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Abstract 

 

This report presents an overview of the work carried out in relation to Work Package 5 (WP5) during 

the first year of the project.  The document reports on the investigation and selection of data 

structures to be used in the context of efficient fault tolerant circuit synthesis (Task 5.1), on the 

development of design and validation flows for fault tolerant circuit synthesis, analysis and 

optimization (Task 5.2), and on activities aimed to develop error coding driven graph augmentation 

(Task 5.3) a first step towards a Boole-Shannon type bound for circuit design.  
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1. Executive Summary 

Work Package (WP) 5 has been tasked with two major contributions towards the i-RISC goals.   The 

first WP5 goal is the achievement of systematic synthesis and optimisation of reliable circuits, 

culminating with a multi-objective circuit design optimization, with respect to its size, energy 

consumption, latency, and all driven by reliability. The reliability measures and models 

(error/energy/power/etc.) defined in WP2 are central in designing tools and methodologies to 

achieve this goal. These synthesis tools also rely also on versatile data structures, which can capture 

these models effectively and accurately and lead to a seamless integration with other tools within 

the Integrated Circuit (IC) design flow tool chain. In order not to replicate significant body of prior art 

in circuit synthesis, we selected the data structures based on the availability of tool support (open 

source or academic tools) and, more importantly, on their capability to integrate i-RISC key concepts 

related to reliability aware circuit synthesis and optimization.. Consequently, we use a graph 

representation for the logic functions describing the circuits, and we manipulate/optimise these 

graphs using combinatorial optimization methods informed by coding theory principles (including 

some techniques inspired by WP3/WP4). 

The introduction of reliability as circuit figure of merit leads to a 4-dimensional (area, delay, power, 

reliability) solution space, and has a tremendous influence on the complexity of the synthesis 

process. To limit the large search space, we initially confined our methodologies to the optimization 

of combinational logic. In the light of design for re-use, the developed tools are integrated within an 

industry recognized design flow. We propose some design flows which combine i-RISC custom tools 

together with widely used tools in the circuit design industry together with academic/open source 

tools. These flows will be used: a) for the systematic synthesis of reliable circuits within a multi-

objective optimization framework; b) for the validation, simulation, and characterization of the 

circuits proposed within i-RISC. 

The second WP5 goal is a fundamental study on the effectiveness of integrating error-

correcting codes into the structural (Boolean network) implementation of the circuit logical 

functionality. We developed an initial framework for the synthesis of chips made from unreliable 

components, through the concept of error correcting codes driven graph augmentation. More 

precisely, we studied and evaluated some potential links between the logic representation of a digital 

circuit and error correcting codes in order to generate fault tolerant implementation of the logical 

functionality of the circuit. For the initial study, which will be expanded in the following two years, 

we considered two instances. Firstly, we utilize a Codeword Prediction Encoder for the protection of 

a Boolean function against potential errors. The focus of this approach is not on changing the 

combinational logic but on augmenting it to enable the retrieval of the correct output even if errors 

have occurred inside the circuit. While the encoder is embedded in the circuitry (hence prone to 

errors), the decoder is considered fault-free. For the second instance, we investigate the problem of 

protecting the functionality of a combinatorial circuit in the scenario where also the decoder is 

implemented with faulty hardware. In order to understand better the reliability conditions, we 

initially identify a subset of Boolean functions for which we can apply decoding techniques similar to 

WP3.  

A Gantt chart of WP5 tasks and their time distribution is presented below. 
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One of the foundations for achieving the WP5 goals is the selection of the most relevant data 

structure, which allows for the systematic synthesis of reliable circuits (Task 5.1). In this context we 

analyzed a number of data structures and we selected the And-Inverter-Graph (AIG) structure as 

being the most appropriate for our goals due to its compactness, versatility to incorporate many 

parameters of concern (switching activity, delay, reliability, etc.), and scalability to any circuit size. 

Moreover, the proposed data structure also provides appropriate support to explore systematic 

multi-objective optimization methodology of fault tolerant circuits (Task 5.4). Another rationale for 

selecting AIG is that it is supported by the ABC open source academic tool which can be easily 

integrated in a Verilog/VHDL centered flow. Based on the selected data structure, a first version of an 

i-RISC tool for computing the reliability of a circuit was implemented. This tool is also integrated 

within a Verilog/VHDL Hardware Description Language based design flow (Task 5.2). A design flow is 

being proposed combining custom tools, academic tools with more established/industry accepted 

tools which will allow evaluation and validation of our designs at various levels (WP6). 

Also related to Task 5.2 (and as an initial Task 5.4 step) we introduce a Probability Density 

Functions (PDFs) based Integrated Circuit (IC) reliability assessment framework. Since the efficiency 

of reliability driven design-time optimizations and of run-time management frameworks directly 

depend on the reliability evaluation accuracy, instead of relying on a single probabilistic value to 

reflect the reliability status of a circuit, we propose to employ a distribution of probabilities for a 

closer adherence to a faulty circuit stochastic behavior. The proposed framework, which takes an 

unorthodox approach towards reliability estimation, yields a fast and scalable reliability assessment 

approach, to be integrated in reliability aware synthesis tools (Task 5.2 and Task 5.4).   

Another activity, which was started in the first i-RISC year relates to the systematic synthesis of 

fault tolerant combinational circuits (Task 5.3). A number of classes of circuits were identified and a 

first analysis into the encoding of such circuits was performed. Research is ongoing into expanding 

the classes of circuits towards a generalization of the applied methodology. Also, efficient decoding 

of such circuits is of paramount importance. Analysis of the complexity for both encoding and 

decoding for reliable circuits will be done within the frameworks of the synthesis tool and the 

defined design flow. 
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2. Data Structures for Fault Tolerant Circuit Synthesis (Task 5.1) 

Abstract: The aim of this task is to study the available set of data structures, their benefits and 

limitations, and the associated open source EDA tools. The emphasis is on data structures, which are: 

(i) easily expandable in terms of the number of covered parameters, e.g., area, delay, power 

consumption, reliability, and (ii) easy to manipulate in the context of combinatorial optimization 

algorithms, i.e., lead to relatively compact circuit representations while incorporating these 

parameters. Finally the availability of open source tools has been also considered. 

Publications:   “unpublished work”. 

2.1. Introduction 

Boolean function structural representation, logic synthesis, and technology mapping are important 

issues in the design of digital circuits. Till date, many data structures to be utilized within Electronic 

Design Automation (EDA) tools for synthesis and optimisation of digital logic circuits have been 

proposed [Meinel98]. These data structures were particularly tailored for particular metrics of 

interests such as area/size, delay, or power consumption. Reliability metric is fast emerging as a key 

design metric in the low power design as well as in the context of deep submicron technologies. 

Some of the most desirable properties for EDA data structures are the compactness of 

representation as well as the easiness to convert from and to a logic network. Finally, the data 

structure should be easily adaptable to a large number of design parameters. These properties may 

lead to the design of fast EDA tools for both synthesis and simulation.  We categorise the EDA tools 

into Industrial and Academic, with the latter being mostly open source tools. Within the i-RISC 

project, we attempt to take advantage of the available features in the two EDA domains. At the same 

time, custom i-RISC tools are developed, and integrated along with the selected tools, to augment 

the existing software and allowing them to deal with probability of errors and reliability.  

Each of the EDA tools has two major blocks: the data structures used to represent the functionality of 

the logic circuit and the algorithm to synthesize the optimised circuit or to compute a specific metric 

for the design (area, power, switching activity, etc.). The underlying data structure has an important 

role in determining the speed and efficiency of the tool. Hence, the first step in fault tolerant circuit 

synthesis, which is the i-RISC requirement, is to select a compact data structure that can easily be 

expanded to allow the algorithm to capture the error probability information. The first step to make 

this decision is to critically consider the various alternatives data structures already present in 

literature and/or used in the industry. 

We considered two of the most commonly used data structures in EDA for digital circuit synthesis 

namely the Binary Decision Diagrams and the And Inverter Graphs. Some of the basic principles, 

advantages and shortcoming of each are presented in the following two sections. 
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2.2. Binary Decision Diagrams  

Binary Decision Diagrams (BDDs) were originally introduced in the late 50s to represent a Boolean 

function being derived from the Shannon expansion.  BDDs became of significant importance in EDA 

after the introduction of the Reduced Ordered Binary Decision Diagram (ROBDD) by in 1986 [Bryant 

86]. Since their introduction, the impact of ROBDD has being extensive particularly in the area of 

formal verification but also in logic synthesis.  For long time they have been one of the most used 

data structures for representing Boolean functions.  Two properties of the ROBDD are the cause of 

such wide acceptance. First, they are canonical (unique), if two circuit have the same ROBDD then 

they are logically equivalent. It is evident that this property facilitates the development of not just 

formal verification tool but also in optimization and testing. Second, they are highly effective at 

representing combinatorial large sets. This again led to several breakthroughs with regards to Finite 

State Machine equivalence checking and logic minimization [Coudert89] [Coudert93]. 

At the foundation of BDD is the concept of Shannon expansion [Shannon48]. Given a Boolean 

function  (       )  the Shannon expansion states that it can be decomposed in (       )  

     
  ̅    ̅

 , where     
 and    ̅

 are obtained by the function   (       ) by setting the variable 

   to 1 and 0 respectively.  The recursive application of the Shannon expansion on the two restriction 

functions guided by an arbitrary fixed total ordering of variables(e.g.            ) leads to a 

fully expanded expression which is unique. Take for example the function:  (        )         

  ̅  ̅     ̅  the full Shannon expansion is: 

 (        )    (      ̅ )   ̅ ( ̅     ̅ ) 

 (        )    (  (    ̅ )  ̅ ( ̅ ))   ̅ (  ( ̅ )   ̅ (  )) 

Full Shannon expansion is therefore a canonical form. What is of interest is the possibility to 

represent this expansion in a graph form and the transformation that can be applied to this graph 

representation to considerably reducing size without losing the canonical form. 

Figure 1 shows the BDD graph G(V,E) corresponding to the Boolean function above. For each layer of 

the graph a decision on one variable is taken. (‘0’ dotted line, ‘1’ full line). The final layer shows the 

values of the function for each set of decision taken. 

 

Figure 1: BDD Representation of the function  (        )           ̅  ̅     ̅  

A rigorous definition of the BDD states that  any Boolean function can be represented as a rooted, 

directed acyclic graph denoted as G(V,E), where V is the set of vertices and E is the set of edges, 

which link the vertices denoted in V. Any v ∈ V is either a non-terminal node or one of the two 

terminal nodes namely 0-terminal and 1-terminal. The non-terminal nodes are the decision nodes, 
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which are labelled by a Boolean variable. These nodes have two child nodes called low child and high 

child. Any decision node e ∈ E points to the low-child or high child depending upon the assignment of 

the Boolean variable labelled on the decision node to be ‘0’ or ‘1’, respectively. The top decision 

node of the graph is called the root node. 

Since it is fundamental that the expansion uses the variable in a fixed order for the representation to 

be canonical the graph is called an ordered-BDD (OBDD). From this graph representation a reduced 

size graph can be obtained (ROBDD) with a simple procedure. 

1. Replace all leaf with the same value by a single vertex. Redirect all edges incident to the 

original vertices to this single vertex  

2. Process all layers from the bottom up. If in any layer two vertices are found that point to the 

same children for both 0/1 decisions, then merge the vertices 

3. If a vertex exists for which both 0/1 decisions lead to the same child, remove the vertex and 

point all parent to its child. 

Figure 2 shows the three steps applied on the example graph. 

 

Figure 2: Reducing process applied to the example ODBB 

 

It is possible to construct the ROBDD directly from the logic equation (or other representation) rather 

than the BDD (since BDD always has size that is exponential on the number of inputs). This allows the 

ROBDD to be treated as abstract data type on which several procedures can be defined to automate 

building, merging and manipulating of the ROBDD.  
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BDDs provide compact representations of Boolean expressions, and there are efficient algorithms for 

performing different types of logical operations on them. These properties make BDDs widely used in 

the EDA applications. However despite a sizeable body of related research [Brayton10] 

[Balasubramanian07], they have reached the limit of their scalability due to the always increasing 

complexity of modern circuitry. The root cause of this scalability problem is optimal ordering of the 

variables in the Shannon expansion, and in particular the dependency of the size of the BDD on the 

chosen ordering. Finding the optimal ordering is an NP-complete problem and it becomes intractable 

as soon as the number of inputs grows [Bollig96]. As a consequence, the size of the ROBDD cannot 

be guaranteed to grow linearly. This dependence is so drastic that in many cases it is impractical to 

build the BDD at all [Hachtel00]. Moreover, there exist families of functions for which the number of 

vertices in their ROBDD grows exponentially and independently of the variable ordering chosen. 

Unfortunately some of these functions are of common use, for example the multiplication function. 

This problem lead to the raise of new representation that offer significant speed up and can better 

deal with the size of modern circuit, the And –Inverted graph, subject of next section. 

BDDs have been used extensively in [Wright00], [Lindgren01], and [Ueda95] for switching activity 

estimation and optimisation. In these works, the zero-delay model is assumed and reduced switching 

activity is obtained either by reducing the BDD size or by changing the order of the BDD. The main 

drawback of these techniques is their computational complexity. Computation time and memory 

footprint increase rapidly with the circuit size. 

The probabilistic technique for switching activity estimation using BDD follows a BDD traversal 

method [Ueda99]. The BDD structure involved in this traversal method increases rapidly with circuit 

size, hence making it cumbersome for large circuits. Many techniques in [Tani93], [Felipe08, 

FelipeY08, Felipe05] work on reducing the BDD size as used in the BDD traversal method in order to 

reduce the memory usage and computation time. Several other power-aware BDD-based synthesis 

techniques are introduced in [Tinmaung07]. Most often BDD-based synthesis techniques relate only 

to one parameter(either area or delay or power consumption). Discussions of BDD-based synthesis 

techniques which are compared and contrasted through the potential for multi-objective 

optimisation are presented in [Mehrotra13]. 

2.3. AND-Inverter Graphs 

AND-Inverter Graphs (AIG) is another way to represent a Boolean function. AND-Inverter logic gained 

significant attention in both academia and industry since 1960’s through a number of works at IBM 

and more recently at UC Berkeley. These works considered this data structure for logic and delay 

optimisation as well as verification. Recently, these data structures gained significant interest in a 

number of algorithms for design automation tools (for both FPGA and ASIC technologies) as they 

offer better performance than BDDs or other data structures 

[Mishchenko06][Mehrotra13][Machado12]. It is a novel data structure which unifies equivalence 

checking, synthesis and technology mapping. The use of AIG nodes is justified as it produces a better 

correlation with final area and delay once the circuit has been mapped to a target technology 

[Figueiro11]. This advantage with respect to literals comes from (a) the fact that AIGs are multi-level 

representations allowing sharing of nodes; and (b) the AIG node is a simple structure, which keeps 

correlation with area as all nodes have homogeneous simple granularity. 
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An AND-Inverter Graph (AIG) is a directed acyclic graph denoted as G(V,E) where V is the set of 

vertices and E is the set of edges which link any two vertices. The graph represents the structural 

functionality of the associated digital logic circuit. Any v ∈ V either represents a 2-input AND gate or a 

terminal node labelled with a variable name. The variable names are the names of the input variables 

of the logic circuit. Any e ∈ E is the input of a 2-input AND gate.  

 

Figure 3: AIG Representation 

 

Figure 3 shows an AIG example representing the abc + a’b’ functionality. The inputs are a, b, and c 

and are represented as terminal nodes denoted within a triangle. The nodes which represent 2-input 

AND gates are denoted within a circle. Edges with a dot indicate negation, i.e., the inversion of that 

input. AIGs provide a more compact representation of digital circuits than BDDs or sum of products, 

are simple, flexible, scalable and easy to convert from a network of logic gates. Formal verification is 

also simpler as they can be easily mapped to a netlist. Their size is proportional with the size of the 

circuit. There are many works on the optimisation of AIG circuits(for power, delay or area) but to our 

knowledge our work is the first attempt to optimise the circuits for improved reliability. 

In addition to synthesis of combinational logic, AIGs were also used for sequential logic synthesis 

[Mischenko13][ABC12]. The simple and uniform structure of AIGs allows rewriting, simulation, 

mapping, and verification to share the same data structure. It was shown in [Mehrotra13] that the 

data structure is also suited for power driven delay optimisation and delay driven power optimisation 

resulting in significant power/delay savings.  These characteristics along with the existence of an 

open synthesis tool ABC make AIGs an ideal candidate for a versatile i-RISC data structure.   

From the reliability methodology perspective, we believe that a feature of AIG that matches our 

goals is that it is not canonical. Such a property may allow easier/faster implementation of error 

coding graph augmentation techniques as the ones proposed in section 5. Figure 4 represents two 

functionally equivalent representations of a given combinational circuit. The advantage of this 

particular feature is that it allows the designer to insert/remove redundant nodes that can help in 

improving the redundancy of the circuit.  
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Figure 4: Two functionally equivalent AIGs 

 

 

 

Some other related data structures include Boolean Expression Diagrams (BED) [AndersenHulgard-

LICS97], Reduced Boolean Circuits (RBC) [AbdullaBjesseEen-TACAS00], Nand-Nor-Inverter-

Graphs(NNIG) [Mehrotra13, Balasubramanian 06]. However, these data structures are not as widely 

used at present and more importantly the number of tools for synthesis and simulation are not 

openly available. 

2.4. Summary 

Data structures and algorithms largely determine the efficiency of the tool in implementing new 

applications. Previous tools including SIS, BDD, MVSIS and FBDD get inefficient for large circuits and 

do not provide enough flexibility for binary synthesis, owing to their type of data structures. ABC 

deals with simple and flexible data structures, which promise improvements in quality and runtime 

of several applications which include both sequential as well as combinational logic.  Moreover, the 

BDD are not the best suitable for the aim of the i-RISC project of computing reliability.  The major 

problem in this regards is the fact that the BDD represent only the logic functionality of the 

combinatorial logic losing any direct link with the physical implementation. Technology mapping task 

is more difficult in BDD AIG are better suited to this task since each node on the graph represents an 

actual physical port. 

For these reasons the AND-Inverter graph has been chosen as the underlying data structure. The 

data structure has then been enhanced to store information regarding the reliability of the circuit it 

represents.   Once the AIG graph is chosen as the most suitable data structure the ABC tool is the 

natural choice. The ABC tool has several advantages: a) it is open source b) It is actively maintained 



D5.1: Data structures and design flow for fault tolerant circuit synthesis 

 

© i-RISC, January 2014 Page 17 of (65) 

 

and c) it has several routing suitable for synthesis/mapping and verification. As part of Task 5.2 a 

reliability synthesis and optimisation sub-packages has been developed. The ABC tool (including the 

sub-packages) is then incorporated in a design flow which involves also industry tools, namely from 

Synopsys.  Although AIG data structure promise significant advantages over other data structures 

including BDDs, for some specialised tasks it is possible to use various procedures associated to 

specific data structures(particularly BDDs) through various packages included in the tool. 

 

3. Design Flow for Fault Tolerant Circuit Synthesis, Analysis, and Optimization 

(Task 5.2) 

Abstract: In this section an integrated design flow comprising of industry and academic tools is 

proposed. Design compiler from Synopsys is used to synthesize a high level description of a circuit 

specified in Verilog. The resulting gate level netlist is then translated into an AIG data structure, 

which is then analysed/optimized/manipulated within the ABC tool (or an i-RISC custom tool). The 

resulting synthesized netlist is then technology mapped and analysed using standard industry tools 

from Synopsys. Such a flow makes use of a number of state of the art tools within Synopsys 

complementing them with the custom i-RISC tools for ultra-low power and reliable circuit design. We 

show that a heterogeneous flow (using both academic and industry tools) is necessary. First, we 

analyze the reliability by using a simulation based flow, which relies entirely on industry tools using a 

high level of abstraction. Another methodology for reliability analysis is presented in WP2 when 

HSPICE and Monte Carlo methods are extensively used. Both these methods lead to an infeasible 

solution for accurate reliability computation. Hence, two approaches are followed. One approach 

considers a design flow incorporating hybrid description of designs with different components 

described at different levels of abstraction (Verilog and HSPICE). In order to scope the performance 

of our results, we also use the HSIM Plus tool from Synopsys, which allows a hybrid code (Verilog and 

HSPICE) to be simulated and analyzed. Such an approach allows us to scope and analyze a particular 

part of the design in HSPICE while the rest of the design is written and simulated in Verilog. This flow 

has been evaluated and refined on a number of arithmetic circuits and will be a basis for further 

evaluation within WP6 in particular.   The second approach considers custom tools in conjunction 

with reliability models developed in WP2.   

Publications:  One submitted paper at DAC2014; one accepted paper at MIEL2014; 

3.1. Academic EDA Tools 

A number of open-source EDA tools provide a programming environment and a solid 

platform for research in logic synthesis, technology mapping, power and delay estimation and 

optimisation (Figure 5). These academic tools represent the Boolean functionality of any digital 

circuit using one of the data structure detailed in the previous sections. Manipulation for logic 

synthesis, optimisation and technology mapping are done on these data structures.  

 The CUDD [Yanushkevich05] package provides functions to manipulate Binary Decision Diagrams 

(BDDs). The package also provides a large assortment of variable reordering methods, to reduce 

the number of BDD nodes. 
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 FBDD [Wu05] is an open-source logic synthesis package based on BDDs. The package employs 

several new techniques, including folded logic transformations and two-variable sharing 

extraction. 

 SIS [Sentovich92] is another interactive tool for synthesis and optimisation of sequential circuits. 

Given a state transition table, a signal transition graph, or a logic-level description of a sequential 

circuit, it produces an optimised netlists in the target technology while preserving the sequential 

input-output behaviour. 

Although many techniques applied in the tools demonstrate robustness and optimality in EDA, 

the tools, other than SIS, have not found application in industry and can only be considered 

theoretical frameworks. But due to the limitation associated with BDD as detailed before, this tool 

has been replaced with a more scalable tool called ‘ABC’. 

 

Figure 5: A Typical Academic Design Flow 

ABC [Brayton10] is a logic synthesis and verification tool which performs scalable logic 

optimisation based on AND-Inverter Graphs (AIGs) [Mishchenko06]. In all of these academic tools, 

data structures and algorithms largely determine the efficiency of the tool in implementing new 

applications. Previous tools like SIS, BDD, and FBDD get inefficient for large circuits and do not 

provide enough flexibility for binary synthesis, owing to their type of data structures. ABC deals with 

simple and flexible data structures, i.e. AIGs, which promise improvements in quality and runtime of 

several applications which include both sequential as well as combinational logic. Our major work is 

based on AND-Inverter graphs, manipulated in ABC using some of i-RISC custom synthesis and 

optimisation sub-packages. The tool allows for a variety of functional representations including BDDs, 

Sum of Products to solve specific tasks while switching to AIG for the mainstream network 

manipulation. This versatility allows us to integrate custom i-RISC packages within the ABC tool. 

Then, the ABC tool (including the sub-packages) is incorporated in a design flow which involves also 

industry tools, namely from Synopsys for a thorough evaluation of the synthesis results.  
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3.2. Industry EDA Tools  

An overview of a typical design flow appears in Figure 6. The green arrow indicates the path from RTL 

through to a power analysis on the final placed and routed netlist. The flow turns RTL and a set of 

constraints into placed-and-routed gates. It is divided into several stages, namely: 

• RTL Simulation 

RTL simulation for development and functional verification, under the control of a top-level 

testbench; 

• Synthesis 

Synthesis of RTL and constraints to a gate-level netlist in TSMC standard cells; 

• Placement 

Construction of a floorplan and automated cell placement; 

• Routing 

Construction of a clock tree and automated wire routing; 

• Gate-level Simulation 

Gate-level simulation with annotated delays using the final IC compiler netlist and the same 

testbench as used for RTL simulation; 

• Equivalence Checking 

Formal equivalence check between placed-and-routed gates and original RTL using Synopsys 

Formality; 

• Timing Analysis 

Static timing analysis with back-annotated parasitics, and 

• Power Analysis 

Analysis of average and time-based power using gate-level activity and back-annotated parasitics. 

A typical digital IC design flow from Industry combines a number of tools from providers including 

Synopsys, Cadence and Mentor Graphics. The front end of the design flow is dominated by Synopsys 

tools while the backend is typically made of Cadence/Mentor Graphics tools. Within the i-RISC 

project, most of research is at higher level (frontend) with some lower end models in the form of 

HSPICE or SPICE. The i-RISC designs which will be evaluated as part of WP6 require a design flow 

which can handle both high level constructs as well as lower level models for accurate and fast 

evaluation of performance.   HSIMplus is a powerful tool which is capable of circuit check, reliability 

assessment associated with physical effects in nanometer IC designs, etc.  
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Figure 6: Implementation Flow overview 

We use both the academic and the industry tools together to form an integrated design flow. This 

also includes some custom scripts and developing wrappers on top of existing tools in order to 

facilitate the reliability analysis and optimization flow. Figure 7 describes the integrated flow in the 

simplest possible fashion. We use design compiler to flatten the RTL of the IP and use some custom 

developed scripts to make necessary modifications. This is because the ‘ABC’ tool cannot understand 

the direct output of the design compiler. We modify the circuit using the wrappers developed in-

house on top of the ‘ABC’ tool. Then, we use various industry standard tools to perform formal 

verification and analyse the performance improvement. 

 

 

Figure 7: Integrated Flow 

 

The structure of HSIMplus is presented in Figure 8 . It offers good accuracy and impressive simulation 

time reduction when compared with other SPICE simulation tools. 
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Figure 8: HSIMplus Features 

As a complete transistor-level simulation and analysis platform, HSIMplus also provides the capability 

to simulate designs of various sizes and complexities, described even at different levels of 

abstraction, thanks to its HDL Co-Sim capability which is compatible with several tools from Synopsys 

and Cadence. 

This attractive feature allows the integration of both Verilog/VHDL and SPICE netlists during the 

simulation. SPICE simulation is famous for its custom adjustable controllability and high accuracy 

while it results in long simulation time for large circuits. On the other hand, HDL simulation could 

easily handle big and complex digital circuits but with little or no control on parameters such as 

power supply, temperature, variations, etc. With HDL Co-sim function, we could easily take 

advantage of both approaches by manipulating the parameters in SPICE netlist where high accuracy 

is necessary and keeping other parts in HDL. This unique solution is of interest for both verification 

and optimization. 

3.3. Tools for Circuit Reliability Computation 

One of the keys for developing an efficient optimization tool is the availability of accurate reliability 

information as well as efficient/fast algorithms for computing the reliability of logic functions 

representing partial solutions during the optimization process. A pure reliability analysis based on 

HSPICE Monte Carlo simulations is not feasible due to a prohibitive computation time and excessive 

resource requirements. In this section we address the problem of computing reliability information 

investigating three different approaches and presenting the tools that has been developed for each 

approach. The first approach consist on simulating the combinatorial circuit under test and injecting 

error with specify characteristics to gather statistical information on how these error propagate 

through the circuit . The second method builds a model of the combinatorial circuit and calculates 

the reliability of the circuit based on mathematical analysis of the model. Finally a reduce complexity 

bounding approach is presented.  

3.3.1. Simulation Based Tools 

HDL based Simulated Fault Injection (SFI) represents a good trade-off between time, cost, and 

accuracy for reliability evaluation of circuits [Jenn94] [Gil08].   Fault injection techniques have been 

classified in two main categories [Jenn94]: techniques that do not require code modification (based 
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on simulator commands [Sheng08]) and those based on HDL code modifications (mutants and 

saboteurs [Jenn94] [Gil08]). The latter require more coding effort; however, they present higher 

fault modeling capability. Saboteurs represent an entity/module, which alters signal timing or values. 

Mutants represent modified architectures/modules which replace the correct one.   

During the i-RISC project, we have developed SFI methodologies for probabilistic circuits, which can 

accurately model the probabilistic switching behavior of sub-powered circuits. Our approach for 

combinational circuits relies on mutants. Four types of mutants have been developed, based on the 

desired fault modeling: 

1. Gate output probabilistic mutant – it alters the gate output with a given probability. 

2. Gate output switching probabilistic mutant – the mutated gate switches correctly with a 

given probability. 

3. Gate output switching type probabilistic mutant – different probabilities are taken into 

account for the two types of switching (charging and discharging).  

4. Gate input switching type probabilistic mutant – the input switching is taken into account for 

this type of mutant. 

The proposed SFI methodology relies on two phases: (i) the setup phase and (ii) the simulation and 

data analysis phase. In (i), the fault parameters are set, the gates are mutated according to a 

parameter set and the fault model, the input vectors are selected, the ideal (error free) circuit is 

simulated with the input vectors set and a testbench is generated. The (ii) phase consists of the 

simulation of the not ideal circuit and comparison with the ideal circuit results.     

In the context of reliability evaluation within the synthesis process, simulated fault injection has two 

major disadvantages: 

1. Requires a large number of simulations for probabilistic circuits; because probabilities were 

obtained using random number generators, accurate results can be only obtained when 

performing at least one or two orders of magnitude more simulations then the desired 

accuracy, e.g., for a failure rate of 1 in 1000, a number of at least several tens of thousands of 

simulations are required. This leads to large execution time overhead. 

2. Relies on external HDL simulators; the SFI processes are performed using dedicated HDL 

simulators, e.g., Modelsim from Mentor Graphics, VCS.   

Therefore, reliability evaluation of probabilistic circuits using HDL based SFI within synthesis process 

is unfeasible. Hence alternative methodologies have been researched and included within the 

proposed design flow.  

3.3.2. Gate Error Model Based Tool 

As AIG’s are used to represent combinational circuits, we need to develop probabilistic gate error 

models for AND & inverter logic gates. Consider an unreliable AND gate, such a gate can be modelled 

as an ideal (error free) AND gate followed by a faulty buffer that models the stochastic behaviour of 

the errors. This model moves the entire error statistics on the gate output and so it implicitly 

assumes symmetrical error behaviour in relation to the inputs. This assumption holds true for many 

physical gate implementations and simplifies somewhat the analysis. The two nodes Z* and Z, as 

shown in Figure 9 are named as internal and the external output node, respectively. To analyse this 

model behaviour, let’s consider that errors on the output of a combinational gate can be mainly due 
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to two reasons: (i) errors on the gate input nodes and (ii) intrinsic errors within the gate. In this 

model, the circuit under evaluation primary inputs are assumed to be error free and statistical 

independent.  

 

Figure 9: Unreliable AND Gate Model 

3.3.2.1. Ideal 2-Input AND Gate 

As AIG’s comprises of only 2-input AND gates, we restrict our analysis to 2-input AND gates and note 

that its extension to multi-input AND gates is straightforward. The static probability values of the 

internal output node Z* can be expressed as:  

   ( )    ,        -     (1) 

   ( )        ( )   (2) 

First, the error on the internal output node (Z*) due to errors on the input nodes of an ideal 

AND gate is computed. We note that an error on an input need not necessarily result in a wrong 

output value. For example an error free ’0’ on one of the gate inputs would mask the error on the 

other input node from being propagated onto the output. Similarly, consider the scenario where the 

inputs are set to ’0’ & ’1’ and both are erroneous. This event of double error mutually negates each 

other and results in a correct output value. Hence, due to masking and double error events, there are 

no simple rules to predict the gate output state. Tab. 1 presents an exhaustive enumeration on all 

the possible cases.  

Table 1 : Ideal AND gate with unreliable inputs 

State Of Nodes Under 

Reliable Conditions 

State Of Nodes / 

correct value 

Error Probability 

A B Z* A B Z* 

0 0 0 

c/0 

c/0 
ε/1 

ε/1 

c/0 

ε/1 
c/0 

ε/1 

c/0 

c/0 
c/0 

ε/1 

 

 
 

P[A0,B0, Aε, Bε] 

0 1 0 

c/0 
c/0 

ε/1 

ε/1 

ε/0 
c/1 

ε/0 

c1 

c/0 
c/0 

c/0 

ε1 

 
 

 

P[A0,B1, Aε, Bc] 

1 0 0 

ε/0 

ε/0 

c/1 
c/1 

c/0 

ε/1 

c/0 
ε/1 

c/0 

c/0 

c/0 
ε/1 

 

 

 
P[A1,B0, Ac, Bε] 

1 1 1 

ε/0 

ε/0 
c/1 

c/1 

ε/0 

c/1 
ε/0 

c/1 

ε/0 

ε/0 
ε/0 

c/1 

P[A1,B1, Aε, Bε] 

P[A1,B1, Aε, Bc] 
P[A1,B1, Ac, Bε] 

 

 

To explain the table, consider the case when A=0 and B=0. Then, the internal output Z* 

should be ideally 0. Now, each of the inputs can assume an error (ε) or a correct (c) state. The state 

of the inputs determines if Z*=0 is correct or not. It is clear that, for these inputs values, the internal 

output node is in error if and only if both the inputs are in error. It is evident from Tab. 1 that error 

on one or both inputs need not necessarily translate into an output error. Only 6 of the possible 16 

cases result in an internal output error. The probabilities for each of these events to occur are 



D5.1: Data structures and design flow for fault tolerant circuit synthesis 

 

Page 24 of (65) © i-RISC, January 2014 

 

presented in the last column. In order to arrive at a close form representation of AND gate output 

node error probability, we assume that the gate inputs are independent, i.e. there is no 

reconvergence, in order to simplify analysis. This allows for the utilization of simple formulas to 

compute reliability and reduce the overall algorithm execution time. The internal node error 

probability can be expressed as the sum of all the six terms in Tab. 1 that result in an erroneous 

output and evaluates to:  

  ( 
 )     ( )  ( )  ( )  ( )      ( ),      ( )-  ( )  ( )                             ,  

   ( )-  ( )  ( )  ( )     ,  ( )     ( )    ( )   ( )-  ( )  ( )                     (3) 

3.3.2.2. Intrinsic Gate Error Effects 

Tab. 2 presents the AND gate output behaviour in the presence of both input and internal errors. We 

employ the Binary Symmetric Channel (BSC) [Ryan09] technique to model the erroneous buffer 

behaviour.  

Table 2 : Faulty AND gate with unreliable inputs 

Actual 

Value 

of Z* 

State 

of 

Z*  

Gate 

Fault 

Value 

of Z 

Correct 

Value 

of ‘Z’ 

State 

of 

‘Z’ 

Error_Probability 

0 c 

c 

ε 

ε 

C 

f 

c 

f 

0 

1 

0 

1 

0 

0 

1 

1 

c 

ε 

ε 

c 

P[Z*=0, Z*
c, Pf] 

P[Z*=0, Z*
ε, Pc] 

1 c 

c 

ε 

ε 

C 

f 
c 

f 

1 

0 

1 

0 

1 

1 

0 

0 

c 

ε 

ε 

c 

P[Z*=1, Z*
c, Pf] 

P[Z*=1, Z*
ε, Pc] 

The gate output static and error probabilities can be defined as: 

  ( )      ( )(      )      ( )      (4) 

  ( )      ( )(      )      ( )      (5) 

  ( )          ( 
 )           ( 

 )   (6) 

3.3.3. Reconvergent Fanout and Error Bounding 

Based on the mathematical modelling presented in the previous section, we introduce an algorithm 

which, given a certain circuit and the error probabilities of the primary inputs and internal gates, can 

evaluate the error probability of the outputs. As indicated in Alg. 1, on every node, it checks for the 

state of the two children nodes. In case, if they are inverted, the error due to the inverter is 

accounted. Using Eq. (2) and (3) the error due to the AND gate is computed both on the internal and 

external output nodes. This process is continued until the primary outputs are reached. At present, 

we have not taken the Reconvergent Fanout (RFON) into consideration. A tool, called as Reliability 

Evaluator, is developed based on Alg. 1. It is integrated into the open source tool ’ABC’ to automate 

the error probability computation. 

Algorithm 1: Generic Method for Reliability Evaluation 

INPUT: N, total number of nodes in the AIG network;  

               Error probability of Individual Gates 

              Switching Activity PSA on the primary input nodes {PI’s} 

OUTPUT: Output error probability of the circuit  

1. For all nodes I  = 1 to N do 

2.       if left_node is inverted then 

3.            Use Eq. 3 to compute new  static node error probability 

4.       end if 
5.      if right_node is inverted 
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6.            Use Eq. 3 to compute new  static node error probability   

7.     end if 
8.     Compute Internal node error probability using Eq. 2 

9.     Compute Output node probability using Eq. 3 

10. End for 

 

To evaluate the tool performance we considered a set of MCNC benchmark circuits. In Tab. 3, 

Columns 1 and 2 give the name and number of gates in the benchmark circuit. Column 3 captures the 

accuracy of the method when compared with Monte Carlo (MC) simulations while Column 4 

highlights the significant time savings the proposed algorithms achieves when compared with MC 

simulations. From the Tab. 3, it is clear that the proposed algorithm is accurate enough and can be 

used to compare two logically equivalent configurations. As the analysis is AIG based, we have not 

performed any kind of comparative study with any of the previous works [Han11] [Mohanram09]. 

VSIM simulator was used to implement a Monte Carlo framework for reliability analysis under fault 

injection. The sample size used for reliability analysis was 100k, 50k, and 10k for 0.001, 0.01, 0.05 

error scenarios, respectively. 

 

Table 3: MCNC Benchmark Circuits Based Accuracy & Performance Evaluation for different gate errors (ε) 

Benchmark Gate Count Avg. Error Deviation on all outputs % Runtime {s} 

AND Inverter  ε = 0.001 ε = 0.01 ε = 0.05 MC_Sims Tool 

Cu 55 29 5.75 2.78 9.48 7051.89 0.393 

x2 55 32 6.06 7.24 9.24 5356.85 0.924 

Parity 45 61 3.51 6.38 7.55 10215.41 1.042 

cm150a 61 71 3.36 2.81 9.43 16477.93 1.558 

Cordic 82 84 1.57 2.24 9.57 22749.73 0.966 

Mux 85 92 2.32 3.13 6.25 22019.47 0.295 

b9 104 78 3.79 3.38 6.57 43578.04 0.827 

Count 128 130 5.34 7.84 9.84 52890.57 4.691 

 

3.3.3.1. Bounding Node Error Probability 

This section presents a method to deal with the RFON issue when computing circuit error probability. 

Computing the node error probability is more complex in the presence of RFON because Eq. (3) does 

not hold true. This is because each of the terms in Eq. (3) cannot be factorized due to dependencies 

between the four probabilities. There is no closed form solution to resolve terms of the type 

P[Ax,Bx,Ay,By], where x∈{0,1} and y∈{ε,c} in an exact manner. Iterative approaches could be 

developed but their complexity would grow exponentially for each of the 6 terms.  

To simplify the propagation algorithm, a bounding procedure is presented. Tab. [2] lists all 

the possible scenarios that would result in an output error. Bounding each of these scenarios 

singularly results in loose bounds because the error committed in each term is accumulated. In turn, 

this result in the quick convergence of the upper/lower bound to 1/0, respectively. To avoid this 

scenario, only the total gate output error probability is bounded. To facilitate the bounding process 

two cases are considered, a pessimistic and an optimistic scenario. Upper/lower bounding always 

resulted in over/under estimated error probability. The advantage is in the fact that the formulas for 

the considered cases offer easy analytic solution. 
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PESSIMISTIC RULE:  A fault occurring on any of the inputs can be propagated onto the output if and 

only if the second input node is set to ‘1’. To make the computation more pessimistic, we take the 

effect of both the input nodes. This is represented by Eq. (7).  

  ( 
 )      *  ( )+  ( )      *  ( )+  ( )   (7) 

OPTIMISTIC RULE: A fault occurring on any of the inputs can be propagated onto the output if and 

only if the second input node is set to ‘1’. To make the computation more optimistic, we take the 

effect of only one node into consideration. This is represented by Eq. (8). 

  ( 
 )      , *  ( )  ( )+  *  ( )  ( )+-    (        ) (8) 

Having developed bounds to apply on the nodes that are point of reconvergence, it is now 

possible to update the algorithm to propagate them: 

Algorithm 2: RFON based Reliability Evaluation 

 

Require: N, total number of nodes in the AIG network 

1. Initialize Static Probability (PSP) on all nodes computed using the generic algorithm 

2. Compute Static probability (PSP) using Eq.(1-2) 

3. for I  = 1 to N do 

4.       if fanout_of_current_node > 1 

5.            Identify all the nodes in the cone 

6.            for J  = 1 to No of nodes in the cone do 

7.                 if left_child is inverted 

8.                       Use Eq.(3-6) to compute new  static & node error probability 

9.                 end if 
10.                 if right_child is inverted 

11.                       Use Eq.(3-6) to compute new  static &  node error probability   

12.                 end if 

13.                If node_under_consideration converges do 

14.                        Use Eq.(8,9) to compute bounds 

15.                end if 
16.               Use adaptive based algorithm to compute new static probabilities on each node  

17.      End for 

18. End for 

A methodology is developed which addresses the issue of the reliability computation of any 

circuit for a give gate error probability. Based on this tool, we have developed a wrapper around the 

open source tool ‘ABC’. This enables the node error propagation on a complex circuit represented in 

the AIG format. This methodology makes use of the error models developed in WP2. Further, this 

tool plays a vital role in the reliability aware synthesis framework that we introduce in the next 

section. 

3.4. Reliability Driven Synthesis 

Traditional logic synthesis methodologies and tools are centred on fulfilling timing, power, and area 

constraints or on achieving acceptable trade-offs among those [Pedram96] [Mehrotra11]. However, 

as the CMOS technology entered the nanometer era it cannot cover any longer all the relevant 

aspects. Nanotechnology specific issues, e.g., VDD reduction, higher impact of process parameter 

and temperature variations, result of increased device failure rates, making CMOS ICs less reliable 

[Borkar05] [Constantinescu03]. This tendency is not CMOS specific, as even the most promising post 

silicon devices, e.g., Carbon Nanotube Field-Effect Transistors (CNFETs) that are considered to 

eventually replace CMOS suffer from various amounts of statistical variation in device behaviour, 

leading to a lack of reliability. As a result, reliability is turning out to be a major design metric sharing 



D5.1: Data structures and design flow for fault tolerant circuit synthesis 

 

© i-RISC, January 2014 Page 27 of (65) 

 

equal importance with the other existing design metrics and design time reliability assessment and 

optimization is becoming a mandatory step in the IC design flow. To overcome the reliability related 

concerns, a variety of techniques have already been proposed. Negative Bias Temperature Instability 

(NBTI) and its mitigation techniques have received significant focus [Vrudhula06]. Dynamic Reliability 

Management (DRM) techniques, which try to hide the inherent pessimistic reliability while 

maintaining the system performance and lifetime expectation within the desired range were 

previously proposed [Rivers04]. Another novel idea is the concept of inexact computing [Palem12] 

where circuits are designed with erroneous gates. 

Logic synthesis traditionally is classified into two broad categories, local rule-based 

transformations (or rewriting) and technology independent/dependent algorithms [Mishchenko 06-

b]. Rewriting is based on employing a set of local transformation techniques on a small sub-section of 

the graph in order to improve area, power or timing. Algorithmic based approaches work on the 

observation that there exists certain set of operations, which are inherently good irrespective of 

technology. Our work explores the possibility of reducing output error probability by employing local 

transformation techniques. Though reliability driven logic optimization is in its infancy when 

compared to power and delay driven optimization, the method presented here is still based on the 

popular and successful concept of local transformations [Darringer81] [Brayton87].   

The basic idea behind our proposal is to implement reliability aware transformations. We 

introduce set of local transformation rules for logic optimization from a reliability perspective. The 

proposed transformation rules (i) maintain the logical equivalence of the new circuit with the original 

one and (ii) provide a set of standard rules that when applied in a guided fashion would result in 

improved circuit reliability. We then study the impact of the gate error probability on equivalent logic 

configurations to determine the best realization. The transformation rules are built upon the 

application of Boolean algebra logical equivalence laws such as swapping and reduction of variables. 

We have evaluated our logic transformation rule set on a test circuit and results show a reliability 

improvement in the order of 10%.  

Given a combinatorial circuit implementing the Boolean function f lets call SI the initial AIG 

network prior to rule application and SF the final AIG network after rule application. The aim of the 

reliability aware synthesis is to find a sequence of transformations leading to an AIG network SF=Sopt 

that minimise the cost function Err(f). It is well known that logic synthesis based on local 

transformation is an NP hard problem. Thus, we rely on a heuristic approach to find an acceptable 

solution, i.e., an AIG providing reliability higher than a certain threshold. The strategy chosen is to 

apply local optimization based on a transformation rule set. The challenge is in deciding whether to 

transform a sub-graph to the new state S0 based on the impact of the transformation on the PO 

reliability. 

3.4.1. Local Transformation Rules 

In this section, we present the set of transformation rules utilized in our quest for the 

reliability optimized implementation of Boolean functions.  

Rule 1: The first transformation is modelled based on the Boolean algebra distributive law. The rule 

decreases the node count by one and also improves the circuit reliability. 
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Figure 10: Logic Equivalence Rule 1 

 

Rule 2: This transformation is based on the associativity low. The underlying assumption is that 

reducing the length of the longest path will improve the reliability of the circuit. 

 

Figure 11: Logical Equivalence Rule 2 

Rule 3: This rule is also based on the associativity low. It suggests the fact that inverters distributed 

equally on both legs will improve the circuit reliability. This rule specifically targets the configuration 

for a 2-input XOR gate. Its application can be seen predominantly in circuits like priority encoders, 

Cordic processors, adders, etc. 

 

Figure 12: Logical Equivalence Rule 3 

 

Rule 4: This rule is derived based on principles of associativity and insertion and defines the best 

representation for 3-bit majority voter. Figure 13 depicts the three possible configurations of the 

majority voter. This rule in principle applies rule1 to reduce node count and then applies rule3 to 

place the inverters equally on both the legs of the output. The reliability analysis is performed on all 

the three circuits and the results are plotted in Figure 15(d). An improvement of more than 15% is 

achieved by this transformation. 
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Figure 13: Logical Equivalence Rule 4 

 

Rule 5: The fifth transformation rule is based on the commutative law. The rule states that the 

signals with the lowest static probability of ’1’ in an AIG tree should be closer to the output, or closer 

to the root node of a sub graph. Intuitively, this rule is maximizing the masking effect of the AND gate 

to minimize the effect of any error coming from the left side of the graph. The reliability 

improvement is strongly dependent on the static probability of the gate inputs. 

 

Figure 14: Logical Equivalence Rule 5 

 

3.4.2. Simulation Results 

Direct mathematical analysis is not feasible to compute the improvement achieved as the number of 

variables in the equations used to compute the output error probability are too high. Instead, we set 

the input node static probability to 0.5 and the input error probability to 0.01 and perform simulation 

using the tool previously described in section 3.1.3. All the rules have also been investigated for other 

generic patterns such as Gaussian. Simulation results for different input patterns confirm that rules 

[1-4] improve the reliability of the circuit and hence suggest that they are applicable in any general 

scenario. In contrast, rule5 is applicable only under certain circumstances as detailed out later in the 

section. The improvement achieved by employing the local transformations is plotted in Figure 15. 
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Figure 15:  Simulation Results for rules [1-4] 

3.4.3. Search Algorithm 

The previously presented rules have been tested in various conditions and the simulation results 

show reliability improvement in every scenario. However, due to the high variable count, it is 

impossible to derive a rigorous proof and/or to test them for all input scenarios. Hence, one cannot 

generalize the improvement in all circumstances. As a result, a local optimization search algorithm is 

used to confirm the reliability improvement before its application on the circuit. Alg. 3 details the 

process adopted for performing local transformations. Starting from the initial circuit configuration, 

we traverse through the graph to see if any of the rules are applicable on the given node. For every 

possible transformation, the new circuit reliability is computed. The configuration that yields the 

highest circuit reliability improvement is selected and the new topology is generated. This process is 

continued on every node on the graph until we reach the primary outputs where no more 

transformations are applicable. 

Algorithm 3: Reliability Aware Optimization 

Require: N, total number of nodes in the AIG network 

Require: RN, total number of transformation rules 

1. For I= 1 to N do 

2.    For J  = 1 to RN do 

3.       if Rule Rj is applicable on Nodei then 

4.            Implement the transformation and calculate new reliability Wij 

5.       End if 
6.      Switch back to normal configuration 

7.      End for 
8.     Select Rj  s.t. Wj = min(Wij) 
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9.     Implement Rj 

10. End for 

 

3.4.4. A Case Study 

As a case study, the proposed reliability aware synthesis algorithm is applied on the AIG depicted in 

Figure 16(a). As the circuit is simple, only two local transformations are applicable. Rule2 is applicable 

on node n1. The new error probability of the circuit after applying this rule is presented in Figure 17. 

It is clear that applying Rule2 on node n1 results in higher reliability. No other rule is applicable on 

node n1. So, this would be the new reference topology of the circuit. Also, Rule2 can be applied on 

node n2 of Figure 16. After this transformation, the reliability of the circuit reduces and hence this 

transformation is not applicable. Further, rule2 can also be applied on node n3 of Figure 16(c). 

Simulation results presented in Figure 17 show that such transformation also results in improvement 

in the reliability of the circuit. No further rules can be applied on any of the nodes and this would 

remain as the most optimized version of the reference circuit. It is clear that even for such a small 

circuit, the application of the reliability aware synthesis algorithm can achieve a marked 

improvement of 25% over the initial configuration and about 10% over the netlist synthesised by the 

ABC tool.  

 

Figure 16: Application of logic transformation rule set 

 

Figure 17: Case Study Simulation Results 
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4. Probability Density Functions (PDFs) Based IC Reliability Evaluation (Task 

5.2 & Task 5.4) 

Abstract: In this section we introduce a Probability Density Functions (PDFs) based Integrated Circuit 

(IC) reliability assessment framework. Since the efficiency of reliability driven design-time 

optimizations and of run-time management frameworks directly depend on the reliability evaluation 

accuracy, instead of relying on a single probabilistic value to reflect the reliability status of a circuit, 

we propose to employ a distribution of probabilities for a closer adherence to a faulty circuit 

stochastic behavior. To the extent of our knowledge, the proposed approach describes the first 

attempt to assess the reliability of a circuit based on PDFs.  The proposed framework is based on a 

variational inference method, and exploits the geometry of the statistical manifold to yield a fast and 

scalable reliability assessment approach, which can be potentially integrated in reliability aware 

synthesis tools and Dynamic Reliability Management frameworks.    

Publications: Unpublished Work (a Journal paper is in preparation). 

Traditionally, reliability begins to be evaluated usually late in the life cycle of an Integrated Circuit (IC) 

[Pecht09], i.e., shortly before manufacturing release, via well-defined qualification tests, e.g., 

compliance tests or zero-failure tests [Crowe98]. As a result, the preponderant percentage of  all  

reliability and  qualification IC  life  cycle costs is attributed to correcting the IC design inadequacies 

(intent misalignment between design and reality) and defects after their occurrence, and not to 

making the IC right to begin with [Cranwell07]. However, for the current technology, neglecting the 

reliability concerns during the initial IC life cycle phases, is no longer a feasible approach for a highly 

competitive semiconductor industry which emphasizes short time-to-market, reduced Non-Recurring 

Engineering (NRE) costs associated with mask spins, first-pass success and long-term reliability goals, 

e.g., extended useful lifetime. In the realm of variability and higher failure probabilities expected for 

the emerging nano-devices and their afferent interconnects, reliability should be addressed 

upstream of full scale IC life cycle phases, from the early design inception phase to the in-field 

operation phase. Therefore, fault and defect tolerant techniques those enable an IC to recover from 

manufacturing and operational errors, have to be considered up-front, at design-time (pre-Si). 

Building architectures from prohibitively unreliable emerging nano-devices, expected to exhibit 

increased susceptibility to variations, e.g., manufacturing, permanent and transient failures, suggest 

including reliability as an optimization goal (besides power, area, and time) in the forthcoming EDA 

tools. Considering this context, an accurate yet fast reliability analysis is needed at design time, to 

allow a gate-level comparison of different logic circuits architectures and enable a reliability driven 

synthesis process. Moreover, such an evaluation method can be embedded in a Dynamic Reliability 

Management (DRM) framework [Wang13] to allow for fast and accurate reliability evaluation based 

on aging sensor collected data.  

 

 

4.1. Previous Work 

Various probabilistic analytical approaches to evaluate the circuit reliability have been proposed. The 

Probability Element (ProxEl) method was introduced in [Horton02] to alleviate the typical problems 

encountered by Monte Carlo simulation (i.e., finding good quality pseudo-random number  
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generators)  and  partial  differential  equations  (i.e., more difficult to set up and solve). Each 

probability element carries enough information to probabilistically determine the future behavior of 

the model and generate all the succeeding probability elements [Molnar05]. The method describes 

every probabilistic configuration of the model in a minimal manner, and it is based on a discrete-time 

Markov chain as underlying stochastic process, which is constructed by on-the-fly inspection of all 

possible probabilistic behaviors.  

In [Patel03], the authors introduced the Probabilistic Transfer Matrices (PTM) formalism, whose 

underlying principle dates back to year 1964 [Levin64]. The PTM method relies on an exhaustive 

listing of the gate inputs/outputs, allowing simultaneous and exact reliability evaluation over all 

possible input combinations. It employs a matrix representation of gate errors. For instance, the PTM 

afferent to a NAND2 gate is given by:   

 

 

            [

     
     
     

     

 ]   (9) 

where  is the gate failure probability. 
The gate output probability is obtained as: 

,      -   ,               -            (10) 

with P0 and P1 the NAND2 output probabilities of obtaining a logic ’0’ and ’1’, respectively, and P00 , 

P01 , P10 , and P11 the gate input probabilities of logic  ’00’,  ’01’,  ’10’, and ’11’, respectively. A 

circuit PTM is based on logic dependent composition of individual gates or sub-circuits PTMs 

[Krishnaswamy05]. The PTM-based approach is applicable to any type of logic gate and thus allows 

different probabilities of failure for different logic gates. While allowing for the derivation of the 

exact circuit probability of failure, the method involves massive storage (i.e., O(2m+n), for a circuit 

with m primary inputs and n primary outputs) - albeit matrices compression - and a big overhead 

associated with handling the stored data. Furthermore, as the circuit size increases, the circuit 

modularization process, which is not automated, may become intricate and error prone. Thus, the 

high computational complexity in terms of runtime and memory usage renders the PTM-based 

approach useful for reliability estimation of small circuits only. 

Another analytical reliability estimation approach relies on the Probabilistic Gate Model (PGM) 

[Han05], [Taylor06], [Han11]. The method entails expressing the probability of each logic gate as 

follows: 

        
  [       

             
 ]    [

 
   

]    (11) 

where  is the gate failure probability, PGATEin is the probability of the fault-free gate to generate a 

logic ’1’ at its output, and PGATEout is the probability of the correct gate output. The circuit is 

modularized (with logic gates as the indivisible units) and its overall reliability is derived via an 

iterative procedure by multiplying the individual gate output reliability figures. While being 

applicable to potentially model any type of gate and failure, the method assumes that the gate 

input/output signals are statistically independent, which leads to approximate reliability results. In 

[Han11], the correlations in the input signals or caused by reconvergent fan-outs are addressed by 

sequentially decomposing and treating each fan-out in a recursive manner, at the expense of 



D5.1: Data structures and design flow for fault tolerant circuit synthesis 

 

Page 34 of (65) © i-RISC, January 2014 

 

increasing the computational time exponentially with the number of reconvergent fan-outs. While 

exhibiting similar reliability estimates but a lower computational and time complexity (i.e., O (n) and 

O (n · 2m) respectively, for a circuit with m gates and n primary inputs) when compared to the PTM 

approach, the PGM-based model is still not scalable to large circuits. 

In [Choudhury09], the authors propose three scalable algorithms for reliability assessment. 

Particularly, the single-pass reliability analysis algorithm is able to: (i) accurately evaluate the 

reliability of circuits without convergent fan-out and (ii) approximately evaluate the reliability of 

circuits exhibiting spatial correlations, by computing pairwise correlation coefficients of dependent 

signals. The algorithm is based on expressing the error at a gate output as the cumulative effect of 

the intrinsic, local gate error component and an error component attributed to the failures of the 

gates in its fan-in cone. The gates are topologically sorted and the circuit output reliability is derived 

in a single pass from the primary inputs to the primary outputs. The algorithm is fast and requires a 

smaller memory footprint. However, the reliability estimates may be less accurate since the circuit 

reliability is assessed based on a single probabilistic value. The single pass method is extended in 

[Mahdavi09] to multiple passes for reliability evaluation of sequential circuits.  

The Signal Probability Reliability Analysis (SPRA) method was proposed in [Franco08-a] and 

[Franco08-b] embeds the cumulative effect of multiple, simultaneous errors in a circuit, in the form 

of a bit-flip error at the output of a faulty gate. The probability of a signal is represented as a matrix 

consisting of four possible states that a signal probability can attain, i.e., a correct logic ’0’, a correct 

logic ’1’, a faulty logic ’0’, and a faulty logic ’1’ [Ercolani89]: 

         [
                               

                                
]    (12) 

The output probability of a gate is obtained by multiplying the gate transfer function (expressed 

using PTM [Patel03]) with the Kronecker product of the gate input signals probabilities, as follows:  

,      -  (        
         

)              (13) 

The SPRA-based method yields exact results for circuits without reconvergent fan-outs, but 

approximate reliability estimates when dealing with the exponential complexity of signals probability 

correlations. Since SPRA stores the information related to each signal independently, the memory 

footprint is smaller when compared to the PTM approach which stores the probability information of 

the entire circuit in one PTM. Another advantage resides in the fact that only one matrix 

multiplication is required to compute the reliability of a gate, which makes the SPRA-based approach 

fast and scalable. 

Probabilistic graphical models as an approach for logic circuits reliability assessment, benefit of 

flexibility and power of representation as well as increased ability to effectively learn and perform 

inference in large networks as is the case of large logic circuits [Koller09]. They provide a principled 

approach to deal with uncertainty through the use of the probability theory and an effective manner 

to cope with the complexity associated with the circuit correlations through the use of graph theory. 

A graphical model can be regarded as consisting of a collection of probability distributions which 

factorize according to the underlying structure of the graph. The two most common types of 

probabilistic graphical models are Bayesian Networks and Markov random fields.  

Recently, Bayesian Networks (BNs) have been applied in the context of circuit reliability evaluation 

[Rejimon05], [Rejimon05], [Ibrahim11]. BNs, whose underlying semantics are based on directed 

graphs, allows one to capture both the temporal and spatial circuit dependencies in a comprehensive 
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manner, providing an exact and minimal probabilistic model for reasoning and inference in causal 

logic networks. BNs encode the joint probability distribution over a set of variables and decompose 

them into a product of the conditional probability distributions over each variable given, its parent 

nodes in the graph. The conditional probability of an output signal given the input signals 

probabilities reflect the propagation of errors through the circuit. Thus, given the circuit inputs 

probabilities of failure, it is possible to predict the output probability of failure. Furthermore, due to 

the conditional probability symmetric nature, BNs can be employed not only for prediction (i.e., infer 

the effects of known causes), but also for diagnosis (i.e., infer the potential causes of known effects). 

While the probability of failure is exact as in the PTM-based approach, the BNs-based approach 

suffers from massive storage requirements associated with the underlying large conditional 

probability tables, and thus manipulating BNs for large circuits is potentially intractable. 

Improvement was reported in [Ibrahim11], by taking into account the dependence of the probability 

of failure of different gates on each gate internal structure (i.e., the gate probability of failure is 

obtained from the probabilities of failure of the individual transistors encompassed by the gate).  

The Markov Random Fields (MRFs) based reliability evaluation approach presented in [Bahar03], 

employs the Gibbs distribution to characterize the reliability in terms of entropy and the noise in 

terms of thermal energy. While being suitable for reliability assessment of small circuits or of regular 

redundant architectures, such as NAND multiplexing and triple modular redundancy [Bhaduri05], for 

arbitrary multilevel logic circuits the MRF-based approach becomes computationally intensive as a 

consequence of the involved minimization of a Gibbs distribution function with a large number of 

variables. Furthermore, MRFs model dependencies via undirected graph structures, which might be 

less suitable for the causal computing, characterized by a flow of information from the input to the 

output, and widely present in traditional and future nano-computing platforms. Specifically, MRFs 

cannot capture the induced and non-transitive dependencies, which are two important 

dependencies exhibited by causal networks [Pearl88]. Another aspect is that errors are indirectly 

modeled through the polynomial coefficients of the energy potential expressions, which for nano-

CMOS circuits are complex functions of the underlying errors causes and hence less amenable to a 

direct specification (e.g., uniform faults across logic gates will not correspond to uniform errors over 

the coefficients). 

The previous discussion, and given the i-RISC ambitions on reliability aware design and logic 

synthesis, clearly indicates that state of the art solutions do not fulfill our requirements and 

constraints. In view of that we introduce in the following a highly accurate reliability evaluation 

framework, which do to its small amount of required resources can be integrated in the i-RISC 

reliability aware synthesis tool chain and in Dynamic Reliability Management (DRM) frameworks. 

4.2. Proposed Approach 

Hitherto reliability evaluation approaches customary posit a single value for a gate probability of 

failure. While benefiting from a relative simplicity of implementation, the single-probability approach 

may not suffice for accurate reliability assessment. A more appropriate approach to model the faulty 

circuit’s stochastic behavior would be to consider a range of failure probabilities of a gate output, for 

given gate errors. Such a Probability Density Function (PDF) of a gate output can be constructed 

based on a large sample of different fault patterns, and environmental aggression profiles. 

Another aspect is related to the fact that the majority of previous approaches evaluate the reliability 

of a circuit starting from the gate level and furthermore, most of them rely on the assumption that all 
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gates have the same reliability. However, the reliability accurate computation at gate-level is of 

foremost importance, since very small reliability estimation errors at the gate-level can severely 

impact the reliability evaluation of circuits comprising large numbers of gates [Roelke07], [Han02]. 

For instance for VLSI circuits, a very small estimation error at the gate-level conducts to circuit 

reliability estimation errors of a few orders of magnitude, e.g., for a circuit composed of N = 1010 

gates, and using the most simplistic model to derive the circuit reliability: 

                (            )
 

    (14) 

a gate-level reliability estimation error in the order of 10−10, translates into an estimation error of 

the circuit reliability in the order of 10−2 [Ibrahim11]). 

Thus, the above considerations motivate us to develop a reliability assessment framework, which 

aims to provide probabilistic inference that is accurate enough and suitable for fast and large-scale 

circuit settings.  

4.2.1. Model Definition 

The probabilistic query that we would like to solve, can be stated as follows:  

Given, (i) a circuit with known topology and possibly layout, its workload (known primary inputs 

vectors and their associated probabilities/PDFs), and (ii) an aggression profile (e.g., T, VDD, fault 

scenarios - fault types and their expected probabilities), determine the PDFs of obtaining the correct 

circuit primary outputs. 

Assume we have a probabilistic model of the form 

 (     )    (   )  (   )  ( )   (15) 

 with the following sets of nodes: 

 E, the set of evidence nodes, which are associated to the known PDFs of the circuit primary 

inputs; 

 Y, the set of latent (hidden) nodes, which are associated to the PDFs of the circuit primary 

outputs. These are the PDFs that we would like to infer. 

 X, the latent (hidden) intermediary nodes, which correspond to the remaining gates and 

wires of the circuit. 

We shall assume throughout the remainder of the section that we are concerned with exponential 

family’s representations. The restriction to the exponential family of probability distributions is a 

mild and reasonable assumption, since most of the important distributions, e.g., Gaussian, 

multinomial, exponential, Dirichelet, Poisson, Gamma, belong to the exponential family. We consider 

a conjugate prior in the exponential family, which implies that the posterior and the prior 

distributions have the same functional form. The convexity properties, and in particular the 

associated conjugate dual relation, of the exponential family have immediate inferential implications, 

with desirable algorithmic consequences. 

The exponential family of distributions [Wainwright08] over a random variable x, parameterized by 

given θ, is expressed as: 

 (   )     *(   ( )) –   ( ) +   (16) 

taken w.r.t. an underlying measure   on the space {x}. 
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Here,  ( )  is the   log-normalizer   which   ensures   that   (   ) (  )     , and is a convex 

function defined by the integral: 

 ( )          *   ( ) (  ) +   (17) 

The vector functions θ and  (.) are the natural (canonical) parameter and sufficient statistics, 

respectively.  

4.2.2. Variational Inference – General Framework 

Standard approaches to inference over the probability simplex include variational inference [Beal03], 

[Wainwright08], and Markov Chain Monte Carlo methods, such as Gibbs sampling [Gilks96]. In the 

proposed framework, we concern ourselves with variational inference since it serves better for 

developing fast, potentially on-line algorithms in large-scale settings. 

The general idea of variational inference is to recast the probabilistic inference problem into an 

optimization-based formulation, and express the posterior distribution of interest as the optimization 

problem solution. In order to provide a means of approximating the posterior distribution of interest, 

the optimization problem is relaxed.  Such relaxations can be carried out in various ways, either by 

approximating the function to be optimized, or by approximating the set over which the optimization 

is performed. One common approach is to approximate the posterior distribution of interest (i.e., the 

true posterior) with a family of distributions from which the distribution that is closest to the true 

posterior is sought. The measure of closeness between two distributions is commonly the Kullback-

Leibler (KL) divergence. The optimization of the KL divergence is then usually cast as an optimization 

of a lower bound on the logarithm of the likelihood (i.e., the marginal probability of the 

observations). The resulting optimized distribution constitutes the approximated posterior of 

interest. Figure 18 illustrates coarsely the variation inference principle. 

In the following, we shall employ the following notations: 

   ( ), ( )-    ( ) ( )   denotes the expectation of distribution f under distribution g; 

      ( )   ( )     ( )    
 ( )

 ( )
   denotes the KL divergence between distributions f and g. 

 

 

Figure 18: Schematic representation of the variation inference concept. 

4.2.3. Evidence Lower Bound 

In variational  inference,  we  would  like  to  minimize  the KL divergence from the approximated 

distribution (i.e., the variational  distribution  over  the  latent  variables/parameters X and Y), q(X, Y ) 

and the true posterior, p(X, Y |E).  To this end, we derive a lower bound on the logarithm of the 

marginal likelihood (i.e., the model evidence E), log p(E), by employing Jensen’s inequality ( 

    ( )     ,    ( )-, ∀a random variable, f and g distributions), as follows: 
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Since 

    ( )      ( )       (   )   (     )   (19) 

minimizing the KL divergence (which is < 0) is equivalent to maximizing the lower bound     ( ), as 

illustrated in Figure 19.  

 

Figure 19: The KL divergence optimization. 

In the most straightforward variational inference (Mean Field (MF), also known as Variational Bayes 

(VB)) framework, the family of approximate distributions are restricted to a tractable family, by 

positing that the variational distribution q factorizes over the latent variables, e.g., q(X, Y ) = q(X) q(Y) 

(i.e., X  and Y  are conditionally independent), where each factor  of  q  has  a  free  functional  form.  

The objective is to determine the variational distribution, which maximizes the evidence lower bound 

. The obtained optimized distribution q  constitutes the approximation of the true posterior 

distribution p over the latent variables/parameters. Such factorization enables for instance, the 

analytical optimization to be performed iteratively, with respect to each factor of q, while holding the 

remaining factors of q fixed, in an analogous manner to the Expectation-Maximization (EM) 

algorithm (i.e., coordinate gradient ascent on the lower bound). Specifically, in the E-step, q(X) is 

assumed fixed and the posterior over Y is updated by setting   which results in the 

optimal distribution given by: 

  ( )      ( ), (     )-   (20) 

In a similar manner, in the M-step, computing  fixed (from the E-step), 

results in the following expression for the optimal posterior over variables X: 

  ( )   ( )    ( ), (     )-  (21) 

While, the variational EM approach constitutes a convenient solution to the intractability associated 

with the high dimensional integrals, its convergence speed can be very slow, prohibiting its utilization 

in large scale settings. Furthermore, the MF strong independence assumptions between the latent 

variables may place unrealistic or questionable factorizations, disregarding important correlations 

among the graph nodes and as a consequence resulting in significant bias of the posterior 

distribution estimate. 
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Rather than assuming the q factorization over the latent variables, an approach for a closer 

adherence to reality would be to marginalize analytically (i.e., to integrate out) a subset of the latent 

variables, and thus to perform the optimization of the evidence lower bound only with respect to the 

remaining latent variables. Besides the improvement in convergence speed, and hence its feasibility 

in large scale settings as required in our case, this approach also achieves a more accurate estimate 

of the true posterior distribution with a tighter lower bound. In [Teh07-a], the authors applied the 

collapsed variational approach for the latent Dirichelet allocation problem and in [Teh07-b] for the 

hierarchical Dirichelet process. In [Sung08], the authors studied the collapsed approach in the 

general context of conjugate-exponential family. In [King06], the authors developed the collapsed 

inference in the context of Gaussian processes, for which the proposed KL-corrected bound - a lower 

bound on the model evidence, which is also an upper bound on the original variational bound - is 

shown to radically improve the convergence speed. The same KL-corrected bound was studied in 

[Gredilla11] for Gaussian processes under input independent noise profiles, and referred to as the 

marginalized variational bound. In our framework, we shall follow the collapsed approach, and adapt 

the KL-corrected evidence lower bound for the current required context. 

Integrating analytically the latent variables Y, a lower bound on the model evidence with respect to 

the variables X can be derived by applying the Jensen inequality, in a similar manner to the derivation 

in (18): 

    ( )      ∫  ( )    
  (     )  
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                     ( )    
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               ( )    
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For tractability reasons, a first-order (linear) approximation [31] of  

  ( ), ( )-  with  (  ( ), -) is applied to (22), yielding the following expression for the bound 

  ( ) : 
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 ]   (23) 

Using (20), the expression of the optimal approximated posterior is then given by: 
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   (24) 

where C is the normalization constant, and is obtained by integrating the numerator in Eq. (24) with 

respect to Y.  

We index the distribution q(X) by a set of variational parameters θ, and seek the configuration of θ 

which optimizes the lower bound ,  rendering therefore q  which is the closest to the true 

posterior p. The algorithm convergence can be monitored by evaluating if the difference between 

the previous lower bound (for the previous θ) and its current value (for the current update of θ) is 

sufficiently small. The optimal distribution q  for the parameters θ at bound convergence is given by 

(9), with p(Y), the prior distribution of Y. We note that, in the variational EM method, the lower 
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bound , depends on two sets of variables, whose updates in the E-step and M-step are 

interlocked (the bound optimization with respect to each set is performed while holding the other 

set fixed). In our case, the lower bound , is expressed only as a function of one set (the 

variational parameters) and as such the lower bound optimization is performed only  with  respect to  

one set of variables. However, the lower bound dependence on the other set q(Y) is accounted for 

and absorbed when the optimization w.r.t. q(X) (specifically w.r.t. θ) is performed, q(Y) being 

expressed in terms of q(X) and its prior as given by (9). 

One may further note that the only assumed factorization in this approach is among the output 

latent nodes Y, conditioned by the evidence nodes E and the approximated nodes X. This can be 

easily determined using an independence criterion. The d-separation topological criterion [Geiger90] 

[Verma98] determines whether a set of nodes A is conditionally independent of another set of nodes 

B given a set of evidence nodes V. In particular the set of nodes A is d-separated from the set of 

nodes B by the set V if and only if every undirected path from a node in A to a node in B is blocked by 

V, i.e., at least one of the following three axioms - depicted in Figure 20 – holds true: (i) every 

undirected path contains a sequential node in V , (ii) every undirected path contains a 

divergent node in V , and (iii) every undirected path contains a convergent node 

 such that neither the convergent node, nor any of its descendants are in V.  

A

A

A

B

B

B

Vj

Vi

Tk

b)

a)

c)
 

Figure 20: The configurations for the d-separation criteria. 

One can observer that for circuit specific scenarios, as is our case, the independence among the 

output nodes conditioned by the rest of the circuit nodes (input nodes - E, and the inferred nodes X) 

is always satisfied, since case a) from Figure 20 always holds true. 

4.2.4. The Lower Bound   Gradient 

Subsequently we concern ourselves with finding the optimal configuration of the variational 

parameters θ, which optimizes the objective function . In [Sato01], the authors proved that the 

coordinate ascent algorithm is equivalent to the natural gradient method. Therefore, an update via 

taking a step in the steepest direction in the space of variational parameters θ, using a Riemannian 

metric (e.g., the natural gradient [Amari98] which accounts for the space information geometry), is 

equivalent to performing a coordinate ascent update (equivalent to the E- step of the variational EM 

approach). To this end, we evaluate the gradient of the lower bound with respect to the variational 

parameters, which gives us the direction of the coordinate ascent update for the variational 

parameters θ. 

The space of all probability distributions  is not Euclidian with an orthonormal 

coordinate system θ, but a curved space, namely a Riemannian manifold. In such spaces, the shortest 

distance between two points does not correspond anymore to an Euclidian line, but to a geodesic 

(i.e., a curve) following the space curvature. The immediate consequence is that the steepest descent 

direction along a manifold path (as given by the iterative updates of the parameters θ) is different 

than the steepest descent direction in the classical Euclidian parameter space. In the case of 
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statistical manifolds, the commonly employed Riemannian metric is the Fisher information matrix 

[Amari85] [Amari00]. The rationale behind the choice of the Fisher information matrix as Riemannian 

metric tensor, can be under- stood  from  a  statistical  perspective,  as  follows:  The  natural  

gradient corresponds to  the  direction which  maximizes the objective function   ( ) , such that the 

KL  divergence   , (   )   (      )- is not changed through the optimization (otherwise stated,  

the natural gradient gives the direction of the highest increase in the objective function, for the 

smallest change in the KL divergence): 

                                                                                               (25) 

It follows then from (10), the expression of the natural gradient: 

   ( (   ))      ( )     ( (   ))   (26) 

where G is the Fisher information matrix (i.e., the Hessian of the KL divergence) with 

   ( )      [   
    (   )     

     (   )] 

    ,       (   )-     (27) 

A chief advantage is the KL-invariance with respect to the re-parameterization of the family of 

variational distributions , i.e., the update direction depends only on , and not on a 

particular transformation of the θ parameters; the followed optimization trajectory in the 

parameters space is the same, regardless of the re-parameterization of θ. As a result, as opposed to 

the vanilla gradient, the natural gradient exhibits fast isotropic convergence properties. Additionally, 

it circumvents the slow or early convergence proneness of the vanilla gradient, avoiding over-

aggressive steps on ridges and too small steps on plateaus, and hence being able to cope in an 

efficient manner with ill-shaped . Furthermore, when the Riemannian manifold is an 

exponential family of distributions (with  a convex function), (27) reduces to: 

   ( )      ( )  (28) 

For the exponential family, the Riemannian manifold has a dually flat structure, induced by the 

convex function . There are two systems of coordinates, {θ} and {η} - the latter also referred to 

as the expectation parameters,  - and the Riemannian metric is defined by the mutually 

inverse metric tensors, G(θ) and G(η). The immediate implication is that the natural gradient w.r.t. 

the expectation parameters η is given by the vanilla gradient w.r.t. the canonical parameters θ and 

vice versa: 

     
  

  
              

  

  
    (29) 

avoiding therefore the expensive (prohibitively for high dimensionality variational parameters as in 

our setting) computation of the matrix inverse G−1(θ). 

4.2.5. The Optimization Algorithm 

In the following, we denote by Gk the expression . As concerns the nonlinear optimization 

techniques, we opt to employ the nonlinear Conjugate Gradient (CG) method, due to its algorithmic 

simplicity, supralinear (at least quadratic) convergence, and suitability for large scale optimization 

scenarios. In this method, one determines first the search direction, Hk, then computes a step size, α 
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(as a result of a line search, or set adaptively), and finally one updates the parameters in the search 

direction using               . 

In the flat Euclidean space, evaluating the search direction amounts to computing:  

                  (30) 

where  and  is suitably defined, with commonly employed variants such as Fletcher-Reeves 

(FR), Polak-Ribiere (PR), and Hestenes-Stiefel (HS) [Nocedal06]: 

  
    

  
    

    
      

    (31) 

  
    

  
 (          )

(     
       )

    (32) 

  
    

  
   (          )

(         )      
    (33) 

The majority of previous gradient-based statistical inference approaches employ the flat space 

approximation of the conjugate gradient [Kuusela09] [Honkela10] [Hoffman13], based on the 

rationale that the minimization of functions on a Riemannian manifold is locally equivalent to the 

minimization on an Euclidian space (since every Riemannian manifold can be isometrically embedded 

in an Euclidean space). However, as the statistical space is a curved manifold, most of the Euclidean 

space operations become undefined. For instance, the minimization of  is not performed any longer 

along straight lines but along geodesics. Another example is the additive rule employed for updating 

the search direction, which makes no sense in the Riemannian manifold - it has no geometrical 

meaning, and as a consequence, the resulting sequence of parameters updates can significantly 

deviate from the true geodesic whose end-point is the optimal solution. Since Hk−1 does not reside in 

the same tangent space as Gk, it follows that it needs to be transported to the tangent space of xk in 

order to enable the addition of the two vectors.  

a) b)

M

τHk-1

HkGk

TxM
xk

geodesic

xk+1xk-1

Hk-1 geodesicxk Hk-1

HkGk

xk+1

xk-1

 

Figure 21: Conjugate Gradient in: a) flat (Euclidean) space, and in b) curved (Riemannian) space. 

 
 

Figure 21(a) illustrates the CG algorithm in Euclidean space, and Figure 21(b) depicts its counterpart 

in Riemannian space. When compared to the flat (Euclidean) space approximation, the Riemannian 

conjugate gradient provides significant advantages in terms of convergence speed and solution 

accuracy. 

Subsequently, after conceptually introducing the basic notions of geometry on a manifold [Amari85] 

[Amari00] [Absil08], we shall address the adaptation of the Euclidean conjugate gradient 

optimization method on the Riemannian space. For notation brevity, in what follows we shall denote 

xk as variational parameters θk. 

Tangent space and geodesics 

A tangent space TxM, can be defined as the space composed out of all vectors tangent to the 

manifold curves which pass through a point x on the manifold M. A graphical illustration of such a 

tangent space is presented in Figure 22.  
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TxM

M

ξ
X C(t)

 C(0)

 

Figure 22: A tangent space Tx M and a tangent vector ξ, given the point x = C (0) on the manifold curve C (t). 

 

A geodesic between two manifold points is the shortest curve on the manifold which connects the 

two points. Its velocity is constant (i.e., the tangent vectors along the geodesic are parallel) and its 

acceleration is zero. Geodesics on manifold can be seen as a generalization of the Euclidean concept 

of straight lines. 

Exponential map and retraction 

Conceptually, given a point x on the manifold M, the exponential mapping  

assigns to a tangent vector ξ ∈ TxM, the unique point (Expx(ξ)) on the geodesic, whose distance from 

point x is given by the length of the tangent vector ξ. Note that Expx(tξ) is the geodesic which 

emanates from point x on the manifold, in the direction of tangent vector ξ. The exponential map 

concept is graphically illustrated in Figure 23.  

TxM

M

ξ

geodesic
Expx(ξ)

X

 

Figure 23: Illustration of an exponential mapping Expx at point x, which maps the tangent vector ξ ∈ TxM to the 

point Expx (ξ) on the manifold. 

 
Generalizing, retractions serve a similar purpose, namely mapping vectors in the tangent plane of 

point x to manifold points situated near point x. In particular, the exponential mapping can be 

regarded as the ideal retraction; however, unfortunately it requires the geodesic curve calculation, 

which is computationally expensive in practical scenarios (one being required to solve a second-order 

nonlinear ordinary differential equation, which generally does not admit a closed form solution). One 

way to alleviate the computational challenges associated with the Riemannian exponential map, 

while retaining the convergence properties of the optimization method, is by using any retraction 

instead. While the exponential map satisfies the constraint of zero-acceleration associated with a 

geodesic (which is hard to ensure in practical situations), a general retraction imposes no second (i.e., 

non-zero acceleration) or higher order requirements. For instance, while an exponential map 

corresponds to moving along the true geodesic, a first order retraction corresponds to moving along 

a curve on the manifold that initially moved in the specified direction (non-zero acceleration). 

Parallel translation and vector transport 

Parallel translation, as depicted in Figure 24, of a tangent vector ξ from point x to point y along a 

manifold curve C, can be defined as the affine connection  , where an affine connection is an 

(infinitesimal) linear relation between the tangent spaces of two neighbor manifold points. For a 

Riemannian manifold there exists a unique affine connection   compatible with the Riemannian 

metric, namely the Levi-Civita connection (which is isometric, preserving the angles and the norm of 

the tangent vectors). In Euclidean spaces, the Levi-Civita connection is reduced to the classical 

directional derivative. 
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Figure 24: Illustration of parallel translation of tangent vector ξx from point x ∈ Tx M to point y ∈ Ty M along 

the manifold curve C. 

 

The parallel translation induced by the Levi-Civita connection is usually along the geodesic defined by 

the exponential map of a tangent vector, and thus faces similar computational problems as 

previously discussed. As exponential mapping is a particular case of retraction, in a similar way, 

parallel translation along a geodesic is a particular form of the more general concept of vector 

transport (vector transport can be regarded as a first-order approximation of parallel translation). 

Roughly speaking, a vector transport τ specifies how to transport a tangent vector between two 

tangent spaces.  

M

x

Y=Rx(η)

TxM

TYM  = T  (η)MRx

ξ
η τη

 

Figure 25: Illustration of vector transport τη, which transports vector ξ ∈ TxM to vector τη (ξ) ∈ Ty M. 

Figure 25 presents the transport vector τη, i.e., the application mapping the tangent vector ξ from 

point x (which defines the tangent space TxM) to point y = Rx(η)  (which defines another tangent 

space, TyM), w.r.t. the tangent vector η ∈ TxM. 

The computational efficiency of an optimization algorithm in a Riemannnian manifold depends to the 

largest extent on the choices of the affine connection   and of the retraction . In our framework, 

we employ the Levi-Civita connection. As far as the retraction is concerned, we follow the approach 

proposed in [Absil08], specifically, we employ vector transport by differentiated retraction as a 

computationally tractable relaxation of parallel translation.  

M
Rx(η)

τη(ξ)

ξ

η 

η+ξ 

Rx(η+ξ)

TxM

 

Figure 26: Illustration of differentiated retraction as vector transport. 

 

Illustrated schematically in Figure 26 the vector transport is formally defined as: 
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Having presented intuitively the basic Riemannian geometry concepts which serve our purpose and 

their practical, computationally efficient relaxations, we are now in position to address the 

adaptation of the CG optimization algorithm in the Riemannian manifold. In the case of statistical 

Riemannian manifolds, (29) are generalized to: 

                   (35) 

where , denotes the Riemannian gradient of the objective function, and τHk−1    

defines the parallel translation of Hk−1 (see Figure 21(b)). One iteration of the CG algorithm can be 

outlined as follows: at iteration k, the Riemannian gradient Gk of the objective function is evaluated, 

and the new search direction Hk for geodesic minimization is conjugated to the gradient and is 

evaluated to be a combination of the previous search direction Hk−1 and the current Riemannian 

gradient at step Gk; finally a step is made in the direction of Hk to obtain xk+1, which is the minimum 

of the objective function in the direction of Hk−1. In Algorithm 1, we present the formalism of the CG 

method on Riemannian manifolds. 

Algorithm 4: Riemannian conjugate gradient method for optimizing the lower bound ₤ 

Input: the objective function  : M R 

Output: global minimize of   

Set an initial point xo on M 

Set the initial search direction Ho = -Go 

k=0 

repeat 
 Calculate the step length ak > 0 satisfying (30) and (31) 

 Take a minimizing step by setting : 

Xk+1 = Rxk( kHk) 

 Calculate     
   

 Compute the new search direction 

Hk+1 = -Gk+1 +      
        

 (  ) 

Until sufficiently minimizes the objective   

 
In Algorithm 1, the employed vector transport   

    
(  ) is defined as: 

 

{

‖  ‖  

‖     
(  )‖   ( ) 

      
(  )     ‖      

(  )‖  
   ‖  ‖  

     
(  )                

 

                  (36)  

 

where  is the vector transport associated with the differentiated retraction  [Absil08], 

which is scaled when the norm of the previous search direction is increased [Sato13]. The step size 

 is chosen such that it obeys the following two relations, known as the strong Wolfe conditions 

[Nocedal06] [Ring12], i.e., the sufficient decrease and curvature conditions which prevent the step 

length to be excessively short: 

 ( )    (  )      〈    〉  
    (37) 

 〈      ( )   ,  -〉        〈    〉  
|   (38) 

where for compactness of notation, we employed  instead of    
(    ). 

The global convergence of the Riemannian conjugate gradient was proved in [Ring12], under the 

assumption that the vector transport does not increase the norm of the tangent vectors. Note that 

while for parallel translation, a vector is moved along a geodesic, staying parallel to itself and 

preserving its magnitude, vector transport imposes no constraint of vectors norm preservation. In 
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[Sato13], the authors relax the norm constraint, and rescale the transported vector only when 

necessary (i.e., in the cases when the tangent vector norm was increased during transport), while 

ensuring the global convergence property. As concerns the speed of convergence, using the rescaled 

vector transport proposed in [Sato13], results in supralinear convergence of the sequence {xk} to the 

global minimizer. 

4.2.6. Conclusion and Future Work 

In this section we introduced a Probability Density Functions (PDFs) based Integrated Circuit (IC) 

reliability assessment framework. Since the efficiency of reliability driven design-time optimizations 

and of run-time management frameworks directly depend on the reliability evaluation accuracy, 

instead of relying on a single probabilistic value to reflect the reliability status of a circuit, we propose 

to employ a distribution of probabilities for a closer adherence to a faulty circuit stochastic behavior. 

To the extent of our knowledge, the proposed approach describes the first attempt to assess the 

reliability of a circuit based on PDFs.  

The framework is based on a variational inference method, and exploits the geometry of the 

statistical manifold to yield a fast and scalable reliability assessment approach, which can be 

potentially integrated in reliability aware synthesis tools and Dynamic Reliability Management 

frameworks.    

Ongoing work consists in the numerical assessment of the proposed approach. As avenue to future 

work, we aim to introduce the time component in the proposed framework and extend its area of 

applicability to sequential circuits. Other potential directions of research continuation, include 

exploring a measure different than the KL divergence for assessing two distributions dissimilarity 

[Gibbs12] [Minami02], and if found appropriate, further developing the afferent inferential 

mathematical apparatus.  

 

5. Error Coding Driven Graph Augmentation (Task 5.3) 

Abstract:  In this section we present a novel method to design fault tolerant circuitry. In particular we 

focus on improving the fault tolerance capability of combinatorial logic by means of error correction 

codes. Our method is completely general and can be applied to any combinatorial logic without prior 

knowledge of the circuit functionality.  The idea is adapted from the field of forward error correction 

for telecommunications. The study presented here focuses mainly on encoding aspects for protecting 

fault prone Boolean functions. 

Publications:  Unpublished work (work in progress, a conference paper planned). 

5.1. Codeword Prediction Encoder (CPE) for Fault Prone Boolean Functions 

The approach presented in the previous section attempts to reduce the error probability on the 

output of a combinatorial circuit by choosing an optimal realization of the Boolean function under 

investigation. 

A different approach to improve fault tolerance is based on the use of methods derived from Error 

Control Coding (ECC) theory to protect the combinational logic that implements a particular Boolean 

Function.  The focus of this approach is not on changing the combinational logic but on augmenting it 
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to enable the retrieval of the correct output even if errors have occurred. The process carries 

remembrance with the process of adding redundancy to the transmitted signal in a communication 

system, and is described in details in the next section. 

The main challenges include: 

 How to add minimum amount of redundancy to correct the given number of errors (see Task 

5.6)? 

 How implement a system capable to take advantage of the added redundancy? 

In relation to the second problem, two scenarios are under investigation. In the first, we consider the 

case where the device/logical block that needs to “receive” the augmented output if fault free. In the 

second both logic blocks are assumed error prone. 

The first scenario presents an evident asymmetry between the “encoder” and the “decoder”.  An 

example of unbalanced system where this scenario is a realistic assumption is any system where 

some of the modules have harder power constraints compared with others. Examples vary from 

wireless communication between battery powered host and plugged in master, satellite and space 

exploration communication systems or even in-chip voltage islands. The “perfect decoder” 

assumption allows us to consider ECC codes for which a faulty decoder is not available. In particular it 

makes possible to use coding schemes other than Low Density Parity Check Codes, the only known 

ECC for which fault tolerant decoder exist. In doing so, it allows the comparison of traditional error 

correction codes and Low Density Parity Check codes. This scenario together with implementation 

results for several ECC schemes are presented in section 5.2. 

The second scenario assumes both “encoder” and “decoder” to be fault prone. Given such situation 

only LDPC codes are valid candidates. Moreover to allow strict mathematical analysis assumptions 

are made on the characteristic of the Boolean function to be protected. Preliminary results and 

investigation on size and feasibility of the proposed method in this scenario are presented in section 

5.3 

5.2. Ideal Decoder/Generic Function 

The approach presented here can be seen as an expansion of the Check Symbols Generation 

[Touba97] [Mohanram03] and the Parity Prediction Function [Sogomonjan93] [Manich96] [Ko01], 

where circuitry is added to a combinatorial network to generate extra bit to ensure parity. We 

formalize these approaches and extend them to take full advantage of the power of error correction 

codes to enable correction of the faults not just detection. 

5.2.1. Proposed Scheme 

Forward error correction methods generate a codeword   C, with C being the particular code 

being used, by encoding the information message  . We call the encoder  . Assuming without loss of 

generality that the encoder is systematic the codeword   is composed by   and several extra symbols 

called the parity   (Figure 27).  
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Figure 27: Normal Encoder 

 

We look for a way to apply such procedure on an unreliable combinatorial circuit    with inputs 

  and outputs  . The simplest solution would be to encode the outputs   (Figure 28), however this 

approach suffers from the fact that if a fault incurs in    then  ̃ is the input of the encoder that gives 

 ̃.  ̃  may or may not be a codeword of  C, depending of the presence of faults in the encoder logic, 

however no decoder will be able to retrieve   from it. Another disadvantage of the scheme is that 

from hardware prospective the concatenation of    and   increases the critical path and hence 

limits the throughput. 

 

Figure 28: Erroneous architecture 

 

We propose to combine the encoding process in the combinatorial circuit to ensure that the 

outputs   of the new combinatorial logic     is a codeword as depicted in Figure 29.  
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Figure 29: Proposed Encoder 

In this new scenario    computes not only the outputs   but also a set of parity   that 

guarantee,   - ∈  , (systematic encoding is used). 

To understand how the new combinatorial logic is obtained lets define as   ( ) the function 

computed by   and let's assume that we are working with binary codes, then     ( )    ( )   

with (   ) the dimensions of the code C. The functionality of    can be described as a function   ( )   

with      ( )    ( )   where   is the number of binary inputs and   is the number of binary 

outputs. The function  ( ) that maps the inputs directly to the parity is      ( )     ( )  and 

is the composition  ( ( )). This can be seen simply by considering how its result must be equivalent 

of computing  ( )  and then  ( )   on the results. 

It is evident that even if the operation is equivalent to serially concatenating the two blocks it 

computes the parity on an independent path then the original combinatorial logic hence it does not 

suffer from the fault propagation scenario discussed above.  

In a sense the function  ( )  predicts the parity of the outputs    from the inputs     as if a standards 

encoder were implemented with   as inputs. 

For all linear FEC codes the encoding process can be expressed as a matrix multiplication of the input 

message and the generator matrix  , the composition  ( ( )) is then equivalent to:  

 ( )  ∑    ( ) 
 
   (   )       ∈ *     +                                                   (39) 

The combinatorial logic that compute the parity is a linear combination of the various functions that 

compute the output bits, as such the resulting logic may be costly, both with regards with area 

consumption and in term of critical path. 

5.2.2. Hardware Impact Investigation 

This section presents several applications of this encoding technique to two IP cores. The use of 

different ECC codes is investigated. For reference the results are compared with the original 

size/timing and with the Triple Modular Redundancy (TMR) scheme [Taylor68-a].   

 IP cores 

To make the study meaningful for real application we applied the encoding scheme on two IP cores 

commonly used in telecommunication systems. In particular both the cores presented are used in 
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Optical Transport Network (OTN) and both have been tested with throughput 100Gb/s. The cores 

have been chosen for the fact that they are both purely combinatorial and of considerable size. 

Moreover, the codes are parametric and the number of inputs/outputs can easily be modified to 

match the size of the ECC code. 

I. The Scrambler; 

II. The Chien Search block for Reed Solomon decoding. 

 

 ECC codes used in our analysis 

Several codes are investigated to span a large variety of possibilities in terms of codelength, error 

correction capability, encoding/decoding complexity, etc. These include: 

 Hamming code; 

 BCH codes; 

 Low Density Parity Check (LDPC) codes; 

 Unequal Error Protection (UEP) LDPC codes; 

 Low Density Generator Matrix (LDGM) codes. 

 

 Implementation 

Each of the two IP cores has been implemented using all the proposed codes as fault correction 

option. All implemented CPE logic have        Inputs and both cores have been designed to match 

the code information dimension. For ECC with dimension       the input signals have been 

grouped in  
 

  
 groups and the ECC applied for each group. 

 

 Hardware Implementation Results 

In this section the area and timing results from implementing the schemes on ASIC technology(TSMC 

45nm) are presented. Area and Delay results for the application of the proposed fault protection 

scheme for the Scrambler and Chien Search cores are presented in Table 3 and  

Table 4, respectively. Figure 30 and Figure 31 show a graphical representation of the area 

consumption while Figure 32 and Figure 33 present charts of the delay comparison for the two cores. 

It can be seen how the implementation of the CPE protection can have a significant impact in term of 

area and delay. It is also evident how the cost of the scheme is dependent on the combinatorial logic 

to be secured.  

In the case of the Scrambler core (Table 3, Figure 30, Figure 32) the logic consists of long chains of 

XORs. Appling Eq. (14) to it results again on a simple chain of XOR. Moreover due to cancellation 

effects (XORing the same input twice is equivalent to not consider the input) the average length of 

the XOR chain does not increase. As a result most of the investigated CPE schemes have similar delay 

and similar area consumption. A considerable variation of this trend is the case of the Hamming 

code, for which the implementation has a smaller area consumption and delay. This is due to the 

simplicity of the code used that protects only against single error events. 
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The combinational logic of a Chien Search core is considerably less structured and more complex 

than the Scrambler circuit. The implementation of a Chien Search block requires the implementation 

of finite field arithmetic operations together with multiplexing and adders. These varieties of 

operations make the combinatorial circuit considerably less structured and more complex. As a 

consequence, the parity calculation logic does not simplify and it results in higher area consumption 

and longer delay (Table 4, Figure 31, Figure 33). This is particularly true for LDPC codes since they 

require high dimension to achieve good performances that means more terms in Eq. (14). 

Table 3: Scrambler-core Synthesis results comparison. 

Code Scheme Area Overhead 
(%) 

TMR 
comp. 

(%) 

% 
TMR 

saving 

Delay
(ns) 

 

% of 

original 

 

TMR 
comp. 

(%) 

% TMR 

saving 

Scrambler 130771 - -  3.19 100   

Triple Modular 
Redundancy 

261543 200 
100 0 3.21 100 100 6.54 

Hamming 101897 77 39 61 2.97 93.10 92.52 7.17 

BCH 212022 162 80 19 2.98 93.42 92.83 6.85 

LDGM (McKay 
design) 

172492 131 
65 34 2.99 93.73 93.15 7.48 

LDGM (Random 
design) 

214830 164 
80 18 2.88 90.28 89.72 6.85 

LDPC (McKay 
design) 

265280 202 
98 -1 2.93 91.85 91.28 10.28 

LDPC 
(Richardson 

design) 

265298 202 

99 -1 3.02 94.67 94.08 8.72 

UEP-LDPC 265659 203 99 -2 3 94.04 93.46 5.92 

 

Table 4: BCH Chien Search Synthesis results comparison. 

Code Scheme Area Overhead 
(%) 

TMP 
comp. 

(%) 

% 
TMR 

saving 

Delay 
(ns) 

 

% of 

original 

 

TMR 
comp. 

(%) 

% TMR 

Saving 

Chien Search 
core 

7310 0   
3.04 100 

  

Triple 
Modular 

Redundancy 

14620 200 100 0 

3.2 105.26 100.00 -39.06 

Hamming 18921 258 82 -29 2.48 81.58 77.50 -27.81 

BCH 73008 998 300 -399 4.09 134.54 127.81 31.88 

LDGM (McKay 
design) 

19662 268 
85 -34 2.18 71.71 68.13 22.50 

LDGM 
(Random 
design) 

20512 280 

82 -40 2.2 72.37 68.75 31.88 
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LDPC (McKay 
design) 

94110 1287 
377 -544 4.65 152.96 145.31 31.25 

LDPC 
(Richardson 

design) 

104972 1436 

418 -618 4.69 154.28 146.56 -45.31 

UEP-LDPC 111025 1518 444 -659 4.45 146.38 139.06 -46.56 

 

 

Figure 30: Area consumption for several CPE schemes applied on Scrambler core 

 

 

 

 

Figure 31:  Area consumption for several CPE schemes applied on Chien Search core 
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Figure 32: Delay comparison for CPE applied on Scrambler Core 

 

 

Figure 33: Delay comparison for CPE applied on Chien Search Core 
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From the data gathered, the application of the proposed scheme is an appealing solution, even for 

powerful ECC, in the case of the regular combinatorial circuits, while only the use of simple Hamming 

or TMR schemes seems to be a feasible option for irregular complex logic. Several considerations and 

possible ways forward are presented in next section. These avenues will be studied more in detail 

during the next year. 

 

5.2.3. Conclusion and Future Work 

Each of the ECC code presented has a different error correction capability that has not been 

considered yet.  Considering for example the Chien search core considered above, Table 4 shows that 

the use of  LDPC codes requires substantially more area that the others, however it does not consider 

that they guarantee the ability to correct complex multiple-errors events. Ideally, in order to assess 

the quality of an ECC scheme over the other a figure of merit taking into consideration the extra 

hardware requirements balanced out against the fault tolerance improvements that need to be 

developed.  

How to define and obtain such figure of merit is an open question. In particular, attempting to define 

a method to evaluate the performance of the CPE scheme leads to many questions: Should only the 

maximum number of errors be considered or should a simulation based approach be taken? Should 

the combinational circuit complexity being considered when selecting a particular code? Does the 

logic network representing the circuit have an effect on the error type and distribution? Is there a 

systematic way to synthesise a logic network which is decodable? 

Another point of interest is the link between the generator matrix  , of the ECC code and the 

complexity of the resulting CPE architecture. The area of the parity prediction circuitry is proportional 

to the complexity of the generator matrix of the code, i.e., the numbers of ones in the matrix. It is 

hence possible to reduce the area by simple choosing an optimal   for a given ECC code. Morover, 

for each code type the growth of the number of ones in relation to the information size   is different. 

For some codes it grows linearly for other exponentially. This means that the choice of the code to 

use is dependent on the number of inputs of the combinatorial logic under test.  A better 

understanding of this link, and its repercussions on the hardware consumption, is needed. This will 

allow defining a systematic methodology to decide on the best ECC code to be used for a given 

circuit. Such a methodology will be very important in deriving a framework towards the development 

of a Boole-Shannon type limit for designing reliable digital circuits. 

5.3. Unreliable Decoder/Specific Functions 

In this section, we extend our investigation on the problem of protecting the functionality of a 

combinatorial circuit in the scenario where also the decoder is implemented with faulty hardware. To 

enable us to deal with such scenario several assumption are necessary. First we assume that the 

functionality of the combinatorial circuit    can be described as a linear Boolean function 

    ( )    ( ) .  In other words, there exists a binary matrix  ∈     (  ( )) such that 

   ( )     , ∀  (       ) ∈   ( ) .  Note that this restriction was not necessary in the 

previous section. 

We further assume that the circuit   implements the encoding of a systematic Low-Density Parity-

Check (LDPC) code. The significance of this assumption is twofold.  
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 First, the encoding function     ( )    ( )  is systematic, meaning that that for any 

 ∈   ( ) , the corresponding codeword    ( ) is of the form   (   ), with 

 ∈   ( ) ,      .  

 Second, there exists a sparse parity-check matrix  , such that      , for any codeword  . 

Without loss of generality, we may assume that   ,     -, with   ∈     (  ( ))  and 

  ∈     (  ( )), such that    is invertible. 

Therefore, we may write: 

      ,     -  (   )        
          

          

Then, by defining     
       ∈     (  ( )), we have: 

      ∀ ∈   ( )  

The matrix   is the equivalent of the function  ( )presented in Eq. (14) once the two assumptions 

taken are valid. 

Finally, we denote by   a combinatorial circuit implementing (the multiplication by)  .  

 

Using the above notation, a fault-tolerant implementation   can be achieved by using the CPE 

approach as shown in Figure 34, where    denotes a circuit implementing a decoding algorithm    

of the LDPC code defined by the parity-check matrix  . 

 

Figure 34: CPE approach for fault-tolerant computing of    ( )      

 

Since we consider noisy (unreliable) circuits, we always distinguish between the functionality of a 

circuit (e.g.,       ) and the circuit itself (e.g.,        ). In particular, the circuits   and    

produce noisy versions, denoted by  ̃ and  ̃, of       and      , respectively. The decoding 

circuit    produces an estimate of  , denoted by  ̂.  

The success of the decoding operation (i.e.,  ̂   ) depends on the reliability of the three circuits 

from Figure 34: the reliability of    and   circuits determines the noisiness of the decoder’s input 

( ̃  ̃), while the reliability of    determines the ability of the decoder to provide effective error 

correction. 

In Deliverable D3.1 [i-RISC/D3.1], we investigated the performance of several LDPC decoders running 

on noisy hardware. Several Min-Sum-based and FAIDs decoders have been analyzed, and we proved 

that they are able to provide reliable error protection, even if they run on noisy hardware. Moreover, 

we have shown that some decoders are intrinsically robust to circuit noise. For instance, the noisy 

Self-Corrected Min-Sum (SCMS) decoder has been shown to exhibit almost the same performance as 

the noiseless one [Kameni13-a, Kameni13-b]. These results make us confident on the potential of 

the CPE approach in providing fault-tolerant implementations of combinatorial circuits. 
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5.3.1. Overall Circuit Complexity Analysis 

Throughout this section, by size of a circuit we mean the number of the elementary logic gates that 

have to be interconnected to form the circuit function. 

As it can be seen from Figure 34, the size of the fault-tolerant CPE implementation is given by: 

Size(CPE) = Size(  ) + Size( ) + Size(  ) 

Although LDPC decoding algorithms consist of iterative message passing procedures, in practical 

implementations only the circuitry corresponding to a decoding iteration has to be instantiated in 

hardware. In this case, the size of the decoding circuit is known to increase linearly with the size of 

the decoding input. Thus, assuming that the rate   ⁄  of the code is constant, we can write Size(  ) 

=  ( ) =  ( ). 

If   is a random matrix, the size of the combinatorial circuit implementing   increases linearly with 

   . Therefore, assuming that the ratio   ⁄  of matrix dimensions remains constant, we can write 

Size(  ) =  (   ) =  (  ). Similarly, we have Size( ) =  (  ).  

Moreover, since    and   are of comparable sizes, which asymptotically dominate the size of the 

decoding circuit   , we can (asymptotically) approximate the size of the fault-tolerant CPE 

implementation by: 

Size(CPE)   2   Size(  ) 

 

This is to be compared with the size of classical approaches for fault-tolerant computing, as for 

instance N-Modular Redundancy (N-MR) systems, illustrated in Figure 35. In such systems, the 

combinatorial circuit    is replicated N times, and a majority voting (MV) systems is used to estimate 

the correct output the circuit. Thus, clearly: 

Size(N-MR) = N   Size(  ) 

 

 

Figure 35: N-MR approach for fault-tolerant computing of    ( )      

Finally, it is also worth noting that in contrast with the N-RM approach, which relies on 

repetition codes, the proposed CPE approach relies on LDPC codes, known as capacity approaching 

codes, which greatly improves the reliability of the whole system.  

5.3.2. The Case of Sparse   Matrix  

The case of a sparse   matrix is probably one of the most advantageous cases. First, if   is sparse, the 

size of the circuit computing   increases only linearly with  , that is, Size( ) =  ( ). Second, the 
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sparsity of   also results in a lower error probability on  ̃, hence improving the reliability of the 

decoder input. 

Recall that matrices  ,  , and   ,     - are related by     
       .  Therefore, for a given 

matrix  , we would like to find sparse matrices   ,     - and  , such that: 

     
       , and 

 The LDPC code defined by   has good decoding performance. 

 Such a decomposition method is currently under investigations. 

Finally, it is worth noting that exist matrices   such that   is sparse: it suffices to choose first 

  ,     - and  , and then to take   the matrix defined by     
      , where   

  is such that 

  
      . Although this does not necessarily represent a “practical” case, it could be seen as a first 

step toward a proof of concept of the proposed approach.  

These approaches (which are part of the Task 5.3) will be further investigated during the second year 

of the project. 
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6. Conclusions and Next Steps 

In this report we summarized the activities within WP5 for the first 12 months of the i-RISC project. 

We investigated existing data structures used in the synthesis of digital circuits that are also useful in 

the context of efficient, fault tolerant circuit synthesis. A special emphasis was put on the versatility 

of the data structure in terms of supported types of logic networks/circuits(combinational and 

sequential), scalability with increased circuit complexity, pre and post- technology mapping 

optimization results, availability of open source tool support, etc.  We selected AND-Inverter Graphs 

(AIG) as basic data structures for circuit representation due to their scalability and ability to capture 

the error models developed in WP2, as well as power, area, and delay information. This data 

structure is suitable to both sequential and combinational circuits and has been proven on both ASIC 

and FPGA technologies. We further utilized the selected data structure in the context of the ABC 

open source tool to synthesise and analyse the reliability of some simple combinational circuits. An 

initial tool incorporating the AIG and some local transformation rules based on Boolean algebra has 

been proposed for computing the reliability function and it was demonstrated that through the 

selective application of the proposed rules, the reliability could be significantly improved. The 

proposed data structure will also be used to explore systematic multi-objective optimization 

methodology of fault tolerant circuits in Task 5.4.  

Following the data structure selection, a novel design flow was proposed, which combines state of 

the art academic (including custom i-RISC) tools with more established industry tools. The proposed 

design flow is used to synthesise, optimize, analyze and validate our hypothesis and results. Some 

industry tools which combine HSPICE and Verilog/VHDL were also evaluated and will be used 

throughout the WP6 tasks in conjunction with i-RISC custom tools.  Tasks 5.1 and 5.2 were 

successfully completed as we proved that the proposed data structures and design flow allow custom 

algorithms and methodologies to be integrated into widely used circuit design frameworks. 

In the context of Task 5.2 we also introduced a Probability Density Functions (PDFs) based Integrated 

Circuit (IC) reliability assessment framework. This fast and highly accurate approach, which is 

fundamentally different than state of the art methods, is motivated by the fact that the effectiveness 

of reliability driven design-time optimizations and reliability run-time management frameworks 

directly depends on the reliability evaluation accuracy. To increase the evaluation accuracy, instead 

of relying on a single probabilistic value to reflect the reliability status of a circuit, we proposed to 

employ a distribution of probabilities for a closer adherence to a faulty circuit stochastic behavior. To 

the best of our knowledge, we are the first to propose a method to assess the reliability of a circuit 

based on PDFs.  The proposed framework, which is based on a variational inference method, and 

exploits the geometry of the statistical manifold to yield a fast and scalable reliability assessment 

approach, can be utilized in reliability aware synthesis tools and constitutes a first step towards 

achieving Task 5.4 goals.  

We also started work on the Task 5.3 with a number of encouraging developments on Error 

Correction Coding driven graph augmentation.  We identified a number of combinational functions, 

which were then encoded and the hardware implementation results for a number of coding schemes 

were compared and contrasted. Further efforts will be in developing also efficient decoding schemes 

for the fault tolerant circuits in the presence of a given error model. An initial set of functions was 

identified which will allow us an initial analysis of complexity of implementation versus error 

correction capability (a first step in our quest towards a Boole-Shannon limit for digital circuits). The 
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emphasis for the remaining period will be in developing tools which will systematically synthesize 

reliable circuits, using a reliability driven multi-objective optimization approach. Also, we will 

continue our quest towards expanding the number of functions for which a Boole-Shannon limit can 

be established.  

 

 
 

  



D5.1: Data structures and design flow for fault tolerant circuit synthesis 

 

Page 60 of (65) © i-RISC, January 2014 

 

References 

[ABC12]      ABC: A system for Sequential Synthesis and Verification, Berkeley Verification and Synthesis 

Research Center, 2012 (www.eecs.berkeley.edu/~alanmi/abc/abc.htm). 

[Absil08]  P. A. Absil, R. Mahony, R. Sepulchre, Optimization algorithms on matrix manifolds, Princeton 

University Press, 2008. 

[Amari00]  S. Amari, and H. Nagaoka, Methods of information geometry, Volume 191 of Translations of 

Mathematical Monographs, American Mathematical Society, 2000. 

[Amari85]  Differential-geometrical methods in statistics. Volume 28 ofLecture Notes in Statistics, Springer-

Verlag, 1985. 

[Amari98]  S. Amari, “Natural gradient works efficiently in learning,” in Neural Computation 10(2), 1998, pp. 

251–276. 

[Bahar03] I. Bahar, J. L. Mundy, and J. Chen, “A probabilistic-based design methodology for nanoscale 

computation,” in International Conference on Computer Aided Design, 2003, pp. 480–486. 

[Bala07] P. Balasubramanian and K. Anantha, “Power and delay optimised graph representation for 

combinational logic circuits”, International Journal of Computer Science, Vol. 2, No. 1, 2007, pp. 47–53. 

[Balasubramanian07] Balasubramanian, P.; Edwards, D.A., "Synthesis of Power and Delay Optimized NIG 

structures," Electrical and Computer Engineering, 2007. CCECE 2007. Canadian Conference on , vol., no., 

pp.239,242, 22-26 April 2007. 

[Balasubramanian06] P. Balasubramanian, C. H. Narayanan and K. Anantha, “Low Power Design of Digital 

Combinatorial Circuits with Complementary CMOS Logic”, International Journal of Electronics, Circuits and 

Systems, Vol. 1, No. 1, 2006, pp. 10–18. 

[Beal03]  M. J. Beal, “Variational algorithms for approximate bayesian inference”, 2003. 

[Bhaduri05]  D. Bhaduri and S. Shukla, “Nanolab: A tool for evaluating reliability of defect-tolerant nano 

architectures,” in IEEE Transactions on Nanotechnology, 4(4), 2005, pp. 381–394. 

[Bollig96] Beate Bollig, Ingo Wegener. Improving the Variable Ordering of OBDDs Is NP-Complete, IEEE 
Transactions on Computers, 45(9):993–1002, September 1996. 

[Borkar05] S. Borkar, “Designing reliable systems from unreliable components: the challenges of transistor 

variability and degradation,”Micro, IEEE, vol. 25, no. 6, pp. 10–16, 2005. 

[Brayton 10] R. Brayton and A. Mishchenko, “Abc: An academic industrial-strength verification tool,” in 

Proceedings of the 22Nd International Conference on Computer Aided Verification, pp. 24–40, 2010. 

[Brayton87] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang, “Mis: A multiple-level logic 

optimization system,” Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 6, 

no. 6, pp. 1062–1081, 1987. 

[Brayton10] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength verification tool”, 

Proceedings of CAV'10, Springer, LNCS 6174, 2010, pp. 24–40. 

[Bryant86] R. Bryant, “Graph-based algorithms for Boolean function manipulation”, IEEE Transactions on 

Computers, Vol. 35, No. 8, 1986, pp. 677–691. 

[Choudhury09] M.R. Choudhury, and K. Mohanram, “Reliability analysis of logic circuits.” in IEEE Transactions 

on Computer-Aided Design of Integrated Circuits and Systems, 28(3), 2009, pp. 392–405. 

[Constantinescu03] C. Constantinescu, “Trends and challenges in vlsi circuit reliability,”Micro, IEEE, vol. 23, no. 

4,pp. 14–19, 2003.  

http://dx.doi.org/10.1109/12.537122


D5.1: Data structures and design flow for fault tolerant circuit synthesis 

 

© i-RISC, January 2014 Page 61 of (65) 

 

[Cranwell07]  R.  Cranwell, “Ground Vehicle Reliability Design-for-Reliability,” in DoD Maintenance Symposium, 

Orlando, FL, 2007. 

[Crowe98] D. Crowe, and A. Feinberg, “Stage-Gating Accelerated Reliability Growth in an Industrial 

Environment,” in Proceedings Institute of Environmental Sciences, 1998, pp. 1–9. 

[Darringer81] J. Darringer, W. H. Joyner, C. Berman, and L. Trevillyan, “Logic synthesis through local 

transformations,” IBM Journal of Research and Development, vol. 25, no. 4, pp. 272–280, 1981. 

[Mehrotra11] R. Mehrotra, T. English, M. Schellekens, S. Hollands, and E. Popovici, “Timing-driven power 

optimisation and power-driven timing optimisation of combinational circuits,” Journal of Low Power 

Electronics, vol. 7, no. 3, pp. 364–380, 2011. 

[Ercolani89] S. Ercolani, M. Favalli, et. al., “Estimate of signal probability in combinational logic networks,” in 

Proceedings of the 1st European Test Conference, 1989, pp. 132–138. 

[Felipe08] M. Felipe, R. Teresa and T. Yago, “Disjoint Region Partitioning for Probabilistic Switching Activity 

Estimation at Register Transfer Level”, PATMOS, 2008, pp. 399–408. 

[FelipeY08] M. Felipe, T. Yago and R. Teresa, “A BDD Proposal for Probabilistic Switching Activity Estimation”, 

International Conference on Design of Circuits and Integrated Systems (DCIS), Grenoble, France, Nov. 2008, pp. 

54–62. 

[Felipe05] M. Felipe, T. Yago and R. Teresa, “Exploiting VHDL-RTL features to reduce the complexity of power 

estimation in combinational circuits”, Research in Microelectronics and Electronics, Jul. 2005, pp. 111–114. 

[Figueiro11] Figueiro, T.; Ribas, R.P.; Reis, A.I., "Constructive AIG optimization considering input 

weights," Quality Electronic Design (ISQED), 2011 12th International Symposium on , vol., no., pp.1,8, 

14-16 March 2011. 

[Franco08-a] D.T. Franco, M.C. Vasconcelosa, L. Navinera, and J.-F. Navinera, “Reliability analysis of logic 

circuits based on signal probability,” in Proceedings of the 15th IEEE International Conference on Electronics, 

Circuits and Systems (ICECS), 2008, pp. 670–673. 

[Franco08-b]  ——, “Signal probability for reliability evaluation of logic circuits,” in Microelectronics Reliability, 

48(8), 2008, pp. 1586–1591. 

[Geiger90]  D. Geiger, T. Verma, and J. Pearl, “Identifying independence in Bayesian networks,” in Networks, 

1990, pp. 507–534. 

[Gibbs12] A. L. Gibbs, and F. E. Su, “On choosing and bounding probability metrics”, in International Statistical 
Review 70(3), 2012, pp. 419–435.  

[Gilks96]  W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Markov Chain Monte Carlo in practice.   Chapman 

and Hall, 1996. 

[Gredilla11]  M. Lazaro-Gredilla, and M. K. Titsias, “Variational heteroscedatic Gaussian process regression,” in 

Proceedings of the International Conference on Machine Learning, 2011. 

[Han02] J. Han, and P. Jonker, “A system architecture solution for unreliable nanoelectronic devices,” in IEEE 

Transactions on Nanotechnology, 1(4), 2002, pp. 201–208. 

[Han05]  J. Han, E. R. Taylor, J. B. Gao, and J. A. B. Fortes, “Faults, error bounds and reliability of nanoelectronic 

circuits,” in IEEE International Conference on Application-Specific Systems, Architecture Processors, 51, 2005, 

pp. 247–253. 

[Han11]  J. Han, H. Chen, E. Boykin, and J. A. B. Fortes, “Reliability evaluation of logic circuits using probabilistic 

gate models,” in Microelectronics Reliability, 51, 2011, pp. 468–476. 

[Hoffman13] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, “Stochastic variational inference,” in Journal of 

Machine Learning Research 14, 2013, pp. 3235–3268. 



D5.1: Data structures and design flow for fault tolerant circuit synthesis 

 

Page 62 of (65) © i-RISC, January 2014 

 

[Honkela10]  A. Honkela, T. Raiko, M. Kuusela, M. Tornio and J. Karhunen, “Approximate Riemannian conjugate 

gradient learning for fixed-form variational Bayes,” in Journal of Machine Learning Research 11, 2010, pp. 

3235–3268. 

[Horton02]  G. Horton, “A new paradigm for the numerical simulation of stochastic Petri nets with general 

firing times,” in Proceedings of the European Simulation Symposium (ESS), 2002. 

[Ibrahim11]  W.  Ibrahim and V. Beiu,  “Using  Bayesian  networks  to  accurately calculate the reliability of 

Complementary Metal Oxide Semiconductor gates,” in IEEE Transactions on Reliability, 60(3), 2011, pp. 47–50. 

[i-RISC/D3.1] FP7-ICT/FET-OPEN/ i-RISC project, Deliverable 3.1, “Fault tolerant LDPC encoding and decoding”, 

January 2014. 

[Kameni13-a] C.L. Kameni Ngassa, V. Savin, D. Declercq, “Analysis of Min-Sum based Decoders Implemented on 

Noisy Hardware”, Asilomar Conference on Signals, Systems and Computers, Asilomar, CA, USA, November 2013. 

[Kameni13-b] C.L. Kameni Ngassa, V. Savin, D. Declercq, “Min-Sum-based decoders running on noisy 

hardware,” IEEE Global Communications Conference (GLOBECOM), Atlanta, GA, USA, December 2013. 

[King06]  N. King, and N. D. Lawrence, “Fast variational inference for Gaussian process models through KL 

correction,” in 17th European Conference on Machine Learning, 2006, pp. 270–281. 

[Ko01] S.B. Ko, T. Xia, and J.C. Lo, “Efficient Error Prediction in FPGA,” in IEEE Int'l Symposium on Defect and 

Fault Tolerance in VLSI Systems, Oct. 2001, pp. 176–181. 

[Koller09]  D. Koller and N. Friedman, Probabilistic graphical models - principles and techniques, The 

Massachusetts Institute of Technology Press, 2009. 

[Krishnaswamy05]  S. Krishnaswamy, G. F. Viamontes, I. L. Markov, and J. P. Hayes, “Ac- curate reliability 

evaluation and enhancement via probabilistic transfer matrices.” in Proceedings of the Design, Automation and 

Test in Europe, 2005, pp. 282–287. 

[Kuusela09]  M.  Kuusela, T.  Raiko, A.  Honkela, and J.  Karhunen,  “A gradient-based algorithm competitive 

with variational Bayes EM for mixture of Gaussians,” in Proceedings of International Joint Conference on Neural 

Networks, 2009, pp. 1688–1695. 

[Lee59] C. Y. Lee. "Representation of Switching Circuits by Binary-Decision Programs". Bell Systems Technical 

Journal, 38:985–999, 1959. 

[Levin64] V. Levin, “Probability analysis of combination systems and their reliability.” in Engeering Cybernetics, 

6, 1964, pp. 78–84. 

[Lindgren01] M. T. P. Lindgren, M. Kerttu and R. Drechsler, “Low power optimisation technique for BDD 

mapped circuits”, ASP-DAC, 2001, pp. 615–621 

[Mahdavi09] S.J. Seyyed Mahdavi, and K. Mohammadi, “SCRAP: sequential circuits reliability analysis program.”  

in Microelectronics  Reliability, 49(8), 2009, pp. 924–933. 

[Manich96] S. Manich , M. Nicolaidis and J. Figueras  "Enhancing Realistic Fault Secureness in Parity Prediction 

Array Arithematic Operators by IDDQ Monitoring",  IEEE VLSI Test, Symposium,  1996. 

[Machado12] Machado, L.; Martins, M.; Callegaro, V.; Ribas, R.P.; Reis, A.I., "KL-cut based digital 

circuit remapping," NORCHIP, 2012 , vol., no., pp.1,4, 12-13 Nov. 2012 

[Meinel98]Ch. Meinel, T. Theobald, "Algorithms and Data Structures in VLSI-Design: OBDD – Foundations and 

Applications", Springer-Verlag, Berlin, Heidelberg, New York, 1998. 

[Mehrotra13] Rashmi Mehrotra, “Systematic Delay-driven Power Optimisation and Power-driven Delay 

Optimisation of Combinational Circuits”, PhD Thesis 2013, University College Cork, cora.ucc.ie. 

[Minami02] M. Minami, and S. Eguchi, “Robust blind source separation by beta-divergence”, in Neural 
Computation 14(8), 2002, pp. 1859–1886.  



D5.1: Data structures and design flow for fault tolerant circuit synthesis 

 

© i-RISC, January 2014 Page 63 of (65) 

 

[Mishchenko06-a] A. Mishchenko, S. Chatterjee and R. Brayton, “Dag-aware AIG rewriting a fresh look at 

combinational logic synthesis”, Proceedings of the 43rd annual conference on Design automation, 2006, pp. 

532–535. 

[Mishchenko06-b] A. Mishchenko and R. K. Brayton, “Scalable logic synthesis using a simple circuit structure,” 

in Proc. IWLS, pp. 15–22, 2006. 

[Mischchenko13] A. Mishchenko, N. Een, R. Brayton, M. Case, P. Chauhan, and N. Sharma, "A semi-canonical 

form for sequential AIGs", Proc. DATE'13, pp. 797-802. 

[Mohanram 09] M. Choudhury and K. Mohanram, “Reliability analysis of logic circuits,” Computer-Aided Design 

of Integrated Circuits and Systems, IEEE Transactions on, vol. 28, no. 3, pp. 392–405, 2009. 

[Mohanram03] K. Mohanram , E. S. Sogomonyan , M. Gossel and N. A. Touba Synthesis of low-cost parity-

based partially self-checking circuits, Proc. IEEE On-Line Testing Symp., pp.35 -40 2003 

[Molnar05]  S. Lazarova-Molnar, “The proxel-based method: Formalisation, analysis and applications,” in Ph.D. 

dissertation, Otto-von-Guericke University of Magdeburg, Germany, 2005. 

[Nocedal06]  J. Nocedal, and S. J. Wright, Numerical Optimization.  2nd ed, Springer, 2006. 

[Palem12] K. Palem and A. Lingamneni, “What to do about the end of moore’s law, probably!,” in Design 

Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE, pp. 924–929, 2012. 

[Patel03]  K. Patel, I. Markov, and J. Hayes, “Evaluating circuit reliability under probabilistic gate-level fault 

models.” in Proceedings of the International Workshop on Logic Synthesis, 2003, pp. 59–64. 

[Pearl88] J. Pearl, Probabilistic reasoning in intelligent systems: network of plausible inference.   Morgan 

Kaufmann Publishers, Inc., 1988. 

[Pecht09]  M. Pecht, Product Reliability, Maintainability, and Supportability Handbook, 2
nd

 edition, CRC Press, 
2009. 

[Pedram96] S. Iman and M. Pedram, “Pose: power optimization and synthesis environment,” in Design 

Automation Conference Proceedings 1996, 33rd, pp. 21–26, 1996. 

[Pippenger89] N. Pippenger, “Invariance of Complexity Measures for Networks with Unreliable Gates,” J. Assoc. 

Comput. Mach. 36, p. 531, 1989. 

[Pippenger90] N. Pippenger, “Developments in 'The Synthesis of Reliable Organisms from Unreliable Gates,” 

Proceedings of Symposia in Pure Mathematics, pp. 311-324, 1990. 

[Rejimon05]  T. Rejimon and S. Bhanja, “Time and space efficient method for accurate computation of error 

detection probabilities in VLSI circuits,” in IEE Proceedings on Computers and Digital Techniques, 152(5), 2005, 

pp. 679–685. 

[Rejimon06]  ——, “Probabilistic error model for unreliable nano-logic gates,” in 6
th

 IEEE Conference on 

Nanotechnology, 1, 2006, pp. 47–50. 

[Ring12]  W. Ring, and B. Wirth, “Optimization methods on Riemannian manifolds and their applications to 

shape spaces,” in SIAM J. Optim. 22(2), 2012, pp. 281–285. 

[Rivers04] J. Srinivasan, S. Adve, P. Bose, and J. Rivers, “The case for lifetime reliability-aware microprocessors,” 

in Annual International Symposium on Computer Architecture, 2004. Proceedings. 31
st

 Annual International 

Symposium on, pp. 276–287, 2004. 

[Roelke07]  G. R. Roelke, R. O. Baldwin, and D. Bulutoglu, “Analytical models for the performance of von 

Neumann multiplexing,” in IEEE Transactions on Nanotechnology, 6(1), 2007, pp. 75–89. 

[Sato01]  M. Sato, “Online model selection based on the variational Bayes,” in Neural Computation 13(7), 2001, 

pp. 1649–1681. 

[Sato13]  H. Sato, and T. Iwai, “A new, globally convergent Riemannian conjugate gradient method,” 2013. 



D5.1: Data structures and design flow for fault tolerant circuit synthesis 

 

Page 64 of (65) © i-RISC, January 2014 

 

[Sentovich92] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. Stephan, R. K. 

Brayton, and A. L. Sangiovanni-Vincentelli, “SIS: A system for sequential circuit synthesis”, Technical Report 

UCB/ERL M92/41, EECS Department, University of California, Berkeley, 1992. 

[Sogomonjan93] E. S. Sogomonjan and Michael G ssel. Design of self-parity combinational circuits for self- 

testing andon-line detection. In Proceedings of the IEEE International Workshop on Defect and Fault Tolerance 

in VLSI Systems, pages 239-246, Washington, DC, USA, 1993. IEEE Computer Society.  

[Sung08]  J. Sung, Z. Ghahramani, and S. Bang, “Latent-space variational Bayes,” in Pattern Analysis and 

Machine Intelligence, 30(12), 2008, pp. 2236–2242. 

[Tani93] S. Tani, K. Hamaguchi and S. Yajima, “The Complexity of the Optimal Variable Ordering Problems of A 

Shared Binary Decision Diagram ”, Proceedings of the 4
th

 International Symposium on Algorithms and 

Computation, 1993, pp. 389–398. 

[Tinmaung07] K. O. Tinmaung, D. Howland and R. Tessier, “Power-Aware FPGA Logic Synthesis Using Binary 

Decision Diagrams”, Proceedings of the 2007 ACM/SIGDA 15
th

 international symposium on Field programmable 

gate arrays, NY USA, 2007, pp. 148–155. 

[Taylor06]  E. Taylor, J. Han, and J. Fortes, “Towards accurate and efficient reliability modeling of 

nanoelectronic circuits,” in 6th IEEE Conference on Nanotechnology, 1, 2006, pp. 395–398. 

[Taylor68-a] M. G. Taylor, “Reliable information storage in memories designed from unreliable components”, 

Bell System Technical Journal, vol. 47, pp. 2299-2337, 1968. 

[Taylor68-b] M. G. Taylor, “Reliable computation in computing systems designed from unreliable components”, 

Bell System Technical Journal, vol. 47, pp. 2339-2366, 1968. 

[Teh07-a]  Y. W. Teh, D. Newman, and M. Welling, “A collapsed variational Bayes inference algorithm for latent 

Dirichelet allocation,” in Advances in Neural Information Processing Systems 19, 2007. 

[Teh07-b]  Y. W. Teh, K. Kurihara, and M. Welling, “Collapsed variational inference for HDP,” in Advances in 

Neural Information Processing Systems 19, 2007. 

[Touba97] N. A. Touba and E. J. McCluskey Logic Synthesis of Multilevel Circuits with Concurrent Error 

Detection, IEEE Trans. CAD, vol. 16, pp.783 -789 1997 

[Ueda95] H. Ueda and K. Kinoshita, “Low power design and its testability”, Proceedings of the Fourth Asian Test 

Symposium, India, Nov. 1995, pp. 361–366. 

[Ueda99] H. Ueda and K. Kinoshita, “Power Estimation And Reduction Of CMOS Circuits Considering Gate 

Delay”, IEICI Transactions on Information and System, Vol. E82-D, No. 1, Jan. 1999, pp. 301–308. 

[Verma98]  T. Verma, and J. Pearl, “Causal networks: semantics and expressiveness,” in Proceedings of the 4th 

Workshop on Uncertainty in AI, 1988, pp. 352–359. 

[Vrudhula06] S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao, and S. Vrudhula, “Predictive modeling of the nbti 

effect for reliable design,” in Custom Integrated Circuits Conference, 2006. CICC ’06. IEEE, pp. 189–192, 2006. 

[Wainwright08] M. J. Wainwright and M. I. Jordan, “Graphical models, exponential families, and variational 

inference,” in Foundations and Trends in Machine Learning 1, 1-2, 2008, pp. 1–305. 

[Wang13]  Y. Wang, “Aging Assessment and Reliability Aware Computing Platforms”, Ph.D. thesis, TU Delft, 

Delft, The Netherlands. 

[Wight00] R. L. Wright, M. A. Shanblatt, DCS Corp and V. A. Alexandria, “Improved switching activity estimation 

for behavioral and gate level designs”, Proceedings of the 43rd IEEE Midwest Symposium on Circuits and 

Systems, 2000, pp. 172–175. 

[Wu05] D. Wu and J. Zhu, “FBDD: A folded logic synthesis system”, In Proceedings of the International 

Conference on ASIC (ASICON), Oct. 2005, pp. 746–751. 



D5.1: Data structures and design flow for fault tolerant circuit synthesis 

 

© i-RISC, January 2014 Page 65 of (65) 

 

[Yanushkevich05] S. N. Yanushkevich, D. M. Miller, V. P. Shmerko and R. S. Stankovic, “Decision Diagram 

Techniques for Micro- and Nanoelectronic Design Handbook”, CRS Press, 2006, pp. 429–445.  


