures not taken into account, but wires

have different lengths.

• Cellular automata.

• Unreliable computers.

– Stable memories can be used to construct reliable computers

made of faulty components.

Boolean

Function

(F)

Computer

X - Message Bits

Encoded

 Z

Rows of G

Stable

Memory

for X

Stable

Memory

for Y Y - Message Bits

Stable

Memory

for F

F - Message Bits

Z - Message

 Bits

Stable

Memory

for G

Encoder
Stable

Memory

for Z

Consequences

• A decoding algorithm and corresponding sufficient

condition to correct any k errors

• Possibility to correct a linear fraction of errors for

column-weight-three codes!

• Decoders that do not require (3/4)dv expansion to correct

linear fraction of errors for higher column-weight-codes

• Bridging the gap between sub-optimal decoders and

maximum-likelihood decoders

Bounds on aTotal

 g=9

g=35

Redundancy for g=9

Redundancy for g=35

Bounds for the TK scheme

• There exists a solution a, 0 a <1 of the equation

• The minimum solution amin, 0 · amin · 1 satisfies the

inequality

()
/ 21

m/ 2
(1) () =K

gg
gg

a a a a a a-
Å Å

é ù× - × + + + +ê úë û

m i n/

2 2
m

2 ()
1

(1) (1) ()
e

b l

g

a a

g g r a a a a

Å

Å

× +
= >

é ù× - × - × - + +ê úë û

1
() ln

2
P T A T n n

b

l

-
öæ ÷ç ÷£ × × × -ç ÷ç ÷÷çè ø

A Comparison with the TK Scheme for g=8

Gain over the TK Scheme for g=8

Gain over the TK Scheme for g=8

General Comments on the TK Scheme 1/2

• The work of Taylor and Kuznetsov closely resembles

Gallager’s work on LDPC codes.

• Gallager methodology relies on:
– constructing a class of codes which do not have cycles of length less or equal to

2l,

– applying density evolution and determining thresholds, and

– showing that after l decoding rounds the bit-error probability decreases as e-an
,

where a and  are constants while operating over a BSC with parameter less

than the threshold.

• Contrasted with recent work by Richardson and Urbanke

(RU) which is based on sequence of ensembles of

codes.

• Can the arguments such as concentration, convergence

to cycle-free case and density evolution be applied to the

case of faulty gates?

Existence of Expanders

• It is known that a random graph is a good expander

with high probability.

• However, we need it to be good in terms of both a and

.

• Urbanke and Richardson (2007) give some bounds:

• Chose a code uniformly at random from LDPC (n, xg-1,

xr-1).

• Choose l 2 [0, 1-1/l), and let amax be the positive

solution of the equation

• Then for 0 < a < amax and =l (1-g)-1

2 2 2

1 1 1
() () () 0

l
h h h

l
a a l r a l

r l r

-
- × × × - × × =

×

{ i s a n (, , ,) e x p a n d e r } 1 ()P G O n bg r a l -³ -

Expander arguments

• Sipser and Spielman (1996): Let G be a (dv,

dc, α, (+ε) dv) expander over n variable nodes, for any ε

> 0. Then, the parallel bit flipping algorithm will correct

any α0 < α (1+4ε)/2 fraction of error after log1/(1-4ε)(α0n)

decoding rounds

• Burshtein and Miller, (2001): “Expander graph arguments

for message passing algorithms”

• Feldman et al. (2003): “ LP Decoding corrects a constant

fraction of errors”

Expander Codes

• A Tanner graph G of a (n,g,r) LDPC code is a (g, r, a ,)
expander if for every subset S of at most an a n variable
nodes, at least |S| check nodes are incident to S.

• Expander codes are a class of asymptotically good error

correcting codes.

