Efficient Implementation of Probabilistic Gradient Descent Bit Flipping Decoders

K. Le, F. Ghaffari and D. Declercq ETIS, ENSEA/UCP/CNRS France B. Vasic,

Department of Elec.and Comp. Eng. University of Arizona Tucson, USA

September 2015

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Outline

- Context & Objectives
- Statistical Analysis of PGDBF
- **3** Intrinsic-Valued Random Generator (IVRG)
- Performance and Hardware cost
- 6 Conclusion

Outline

Context & Objectives

- 2 Statistical Analysis of PGDBF
- Intrinsic-Valued Random Generator (IVRG)
- 4 Performance and Hardware cost
- 6 Conclusion

Context & Objectives

Low Density Parity Check (LDPC) Decoders

Applications : Wired, Wireless communication, Storage...

2 types of LDPC decoding algorithms :

- Soft information algorithms : Sum-Product, Min-Sum..., powerful error correction capacity but high complexity.
- Hard-decision algorithms : Gallager Bit Flipping (BF), Gradient Descent Bit Flipping (GDBF), Probabilistic GDBF..., low complexity, usually weak in error correction.
- We work on hard-bit decision algorithm

Context & Objectives

Concept of Bit Flipping (BF) Algorithm :

- Iteratively passing binary information between 2 groups of processing units :
 - Check Nodes Units (CNU) : compute parity check equations (XOR operations),
 - Variable Nodes Units (VNU) : the VN value is flipped if the number of violated CN neighbors is too large.

• BF:
$$x_n^{(k+1)} = \operatorname{flip}\left(x_n^{(k)}\right)$$
 if $E_n^{(k)} = \sum_{m \in \mathcal{N}(\backslash)} s_m^{(k)} \ge \tau$, τ : predefined threshold.

- $x_n^{(k)}$: current value of VN *n* at iteration *k*
- $s_m^{(k)}$: current value of CN *m* at iteration *k*

Hardware architecture and performance comparison

Statistical Analysis

IVRG

with yn the noisy version of VN n.

Context & Objectives

• Energy function :
$$E_n^{(k)} = x_n^{(k)} \text{ xor } y_n + \sum_{m \in \mathcal{N}(\backslash)} s_m^{(k)}$$

•
$$E_{max}^{(k)} = Max\left(E_n^{(k)}\right),$$

•
$$x_n^{(k+1)} = \text{flip}(x_n^{(k)})$$
 if $E_n^{(k)} = E_{max}^{(k)}$

Hardware architecture and performance comparison

with yn the noisy version of VN n.

• Energy function :
$$E_n^{(k)} = x_n^{(k)} \oplus y_n + \sum_{m \in \mathcal{N}(\backslash)} s_m^{(k)}$$

- $E_{max}^{(k)} = Max\left(E_n^{(k)}\right),$
- sample N random bits $R_n^{(k)}$ from a Bernoulli distribution with probability p_0 ,
- $x_n^{(k+1)} = \operatorname{flip}\left(x_n^{(k)}\right)$ if $E_n^{(k)} = E_{max}^{(k)}$ and $R_n^{(k)} = 1$.

[Rasheed2014] O.A. RASHEED, P. IVANIS AND B. VASIC, "FAULT-TOLERANT PROBABILISTIC GRADIENT-DESCENT BIT FLIPPING DECODER", Communications Letters, IEEE, VOL. 18, NO. 9, PP. 1487–1490, SEPTEMBER 2014.

Hardware architecture and performance comparison

iRISC-Workshop - 2015

Statistical Analysis

IVRG

Performance

Conclusion

Context & Objectives

Hardware overhead for Random Generator implementation could be prohibitive

Random Generator (RG) : Linear Feedback Shift Register (LFSR)

A Naive implementation of PGDBF would require duplicating *N* LSFR-RG to get *N* random bits at each iteration :

	1-bit Register	Slice LUTs
Non-Probabilistic GDBF	946	2151
PGDBF with LFSR	9161	3545
offset min-sum (6 bits)	13694	15350

Our approach

- Statistical study of the PGDBF to identify the critical features of the probabilistic blocks,
- Replace the LSFR-RG by an "approximate" RG with low hardware complexity.

iRISC-Workshop - 2015

Context & Objectives

Ø Statistical Analysis of PGDBF

Intrinsic-Valued Random Generator (IVRG)

4 Performance and Hardware cost

6 Conclusion

Statistical Analysis in the Waterfall

Analysis Setting

- Random binary sequence at iteration k : R^(k) = {R_i^(k), i = 1...N}
- Focus on the number L of 1's in the sequence R^(k), instead of the Bernoulli probability p₀
- Analyse the Frame Error Rate (FER) as a function of L

Binary Symmetric Channel - Waterfall Region - Tanner Code (M = 93, N = 155)

• Conclusion 1 : for the first decoding iterations random part does not help,

Conclusion 2 :

choosing an optimized p_0 is not that important,

 $R^{(k)}$ only need to have a "cut the tail" property ($L_{min} \leq L \leq L_{max}$)

Statistical Analysis in the Error Floor

Errors located on Trapping Sets

- In the error floor region, the dominant uncorrectable error configurations are concentrated on Trapping Sets
- Trapping Sets TS(a, b) are defined as a small set of a VNs for which the neighboring CNs contains exactly b odd degree CNs
- TS(5, 3) is the smallest trapping set for regular d_v = 3 LDPC codes with girth g = 8.

Smallest Error Events not correctable by the GDBF

- weight-3 error patterns which does not satisfy 5 parity-checks,
- weight-4 error patterns which does not satisfy 10 parity-checks,

Statistical Analysis in the Error Floor

Frame error rate with fixed input errors

Context/Objectives

for each Monte-Carlo round, only the random sequences R^(k) differ.

- Conclusion 1 : the random part is useful in the first iterations,
- Conclusion 2 : $R^{(k)}$ needs to have the "cut the tail" property ($L_{min} \le L \le L_{max}$),
- Concept of decoder rewinding : replace a single decoder with K iterations with P decoders with K/P iterations, using same input, but different random seeds : it is expected to get FER = (¹/₂)^P for the low-weight error events.

iRISC-Workshop - 2015

Partial PGDBF for QC-LDPC

- Randomness is applied on M/Z random blocks or M/Z fixed blocks out of N/Z (Z : Circulant size).
- Conclusion 1 and 2 are still hold.

- Context & Objectives
- 2 Statistical Analysis of PGDBF
- Intrinsic-Valued Random Generator (IVRG)
- 4 Performance and Hardware cost
- 6 Conclusion

All zero codeword sent assumption : prob(v_i = 1) = α and prob(v_i = 0) = 1 - α, i = 1...N, α : channel crossover probability

CNs values sequence at the first iteration :

•
$$prob(c_j = 1) = 0.5 - (0.5 - 2\alpha)^{dc_j}, j = 1...M.$$

- CNs values sequence $\bar{c} = \{c_j, j = 1...M\}$ is :
 - a sequence of random binary variables
 - generated inside (intrinsic) of the decoder and L_c has "cut the tail" property as in the following theorem.

Theorem

Given an LDPC code having only Trapping Set TS(a, b) in its Tanner graph. If there are a erroneous bits in the whole codeword then L' is bounded as

$$b \leq L' \leq \sum_{i}^{a} (d_{v(i)})$$

"Cut the tail property of Tanner code in the first iteration CNs sequence"

TABLE: Trapping Sets of Tanner Code (155,93)

Type of TS	Number of TS	
TS(5,3)	155	
TS(6,4)	930	
TS(7,3)	930	
TS(7,5)	13950	

statistic with number of bits in error e ≥ 3. (We prove the guaranty error correction e_g = 2 for GDBF and PGDBF in another work).

"Cut the tail property of Tanner code in the first iteration CNs sequence"

IVRG hardware architectures

- Store the *M* CNs values in a register bank.
- Shuffle at each iteration these *M* values to generate K outputs :
 - K = N outputs (Full-IVRG PGDBF decoder)
 - K = M outputs (Partial IVRG PGDBF decoder)

Partial IVRG PGDBF

- Further hardware reduction.
- M/Z blocks of IVRG outputs are triggered to :
 - M/Z fixed blocks of QC-LDPC VNs \rightarrow IVRG-Partial-Fix PGDBF decoders.
 - M/Z random blocks of QC-LDPC VNs \rightarrow IVRG-Partial-Ran PGDBF decoders.

Outline

- Context & Objectives
- 2 Statistical Analysis of PGDBF
- Intrinsic-Valued Random Generator (IVRG)
- Performance and Hardware cost
- 6 Conclusion

Decoding Performance and Hardware cost

IRISC – *dv*4 – *R*050 – *L*54 – *N*1296 matrix

iRISC-Workshop - 2015

Statistical Analysis

IVRG

Performance

Conclusion

Decoding Performance

Tanner – dv3 - L31 - N155 matrix

Harware cost

	1-bit Register	Slice LUTs	F _{max} (MHz)	Throughput (Mbps)
Non-Probabilistic GDBF	946	2151	132.721	4114.3
PGDBF with IVRG	1038	2412	132.721	4114.3
PGDBF with LFSR	9161	3545	135.56	4202.36
offset min-sum (6 bits)	13694	15350	237.185	197.5

iRISC-Workshop - 2015

Outline

- Context & Objectives
- 2 Statistical Analysis of PGDBF
- Intrinsic-Valued Random Generator (IVRG)
- 4 Performance and Hardware cost
- 6 Conclusion

Conclusion

Conclusion

- We introduce a new and original method of random generation called IVRG.
 - Avoid generate but use from the existing decoder memory
 - Highly efficient in hardware cost compared to conventional method (LFSR)
 - Preserving the out standing performance of PGDBF

THANK YOU