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Abstract—In this letter we investigate fault-tolerance of mem-
ories built from unreliable cells. In order to increase the memory
reliability, information is encoded by a low-density parity-check
(LDPC) code, and then stored. The memory content is updated
periodically by the bit-flipping decoder, built also from unreliable
logic gates, whose failures are transient and data-dependent.
Based on the expander property of Tanner graph of LDPC codes,
we prove that the proposed memory architecture can tolerate a
fixed fraction of component failures and consequently preserve
all the stored information, if code length tends to infinity.

Index Terms—Data-dependence, faulty bit-flipping decoding,
low-density parity-check codes, reliable memory architecture.

I. INTRODUCTION

Recent research in the area of fault-tolerant memories based
on decoders of low-density parity-check (LDPC) codes is
mainly inspired by the studies presented in the late sixties
and early seventies by Taylor [1] and Kuznetsov [2]. In their
pioneering works, they proposed a memory architecture built
entirely from unreliable components, which is capable of
preserving stored information over arbitrary long time. The
memory is composed of unreliable memory cells that are
storing a codeword of an LDPC code, and are periodically
updated using a faulty iterative decoder. Attractiveness of
using LDPC codes lays in the theoretical guarantee that
the decoding hardware overhead required to ensure reliable
operation grows only linearly with the code length even when
logic gates are faulty [1]. It was observed by Vasić et al. in
[3] that an update cycle corresponds to one iteration of the
Gallager-B decoder, built from unreliable logic gates. In the
later work, Varshney [4] used density evolution analysis to
prove that a memory based on the Gallager-A decoder is also
capable of preserving information in asymptotic code length.
Chilappagari and Vasić [5] used the expander arguments to
show the existence of a reliable memory based on the bit-
flipping algorithm. The reliability of the same architecture was
recently studied by Dupraz et al. in [6].

Both Taylor and Kuznetsov as well as most of the related
work modeled logic gate unreliability as transient independent
failures, originally introduced by von Neumann [7]. Although
the simplicity of this model makes it attractive for theoretical
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analysis, it is unrealistic. In practice, unreliability of logic
gates is strongly data-dependent and correlated in time. One
of the most dominant effects impacting reliability of logic
gates built in energy-efficient subpowered CMOS technologies
comes from the so-called timing violations, which depend on a
gate’s switching activity [8], [9]. Their effects to different hard
decision decoders have been recently studied in [10]–[12].

In this letter we establish a bound on a number of cor-
rectable errors for a memory system which employ the bit-
flipping decoder. Unlike in the prior research [5], [6], we
evaluate the memory reliability in the presence of data-
dependent gate failures. Following the recent work by Brkic
et al. [12] on guaranteed error correction capability of faulty
bit-flipping decoders, we prove that our memory can tolerate
a fixed fraction of component failures. Consequently, we show
that in the asymptotic case the memory can preserve all
stored information, which presents the first proof of memory
reliability under a failure model other then the von Neumann
model. We refine the results presented in [5] by improving
conditions required for the memory reliability. In addition to
our analytical results, we present numerical results illustrating
upper bounds on tolerable fractions of component failures.

II. SYSTEM MODEL

A. The Memory Architecture

The information is stored in a memory as a codeword
of a (γ, ρ)-regular LDPC code in n memory cells. Each
memory cell stores one code bit. In order to preserve the
stored codeword, the memory cells are periodically updated, at
regular time instants τ, 2τ, . . . , Lτ, L ∈ N, based on the error
correction scheme, described as follows.

Consider a graphical representation of a (γ, ρ)-regular bi-
nary LDPC code given by Tanner bipartite graph G = (V ∪
C,E), where V is a set of variable nodes (variables), C is a
set of check nodes, and E is a set of edges. An edge e ∈ E
is an unordered pair (v, c) which connects two nodes v ∈ V
and c ∈ C. Nodes v and c are called neighbors iff there is an
edge between them. Let Ev (Ec) be a set of edges connected
to a variable node v (check node c). Then, |Ev| = γ, ∀v ∈ V ,
and |Ec| = ρ, ∀c ∈ C, where | · | denotes the cardinality.

Let xv(t) be a value of a memory cell associated to a
variable node v at time t. Let −→m`(e) (←−m`(e)) be messages
passed on an edge e from/to variable node to/from check node
during an update cycle `τ , ` > 0, respectively. The `-th update
cycle can be summarized as follows.
• The content of a memory cell v, v ∈ V , at time `τ − δ0,

where δ0 denotes an infinitesimal duration of time, is
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passed to the neighboring check nodes, i.e., −→m`(e) =
xv(`τ − δ0), ∀e ∈ Ev .

• Each check node c ∈ C calculates ρ XOR operations
←−m`(e) =

⊕
e′∈E(c)\{e′}

−→m`(e
′), ∀e ∈ Ec.

• The content of a memory cell v ∈ V is updated by using
a γ-input majority logic (MAJ) gate as follows

xv(`τ+δ0) =

{
s, if |{e′ ∈ Ev :←−m`(e

′) = s}| ≥ dγ2 e,
xv(`τ − δ0), otherwise,

where s ∈ {0, 1} and dγ/2e denotes the smallest integer
greater than γ/2.

Note that during an update cycle a check node calculates
estimates of the neighboring variable nodes, rather than the
parity check equation, since the value of the bit that is
estimated is not used in the calculation. However, the update
cycle is functionally equivalent to one iteration of the parallel
bit-flipping decoder [13].

Hardware unreliability of the correction scheme comes from
unreliable computation of messages −→m`(e) and ←−m`(e), as
logic gates performing these functions are prone to data-
dependent failures, which are described in the following
subsection.

B. Failure Models

Two types of hardware components failures are considered
in this letter: memory cell failures and logic gate failures. We
assume that failures in the memory cells are a consequence
of supply voltage variations. These errors are transient and
manifest as random flips that corrupt values stored in memory
cells without damaging the cells [14]. Hence, we can assume
that between two update cycles memory content is transmitted
through the binary symmetric channel for which Pr{xv(`τ +
δ0) 6= xv((`+ 1)τ − δ0)} = pm, ∀v ∈ V and ` > 0.

On the other hand, failures of subpowered CMOS logic
gates are data-dependent and correlated in time and cannot be
represented in the same manner as memory failures [8], [9]. In
this letter we consider the probabilistic gate-output switching
model (GOS), recently proposed by Amaricai et al. [9], which
assumes that a gate failure depends on switching activity of
the gate.

Let z(`τ) be the correct output of a logic gate at time `τ .
Due to unreliability of the gate, the actual output is z(`τ) ⊕
ξ(`τ), where ξ(`τ) ∈ {0, 1} is the error at time `τ . In the
GOS error model, when the correct gate output is unchanged
during two consecutive time instants, the actual gate output is
always correctly computed, i.e., Pr{ξ(`τ) = 1|z(`τ) = z((`−
1)τ)} = 0. On the other hand, the gate fails to switch with
probability Pr{ξ(`τ) = 1|z(`τ) 6= z((`− 1)τ)} = pg , pg > 0,
g ∈ {⊕, γ}, where with slight abuse of notation γ signifies a
γ-input MAJ gate. In general, the failure probability of XOR
gates p⊕ can be different from the failure probability of MAJ
gates pγ . Although the GOS model does not capture all the
effects that lead to failures of subpowered CMOS circuits,
it was shown that loss of accuracy by using this modeling
approach is relatively small [9]. The GOS model has been
studied recently in a number of papers [10]–[12].

We will first prove that the memory architecture can tolerate
a fixed fraction of errors in all components. Then we will
use Chernoff bounds to extend our results to the presented
probabilistic error models. Namely, in the first part of our
proof we assume that a component failure follows the statistics
described above, but we allow only a fraction of failures during
the interval ((`− 1)τ ,`τ), ` > 0. This means that the number
of memory cell failures between two update cycles is bounded
by αmn. Similarly, we allow αγn MAJ logic gates to be faulty,
while the rest of (1− αγ)n MAJ gates operate reliably. Note
that we do not require reliable XOR gates, i.e., according to the
GOS model failure of every XOR gate used in the correction
scheme can occur when the gate output changes.

C. Error correction of bit-flipping decoders

Our proof that the memory can tolerate a fixed fraction of
errors in all components relies on expanders, and here we give
the necessary lemmas established by Sipser and Spielman [13]
and Brkic et al. [12] regarding the error correction capability
of bit-flipping decoders. Lemma 1 pertains to decoders made
of reliable components, while Lemma 2 gives the correction
capability of a faulty decoder whose gates fail as described in
the previous subsection.

Definition 1. [13] A Tanner graph G of a (γ, ρ)-regular
LDPC code is a (γ, ρ, α, δ) expander if for every subset S
of at most αn variable nodes, at least δ|S| check nodes are
incident to S.

Let V` be a set of corrupt (erroneous) variables at the
beginning of the `-th decoding iteration. The following lemmas
depict the error correction capabilities of bit-flipping decoders
when the underlying Tanner graph is (γ, ρ, α, (7/8 + ε)γ),
ε > 0 expander.

Lemma 1. The parallel bit-flipping decoder built from reliable
components can correct any fraction of αr < (3 + 8ε)α/4
errors after at most log2/(1−8ε) αrn iterations. Also, for every
|V1| ≤ αrn and ` > 1 holds |V`+1| ≤ (1− 8ε)|V`|/2.

Proof: See [13]. �

Lemma 2. The parallel bit-flipping decoder built from unre-
liable check nodes can correct any fraction of αu < 3(3 +
8ε)α/32 errors. Also, for every |V1| ≤ αun and ` > 1 holds

(1− 8ε)|V`| ≥ 2|V`+1| − (1− 8ε)|V`−1|. (1)

Proof: See [12]. �

III. RELIABILITY OF THE MEMORY ARCHITECTURE

When the memory is built entirely from unreliable compo-
nents, the bits read from the memory at some time instant,
in the most of the cases will not be the same as in the
originally stored codeword. Thus, if we want to recover the
information, the final step of codeword extraction must be
performed by reliable logic gates. In this letter we follow the
system setup proposed by Taylor [1], which states that memory
failure is declared only if the sequence read from the memory
cannot be successfully decoded by the noiseless version of
the same decoder in a finite number of iterations. We show
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that our memory architecture under certain conditions achieves
arbitrary low memory failure probability.

Note that logic gate failures at the time of the first update
cycle depend on the instant before the codeword is stored in
the memory cells. There is a practical approach to resolve
this issue by slowing down the clock in the first update cycle
and letting the signal level stabilize [11]. This leads to fully
reliable logic gate operations in the first update cycle, which
is assumed in our analysis.

We first investigate what fraction of memory failures αm
can be tolerated by our memory if we allow all gates, used
in the correction scheme, to be faulty. This is given in the
following lemma.

Lemma 3. The proposed memory architecture built on a
(γ, ρ)-regular LDPC code free of four cycles can tolerate a
fraction of memory failures if αm ≤

⌊
γ/6
⌋
/n.

Proof: See Appendix A. �

Note that increasing n forces αm to reduce, and the number
of tolerable memory failures αmn cannot exceed bγ/6c. This
means that under this conditions the arbitrary small memory
failure probability can be achieved only if γ tends to infinity.
The main reason for a such behavior lies in the fact that, under
the GOS model, failures of MAJ gates can cancel out error
correction gain achieved during the update cycle. The only
way to prevent this is to allow a number of MAJ gates to
operate fully reliable. In other words, we bound a fraction of
faulty MAJ gates to αγ , but we do not put any restrictions on
the number of faults in check nodes. They all remain prone
to data-dependent failures.

Theorem 1. The proposed memory architecture based on a
(γ, ρ, α, (7/8 + ε)γ) expander code can preserve all stored
bits for an arbitrary long time period if

αm + αγ < 3ε(3 + 8ε)α/4. (2)

Proof: At t=0 a codeword of our expander code is written
into the memory. The memory cells are updated at time
instants `τ , ` > 0, by performing one iteration of the bit-
flipping algorithm. Let V (t) be a set of corrupt variables
(memory cells) at time t. The number of corrupt variables
before the first update |V (τ − δ0)| is bounded by

|V (τ − δ0)| ≤ nαm.

After the update cycle we have

|V (τ + δ0)| ≤ βαmn+ αγn,

where, according to Lemma 1, β = (1 − 8ε)/2. In the time
interval (τ, 2τ) there can be at most αmn memory cells
failures, which in the worst case will lead to αmn additional
corrupt variables. Then,

|V (2τ − δ0)| ≤ βαmn+ αmn+ αγn.

Based on Eq. (1) and the previous discussion for all ` > 1 we
obtain

|V ((`+ 1)τ − δ0)| ≤ β
(
|V (`τ − δ0)|+ |V ((`− 1)τ − δ0)|

)
+ αγn+ αmn.

From the previous inequality follows that the number of
corrupt memory cells can be upper bounded, which is formally
presented in the following lemma.

Lemma 4. The number of corrupt memory cells before the
`-th update cycle |V (`τ − δ0)|, for all ` > 0, satisfies

|V (`τ − δ0)| ≤ (αmn+ αγn)/(8ε).

Proof: See Appendix B. �

Since by Eq. (2)

(αmn+ αγn)/(8ε) < (3 + 8ε)αn/4,

from Lemma 4 follows that the number of corrupt memory
cells at any time instant does not exceed the error correction
capability of the bit-flipping decoder, given by Lemma 1, and
the memory content is preserved. This proves the theorem. �

It is important to note that, in order to prove the memory
reliability bound presented in [5], the number of faulty XOR
gates had to be bounded. Here we do not need this condition
for the data-dependent failure model and the larger number of
faulty components can be used in the memory.

Now we utilize Theorem 1 to bound the memory perfor-
mance under the probabilistic failure model. Let ∆m > 0 and
∆γ > 0 be such that pm + ∆m = αm and pγ + ∆γ = αγ .
When condition given by Eq. (2) is satisfied, the following
lemma can be formulated.

Lemma 5. The probability that memory failure occurs after
L update cycles, P (L), is bounded by

P (L) ≤ L(e−2∆2
mn + e−2∆2

γn).

Proof: The proof follows from the fact that by Chernoff
bounds the probability of failure of more than a fixed fraction
of components at time interval τ is bounded. �

The previous lemma describes a weak bound on the memory
performance and its main goal is to show that probability of
failure P (L) decreases exponentially when the code length
increases. It proves the existence of a memory that can
preserve all stored bits in asymptotic code length under the
data-dependent gate failure model.

IV. NUMERICAL RESULTS

We next show how the right side of the Eq. (2), denoted by
αtotal(α, ε) = 3ε(3 + 8ε)α/4, can be upper bounded. For that
purpose the following lemma is used.

Lemma 6. Let assume the existence of a (γ, ρ, α, (7/8+ε)γ),
ε > 0 expander. Then, when code length goes to infinity, α and
ε must satisfy ε ≤ (1− (1− α)ρ)/(αρ)− 7/8.

Proof: See [13, Theorem 25] and [12, Lemma 7]. �

We can numerically express upper bounds on αtotal, which
satisfy the condition given by Lemma 6, for fixed values of ρ.
The bounding values are divided between αm and αγ , which
creates the tolerable error regions presented in Fig. 1. It can
be observed that by increasing ρ, under fixed γ, the number
of neighbors of a set with αn variable nodes reduces. On the
other hand, we require that the set with αn variable nodes have
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Fig. 1: Upper bounds on tolerable error fractions.

the expansion of more than 7γ/8, which can be only satisfied
by reducing α. Consequently, αtotal is inversely proportional
to ρ. For example, when ρ = 8 αtotal = 0.003, while for
ρ = 24 the memory cannot tolerate the fraction of more then
αtotal = 0.0009 errors.

V. CONCLUSION

In this letter we proved the existence of a memory archi-
tecture that achieves arbitrary small failure probability under
the data-dependent gate failure model, which presents the first
such result under failure models other than the von Neumann
model. In addition, we provided upper bounds on fractions of
component failures that can be tolerated by our memory.

APPENDIX A (PROOF OF LEMMA 3)

When perfectly reliable correction scheme is used, for every
LDPC code free of four cycles, during an update cycle up
to bγ/2c erroneous cells can be corrected. In other words,
each bit will be decoded correctly if the number of incorrect
estimates at inputs of the MAJ gate is no greater then bγ/2c.
In the faulty scheme an incorrect estimate can also appear due
to unreliability of a XOR gate. In the worst case Nm memory
errors can produce Nm incorrect estimates and, similarly, N⊕
XOR failures can lead to N⊕ incorrect estimates. Thus, each
bit will be correctly decoded if Nm + N⊕ ≤ bγ/2c. If the
total number of errors in the time interval τ is bounded by the
previous condition, after every correcting cycle in the memory
cells only correct values are written, and there is no failures
of MAJ gates.

Let F` be a set of all erroneous memory cells between
(`− 1)-th and `-th update cycle. It follows that |F`| = Nm ≤
αmn, for any ` > 0. It is clear that the maximal number of
faulty XOR gates correspond to the case when F`−1∩F` = ∅.
Then, the total number of faulty XOR gates used for decoding
a particular bit is bounded by N⊕ ≤ 2αmn.

APPENDIX B (PROOF OF LEMMA 4)
The number of corrupt variables before the `-th update cycle

satisfies

|V (`τ − δ0)| ≤ A1λ
−`
1 −A2λ

−`
2 +K, (3)

where λ1 = −0.5(1 +
√

1 + 4/β), λ2 = 0.5(
√

1 + 4/β − 1),
A1 and A2 are constants of the complementary solution of the
difference equation x`−βx`−1−βx`−2 = αmn+αγn, whose
particular solution K satisfies initial conditions x1 = αm and
x2 = (β + 1)αmn+ αγn. It is not difficult to show that

Aj =
β(2 + λj)αmn+ (1 + βλj)αγn

β(λ2 − λ1)(1− 2β)
, j = 1, 2,

K = (αm + αγ)n/(1− 2β) = (αm + αγ)n/(8ε).

Since |A1/A2| < 1 and 2 > |λ1/λ2| > 1, the right hand side
of Eq. (3) monotonically increases with ` and we have

lim
`→∞

[
A1λ

−`
1 −A2λ

−`
2 +K

]
= K.
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