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Context & Objective 

 Context 
 Next-generation electronic circuit design  

 increase in density integration 

 process variations, post CMOS technologies 

 lower power supply (reduction by 20% per technology node) 

 Low energy consumption (sustainability concerns) 

 aggressive voltage scaling 

Reliability is among the ITRS Overall Design Technology Top-5 Challenges (2010) 

 Objective 
 Design fault tolerant solutions for LDPC decoders operating on circuits 

built out from unreliable (faulty) components 

 Can MP decoders provide reliable error protection when they operate 
on faulty devices? 
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Min-Sum decoder on faulty devices 

 Noisy components: new source of errors 
 Such errors may propagate through decoding iterations… 

 How does this impact on the error-correction capability of the decoder?  

 how to make sure that such an error propagation is not catastrophic?  

 

 Theoretical analysis of “noisy” Min-Sum 
 Develop “noisy versions” of density-evolution  

 evaluate the theoretical performance loss due to noisy components  

 serve as guidelines for practical fault-tolerant implementations 

 

 Practical fault-tolerant Min-Sum-based decoders 
 Evaluate the impact of faulty components on the performance of 

practical “finite-length” Min-Sum-based decoders  
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Initialization:  ∀𝑛 = 1,… ,𝑁; ∀𝑚 ∈ 𝐻(𝑛) 

  𝜸𝒏   = log Pr 𝑥𝑛 = 0 | 𝑦𝑛 Pr 𝑥𝑛 = 1 | 𝑦𝑛  
𝜶𝒎,𝒏 = 𝜸𝒏 

Iterations 

 CNU: ∀𝑚 = 1,… ,𝑀; ∀𝑛 ∈ 𝐻(𝑚) 

𝜷𝒎,𝒏 =  sgn 𝜶𝒎,𝒏′

𝑛′∈𝐻 𝑚 \𝑛

min
𝑛′∈𝐻(𝑚)\n

|𝜶𝒎,𝒏′|  

 VNU: ∀𝑛 = 1,… ,𝑁; ∀𝑚 ∈ 𝐻(𝑛) 

𝜶𝒎,𝒏 = 𝜸𝒏 +  𝜷𝒎′,𝒏

𝑚′∈𝐻 𝑛 \𝑚

 

 AP-LLR: ∀𝑛 = 1,… ,𝑁 

𝜸 𝒏 = 𝜸𝒏 +  𝜷𝒎,𝒏

𝑚∈𝐻(𝑛)
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Initialization:  ∀𝑛 = 1,… ,𝑁; ∀𝑚 ∈ 𝐻(𝑛) 
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𝜸 𝒏 = 𝜸𝒏 +  𝜷𝒎,𝒏

𝑚∈𝐻(𝑛)

 

Min-Sum decoder on faulty devices 
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Error models for faulty arithmetic units 

 Probabilistic adder (Q bits) 
 Two parameters: the depth D and the error probability Pa 

 Pa is the probability that an error occurs on at least one of the D LSBs 

 

 

 

 

 

 

 

 

 Probabilistic comparator 
 Pc is the probability that the output is in error  

 

1 2 D Q 

correct output 

error pattern rand integer in [1, 2D-1]  

1 0 0 1 1 0 1 two’s complement 

erroneous output 1 0 0 1 0 1 1 

0 1 1 0 
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Part I:  

Theoretical analysis of “noisy” Min-Sum decoder 
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Noisy density evolution 

 Previous works 

 Varshney-2011 

 concentration and convergence properties were proved for the asymptotic 
performance of noisy message-passing decoders 

 density evolution equations were derived for the noisy Gallager-A decoder 

 Tabatabaei-2013 

 derived DE for noisy Gallager-B decoder defined over binary and non-
binary alphabets 

 

 deal with very simple error models 

 emulate the noisy implementation of the decoder, by passing each of the 
exchanged messages through a binary (or non-binary) symmetric channel 
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Noisy density evolution 

 We derived DE for fixed-point Min-Sum decoder 

 integrates above error models for arithmetic units (adder/comparator) 

 

 Exchanged messages are random variables 

 Fixed-point implementation    finite alphabet 

 𝑪 the PMF of input LLR values 𝜸𝒏 (depends only on the channel model) 

 𝑨(ℓ), 𝑩(ℓ), and 𝑪 (ℓ) the PMFs of 𝜶𝒎,𝒏, 𝜷𝒎,𝒏, and 𝜸 𝒏 at iteration ℓ 

 DE equations (asymptotic performance) 

 Recursive formula (by tracking the update rules of exchanged messages): 

𝑨(ℓ+1), 𝑩(ℓ+1), 𝑪 (ℓ+1) = 𝑓 𝑨(ℓ), 𝑩(ℓ), 𝑪 (ℓ)  

 Under the assumption that incoming messages to any VNU and CNU are 
independent 

 In particular, the graph must be cycle-free 
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Noisy density evolution 

 We derived DE for fixed-point Min-Sum decoder 

 integrates above error models for arithmetic units (adder/comparator) 

 

 Exchanged messages are random variables 

 Fixed-point implementation    finite alphabet 
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 DE equations (asymptotic performance) 

 Recursive formula (by tracking the update rules of exchanged messages): 

𝑨(ℓ+1), 𝑩(ℓ+1), 𝑪 (ℓ+1) = 𝑓 𝑨(ℓ), 𝑩(ℓ), 𝑪 (ℓ)  

 Under the assumption that incoming messages to any VNU and CNU are 
independent 

 In particular, the graph must be cycle-free 

 

 𝑃ℓ = Pr 𝜸 𝒏 < 0  is the error probability at iteration ℓ 

 𝑃∞ = lim
ℓ→∞

𝑃ℓ   – output error probability (does not always exist!) 

 

 Useful decoder: 𝑃∞ exits and 𝑃∞ < 𝑃0  

 𝜼-threshold: 𝑃th 𝜂 = sup 𝑃0| 𝑃∞ exists and 𝑃∞ < 𝜂  
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Useful regions for Min-Sum decoder / BSC 

 (3, 6)-regular LDPC codes, fixed-point MS 
 Q = 5 bits (number of bits of the adder) 

 Pc = 0.001 (error probability of the comparator) 

Depth D = 4 Depth D = 5 
10 % 0.5 % 
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Useful regions for Min-Sum decoder / BI-AWGN 

D = 4, Pc = 0.001 D = 4, Pc = 0.01 

D = 5, Pc = 0.001 D = 5, Pc = 0.001 

BER  10-2 

BER  
  

10-3 BER  10-2 

BER  10-2 BER  10-2 

BER  
  

10-3 

BER  
  

10-3 

BER  
  

10-3 
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First conclusion… 

 Errors caused by noisy components do not necessarily 
propagate catastrophically through decoding iterations   
 Min-Sum decoder can still provide error protection with a given level of 

reliability, assuming that decoder’s components are reasonably noisy… 

 

 Some characteristics of the Min-Sum decoder 
 Less sensitive to errors in comparators 

 Less sensitive to errors in the LSBs of the adder 

 Highly sensitive to errors in the sign bit of the adder 
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Part II:  

Practical fault-tolerant Min-Sum-based decoders 
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Practical implementation of Min-Sum decoder 

Initialization:  ∀𝑛 = 1,… ,𝑁; ∀𝑚 ∈ 𝐻(𝑛) 

  𝛾𝑛   = log Pr 𝑥𝑛 = 0 | 𝑦𝑛 Pr 𝑥𝑛 = 1 | 𝑦𝑛  
𝛼𝑚,𝑛 = 𝛾𝑛 

Iterations 

 CNU: ∀𝑚 = 1,… ,𝑀; ∀𝑛 ∈ 𝐻(𝑚) 

𝜷𝒎,𝒏 =  sgn 𝜶𝒎,𝒏′

𝑛′∈𝐻 𝑚 \𝑛

min
𝑛′∈𝐻(𝑚)\n

|𝜶𝒎,𝒏′|  

 VNU: ∀𝑛 = 1,… ,𝑁; ∀𝑚 ∈ 𝐻(𝑛) 

𝜶𝒎,𝒏 = 𝜸𝒏 +  𝜷𝒎′,𝒏

𝑚′∈𝐻 𝑛 \𝑚

 

 AP-LLR: ∀𝑛 = 1,… , 𝑁 

𝜸 𝒏 = 𝜸𝒏 +  𝜷𝒎,𝒏

𝑚∈𝐻(𝑛)

 

Initialization:  ∀𝑛 = 1,… ,𝑁; ∀𝑚 ∈ 𝐻(𝑛) 

  𝛾𝑛   = log Pr 𝑥𝑛 = 0 | 𝑦𝑛 Pr 𝑥𝑛 = 1 | 𝑦𝑛  
𝛼𝑚,𝑛 = 𝛾𝑛 

Iterations 

 CNU: ∀𝑚 = 1,… ,𝑀; ∀𝑛 ∈ 𝐻(𝑚) 

𝜷𝒎,𝒏 =  sgn 𝜶𝒎,𝒏′

𝑛′∈𝐻 𝑚 \𝑛

min
𝑛′∈𝐻(𝑚)\n

|𝜶𝒎,𝒏′|  

 AP-LLR: ∀𝑛 = 1,… , 𝑁 

𝜸 𝒏 = 𝜸𝒏 +  𝜷𝒎,𝒏

𝑚∈𝐻(𝑛)

 

 VNU: ∀𝑛 = 1,… ,𝑁; ∀𝑚 ∈ 𝐻(𝑛) 

𝜶𝒎,𝒏 = 𝜸 𝒏 − 𝜷𝒎,𝒏 

Remark: MS(1) and MS(2) are equivalent if exact (noiseless) arithmetic 

Remark: MS(1) and MS(2) are NOT equivalent if probabilistic (noisy) arithmetic 

(1) (2) 
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Practical implementation of Min-Sum decoder 

Iterations 

 CNU: ∀𝑚 = 1,… ,𝑀; ∀𝑛 ∈ 𝐻(𝑚) 

𝜷𝒎,𝒏 =  sgn 𝜶𝒎,𝒏′

𝑛′∈𝐻 𝑚 \𝑛

min
𝑛′∈𝐻(𝑚)\n

|𝜶𝒎,𝒏′|  

 VNU: ∀𝑛 = 1,… ,𝑁; ∀𝑚 ∈ 𝐻(𝑛) 

𝜶𝒎,𝒏 = 𝜸𝒏 +  𝜷𝒎′,𝒏

𝑚′∈𝐻 𝑛 \𝑚

 

 AP-LLR: ∀𝑛 = 1,… , 𝑁 

𝜸 𝒏 = 𝜸𝒏 +  𝜷𝒎,𝒏

𝑚∈𝐻(𝑛)

 

Iterations 

 CNU: ∀𝑚 = 1,… ,𝑀; ∀𝑛 ∈ 𝐻(𝑚) 

𝜷𝒎,𝒏 =  sgn 𝜶𝒎,𝒏′

𝑛′∈𝐻 𝑚 \𝑛

min
𝑛′∈𝐻(𝑚)\n

|𝜶𝒎,𝒏′|  

 AP-LLR: ∀𝑛 = 1,… , 𝑁 

𝜸 𝒏 = 𝜸𝒏 +  𝜷𝒎,𝒏

𝑚∈𝐻(𝑛)

 

 VNU: ∀𝑛 = 1,… ,𝑁; ∀𝑚 ∈ 𝐻(𝑛) 

𝜶𝒎,𝒏 = 𝜸 𝒏 − 𝜷𝒎,𝒏 

The computation of 𝛼𝑚,𝑛 takes 𝑑𝑛 − 1 additions 

(𝑑𝑛 denotes the degree of variable-node 𝑛) 
xxx 

The computation of 𝛼𝑚,𝑛 takes 𝑑𝑛 + 1 additions 

 𝑑𝑛 additions to compute 𝛾 𝑛, and 1 more 
addition to derive the 𝛼𝑚,𝑛 value 

 An increased number of additions results in 
an  increased error probability of 𝜶𝒎,𝒏 

(1) (2) 
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Practical implementation of Min-Sum decoder 

 Mackay’s regular (3,6)-LDPC code, [K = 504, N = 1008] 

 Fixed-point MS decoder: 5 / 6 bits (exchanged messages / AP-LLR) 

Comp.err. prob:   Pc = 0.01 
Adder err. prrob: Pa = 0.01 
 
Color code: 

Noiseless  
Depth = 3 
Depth = 4 
Depth = 5 
Depth = 6 

 
Dashed curve: “DE-like” (1) 
Solid curve:      Practical (2) 
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Practical implementation of Min-Sum decoder 

 Mackay’s regular (3,6)-LDPC code, [K = 504, N = 1008] 

 Fixed-point MS decoder: 5 / 6 bits (exchanged messages / AP-LLR) 

Comp.err. prob:   Pc = 0.01 
Adder err. prrob: Pa = 0.01 
 
Color code: 

Noiseless  
Depth = 3 
Depth = 4 
Depth = 5 
Depth = 6 

 
Dashed curve: “DE-like” (1) 
Solid curve:      Practical  (2) 
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Performance of Min-Sum-based decoder 

 Min-Sum-based decoders 
 improved versions of the MS algorithm, with only a very limited 

(usually negligible) increase in complexity 

 Offset-Min-Sum (OMS) 

 Self-Corrected Min-Sum (SCMS) 

 intrinsic ability to detect and discard unreliable messages during the 
iterative decoding process. 

 

 

 Only “practical” implementations are considered 



© CEA. All rights reserved 

 V. Savin, Min-Sum-based decoders running on noisy hardware | 2013-07-02 | 20 

Performance of Min-Sum-based decoder 

 Min-Sum-based decoders 
 improved versions of the MS 

algorithm, with only a very 

 Offset-Min-Sum (OMS) 

 Self-Corrected Min-Sum (SCMS) 

 intrinsic ability to detect and 
discard unreliable messages 
during the iterative decoding 
process. 

 

 a variable-to-check message  
𝜶𝒎,𝒏 is erased (set to zero) if 
its sign changed with respect 
to the previous iteration 

Initialization:  ∀𝑛 = 1,… ,𝑁; ∀𝑚 ∈ 𝐻(𝑛) 

  𝛾𝑛   = log Pr 𝑥𝑛 = 0 | 𝑦𝑛 Pr 𝑥𝑛 = 1 | 𝑦𝑛  
𝛼𝑚,𝑛 = 𝛾𝑛 

Iterations 

 CNU: ∀𝑚 = 1,… ,𝑀; ∀𝑛 ∈ 𝐻(𝑚) 

𝜷𝒎,𝒏 =  sgn 𝜶𝒎,𝒏′

𝑛′∈𝐻 𝑚 \𝑛

min
𝑛′∈𝐻(𝑚)\n

|𝜶𝒎,𝒏′|  

 AP-LLR: ∀𝑛 = 1,… , 𝑁 

𝜸 𝒏 = 𝜸𝒏 +  𝜷𝒎,𝒏

𝑚∈𝐻(𝑛)

 

 VNU: ∀𝑛 = 1,… ,𝑁; ∀𝑚 ∈ 𝐻(𝑛) 

𝛼𝑚,𝑛
tmp

= 𝜸 𝒏 − 𝜷𝒎,𝒏 

if sgn 𝛼𝑚,𝑛
tmp

= sgn 𝜶𝒎,𝒏  then 𝜶𝒎,𝒏 = 𝛼𝑚,𝑛
tmp

 

else 𝜶𝒎,𝒏 = 0 
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Performance of Min-Sum-based decoder 

 Mackay’s regular (3,6)-LDPC code, [K = 504, N = 1008] 

 Fixed-point decoders: 4 / 5 bits (exchanged messages / AP-LLR) 

Comp.err. prob:  Pc = 0.01 
Adder err. prob: Pa = 0.01 
      depth = 4 
 
Color code: 

SCMS 
MS  
OMS 

 
Dashed curves: noiseless 
Solid curves:      noisy 
 

Remark: noiseless SCMS achieves  
 Belief Propagation performance 
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Performance of Min-Sum-based decoder 

 Mackay’s regular (3,6)-LDPC code, [K = 504, N = 1008] 

 Fixed-point decoders: 4 / 5 bits (exchanged messages / AP-LLR) 

Requested channel Eb/N0   
for target decoded BER = 10-5 

 
(Eb/N0 =  means target BER 
cannot be achieved) 

error prob. of the adder (depth = 4) 

error prob. of the comparator 
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Conclusion 

 “Adjustable” error-models for noisy Min-Sum-based decoders 

 Density evolution analysis of the noisy Min-Sum decoder 
 proved that error protection (with a certain level of reliability) is still 

possible 

 characterized the sensitivity of the decoder to variations of the 
parameters of the error model, in terms of useful regions 

 Finite-length performance of Min-Sum-based decoders 
 highlighted the limitations of the theoretical analysis with respect to 

practical implementations 

 evaluate finite-length performance for various parameters of the 
hardware noise model 

 SCMS: intrinsic ability to detect and discard unreliable messages, which 
proves to be particularly useful for noisy implementations 

 



Merci de votre 
attention 
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Min-Sum decoder / flooding vs. serial implementation 

Initialization:  ∀𝑛 = 1,… ,𝑁; ∀𝑚 ∈ 𝐻(𝑛) 

  𝜸𝒏   = log Pr 𝑥𝑛 = 0 | 𝑦𝑛 Pr 𝑥𝑛 = 1 | 𝑦𝑛  
𝛼𝑚,𝑛 = 𝜸𝒏 

Iterations 

 CNU: ∀𝑚 = 1,… ,𝑀; ∀𝑛 ∈ 𝐻(𝑚) 

𝜷𝒎,𝒏 =  sgn 𝜶𝒎,𝒏′

𝑛′∈𝐻 𝑚 \𝑛

min
𝑛′∈𝐻(𝑚)\n

|𝜶𝒎,𝒏′|  

 AP-LLR: ∀𝑛 = 1,… , 𝑁 

𝜸 𝒏 = 𝜸𝒏 +  𝜷𝒎,𝒏

𝑚∈𝐻(𝑛)

 

 VNU: ∀𝑛 = 1,… ,𝑁; ∀𝑚 ∈ 𝐻(𝑛) 

𝜶𝒎,𝒏 = 𝜸 𝒏 − 𝜷𝒎,𝒏 

Initialization:  ∀𝑛 = 1,… ,𝑁; ∀𝑚 ∈ 𝐻(𝑛) 

𝜸 𝒏 = 𝜸𝒏 = log Pr 𝑥𝑛 = 0 | 𝑦𝑛 Pr 𝑥𝑛 = 1 | 𝑦𝑛  

       𝜷𝒎,𝒏 = 0 

Iterations 

 Check-Nodes Loop: ∀𝑚 = 1,… ,𝑀 

 VNU: ∀𝑛 ∈ 𝐻(𝑚) 

𝜶𝒎,𝒏 = 𝜸 𝒏 − 𝜷𝒎,𝒏 

 CNU: ∀𝑛 ∈ 𝐻(𝑚) 

𝜷𝒎,𝒏 =  sgn 𝜶𝒎,𝒏′

𝑛′∈𝐻 𝑚 \𝑛

min
𝑛′∈𝐻(𝑚)\n

|𝜶𝒎,𝒏′|  

 AP-LLR: ∀𝑛 ∈ 𝐻(𝑚)  

𝜸 𝒏 = 𝜶𝒎,𝒏 + 𝜷𝒎,𝒏 

MS – flooding implementation MS – serial implementation 
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Min-Sum decoder / serial implementation 

MS – serial implementation 

+ 

+ 

𝜷𝒎,𝒏 𝑛∈𝐻(𝑚)
 

𝜸 𝒏 𝑛∈𝐻(𝑚) 

AP-LLRs (𝜸 𝒏) 

CN-RAM 
(𝜷𝒎,𝒏) 

CNU 
< 

input output 
𝜸 𝒏 = 𝜸𝒏 

𝜶𝒎,𝒏 𝑛∈𝐻(𝑚)
 

new 𝜷𝒎,𝒏 𝑛∈𝐻(𝑚)
 

new 𝜸 𝒏 𝑛∈𝐻(𝑚) 
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Flooding implementation / SCMS vs. MS 

 Mackay’s regular (3,6)-LDPC code, [K = 504, N = 1008] 

 Fixed-point decoders: 4 / 6 bits (exchanged messages / AP-LLR) 

Comp.err. prob:   Pc = 0.01 
Adder err. prrob: Pa = 0.01 
 
Color code: 

Noiseless  

Depth = 3 

Depth = 4 

Depth = 5 

Depth = 6 SCMS MS 
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MS decoder / flooding implementation 

 Mackay’s regular (3,6)-LDPC code, [K = 504, N = 1008] 

 Fixed-point decoders: 4 / 6 bits (exchanged messages / AP-LLR) 

Comp.err. prob:   Pc = 0.01 
Adder err. prrob: Pa = 0.01 
 
Color code: 

Noiseless  
Depth = 3 
Depth = 4 
Depth = 5 
Depth = 6 

 
Solid curves:      flooding 

MS 
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MS decoder / flooding vs. serial implementation 

 Mackay’s regular (3,6)-LDPC code, [K = 504, N = 1008] 

 Fixed-point decoders: 4 / 6 bits (exchanged messages / AP-LLR) 

Comp.err. prob:   Pc = 0.01 
Adder err. prrob: Pa = 0.01 
 
Color code: 

Noiseless  
Depth = 3 
Depth = 4 
Depth = 5 
Depth = 6 

 
Solid curves:      flooding 
Dashed curves: serial 
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SCMS decoder / flooding implementation 

 Mackay’s regular (3,6)-LDPC code, [K = 504, N = 1008] 

 Fixed-point decoders: 4 / 6 bits (exchanged messages / AP-LLR) 

Comp.err. prob:   Pc = 0.01 
Adder err. prrob: Pa = 0.01 
 
Color code: 

Noiseless  
Depth = 3 
Depth = 4 
Depth = 5 
Depth = 6 

 
Solid curves:      flooding 

SCMS 
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SCMS decoder / flooding vs. serial implementation 

 Mackay’s regular (3,6)-LDPC code, [K = 504, N = 1008] 

 Fixed-point decoders: 4 / 6 bits (exchanged messages / AP-LLR) 

Comp.err. prob:   Pc = 0.01 
Adder err. prrob: Pa = 0.01 
 
Color code: 

Noiseless  
Depth = 3 
Depth = 4 
Depth = 5 
Depth = 6 

 
Solid curves:      flooding 
Dashed curves: serial 


