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a b s t r a c t

For the current advanced technology nodes, the end-of-life and reliability statistics estimation is regarded
as a key component of devices dynamic reliability management frameworks. An accurate estimation can
enable effective lifetime management via adopting appropriate mission profile specific policies. This
paper proposes an end-of-life and reliability estimation framework, which takes into account the nonlin-
earities of the degradation process, as well as the sensors measurements and degradation process uncer-
tainty, aiming to characterize more realistically the devices aging dynamics. Based on the degradation
history, the estimation results are updated adaptively via the Bayesian method, once new degradation
measurement data are provided. In order to validate and assess the estimation accuracy of the proposed
framework, numerical simulations were performed on a power law degradation model. The obtained
results for the considered nonlinear degradation process, reveal that, when compared with commonly
employed Wiener processes with linear mean, our approach exhibits improved estimation accuracy.
Thus, it may be better suited to capture the nonlinearity and variability of in-field degradation dynamics
and further to assess/predict the devices reliability in a more realistic manner.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The aggressive technology scaling for performance improve-
ment has negatively impacted the devices lifetime reliability [1].
To address the aging-induced lifetime degradation of devices with
minimal impact on the performance characteristics, Dynamic Reli-
ability Management (DRM) frameworks have been developed.
Since the effectiveness of the DRM policies depends on the reliabil-
ity assessment accuracy, increasing attention has been payed to
this topic. Most of past approaches [2–4] accept the modeling sim-
plifying assumptions that the degradation process is monoton,
and/or can be linearized using time-scale transformations, which
can result in a conservative lifetime estimation. Only recently, deg-
radation models that integrate a nonlinear structure to trace better
the degradation dynamics have been proposed. In [5], the mean
parameter of the degradation process was updated using Kalman
filtering, but its uncertainty was not considered and the variance
was assumed linear in time. In [6], the degradation nonlinearity
was captured without data transformations; however only the cur-
rent degradation data was used, disregarding the degradation his-
tory. The degradation history problem was addressed in [7], but
the variance was also assumed linear as in [5].

In view of the above, we propose a Bayesian reliability assess-
ment framework, which takes into account the nonlinearities of
the degradation process, aiming to characterize more realistically
the wearout process dynamics and thus to improve the potential
effectiveness of adopted reliability management policies. This is
achieved by using a Wiener process to govern the dynamics of
the degradation process, with nonlinear mean, which is expressed
as a combination of basis functions, weighted by degradation his-
tory dependent parameters. Based on the entire degradation his-
tory, and not only on the instantaneous degradation state, the
degradation model parameters are updated via Bayesian inference,
once new degradation data are accumulated. Furthermore, we ac-
count in the proposed reliability assessment framework for the
uncertainty in both the degradation process and the measure-
ments. Numerical simulations were carried out in order to validate
and evaluate the estimation accuracy of the proposed approach in
comparison with commonly employed Wiener processes with lin-
ear mean. The obtained results quantitatively confirm that, when
compared to the linear mean Wiener process, the proposed frame-
work may be better suited for capturing nonlinear in-field degra-
dation dynamics and hence for assessing/predicting the reliability
in a more realistic manner.

The remaining of the paper is organized as follows: Section 2
presents the degradation process formalism and the general mod-
eling principles. The proposed framework is introduced in Section 3
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and validated and evaluated in Section 4 and 5. Section 6 concludes
the paper with a summary of this work.

2. The degradation process formalism

Given that an Integrated Circuit (IC) is functional at the current
time moment, based on its history of degradation (constituted by a
set of noisy measurements collected from the in-field degradation
sensors), one is interested in deriving its real-time reliability.
According to the reliability status and the remaining operational
life, appropriate lifetime management strategies can be adopted.
Hence, the central problem of the IC reliability assessment/predic-
tion, is inferring the End-of-Life (EOL) statistics.

A degradation (wearout, aging) process is stochastic in nature.
One candidate stochastic process that can govern the dynamics
of an IC wearout process is the Wiener process, denoted subse-
quently by W(t). The degradation process can be governed by an
equation of the following form:

dXðtÞ ¼ lða; tÞdt þ
ffiffiffiffi
r
p

dWðtÞ; ð1Þ

where X(t) describes the degradation state at time moment t. The
Wiener degradation process W(t) is specified by its mean (drift) l,
and variance

ffiffiffiffi
r
p

, which describe the degradation evolution in time.
The nonlinearity of the degradation process is captured in the non-
linear time variation of the functional l, with the parameters vector
a. In order to accommodate for the heterogeneity of an IC degrada-
tion sources during its lifetime, the drift l can be regarded as being
composed of two terms: (i) g(x, t), which is a fixed, deterministic
component, common to all ICs (e.g., measurement bias), and (ii)
a � f(x), which is a variable, a priori unknown nonlinear component,
with f(x), the set of basis functions (e.g., Gaussian, polynomial, fuzzy
membership functions) and a, the unknown parameter vector. Con-
sequently, (1) becomes:

dXðtÞ ¼ gðx; tÞdt þ af ðx; tÞdt þ
ffiffiffiffi
r
p

dWðtÞ: ð2Þ

Therefore, the unknown parameters vector h = (a,r) completely
defines the degradation process, and has to be estimated from a set
of noisy degradation measurements, V(t). Having determined the
IC degradation model, the future evolution of the degradation pro-
cess can be predicted and the lifetime related properties of interest
can thus be inferred. The general principle of the reliability estima-
tion is graphically caught in Fig. 1.

Given a set of noisy degradation measurements V (e.g., degrada-
tion of an IC performance characteristic such as max. operating fre-
quency), which constitute the degradation history up to current
time moment tk, the degradation process parameters h are esti-

mated. Based on the relation between a future degradation value
and the up-to-date degradation history, given by the degradation
process model, the potential future evolution paths of the degrada-
tion can be predicted. When a future degradation value exceeds a
pre-specified threshold T (e.g., usually set to 10% degradation of the
IC performance characteristic) for the first time, then the IC has
reached its EOL. Hence, the EOL for a degradation path X can be de-
fined as follows:

EOL ¼ inf t : XðtÞP TjXðsÞ < T;0 < s < tf g: ð3Þ

The reliability at a time moment t for the ensemble of predicted
degradation evolution paths, can then be obtained as the probabil-
ity at time t of not reaching the EOL.

In view of the above, we shall present first the general method-
ology for deriving the device EOL in Section 3.1, followed by the
corresponding algorithmic details in Sections 3.2 and 3.3.

3. The reliability assessment framework

For a given observation vector V, the parameters h, which char-
acterize the degradation process, are estimated taking into consid-
eration the degradation history. The posterior distribution of the
parameters h is updated via a Bayesian framework [8], which en-
ables to effectively integrate the historical, up-to-date degradation
data together with the newly in situ degradation observations.
Once h and the degradation path are estimated, the EOL is given
by the time moment when the degradation path exceeds the pre-
defined threshold. By simulating an ensemble of degradation paths
for the same h, the reliability at a specific time can be derived as
the probability of not exceeding the predefined threshold.

3.1. Reliability evaluation procedure outline

The joint posterior distribution of h and x1:N, conditional on the
observations V, can be sampled without having to compute the
density, by using the Gibbs sampling algorithm [9], which alter-
nates between the following two steps, for M times:

1. draw x1:Njh, V, i.e., generate a sample of the degradation path
x1:N, for fixed h and given observations V, and

2. draw hjx1:N, V., i.e., generate a sample of the parameters set
h = (a,r), for fixed degradation path x1:N and given observations
V.

The latter step, i.e., the update of the h = (a,r) parameters, is
particularly straightforward, since conjugate prior distributions
are employed for a and r. This makes it possible to derive analyt-
ically the conditional distribution of h, given the observations V and
the degradation path x1:N, and sample directly from it. The former
step however, is more computationally demanding. In such case, to
overcome the difficulties of direct sampling, a Metropolis Hastings
numerical approach [8] is applied. Specifically, the mth iteration of
the Gibbs sampler can be written as follows:

sample xðmÞn � p xnj; h; V ; xðmÞn�1; xðm�1Þ
nþ1

� �
for n ¼ 1 : N

sample rðmÞ � p rjxðmÞ1:N ;a
ðm�1Þ

� �

alphaðmÞ � p ajxðmÞ1:N ;r
ðm�1Þ

� �
;

where m = 1:M.
For the given observation vector V, having generated M samples

of h from the updated posterior distribution of hjx1:N, V, the EOL can
now be inferred by simulating the M degradation paths using the
discrete version of the continuous time dynamics governed byFig. 1. Illustration of the reliability modeling principle.
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(2). For this purpose, we employ the Euler–Maruyama approxima-
tion [10], with a discretization time step of resolution s, as follows:

xðmÞNþðkþ1Þs ¼ xðmÞNþks þ s � gðxðmÞNþksÞ þ s � aðmÞf ðxðmÞNþksÞ þ
ffiffiffi
s
p
� ZNþks; ð4Þ

where ZNþks � Nð0;rðmÞÞ. The number of discretization steps for
each of the M paths, is determined by the EOL stopping criterium,
i.e., when the degradation path sample xðmÞNþðkþ1Þs exceeds the EOL tar-
get (the threshold T, as defined in (3)). The EOL values for the M sim-
ulated paths, given the degradation history xðmÞ1:N and the
corresponding parameters set h(m) for each path, are computed as:

EOL1:M ¼ inf EOLm : xðmÞEOLm
P T; m ¼ 1 . . . M

n o
: ð5Þ

The reliability function at time instant t, can now be derived as:

RðtÞ ¼ fPðEOL1:M > tÞ : t > Ng: ð6Þ

With the above considerations in place, we are now in position
to present the Gibbs sampler details for obtaining the parameters
which characterize the degradation process.

3.2. Gibbs sampler step 1 – draw x1:Njh, V

Given the parameters set h = (a,r), the distribution of a degra-
dation path x1:N can be obtained from:

pðx1:N jh;VÞ / pðV j x1:NÞpðx1:N j hÞ; ð7Þ

where p(x1:Njh) is the probability of deriving the degradation path
x1:N for the parameters set h, and p(Vjx1:N) is the likelihood, the
probability of observing the measured degradation path from x1:N.
The Markov property [8] of (4) implies that the conditional distribu-
tion of xðmÞn , given all the other values is the same as the distribution
given the adjacent endpoints xðmÞn�1 and xðm�1Þ

nþ1 . It follows that the pos-
terior distributions of the parameters are:

pðxðmÞn jx
ðmÞ
1 ; . . . ; xðmÞn�1; x

ðm�1Þ
nþ1 ; . . . ; xðm�1Þ

N ; h;VÞ / pðxðmÞn jx
ðmÞ
n�1; x

ðm�1Þ
nþ1 ; h;VÞ;

which is further proportional to:

/ pðVnjxðmÞn Þpðx
ðmÞ
n�1jxðmÞn ; hÞpðxðm�1Þ

nþ1 jxðmÞn ; hÞ: ð8Þ

As concerns pðVnjxðmÞn Þ, it results from the distribution of the noisy
observations, which is given a priori. Since xnjxn�1 in (4) follow a
normal distribution, the probabilities pðxðmÞn�1jx

ðmÞ
n ; hÞ and

pðxðm�1Þ
nþ1 jx

ðmÞ
n ; hÞ can be readily derived.

For the present purposes, in order to sample the target condi-
tional distribution of x1:njh, V, we employ a numerical procedure,
i.e., the Metropolis Hastings algorithm [8], outlined subsequently.
Based on (4) with time step resolution h (which can be equal to
the time sampling resolution of observed data), for existing xn, a
step x�n can be proposed by drawing from the distribution:

pdf ðx�njxnÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

hr2p
p � e�

ðx�n�xn�hgðxnÞ�haf ðxn ÞÞ
2hr : ð9Þ

The acceptance probability of x�n as candidate to replace the current
draw xn, is given by:

q xðmÞn ; x�ðmÞn

� �
¼min

qðx�n; xnÞ
qðxn; x�nÞ

;1
� �

; ð10Þ

where

qðx�n; xnÞ ¼ pðVnjx�nÞpðxnþ1jx�nÞpðx�njxn�1Þ
qðxn; x�nÞ ¼ pðVnjxnÞpðxnþ1jxnÞpðxnjxn�1Þ:

The conditional probabilities in (10) can be computed using (9).

3.3. Gibbs sampler step 2 – draw hjx1:N

We are interested in drawing a sample of the parameters h from
the posterior probability distribution, which is given by:

pðhjx1:NÞ / pðhÞpðx1:NjhÞ: ð11Þ

To this end, we derive the likelihood of h for a given degradation
path x1:N as:

pðx1:NjhÞ /
1ffiffiffiffiffiffi
rN
p � e

� 1
2hr�
XN

n¼1

xnþ1�xn�h�gðxnÞ�h�af ðxnÞ½ �2
: ð12Þ

For a successful Bayesian inference, we assume the prior distri-
butions for the parameter set h = (a,r) belong to the conjugate
family [8] of the sampling distribution p(x1:Njh,V). As such, we con-
sider an inverse Gamma distribution for the degradation process
variance, i.e., r � C�1(q2,q3), and a normal distribution for a, i.e.,
a � Nð0; q1Þ. Since

pðajx1:N;rÞ / pðaÞpðx1:Nja;rÞ for r known
pðrjx1:N;aÞ / pðrÞpðx1:Nja;rÞ for a known;

it follows that:

ajx1:N;r � Nðam;avÞ
am ¼ � av � r�1

X
xnþ1 � xn � h � gðxnÞ½ � � f ðxnÞ

av ¼ q�1
1 þ r�1 � h �

X
f 2ðxnÞ

h i�1

rjx1:N ;a � C�1ðrm;rvÞ
rm ¼ q3 þ N

rv ¼ q2 þ h�1
X

xnþ1 � xn � h � gðxnÞ � h � af ðxnÞ½ �2:

4. Performance evaluation

In order to validate the proposed approach, we consider the
nonlinear process modeled by (2), with mean l(a, t) given by tb

(g(x, t) = 0). We conduct the numerical experiments employing
the following parameters values: the number of degradation paths
equal to 100, the discretization step h = 0.1, the Wiener process
variance

ffiffiffiffi
r
p
¼ 0:23, and its mean power-law coefficient b = 2. As

concerns the basis functions a modeling the process mean, without
loss of generality, for simulation purposes, we employed the
Gaussian kernel [11]. The estimation performance of the proposed
model was studied using noisy observations sampled from
NðxðtÞ;0:01Þ. For estimation accuracy evaluation purpose, we com-
pare with the commonly employed Wiener processes with linear
mean given by a � t [2–4].

In Fig. 2, the real degradation path generated via (4), is illus-
trated against the two degradation paths, estimated with the pro-
posed nonlinear degradation model and with the reference linear
model, respectively. In direct relation to ICs aging, the degradation
path could represent the threshold voltage degradation of a tran-
sistor, the maximum operating frequency degradation of circuit,
etc. It can be observed that, the proposed nonlinear degradation
model exhibits a fairly well estimation ability, the real and esti-
mated degradation paths almost overlapping. Furthermore, the fit-
ting characteristics are improved when compared to the reference
model with linear drift, for the considered degradation process. We
note that while the estimation tends to be less accurate during the
early period, characterized by a limited degradation history, the fit-
ting characteristics improve in time, as degradation data are accu-
mulated. The proposed model however yields a more accurate
estimation than the model with linear mean, also during the early
period with few degradation measurement data. We evaluated the
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degradation path estimation accuracy using the Akaike Informa-
tion Criterium [12], whose statistics is given by:

AIC ¼ 2 � k� 2 �max½log likelihoodð Þ�; ð13Þ

and which provides a measure of the trade-off between the model’s
complexity (reflected in the number of estimated parameters, k)
and the goodness-of-fit (reflected in the log-likelihood of the fit).
The better estimation accuracy using the proposed model is quanti-
tatively reflected in a smaller AIC value (121), when compared to
135 achieved by the linear model.

Based on obtained estimates, the in-field reliability is evaluated
at different time moments, as depicted in Fig. 3. In order to address
the reliability assessment uncertainty, we derived the confidence
interval using the bootstrap method [13]. Simulation results reveal
that not being able to capture accurately the degradation process
nonlinearities, can result in an underestimation of the reliability,
especially during the initial degradation period. This is turn may
yield a less efficient lifetime management of the device whose reli-
ability is being assessed. In the ICs case, for instance, being able to
realistically asses the reliability status during the early in-field per-
iod, is of particular interest. This is because of the front-loaded nat-
ure (i.e., the highest extent of degradation is manifested during

early operation, after which the degradation tends to saturate) of
the front-end-of-life aging mechanisms, which imply that the life-
time management strategies are most effective during early life.

5. Case study

For expository purposes of proposed approach assessment of
validity and potential applicability in reliability management
frameworks, we provide subsequently a practical case study using
the aging data of a PMOS transistor. To this end, we conducted
accelerated aging simulation of a PMOS transistor implemented
in PTM 45 nm technology [14]. As aging quantifier we employ
the transistor threshold voltage, Vth [15]. The reliability analysis
is carried in Cadence RelXpert and Virtuoso Spectre simulators
[16], using the substrate and gate current, lifetime and AgeMos
model parameters extracted in BSIMPro+ [17] for the PTM 45 nm
technology. As concerns the environmental parameters, we used
a temperature of 27 �C, and a power supply VDD = 1.0 V. We ex-
posed the PMOS transistor to Negative Bias Temperature Instability
(NBTI) and Hot Carrier Injection (HCI) wearout stress and adopted
an EOL target (failure threshold T) of 9 years.

The percentage degradation of the transistor Vth is graphically
illustrated in Fig. 4. The Vth time evolution, as obtained from Ca-
dence simulation, serves as the real degradation data. Based on
the Vth data, the noisy observations are then obtained in a similar
manner with the synthetic example previously studied, specifically
by sampling from the distribution NðVthðtÞ;0:01Þ. We derived the
transistor EOL values, using the proposed approach and the linear
model approach, at two different observation time moments:
1 year and 8 years, respectively. Based on the EOL values, the tran-
sistor remaining lifetime values were then obtained, each as the
difference between the EOL time moment and the current observa-
tion time moment. The corresponding Probability Density Func-
tions (PDFs) of the remaining useful lifetime values estimated
with both proposed and linear approach, and the real remaining
lifetime values obtained from Cadence, are depicted in Fig. 4 for
comparison.

As it can be observed in Fig. 4, at the beginning of the transistor
operating life, the uncertainty in the estimated remaining lifetime
PDFs, under both proposed and the linear approach, is higher.
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However, our model outperforms the linear counterpart, with a
more precise estimation spread and a PDF mean value closer to
the real transistor remaining lifetime value. The early EOL and
implicitly the remaining lifetime estimation accuracy differences
between the two approaches, can be attributed to the ability to
capture the nonlinearities exhibited by the Vth degradation obser-
vations. As the circuit ages and more degradation observations be-
come available, the EOL prediction uncertainty cones get narrower,
and the differences between the two distributions become smaller.

When limited degradation observations are available, the
accuracy of early EOL predictions is more sensitive to the selec-
tion of the prior distribution of h = (a,r), which characterizes the
degradation process, i.e., an inappropriate selection of these ini-
tial parameters, causes the predictions to be less accurate with
smaller confidence intervals. Such is the case in the considered
simulation setup which yields less accurate EOL predictions both
for our approach and for the reference linear one, during the
transistor early life, as illustrated by the two PDFs in Fig. 4 at
1 year observation time. However, the proposed approach takes
into account the nonlinearities of the degradation process and
is less sensitive to the selection of the prior distribution, exhib-
iting better adapting ability as far as the h updating is concerned
and, as a consequence, better prediction accuracy when com-
pared to the linear model. Improved accuracy of EOL predictions
during the early life stages, can be achieved if the prior distribu-
tion of h = (a,r) parameters is restricted to meaningful values.
However, for the current technology nodes with the afferent
highly dynamic variability threats, precise knowledge based on
experience with the same failure mechanisms in similar compo-
nents may be harder to obtain.

As the amount of available degradation observations increases,
the predictive ability improves for both approaches, as the poster-
ior PDF becomes dominated by the likelihood given by (12), situa-
tion exemplified in Fig. 4 by the two PDFs at 8 years observation
time.

The previously studied practical case, illustrates the significance
of incorporating nonlinearity in the degradation process model
when the underlying process is nonlinear, especially when EOL
predictions are desired during the beginning of the device life,
characterized by limited degradation history.

6. Conclusions

In this paper we proposed a Bayesian EOL and reliability estima-
tion framework that takes into account the degradation process
nonlinearity and uncertainty, from noisy observations. Based on
the degradation history and the current measurement data, the
degradation process parameters are updated via the Bayesian
method. As such, future degradation evolution can be derived
and the afferent reliability statistics estimated. Simulation results
revealed that when compared to degradation processes with linear
mean, the degradation process dynamics and the reliability evolu-
tion can be captured more accurately using the proposed
framework.
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