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Power density
Devices become increases due to
more vulnerable to leakage and # of
process variations transistors per area
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Voltage Scaling. | * Leakage 1 «  On Chip Device |
e # of Transistors 1
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SCALING:
Voltage: V/a
Oxide: tox
Wire width: W/a
Gate width: L/a
Diffusion: X,/a
Substrate: o * Ny
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Non-Ideal Scaling

CMOS Scaling Rules

Voltage, V/ a _>; WIRING ;

L/oa—
doping

a*Na Xdl(].

R. H. Dennard et al.,

IEEE J. Solid State Circuits, (1974).

RESULTS:
Higher Density:
Higher Speed:
Power/ckt:
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~ Device Scaling

» Approaching atomistic and
guantum-mechanical boundaries

» Atoms are not scalable!

ant

Chen IBM 2006




L. Power Density

asing' power density leads to high in chip temperature,
which accelerates temperature-elevated intrinsic failure
mechanisms, e.g., Negative Bias Temperature Instability (NBTI).
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approaches faster as technology advances.

Flwear out is clearly observed and also End-of-Life
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~ Small Failures May Cost A Lot!

= B-2 bomber crash in Guam 2008
« SUSD 1.4B loss

= 3 air data sensors malfunction,
moisture in the transducers during
calibration distorted the information
in the air data system.

= This caused the flight control
computers to calculate inaccurate
airspeed and negative angle of
attack upon takeoff.

http://telstarlogistics.typepad.com/telstarlogistics/2008/08/photos-and-vide.html
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Aging- reS|stent Aging-aware Reliability Self-adaptive Reliability-aware ¢
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0%
\ Run-time

------------_’ ..IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII"

o%
Design-time

R T L

L 4

~

Degradation Model of Device Parameter, like V,, |55 etc.
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~ Expectations: Desired work status defined at
Practice: Drifting Margin for fault-tolerance at
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Error = Degradafion

Hiddeh hazal’ds, threats, unusua| Due to uncertainty Gradually accumulatinq damage on devices.
conditions, & system weaknesses

Operating point shifts (i.le to change of key
parameters, eventually heads to harms and
malfunction. i

he rield Guide to Understanding Furman Error.




y slow down the reliability margin drift by all means,
onitors the degrading trend of the system, and eliminates rlsk and
_ violations due to uncertainty!
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. A DRM Framework

DRM Software Multi-core Processor
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Impact of Dynamic Reliability Management

In a DRM System, the maximum voltage can be “boosted” to
allow periods of higher peak performance while maintaining a
margin below the budgeted damage curve.
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; ‘Reliability Becomes More Difficult

Lower
Reliability
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e Device dimension decrease
continuously, physical limit
is approaching.

New e New device structures and
. materials introduces new
Device reliability concerns.

e Manufacturing variability
increases since process
geometries gets smaller,
optical diameter doesn’t
decrease proportionally.




The most challenges of reliability comes from Variability, which can
be further divided into three categories: spatial, temporal and
dynamic variability.

Manufactured

. ‘ Defects ~
‘/ N~ '
Random

Variations Spatial Variability

Global
Variations
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= Holes from the inversion layer tunnel into the

Si0,

I E-field

gate oxide, break the Si-H bonds and leave
behind interface traps.

. H atom diffuses away from the Si/SiO2
interface.

.\ Failure Mechanisms

Oxygen
SiOZ | O
Interface Silicon
, @]
Silicon | & o & & & & & & L L Hydrogen
pOOSOHOOHOHOBS o

=  “Lucky electrons” gain enough energy while
drifting across the channel.

= The “hot” electrons produces interface
damage in a localized region near the drain
end.

O NBTI and HCI creates hole traps at Si/SiO2 interface and in the
oxide, which leads a positive shift of the device |V l;
O NBTI and HCI highly depends on the stress probability at the

device;

O Furthermore, NBTI and HCI are prone to voltage fluctuation and

temperature variations.
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V., Temporal Degradation

= V,,, Degradation under NBTI
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= Variation sources of V,, ov,.rv=
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Temporal Variation

(by NBTI) = Spatial + Dynamic
! !
Random dopant Workload
relations between different variability sources make
P | it complicated to build accurate physical models for
failure mechanisms!
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.. Dynamic Variations

W

Dynamic variations
caused by workload
are hard to predict!
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 New Devices
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Independent-Gate
FinFET

BL Cell:

(a)allows to control V,
for SRAM cells;

(b)no significant area &
power consumption

Vean Ves trade-off introduced.

\ Voz . _ IG-FinFET 6T SRAM
BL L DD

NBTI mitigation is ‘
possible by using
IG-FinFET!
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Multi/Many core processor is more power efficient, and give
more flexibility to perform DRM with graceful degrading policy!

Clock Frequency
Fixed or getting slower.

2 of Transistors per
Chip
Doubles every 18-24

months.

3 ) Power per Chip
| Reac_hes almost
maximum. o
R pait S
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- Summary

= Reliability is getting more important
— Feature size approaches physical limits thus devices are unreliable than
ever due to their small size;
— Power density leads to hlgh temperature and electric field on chip, which
accelerates the aging progress.
= Reliability management is more complex/difficult

— Three types of variability exists, i.e., spatial variations, temporal variations
(wearout), and dynamic varlatlons which create many reliability
uncertainties;

— Different types of variability are correlated, thus reliability models are
getting more complicated.
| Dynamlc Reliability Management (DRM)

Slow down the degradation progress by performing, e.g., reliability-aware
resource allocation;

— Can boost performance within a certain reliability margin;
— Can provide End of Life prediction & alarms;
- Key components

= Physics Models, Aging Sensors, Reliability Assessment;
— Strategies

= Self-tuning (DVFS, ABB, etc.), Task Scheduling, ...
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