

Analysis and design of Min-Sum-based decoders running on noisy hardware

Christiane Kameni-Ngassa^{*}, <u>Valentin Savin</u>^{*}, David Declercq[#]

* CEA-LETI, MINATEC campus, Grenoble, France # ETIS ENSEA, Université de Cergy-Pontoise, France

i-RISC Workshop, Bucharest, September 20, 2013.

Innovative Reliable Chip Designs from Low-Powered Unreliable Components

Research reported in this presentation was supported by the Seventh Framework Programme of the European Union, under Grant Agreement number 309129 (i-RISC project)

Context & Objective

Objective

- Design fault tolerant solutions for LDPC decoders operating on circuits built out from unreliable (faulty) components
- Can MP decoders provide reliable error protection when they operate on faulty devices?

Linear codes

$$H = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & x_9 & x_{10} \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} c_1: & x_1 + x_2 + x_4 + x_7 = 0 \\ c_2: & x_1 + x_3 + x_5 + x_8 = 0 \\ c_3: & x_2 + x_3 + x_6 + x_9 = 0 \\ c_4: & x_4 + x_5 + x_6 + x_{10} = 0 \\ c_5: & x_7 + x_8 + x_9 + x_{10} = 0 \end{pmatrix}$$

- Linear code is defined by a parity-check matrix *H*
- Codeword: vector (x_1, \dots, x_N) such that $H \times (x_1, \dots, x_N)^T = 0$

LDPC code

- A linear code defined by a **sparse** parity-check matrix
 - The number of non-zeo entries per row/column is upper-bounded by a positive constant (even if the size of the matrix goes to infinity)

- *H* is advantageously represented by a bipartite (Tanner) graph
 - circles: variable-nodes (or bit-nodes)
 representing coded bits (columns of H)
 - squares: check-nodes representing or paritycheck equations (rows of H)
 - edges correspond to non-zero entries of H

Rather than a family of codes, *Gallager invented a new method of decoding linear codes*, by using iterative message-passing (MP) algorithms

LDPC decoding

- Iterative MP decoders
 - exchange of *extrinsic information* (messages) between bit-nodes and check-nodes
 - each message provides an estimation (in the form of a probability or LLR value) of either the sender or the recipient coded bit
 - takes place in several rounds, or iterations

- Input information (usually LLR value):
 - γ_n: computed acc. to the "channel" output and the information we have about the channel noise model
- Extrinsic-information exchange
 - $\beta_{m,n} = \operatorname{funct}(\alpha_{m,n'}; n' \in H(m) \setminus n)$
 - $\alpha_{m,n} = \operatorname{funct}(\gamma_n, \beta_{m',n}; m' \in H(n) \setminus m)$
- A posteriori information (updated LLR value)
 - $\widetilde{\boldsymbol{\gamma}}_n = \operatorname{funct}(\boldsymbol{\gamma}_n, \boldsymbol{\beta}_{m,n}; m \in H(n))$
 - hard-decision is taken based on $\tilde{\gamma}_n$ values

Remark: γ_n = input LLR; $\tilde{\gamma}_n$ = output (AP-)LLR

• Extrinsic-information exchange

Check-Node Messages

•
$$\beta_{m,n} = \operatorname{funct}(\alpha_{m,n'}; n' \in H(m) \setminus n)$$

Bit-Node Messages

•
$$\alpha_{m,n} = \operatorname{funct}(\gamma_n, \beta_{m',n}; m' \in H(n) \setminus m)$$

- Gallager A, Gallager-B (Majority-Voting)
- Belief-Propagation (or Sum-Product)
- Min-Sum

The outgoing $\alpha_{m,n}$ message is the sum on channel LLR and incoming $\beta_{m,n}$ messages

leti

V. Savin, Min-Sum-based decoders running on noisy hardware | 2013-09-20 | 11 © CEA. All rights reserved

- Gallager A, Gallager-B (Majority-Voting)
- Belief-Propagation (or Sum-Product)
- Min-Sum
- Min-Sum decoding

$$\boldsymbol{\beta}_{\boldsymbol{m},\boldsymbol{n}} = \left(\prod_{n' \in H(m) \setminus n} \operatorname{sgn}(\boldsymbol{\alpha}_{\boldsymbol{m},\boldsymbol{n}'})\right) \min_{n' \in H(m) \setminus n} (|\boldsymbol{\alpha}_{\boldsymbol{m},\boldsymbol{n}'}|)$$

The sign of the outgoing $\beta_{m,n}$ message is the product of the signs of the incoming $\alpha_{m,n'}$ messages

The absolute value of the outgoing $\beta_{m,n}$ message is the minimum of the absolute values of the incoming $\alpha_{m,n'}$ messages

$$\boldsymbol{\alpha}_{\boldsymbol{m},\boldsymbol{n}} = \boldsymbol{\gamma}_{\boldsymbol{n}} + \sum_{\boldsymbol{m}' \in H(\boldsymbol{n}) \setminus \boldsymbol{m}} \boldsymbol{\beta}_{\boldsymbol{m}',\boldsymbol{n}}$$

The outgoing $\alpha_{m,n}$ message is the sum on channel LLR and incoming $\beta_{m,n}$ messages

Min-Sum decoder

Initialization:
$$\forall n = 1, ..., N; \forall m \in H(n)$$

 $\gamma_n = \log(\Pr(x_n = 0 \mid y_n) / \Pr(x_n = 1 \mid y_n))$
 $\alpha_{m,n} = \gamma_n$

Iterations

• CNU:
$$\forall m = 1, ..., M$$
; $\forall n \in H(m)$
 $\boldsymbol{\beta}_{m,n} = \left(\prod_{n' \in H(m) \setminus n} \operatorname{sgn}(\boldsymbol{\alpha}_{m,n'})\right) \min_{n' \in H(m) \setminus n} (|\boldsymbol{\alpha}_{m,n'}|)$

• **VNU**:
$$\forall n = 1, ..., N$$
; $\forall m \in H(n)$

$$\boldsymbol{\alpha}_{\boldsymbol{m},\boldsymbol{n}} = \boldsymbol{\gamma}_{\boldsymbol{n}} + \sum_{\boldsymbol{m}' \in H(\boldsymbol{n}) \setminus \boldsymbol{m}} \boldsymbol{\beta}_{\boldsymbol{m}',\boldsymbol{n}}$$

• **AP-LLR**: $\forall n = 1, ..., N$

$$\widetilde{\boldsymbol{\gamma}}_{\boldsymbol{n}} = \boldsymbol{\gamma}_{\boldsymbol{n}} + \sum_{\boldsymbol{m} \in H(\boldsymbol{n})} \boldsymbol{\beta}_{\boldsymbol{m},\boldsymbol{n}}$$

V. Savin, Min-Sum-based decoders running on noisy hardware | 2013-09-20 | 13 © CEA. All rights reserved

Min-Sum decoder on faulty devices

5

 $\alpha_{m,n}$

Iterations

V. Savin, Min-Sum-based decoders running on noisy hardware | 2013-09-20 | 14 © CEA. All rights reserved

10

9

8

Min-Sum decoder on faulty devices

- Noisy components: new source of errors
 - Such errors may propagate through decoding iterations...
 - How does this impact on the error-correction capability of the decoder?
 - how to make sure that such an error propagation is not catastrophic?
- Theoretical analysis of "noisy" Min-Sum
 - Develop "noisy versions" of density-evolution
 - evaluate the theoretical performance loss due to noisy components
 - serve as guidelines for practical fault-tolerant implementations
- Practical fault-tolerant Min-Sum-based decoders
 - Evaluate the impact of faulty components on the performance of practical "finite-length" Min-Sum-based decoders

Error models for faulty arithmetic units

- Probabilistic adder (Q bits)
 - Two parameters: the depth D and the error probability P_a
 - P_a is the probability that an error occurs on at least one of the D LSBs

Probabilistic comparator

P_c is the probability that the output is in error

Noisy density evolution

- We derived DE for fixed-point Min-Sum decoder
 - integrates above error models for arithmetic units (adder/comparator)
- Exchanged messages are random variables
 - Fixed-point implementation \Rightarrow finite alphabet
 - C the PMF of input LLR values γ_n (depends only on the channel model)
 - $A^{(\ell)}, B^{(\ell)}$, and $\widetilde{C}^{(\ell)}$ the PMFs of $\alpha_{m,n}, \beta_{m,n}$, and $\widetilde{\gamma}_n$ at iteration ℓ

DE equations

Recursive formula (by tracking the update rules of exchanged messages):

$$\left(\boldsymbol{A}^{(\ell+1)}, \boldsymbol{B}^{(\ell+1)}, \boldsymbol{\widetilde{C}}^{(\ell+1)}\right) = f\left(\boldsymbol{A}^{(\ell)}, \boldsymbol{B}^{(\ell)}, \boldsymbol{\widetilde{C}}^{(\ell)}, \boldsymbol{C}\right)$$

- Under the assumption that incoming messages to any bit and check node are independent
- In particular, the graph must be cycle-free \Rightarrow asymptotic performance

Noisy density evolution

- $P_{\ell} = \Pr(\tilde{\gamma}_n < 0)$ is the **error probability** at iteration ℓ
- $P_{\infty} = \lim_{\ell \to \infty} P_{\ell}$ output error probability (does not always exist!)
- Useful decoder: P_{∞} exits and $P_{\infty} < P_0$
- η -threshold: $P_{\text{th}}(\eta) = \sup\{P_0 | P_{\infty} \text{ exists and } P_{\infty} < \eta\}$

DE equations

• Recursive formula (by tracking the update rules of exchanged messages):

$$\left(\boldsymbol{A}^{(\ell+1)}, \boldsymbol{B}^{(\ell+1)}, \boldsymbol{\widetilde{C}}^{(\ell+1)}\right) = f\left(\boldsymbol{A}^{(\ell)}, \boldsymbol{B}^{(\ell)}, \boldsymbol{\widetilde{C}}^{(\ell)}, \boldsymbol{C}\right)$$

- Under the assumption that incoming messages to any bit and check node are independent
- In particular, the graph must be cycle-free \Rightarrow asymptotic performance

Useful regions for Min-Sum decoder / BSC

- (3, 6)-regular LDPC codes, fixed-point MS
 - Q = 5 bits (number of bits of the adder)
 - P_c = 0.001 (error probability of the comparator)

Useful regions for Min-Sum decoder / BI-AWGN

V. Savin, Min-Sum-based decoders running on noisy hardware | 2013-09-20 | 20

Useful regions for Min-Sum decoder

- Errors caused by noisy components do not necessarily propagate catastrophically through decoding iterations
 - Min-Sum decoder can still provide error protection with a given level of reliability, assuming that decoder's components are reasonably noisy...
- Some characteristics of the Min-Sum decoder
 - Less sensitive to errors in comparators
 - Less sensitive to errors in the LSBs of the adder
 - Highly sensitive to **errors in the sign bit** of the adder

- Min-Sum-based decoders
 - improved versions of the MS algorithm, with only a very limited (usually negligible) increase in complexity
 - Offset-Min-Sum (OMS)
 - Self-Corrected Min-Sum (SCMS)

Min-Sum

Initialization:
$$\forall n = 1, ..., N; \forall m \in H(n)$$

$$\begin{aligned} \boldsymbol{\gamma}_n &= \log(\Pr(x_n = 0 \mid y_n) / \Pr(x_n = 1 \mid y_n)) \\ \boldsymbol{\alpha}_{m,n} &= \boldsymbol{\gamma}_n \end{aligned}$$

Iterations

CNU:
$$\forall m = 1, ..., M$$
; $\forall n \in H(m)$
$$\boldsymbol{\beta}_{m,n} = \left(\prod_{n' \in H(m) \setminus n} \operatorname{sgn}(\boldsymbol{\alpha}_{m,n'})\right) \min_{n' \in H(m) \setminus n} (|\boldsymbol{\alpha}_{m,n'}|)$$

• **AP-LLR**:
$$\forall n = 1, ..., N$$

$$\widetilde{\gamma}_n = \gamma_n + \sum_{m \in H(n)} \beta_{m,n}$$

• VNU:
$$\forall n = 1, ..., N$$
; $\forall m \in H(n)$
 $\alpha_{m,n} = \widetilde{\gamma}_n - \beta_{m,n}$

Self-Corrected Min-Sum

- intrinsic ability to detect and discard unreliable messages during the iterative decoding process
- Self-correction = noiseless patch applied to the noisy MS decoder

a variable-to-check message
 α_{m,n} is erased (set to zero) if its sign changed with respect to the previous iteration

Initialization: $\forall n = 1, ..., N; \forall m \in H(n)$

$$\begin{aligned} \boldsymbol{\gamma}_n &= \log(\Pr(x_n = 0 \mid y_n) / \Pr(x_n = 1 \mid y_n)) \\ \boldsymbol{\alpha}_{m,n} &= \boldsymbol{\gamma}_n \end{aligned}$$

Iterations

CNU:
$$\forall m = 1, ..., M$$
; $\forall n \in H(m)$
$$\boldsymbol{\beta}_{m,n} = \left(\prod_{n' \in H(m) \setminus n} \operatorname{sgn}(\boldsymbol{\alpha}_{m,n'})\right) \min_{n' \in H(m) \setminus n} (|\boldsymbol{\alpha}_{m,n'}|)$$

• AP-LLR:
$$\forall n = 1, ..., N$$

 $\widetilde{\gamma}_n = \gamma_n + \sum_{m \in H(n)} \beta_{m,n}$

• VNU:
$$\forall n = 1, ..., N$$
; $\forall m \in H(n)$
 $\alpha_{m,n}^{\text{tmp}} = \widetilde{\gamma}_n - \beta_{m,n}$
if $\text{sgn}(\alpha_{m,n}^{\text{tmp}}) = \text{sgn}(\alpha_{m,n})$ then $\alpha_{m,n} = \alpha_{m,n}^{\text{tmp}}$
else $\alpha_{m,n} = 0$

- Mackay's regular (3,6)-LDPC code, [K = 504, N = 1008]
- Fixed-point decoders: 4 / 5 bits (exchanged messages / AP-LLR)

- Mackay's regular (3,6)-LDPC code, [K = 504, N = 1008]
- Fixed-point decoders: 4 / 5 bits (exchanged messages / AP-LLR)

Conclusion

- "Adjustable" error-models for noisy Min-Sum-based decoders
- Density evolution analysis of the noisy Min-Sum decoder
 - proved that error protection (with a certain level of reliability) is still possible
 - characterized the sensitivity of the decoder to variations of the parameters of the error model, in terms of useful regions
- Finite-length performance of Min-Sum-based decoders
 - highlighted the limitations of the theoretical analysis with respect to practical implementations
 - evaluate finite-length performance for various parameters of the hardware noise model
 - SCMS: intrinsic ability to detect and discard unreliable messages, which proves to be particularly useful for noisy implementations

ein

LABORATOIRE D'ÉLECTRONIQUE **ET DE TECHNOLOGIES DEL'INFORMATION**

Merci de votre attention

