
 
Abstract — In this paper we present a method for symbolic 

analysis of unreliable logic circuits in the presence of 
correlated and data-dependent gate failures, described by 
Markov chains. Presented probabilistic algorithm is used for 
the analysis of majority logic and XOR logic circuits.    
 

Keywords — Combinatorial circuits, fault-tolerance, 
Markov chains, symbolic analysis.  
 

I. INTRODUCTION 

HE signal probability estimation in digital circuits 
captures the likelihood of a particular signal being 

equal to ‘0’ or ‘1’. The signal probability values indicate 
how difficult is to control and test a signal [1]. The 
problem of signal probability estimation under reliable 
hardware is analyzed in details in [2]-[4].  

Recently, probabilistic analysis gained an increased 
significance in analysis of unreliable hardware. According 
to new design paradigm for very large scale integration 
technologies, a fully reliable operation is not guaranteed 
[5]. As the trend of constant decrease of transistors size 
continues, fault tolerance is recognized as one of the top 
challenges in semiconductor technology [6]. Increased 
noise sensitivity is a major drawback of new nano-scale 
technologies and it is one of the main reasons for so-called 
transient logic faults. These faults have probabilistic 
behavior and thus can be described statistically. 

Transient faults are usually modeled at logic gates level 
and its statistics is given by probability of an erroneous 
gate output. If the gate error probability is independent of 
gate inputs, the model is referred as unconditional. Some 
methods for unconditional model analysis are presented in 
[7]-[9]. On the other hand, conditional faults modeling 
assumes that gate error probability depends on gates input 
values, as described in [1] and [10]. The state-of-the-art 
conditional error models analyze only current input values 

 
  

Srdjan Brkic is with Innovation Centre, School of Electrical 
Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 
11000 Belgrade, Serbia, (e-mail: brka05@gmail.com) 

Predrag Ivanis is with School of Electrical Engineering, University of 
Belgrade, Bulevar kralja Aleksandra 73, 11000 Belgrade, Serbia, (e-mail: 
predrag.ivanis@etf.rs) 

Goran Djordjevic is with Faculty of Electronic Engineering, 
University of Nis, Aleksandra Medvedeva 14, 18000 Nis, Serbia, (e-mail: 
goran@elfak.ni.ac.rs) 

Bane Vasic is with the University of Arizona, AZ 85721 USA, (e-
mail: vasic@ece.arizona.edu) 

dependence. 
In this paper we present a more general fault model that 

captures the influence of current and previous gate input 
values to output error probability. Also, based on this error 
model, a novel symbolic method for faulty gate analysis is 
described and its application to particular logic gates such 
as XOR and majority logic is presented.         

The rest of the paper is organized as follows. In Section 
II the previous work related to this topic is presented, 
which includes the theoretical basis of the faulty gates 
analysis. In Section III, we present a novel a description of 
faulty gates using Markov chain modeling and a novel 
symbolic method for a gate analysis. Section IV presents 
the results of probabilistic analysis for some practically 
significant logic circuits. Finally, some concluding 
remarks and future research directions are given in Section 
V.  

II. PRIOR WORK 

The fundamentals of probabilistic logic circuits analysis 
are given in [2], where a so-called Parker-McCluskey 
method for exact signal probabilities calculation was 
proposed. Based on this method, signal probabilities at the 
outputs of logic circuit can be determined using individual 
gates calculation rules. The probability calculation rules 
for n-input elementary binary logic gates, with  inputs x1, 
x2,…,xn and output z, are given in Table 1, where p(s) 
denotes the probability that signal s is equal to 1. 

 
TABLE 1: SIGNAL PROBABILITY CALCULATION RULES FOR 

ELEMENTARY GATES WITH INDEPENDENT INPUTS. 

Gate type Probability calculation rule 
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The Parker-McCluskey algorithm calculates the signal 

probabilities at the output of every individual logic gate g 
in m-input circuit C in terms of primary input signal 
probabilities of C. If the inputs of g are not independently 
controllable from the primary inputs of C, signal 
probability at the gate output cannot be determined using 
Table 1. Instead, the output signal probability p(z), can be 
expressed in terms of p(x1), p(x2), …, p(xm), where xi, 
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1≤i≤m, represents the i-th primary input. The method 
states that if we first express pʹ(z), the probability of the 
gate output signal assuming input independence, p(z) can 
be derived by suppressing all exponents (p(xi))

j, j > 1, 
1 ≤ i ≤ m, in a given expression as follows 
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i ip x p x j i m
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Although the presented algorithm originally considered 
only perfect gates, it can be easily expanded for faulty gate 
analysis if gate failures are modeled as unconditional. 

The most common way for analyzing the faulty gates is 
so-called mutant modeling approach. According to this 
approach every 2-input gate in a circuit is substituted with 
its faulty “mutant”, a gate with equivalent Boolean 
function which output is sometimes incorrect.  

The correct binary output value of a given gate, Oc(k) at 
discrete time k, (k>0), depends on the gate binary input 
values, denoted by I1(k) and I2(k). This is illustrated in Fig. 
1. Faults are inserted at the gate output by performing 
XOR operation between correct gate output sequence 
{Oc(k)}k>0, and the error sequence {e(k)}k>0, producing the 
actual output sequence {Oe(k)}k>0. The error sequence 
{e(k)}k>0, represents the binary time series which describes 
the statistics of faults. If the k-th value of error pattern is 
‘1’, i.e. e(k) = 1 (k > 0), the output of a ‘mutant’ gate at 
time k will be faulty.  

Fig. 1. Faulty gate modelling using “mutant” approach. 
 

The assumption that probability of faulty output p(e) is 
independent of gate’s input values corresponds to 
unconditional error model. It is obvious that in this 
analysis an error pattern can be treated like a common 
primary input, with signal probability p(e). Thus, Parker-
McCluskey algorithm can be used for output signal 
probability calculation.  

There are also several other algorithms that use 
independent fault modeling including Probabilistic 
Decision Diagrams (PDDs), Four-Event (FE) and  
Trigonometric Probability Calculation (TPC). The PDD 
algorithm uses directed acyclic graphs to describe the error 
probability of individual gate [7]. When all gates PDDs 
are formed, they are recursively merged from inputs to 
outputs. The FE method describes signal behavior using 
four different states: 1, 0, e and eʹ, where e and eʹ 
represent an erroneous value and its negation, respectively 
[8]. Algorithm calculates the probability that a faulty 
value, originating from a particular gate g, will be 
observed at a circuit output. According to TCP approach 
every signal distribution probability is represented as an 
angle and an error probability as its linear rotation [9]. By 
using trigonometric calculation output probability is 
determined. 

More realistic fault models take into account existing 
data-dependence of gate error probability and are referred 
as conditional. The two well known representatives of this 

class of methods use Bayesian network [10] and 
Probabilistic Transfer Matrix (PTM) approach [1], 
respectively. In both methods erroneous value appearance 
depends on the gate input values. However, both 
algorithms consider that only current input values 
influence the error occurrence. In the next section we 
present more general modeling approach which depicts 
influence of current and previous gate input values.                                

III. SYMBOLIC ANALYSIS OF FAULTY LOGIC GATES 

A. Fault modeling using Markov chains 

In contrast to the state-of-the-art modeling of faulty 
gates that considers only the failure dependence on current 
input values, our model captures more accurately the 
correlation influence by using Markov chains.   

Consider a 2-input binary logic gate.  In the model the 
error value at k-th time point e(k) is formed based on a 
pair of current and M-1 pairs of prior consecutive input 
values I1(k), I2(k), I1(k  1), I2(k  1)..., I1(k  M + 1), 
I2(k  M + 1)). Let S be a Markov source generating the 
error sequence composed of 22M states si, 1 ≤ i ≤ 22M, i.e. 

 21 2 2
, ,..., .MS s s s  Every state corresponds to one 

possible binary sequence of length 2M, 

 1 2 1 2 2... ... ,i M M M Ms b b b b b b   bjϵ{0,1}, 1 ≤ j ≤ 

2M, 1 ≤ i ≤ 22M, where first M bits represent consecutive 
values of input I1 and second M bits represent values of I2. 
Every state can capture the different data-dependent 
failures, expressed through different error probabilities 
Pe(si) = Pr{e(k) = 1 | si}, 1 ≤ i ≤ 22M, k>0, where Pr{.} 
denotes probability.  

The relations between error probabilities in different 
states depend on a specific gate. For example, at the 
output of NAND logic gate correct value ‘1’ appears only 
if both inputs are equal to ‘0’. Thus, if one input changes 
its value due to increased noise level, the gate output will 
be faulty. Consequently, the all-zero state has highest and 
the all-ones state has lowest error probability. For any 
other state we form a simple model in which the number 
of ones in the state binary representation (the state weight) 
determines the error probability. The last conclusion can 
be formulated as follows 

    2
0( ) Pr 1 | Pr 1 | ,   1 2 ,M

e i i iP s e s A e s i        (2) 

where Ai represent the scaling coefficients, dependent of 
state si. From the discussion presented above it holds 
  1 , 1,w i

iA p p   (3) 

where w(i) denotes the weight of state si. The parameter p 
enables us to change easily the values of scaling 
coefficients and model different fault conditions. Similar 
analysis can be performed for any other elementary logic 
gate. 

B. A novel approach for faulty gate analysis  

We next present a novel symbolic algorithm for faulty 
gates analysis which combines Parker-McCluskey 
algorithm with the date-dependent failure model given in 
previous subsection. 



 

The probability that signal value at the output of a 2-
input faulty logic gate is equal to ‘1’can be expressed as   
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where p1 and p2 denote probabilities that value ‘1’ appears 
at the gate inputs I1 and I2, respectively, while w1(i) and 
w2(i) represent, respectively, the weight of the first and 
second M bits in a binary representation of state si, 
1 ≤ i ≤ 22M, and N denotes the number of states of Markov 
source S in which correct output value is equal to ‘0’. 

The expression contains exponents of input 
probabilities which appear as a consequence of the 
multiple discrete times analysis. It is obvious that 
suppressing them, like stated in original Parker-
McCluskey algorithm, does not lead to a correct result. To 
distinguish exponents originated from different time 
points from exponents that appear because of signal space 
correlation we present a variable substitution method. The 
variable pk (k = 1, 2) from Eq. 4 is substituted with M 
variables pk,n, 1 ≤ n ≤ M,  and we have 
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where     1≤ j≤2M, 1≤i≤ 22M, represents a complementary 
value of si(j).  

If substitution is carried out for every input probability, 
through every signal path in m-input circuit, all exponents 
in expression for circuit output signals probabilities result 
from signals space correlation. The variable substitution is 
performed by parent-children principle – at every level of 
substitution parent variable is substituted with M children 
variables, as illustrated in Fig. 2. Then Parker-McCluskey 
method can be applied for suppressing exponents. In the 
end all variables are turned back into starting variables p1, 
p2, …, pm and the exact expressions for circuit output 
probabilities are derived.  

It can be noticed that due to asymmetric paths in the 
circuit, the variables from different levels of substitution 
may appear in final expressions. A parent variable 
influences on each children variable (originated from that 
parent) when multiplied with the children variable, needs 
to be suppressed. For example, the factor pi·pj·pi,1·pi,11 
reduces to pi·pj.      

 
Fig. 2. Illustration of variables substitution method.  

C. Complexity analysis 

We next present the complexity analysis in terms of 
number of variables needed for symbolic calculation. The 
number of variables depends on number of circuit inputs 
and length of paths that are affected by signal correlation. 
Let C be a logic circuit, with m inputs, k of which are 
spatially correlated (k<m). The set of correlated input 
signal can be denoted as Sk = {x1, x2, … xk}. The 
remaining m-k circuit inputs do not produce exponents in 
output probability expressions and there is no need 
substituting their probability variables. 

Let Ni be the number of correlated signal paths with 
different length that involve the input xi, 1≤i≤k. Let ( ) ,j

iD  

1≤j≤Ni, 1≤i≤k, represents the length of the j-th correlated 
path in which the input xi is involved. Then, the total 
number of variables used can be expressed as follows          
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     (6) 

It can be noted that even for a small number M, number of 
variable is be large as long as a long correlation paths exist 
in a circuit. Symbolic calculation with large number of 
variables can be time-consuming, which makes presented 
algorithm impractical for analysis of large logic circuits.        

IV. APPLICATION TO ML AND XOR CIRCUITS ANALYSIS 

We next present the results for m-input majority logic 
(ML) and XOR gates analysis built only from faulty 2-
input NAND logic gates. Faults are modeled by Markov 
chains and probabilities of erroneous circuits outputs are 
calculated using the presented algorithm. 

All graphical results are obtained assuming that error 
occurrence at the output of faulty NAND gate depends on 
two consecutive input values, which corresponds to M = 2. 
Also, for every m-input circuit the same statistics is 
assumed for every input and described by probability that 
input values Ii, 1 ≤ i ≤ m, are equal to ‘1’, denoted as P1. 

The output error probability of 3-input ML gate 
dependence of average component failures is presented in 
Fig 3, for several values of parameter p (=1, 2, 3) and two 
input probabilities P1 = 0.5 and P1 = 0.9. A majority logic 
gate output is equal to ‘1’, if half or more inputs are equal 
to ‘1’. Thus, when ones and zeros appear at the gate inputs 
with equal probabilities (P1 = 0.5) more gate output values 
will be faulty, compared to case when almost all inputs are 
‘1’ (P1 = 0.9). When P1 = 0.5, the parameter p, which 
describes presented Markov model, does not have any 
impact on the circuit performance, while the performances 
differ when P1 = 0.9. The performance comparison of ML 
gates with different number of inputs is presented in Fig. 
4, when p = 2. It can be noted that the 2-input majority 
logic gate has the lowest output error probability when 
P1 = 0.5. However, when P1 = 0.9, the gate with largest 
number of inputs (4-input gate) outperforms other logic 
gates. 

The data-dependence does not influence greatly on the 
probability of error at the output of 3-input XOR gate, as 
illustrated in Fig. 5. This phenomenon is a consequence of 
the more symmetric circuit topology in which all error 
states are approximately equally likely.  
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Fig. 3. Probability of error at the output of 3-input ML 
logic gate.  
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Fig. 4. Comparison of majority logic gates with different 
number of inputs for p=2.  
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Fig. 5. Probability of error at the output of 3-input XOR 
logic gate.  

   
Performance of XOR gates with 3, 4 and 5 inputs are 

presented in Fig 6. It can be noted that increasing the 
number of inputs causes higher output error probability. In 
XOR logic circuit with more inputs, there are more gate 
failure combinations that may generate an output error. 
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5-input XOR, p=2
4-input XOR, p=2
3-input XOR, p=2

Fig. 6. Comparison of XOR logic gates with different 
number of inputs.  

V. CONCLUSION 

In this paper we have presented a novel approach for 
transient faults modeling and analysis in combinatorial 
logic circuits. Using Markov chains, the error sequences at 
the output of a logic gate can be described in a more 
general way compared to the existing models. Our future 
research is directed to ensuring fault-tolerance in digital 
networks, built from unreliable components. We are 
especially investigating memory architectures that use low 
density parity check error correcting codes.     
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