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Memory Architecture

Each k -bit user information is stored as a codeword of an (n, k)
linear block code of length n and code rate R = k/n.
The memory elements are unreliable and fail transiently and
independently of each other – the von Neumann failure model,
BSC(αM )
The correction circuit is also unreliable.
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“Nothing in this presentation is novel.
The only novelty is random errors.

Even this joke is not novel.”
Anonymous

“Is noise always bad?”
A Kirkland & Ellis lawyer
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All Components are Faulty

Shashi’s Theorem (Vasić and Chilappagari, 2007)

Let G be a (γ, ρ, α, (3/4 + ε)) expander for any ε > 0. Our memory
architecture can tolerate constant fraction of errors in all the components if

αM + γ(ρ− 2)α⊕ + αγ < α(1 + 4ε)(4ε)/2
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Philosophy

Probabilistic behavior of an iterative decoder due to random
deliberate errors in its logic gates can be exploited to our
advantage and lead to an improved performance and reduced
hardware redundancy.
Iterative decoding can be viewed as a recursive procedure for
Bethe free energy function minimization, and the randomness in a
message update may help the decoder to escape from local
minima.
The decoder operates in stochastic gradient descent fashion, but
the random perturbations do not require any additional hardware
as they are built-in the faulty hardware itself. Thus the decoder
harvests good deeds of logic gate errors.
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Philosophy

Clavus clavo eicitur ! 

One nail drives out another 

Marcus Tullius Cicero 
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Philosophy

One error drives out another 

Authors Error errore eicitur ! 
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Ingredients

Low-density parity check (LDPC) code and an iterative decoder
(γ, ρ)-regular LDPC codes
Tanner graph G = (V ∪ C,E), |V | = n |C| = nγ/ρ and |E | = nγ

Noisy Gallager-B message updates
Rewinding decoder, F	r

(LR)

If a codeword is not found after LR iterations, LR � L, the decoding
algorithm is re-initialized with the word received from the channel.
Instead of running the whole L iterations, the decoder instead runs
r = L/LR very short rounds.

Critical gates must be perfect.
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An example of a code graph G of an (3,5)-regular
LDPC code

H =



1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0



Bane Vasić, University of Arizona 11 / 40



Noisy Gallager-B

ν
(`)
v→c = Φ(yv ,m(`)) + e(`)

MAJ

µ
(`)
c→v = Ψ(n(`−1)) + e(`)

⊕

In this talk: Φ and Ψ require only two types of logic gates:
(γ − 1)-input majority logic (MAJ) gates and (ρ− 1)-input XOR
gates.

e(`)
MAJ and e(`)

⊕ are independent Bernoulli random variables with
parameters αMAJ and α⊕.
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Rewinding decoder, F	r
(LR)

If a codeword is not found after LR iterations, LR � L, the
decoding algorithm is re-initialized with the word received from the
channel.
Instead of running the whole L iterations, the decoder instead runs
r = L/LR very short rounds.

F	r
(LR) = F(LR)♦F(LR)♦ · · ·♦F(LR)︸ ︷︷ ︸

r

.

Bane Vasić, University of Arizona 13 / 40



Benefits of Rewinding

Note that the plain noisy decoder with no rewinding,
F(L) = F	1

(L).
To allow the decoder to benefit from errors, large number of
iterations is needed under some conditions of gate unreliability.
However, too many logic gate errors can overwhelm the decoder,
and lead to miscorrection.
Rewinding is a key feature which prevents the accumulation of
errors in the messages.
Applicable to other decoders such as Probabilistic Gradient
Descent Bit Flipping (not in this talk).
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Bane Vasić, University of Arizona 14 / 40



Benefits of Rewinding

Note that the plain noisy decoder with no rewinding,
F(L) = F	1

(L).
To allow the decoder to benefit from errors, large number of
iterations is needed under some conditions of gate unreliability.
However, too many logic gate errors can overwhelm the decoder,
and lead to miscorrection.
Rewinding is a key feature which prevents the accumulation of
errors in the messages.
Applicable to other decoders such as Probabilistic Gradient
Descent Bit Flipping (not in this talk).
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(5,3) Trapping Sets in the Tanner (155,64,20) Code
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Conditional FER of the Tanner (155,64) code
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Optimal α⊕ > 0, αMAJ > 0

FER is dominated by the most critical three-bit error patterns.
The particular low-weight error pattern cannot be decoded by
perfect hardware, but it can be decoded with non-zero probability
for a wide range of gate error probabilities αMAJ and α⊕.
After sufficient number of iterations, the minimum FER is not
achieved for perfect gates but for some nonzero value of the gate
error rates αMAJ and α⊕.
For a broad range of gate error rates, our decoder actually
benefits from logic gate errors.
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Average FER
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Both XOR and MAJ gates have the same failure rate
αM = 2× 10−3
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The impact of L
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The Impact of the Number of Iterations L

Increasing the maximum number of iterations, L, reduces the
probability that the error pattern remains uncorrected.
The impact of L is especially noticeable for high reliability gates

Hardware errors cannot help much in annihilating trapping sets
because the state transition probabilities inW are small for most
transitions other than those that already exist in the perfect decoder.
Consequently, the convergence to the attractor of the codeword
takes longer (the average convergence time also grows with n).

On the other hand, increasing Z is has stronger effect when gates
are very noisy.
Prolonging the second stage of the decoding algorithm greatly
improves the performance of a decoder made of the less reliable
hardware.
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Plain Decoder F
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For all L, the decoder F outperforms the ideal decoder F .
For large L, F approaches the nine-error correction decoder.
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Rewinding Decoder F	
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L=25 x 4*102, α
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nine error correction

For αG = 10−2, the rewind decoder F	 performs beyond the
b dmin−1

2 c bound.
The total number of iterations L = r × LR is kept the same as for F .
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Lessons Learned for Two Gate Error Rate Regimes

For more reliable logic gates, large L is needed before the decoder
start benefiting from the positive effects of logic gate errors.

Strategy: The perfect syndrome checker is used in the first twenty
iterations, as the average FER rapidly decreases only at the
beginning of the decoding.
Both the final bit-estimation circuit as well as the syndrome checker
are turned-off and sufficient number of iterations is allowed before
they are turned on again.
Clearly, this strategy results in energy saving as the perfect gates
are used in a reduced number of iterations.

For less reliable gates, errors correctable by the perfect decoder
may turn uncorrectable, or lead to miscorrections as they may
lead to large deviations from the trajectory of the perfect decoder.

A solution for this case is to rewind the decoder.
The higher the gate error rate, the lower optimal rewind period LR
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Dynamical System of a Noisy Decoder

We consider F(L) = F	1
(LR = L) – no rewinding.

µ(`) = ΥC(µ(`−1)) + e(`)
µ

µ(`) = (µ
(`)
c )c∈C – the outgoing messages from check nodes.

ΥC is the composition of Φ and Ψ, and define the dynamical
system of the perfect decoder, F .

e(`)
µ (of length = mρ) are the realization of errors at time ` that

affect computation of messages µ.
Since Φ is the function of the memory output y, ΥC also depends
on y, thus the transition probabilities depend on the the channel
error vector e, and for a given decoder we have an ensemble of
Markov chains {We}e∈{0,1}n .
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Dynamics of Perfect and Noisy Decoders, F and F

For a given a decoder F and error pattern e in the memory
elements, consider the Markov chainWe, with the state space
S = {0,1}|C|ρ, and the transition probability matrix P = (pε,δ)ε,δ∈S.
The transition probabilities between states,
pε,δ = Pr{µ(`) = δ|µ(`−1) = ε}, depend on α⊕ and αMAJ .
Due to independence of logic gate errors, their effect can be
combined into a single conditional probability αG.
Let δ̄ = ΥC(ε) be the state of the perfect decoder F reached from
the state ε.

pε,δ = pε,δ̄α
dδ̄,δ
G (1− αG)|C|ρ−dδ̄,δ

dδ̄,δ – the Hamming distance between the binary vectors δ̄ and δ
αG – the probability that a single XOR gate output in a noisy decoder F is
different from the corresponding XOR gate output in the perfect decoder F
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αG

Gate failure probability

αG = (1− α⊕)
1
2

(1− (1− 2αMAJ)ρ−1) + α⊕
1
2

(1 + (1− 2αMAJ)ρ−1)

1
2

(1− (1− 2αMAJ)ρ−1) = Pr{odd number of MAJ gate errors}

1
2

(1 + (1− 2αMAJ)ρ−1) = Pr{even number of MAJ gate errors}

Approximation for low logic gate error rates

αG ≈ (ρ− 1)αMAJ + α⊕
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Classification of States ofWe

For a given decoder F , a codeword x ∈ C, and the error pattern e
in the memory elements, we define Markov chainWe with the set
of states

S = Sx ∪ S∼x ∪ S∼C ,

Sx — subset of S for which all parity check are satisfied, and the
variable node decisions form the codeword x
S∼x — set of states for which all parity check are satisfied, and the
variable node decisions form a codeword different from x.
S∼C — set of states for which the variable node decisions are not
codewords.
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Closeness to a Codeword

When the perfect syndrome checker is turned on, and if the
Markov chain is the state β ∈ Sx ∪ S∼x, the decoding is
terminated, and the Markov chain stays in β.
Thus, the states in Sx and S∼x are absorbing.
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Reduced Chain

We Me

All the states in Sx fromWe are lumped into a single state inMe. Similarly,
the states S∼x are are also lumped into a single state
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Absorbing Chain Transition Probability Matrix

Note that P∼C,x, P∼C,∼x and P∼C,∼C do not depend on ` due to
homogeneity.

P =

 1 0 0
0 1 0

P∼C,x P∼C,∼x P∼C,∼C

 =

(
I2 0
R Q

)

The transition diagram of the transient states is a strongly
connected graph
Q does not have any nonzero entries
The transition probabilities from transient to absorbing states Sx
and S∼x are given by the matrix R = (Rx,R∼x)

Rx = P∼C,x,
R∼x = P∼C,∼x.
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FER(`)
e and MER(`)

e

Let us assume that all-zero codeword is transmitted x = 0

FER(`)
e = Pr{µ(`) ∈ S∼0 ∪ S∼C}

MER(`)
e = Pr{µ(`) ∈ S∼0}

Average performance

FER(D) =
∑

e∈{0,1}n

Pr{e} × FERe(D)

Pr{e} = α
w(e)
M (1− αM)n−w(e)

Bane Vasić, University of Arizona 34 / 40



FER(`)
e and MER(`)

e

Let us assume that all-zero codeword is transmitted x = 0

FER(`)
e = Pr{µ(`) ∈ S∼0 ∪ S∼C}

MER(`)
e = Pr{µ(`) ∈ S∼0}

Average performance

FER(D) =
∑

e∈{0,1}n

Pr{e} × FERe(D)

Pr{e} = α
w(e)
M (1− αM)n−w(e)
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Bane Vasić, University of Arizona 34 / 40



FER(∞)
e = MER(∞)

e

Theorem

For the noisy Gallager-B decoding algorithm D = F(L,L) on any LDPC code
C, and sufficiently large L

FER(L)
e (D) ≈ MER(L)

e (D).
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Illustration on a (5,1,5) Repetition Code
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=10, simulation
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=10, theory

MER for L → ∞, without rewinding, theory
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R
=10, theory

Conditional FER for error pattern e=(11000) as a function of Z
α⊕MAJ = 0.01, LR = 25
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Discussion

For a perfect decoder, αMAJ = 0 and α⊕ = 0, the transitions
between states are deterministic, and the attractor basin of a
dynamical system (µ(`) = ΥV (µ(`−1)) includes

(i) codewords - which are the fixed points
(ii) trapping sets - which can be either fixed points or cycle attractors.

Perfect decoder may oscillate between these states, thus failing to
converge to a codeword.
On the other hand, in a noisy decoder every state can be reached
with a nonzero probability.
Thus, the faulty decoder will eventually converge to a codeword -
either correct or incorrect one.
When the decoding algorithm have small probability of
miscorrection in the first decoding iterations, it is better to use the
rewinding decoder with r = L/LR rounds, LR � L.
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End of Talk

Thank you!
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