
FP7-ICT / FET-OPEN 309129 / i-RISC

D4.3

Assessment of Memory Architecture Tolerance to

Correlated Errors and On-Chip Reliable Data Transport

Editor: Goran Dordević (ELFAK)
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ELFAK Goran Dordević (goran.t.djordjevic@elfak.ni.ac.rs)
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LDPC Low Density Parity Check

LDGM Low Density Generator Matrix

LFSR Linear Feedback Shift Register

LFSR-RG Linear Feedback Shift Register Random Generator

LLR Log-Likelihood Ratio

LS Latin Squares

LUT Look Up Table

MAJ MAJority-logic

MS Min-Sum

O-S-MAJ One-Step MAJority logic

NoC Network on Chip

PEG Progressive Edge Growth

PGDBF Probabilistic Gradient-Descent Bit-Flipping
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PN Parity check Node

QC Quasi-Cyclic

RG Random Generator

SEC Single Error Correction

SECDED Single Error Correction Double Error Detection

SoC System-on-Chip

SP Sign-Preserving

TSV Through-Silicon-Via

TUD Technische Universiteit Delft

UPT Universitatea Politehnica Timisoara

UCC University College Cork

VN Variable Node

VNU Variable Node Update

WER Word Error Rate

WBF Weighted Bit-Flipping

XOR eXclusive-OR
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Introduction

This deliverable addresses the problem of the reliable storage of digital information on a chip built
from unreliable components. It represents summation of the research, done during the period Month
25 to Month 33 (M25-M33) of i-RISC project, conducted in order to complete tasks described in
Work Package 4 (WP4) of the project proposal. The main objectives of WP4 include analysis of the
state-of-the-art memory architectures under more realistic hardware failure modeling, proposing novel
memory architectures designed for tolerating data-dependent gate failures and designing the codes
that ensure reliable intra/inter-chip bus connections. The WP4 is divided into five complementary
tasks, as represented in Fig. 1, which are in the scope of our research.

In this WP we mostly investigate known hard decision LDPC decoders and propose modifications
that increase robustness of such decoders when decoding operations are not perfectly reliable. Success-
ful completion of all tasks in this WP will give us theoretical guidelines for building LDPC codes based
low-complexity fault-tolerant memories and ensuring reliable date transport on unreliable hardware.
Based on techniques developed in this WP, the practical implementation of a simple processor core is
anticipated, which will present a proof of i-RISC concept viability.

Figure 1: Gantt chart of WP4.
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Executive Summary

In this chapter we present a summary of the activities carried out within the by WP4 framework,
during the period Month 25 to Month 33 (M25-M33) of i-RISC project and the obtained results.
We briefly discuss the most important technical contributions of our work with highlights on their
relevance to the overall i-RISC project strategy.

During the M25-M33 time period we sought to achieve the following objectives:

- Objective 4.3: Analysing the robustness of memories designed for tolerating both spatial and
temporally correlated errors.

- Objective 4.4: Designing the constrained codes for intra/inter-chip bus connections.

List of objectives indicates that Task 4.1 - Taylor-Kuznetsov memory architectures based on struc-
tured LDPC codes, Task 4.4 - Fault tolerance for correlated error models and Task 4.5 - On-chip
reliable data transport were mostly investigated during M25-M33. Although it had been scheduled
that the work regarding Task 4.1 is to be finished at the end of the first year of the project, our
preliminary findings have encouraged us to continue this line of research. This lead to considerable
contributions beyond the state-of-the-art research and enabled us to reveal fundamentally different
behavior of faulty decoders of structural LDPC codes than those considered in the literature.

Our main contributions related to these tasks can be summarized as follows:

- Fault-Resilient Decoders made of Unreliable Components (Task 4.1). Chapter 1 con-
tains finite-length analysis of the faulty Gallager B decoder. We show evidence that probabilistic
behavior of a decoder due to unreliable components can be exploited to our advantage and lead
to an improved performance and reduced hardware redundancy. We notice that this unorthodox
behaviour of the Gallgaer B decoder is related to structural properties of Tanner graph of a
code, and performance of codes whose graphs contain small trapping sets can be improved by
gate failures. Such codes are for example quasi-cycle LDPC codes. The performance of different
codes are evaluated by using Monte Carlo simulations.

- Iterative Decoders with Deliberate Message Flips and Rewinding (Task 4.1). In
Chapter 2 we present new analytical tool which can be used for finite-length analysis of LDPC
decoded by hard-decision decoders built form unreliable gates. By tracking the dynamics of
decoding process we form Markov chain, which for a specific set of parameters mimics the
behaviour of the iterative decoder. This enables quick and accurate derivation of frame and
bit error rate for wide range of LDPC codes. However, due to complexity of the analysis the
Markovian-based approach is applicable only for codes with moderate code lengths.

- Design of Taylor-Kuznetsov Memories built from Gallager-B LDPC Decoders (Task
4.1/Task 4.4). In Chapter 3 we introduce a new time-dependent memory degradation model,
which gives the amount of errors that are introduced by the hardware in the memory during
a given time duration. We then propose an analytical method to predict the reliability of the
memory architecture for fixed refresh time, code, and decoders parameters. Furthermore, we
derive the minimum refresh time that can be tolerated by the memory to be reliable. Based
on our method the optimal code and decoder parameters that minimize the redundancy can be
selected.
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- Bit-flipping decoding under data-dependent gate failures (Task 4.4) In Chapter 4 we
investigate the guaranteed error-correction capability of the bit-flipping decoder partially built
from faulty gates, which are subjected to data-dependent gate failures. We improve the results
presented in Deliverable 4.2 by providing less strict conditions which guarantee correction of a
fixed fraction of errors. We prove that for every regular code with column weight at least 8,
correction capability increases linearly with code length.

- Reliability of Memories Built from Unreliable Components under Data-Dependent
Gate Failures (Task 4.4). Based on the results presented in Chapter 5, in Chapter 4 we
propose a low complexity memory architecture that is capable to preserve all stored information
for arbitrary long time period under data-dependent gate failures. We prove that a much large
fraction of component failures can be tolerated than presented in the state-of-the-art literature.
Similarly, our results are improved version of our previous work, which is given in Deliverable
4.2.

- Error Resilient LDPC Enhanced 3D-Memory Architecture (Task 4.4). In Chapter
6 we create the practical premisses for the LDPC utilization for memory fault detection and
correction. With this respect we introduce a fault resilient 3D polyhedral memory general archi-
tecture and framework, which makes use of an LDPC based scrubbing approach to perform user
transparent memory maintenance. We rely on the memory stack augmentation with an LDPC
codec dedicated die and take advantage of the polyhedral memory reach addressing mode set to
minimize potential conflicts between data accesses coming from computational units and from
the scrubbing controller. Our experiments indicate that for the same redundancy requirements
our approach outperforms the state of the art Hamming code based counterpart in terms of
error correction capability while having very limited implications on memory performance and
availability.

- Reliable data transport (Task 4.5). In Chapter 7 we investigate coding based possibilities
to increase interconnect, e.g., on-chip busses, NoC links, performance, in terms of transmission
delay, energy consumption, and error resilience. To this end we introduce and evaluate codec
assisted data transport structures able to deal with technology scaling related phenomena, e.g.,
crosstalk and transmission delay variability, at the expense of a reasonably small area overhead.
We present 3 types of data encoding techniques, namely, Constrained, Repetition, and Haar,
apply them on an 8-bit wide interconnect segment, and evaluate their practical implications when
using a 45nm commercial CMOS technology. Our simulations indicate that (i) substantial energy
savings of up to 58% can be achieved by properly tuning the codec specifics to the interconnect
length and workload data profile and (ii) the Haar codec based approach is the most general
purpose one as it outperforms the other ones in most of the considered cases. In view of (ii) we
augment the Haar based interconnect with error correction capabilities and introduce a Single
Error Correction and Double Error Detection scheme adapted to the peculiarities of the Haar
system, which makes the Haar augmented interconnect not only energy effective but also robust
against deep sub-micron noise (e.g., supply voltage variations, electromagnetic interference)
induced transmission errors.
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Chapter 1

Fault-Resilient Decoders made of
Unreliable Components

Abstract: In this chapter we present our recent results on iterative Gallager B decoder made of

unreliable logic gates. We show evidence that probabilistic behavior of a decoder due to unreliable

components can be exploited to our advantage and lead to an improved performance and reduced

hardware redundancy. We provide examples of such decoder behavior and give an explanation of

this phenomena following from our insights in iterative decoding dynamics. Iterative decoding can

be viewed as a recursive procedure for Bethe free energy function minimization, and the randomness

in a message update may help the decoder to escape from local minima. The decoder operates in a

stochastic fashion, but the random perturbations do not require any additional hardware as they are

built-in the faulty hardware itself. Thus the decoder harvests good deeds of logic gate faults.

Work presented in this chapter has been published in: B. Vasic, P. Ivanis, S. Brkic, V. Ravanmehr
“Fault-Resilient Decoders and Memories made of Unreliable Components”, Proc. of Information
Theory and Applications Workshop, San Diego, USA, February 2015 [P5]. The project acknowledges
the valuable contribution of Dr. Vida Ravanmehr from the University of Arizona, not funded from
the i-RISC project. The aforementioned paper is reproduced here with her kind permission, to help
maintain the consistency of the work presented.

1.1 Introduction

Due to the increase in density integration, lower supply voltages, and variations in technological
process, complementary metal-oxide-semiconductor (CMOS) and emerging nanoelectronic devices are
inherently unreliable. Moreover, the demands for energy efficiency require that in current CMOS
design the energy consumption must be reduced by several orders of magnitude, which can be done only
by an aggressive scaling of supply voltage. Consequently, the signal levels are much lower and closer
to the noise level, which drastically reduces the component noise immunity and leads to unreliable
behavior. It is widely accepted that future generations of circuits and systems must be designed to
deal with such unreliable components.

The main feature of the existing work on fault-tolerant decoders is a focus on the analysis of the
existing decoder types and demonstrating their robustness to unreliability of logic gates [2–7]. This
was also underlying idea of our prior work [8, 9]. On the contrary, the idea of the this chapter is to
allow or deliberately introduce randomness in a decoder in order to improve convergence in the spirit
of stochastic approximation method [10,11].

The first trace of this idea can be found in Gallager‘s work where the random flips are used to resolve
ties in the majority voting operation in the variable node, while the first iterative decoding algorithm
that explicitly relies on randomness to correct errors is Miladinovic and Fossorier’s Probabilistic Bit
Flipping (PBF) [12]. A closely related technique of adding noise to messages in a BP decoder on
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the AWGN channel is by Leduc-Primeau et al. [13] for reducing error floor in the context of perfect
decoders. Other schemes such as stochastic decoding also uses randomness but in a very different way
- by representing messages as random sequences [14–17]. Randomness in message update schedule
[18], is also observed to yield improved convergence.

Recently it was shown by Sundararajan et al. [19] that random perturbations can be used to
increase the performance of a gradient descent bit flipping decoder (GDBF), introduced by Wadayama
et al. [20]. At the same time we observed that randomness coming from computational noise even
more improves the GDBF decoding. Based on that conclusion we developed a probabilistic gradient-
descent bit flipping algorithm (PGDBF) [21] for the Binary Symmetric Channel (BSC). Our decoder
incorporates the idea of GDBF with Miladinovic and Fossorier’s probabilistic approach [12], but it
contains some critical novelties which consists in modifying the inverse function [20, Eqn. (6)]. We
showed that random perturbations applied to variable nodes lead to escaping from a local maximum
of the GDBF objective function. In addition, the perturbations make the decoder inherently tolerant
to hardware unreliability. Our most recent work contains the further improvement of the PGDBF
algorithm based on multiple decoding attempts and random re-initializations (MUDRI) of decoders
[22].

In this chapter we consider the Gallager B decoder in which operations are subjected to processing
noise. We show how the hardware unreliability can be used to increase error-correction capability of
certain quasi-cyclic low-density parity-check (LDPC) codes, in the error-floor region. Our conclusions
relies on the fact that logic gates failures can break small trapping-sets, which are the main cause of
the decoder failures in that region. Vasic and Chilappagari [23] observed that the faulty Gallager-B
decoder is equivalent to the Taylor memory architecture [24], which means that our results can be
directly applied to the reliability analysis of memories built from unreliable components.

The rest of the chapter is organized as follows. In Section 1.2 we give a brief description of the
faulty Gallager B decoder. In Section 1.3 the idea of breaking trapping sets is discussed. Section 1.4
is dedicated to the numerical results. Finally, some concluding remarks and future research directions
are given in Section 1.5.

1.2 The Faulty Gallager B Decoder

Consider a (γ, ρ)-regular binary LDPC code, denoted by (N,K), with code rate R = K/N ≥ 1− γ/ρ
and parity check matrix H. The parity check matrix is the bi-adjacency matrix of a bipartite (Tanner)
graph G = (V ∪ C,E), where V represents the set of N variable nodes, C is the set of Nγ/ρ check
nodes, and E is the set of Nγ edges. Each matrix element Hc,v = 1 indicates that there is an edge
between nodes c ∈ C and v ∈ V , which are referred as neighbors. Let Nv (Nc) be the set of neighbors
of the variable node v (check node c). Then, |Nv| = γ, ∀v ∈ V and |Nc| = ρ, ∀c ∈ C, where | · | denotes
cardinality.

Let x = (x1, x2, . . . , xN ) denote a codeword of an LDPC code, where xv represents the binary
value associated with the variable node v. During the transmission over a Binary Symmetric Channel
(BSC), the code bits are flipped with probability α and received as y = (y1, y2, . . . , yN ).

The Gallager B decoder works by sending binary messages over the edges of the graph. The
messages are calculated based on the nodes update functions, following the rule that a message sent
over an edge is obtained based on all received messages except the one arriving over that edge [25].
The check node update function corresponds to the (ρ− 1)-input XOR logic gate, and (γ − 1)-input
majority logic (MAJ) gate is used for the variable node update function implementation.

Due to hardware unreliability the results of the update functions are not always correctly computed.
We adopted the “wire” model described in [2], where an edge is modeled as a BSC with a known

crossover probability. Let ν
(`)
v,c be the message sent by the variable node v to its neighbor c ∈ Nv, at

the iteration `, and let ν̂
(`)
v,c be the message that is actually received by the node c. Then, we define
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the following relation

ν̂(`)
v,c =

{
ν

(`)
v,c with probability 1− εMAJ ,

ν
(`)
v,c ⊕ 1 with probability εMAJ ,

(1.1)

where εMAJ represents the probability of failure of MAJ gates. Similarly, let ν
(`)
c,v be the message sent

by the variable node c to its neighbor v ∈ Nc, at the iteration `, and let ν̂
(`)
c,v be the message that is

actually received by the node v. Then, we have

ν̂(`)
c,v =

{
ν

(`)
c,v with probability 1− ε⊕,

ν
(`)
c,v ⊕ 1 with probability ε⊕,

(1.2)

where ε⊕ represents the probability of failure of XOR gates. We next summarize the faulty Gallager
B decoder.

• Variable to check node update: For each variable node v ∈ V :

At iteration ` = 0: ν
(0)
v,c = yv, ∀c ∈ Nv.

At iteration l > 0:

ν(`)
v,c =

{
s if |{c′ ∈ Nv \ c : ν̂

(`−1)
c′,v = s}| > bγ/2c,

yv otherwise.
(1.3)

• Check to variable node update. For each check node c ∈ C and ∀v ∈ Nc, at iteration l ≥ 0:

ν(`)
c,v =

⊕
v′∈Nc\{v}

ν̂
(`)
v′,c. (1.4)

The decoding is terminated when all parity-check equations are satisfied or the maximum number of
iterations (denoted by L) is reached.

Note that in addition to logic gates needed to calculate messages that are passed on the edges
of the bipartite graph the decoder also requires logic gates for the final bit estimations and parity-
checks calculation. If we allow these gates to be unreliable, the performance of the decoder would be
determined by the failure probabilities of these gates, not by the error control scheme. Thus, it is
reasonable to assume that these gates are perfect. Similar assumption was also used in other relevant
literature [23,26,27].

1.3 Eliminating The Trapping Sets by Gate Failures

It is well known that the failures of Gallager B decoding caused by the low-weight error patterns
are mainly due to the existence of the harmful structures in the Tanner graph of LDPC codes called
“trapping sets” [28]. A set of variable nodes T is called an (a, b) trapping set if it contains a variable
nodes and the subgraph induced by these variable nodes has b odd degree check nodes. In [29], the
most harmful structures of column weight 3 LDPC codes using the Gallager B decoder over the BSC
are given.

A faulty (5,3) trapping set in a column weight 3 LDPC code of girth g = 8 is shown in Fig. 1.1. In
this figure, the circles denote the variable nodes and the squares denote the check nodes. The faulty
XOR gates are at the check nodes c2 and c3 and the faulty MAJ gates are at the variable nodes v2,
v4 and v5 which are shown with black arrows.

Logic gate failures as inherent sources of randomness in the existing literature, are usually seen
as undesirable. This belief comes from the fact that the capacity of LDPC codes cannot be achieved
under unreliable decoding operations [2,6,30]. However, the presence of randomness can be beneficial
for the finite length codes, as can eliminate small trapping sets. To illustrate this, we study the
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Figure 1.1: A faulty (5,3) trapping set.

(0,1,1,0,0,1,0,1,1,0,1,0,0,0,0) (1,0,0,1,1,0,1,0,0,1,0,1,0,0,0)

2,4,6,…

3,5,7,…
1 2

1

(a)

2,4

3,5
(1,0,0,1,1,0,1,0,0,1,0,0,0,0,0) (0,1,1,0,0,1,0,1,0,0,1,0,0,0,0) (1,0,1,1,0,0,0,0,0,1,0,1,0,0,0) (0,0,0,0,0,1,0,1,1,0,1,0,0,0,0) (0,0,0,0,1,0,1,0,0,1,0,0,0,0,0)

6

7 8 9 10

(0,1,1,0,0,1,0,1,1,0,1,0,0,0,0) (1,0,0,1,1,0,1,0,0,1,0,1,0,0,0)

1 2 3 4 5 6 7

1

(b)

(0,1,1,0,0,1,0,1,1,0,1,0,0,0,0) (1,0,0,1,1,0,0,0,0,1,0,0,0,0,0)

1

(0,0,1,0,0,1,0,1,0,0,0,0,0,1,0) (0,1,0,0,0,0,0,1,0,1,0,0,0,0,0)

42 3
2 3 4

1

(c)

Figure 1.2: The state diagram of the Markov chain model on a faulty (5,3) trapping set. (a) ε⊕ = 0.001
and the decoder never converges to a codeword, (b) ε⊕ = 0.01 and the decoder converges to the zero
codeword after 10 iterations, (c) ε⊕ = 0.1 and the decoder converges to the zero codeword after 4
iterations.

dynamic of messages passed from check nodes to variable nodes on a trapping set in each iteration of
the faulty Gallager B decoder. For this purpose, we introduce a Markov chain model, which captures
the dynamic of the messages.

Let CT be the set of check nodes in the subgraph induced by the trapping set T . Let define the
Markov source S with 2|T |γ states, where the state i, 1 ≤ i ≤ 2|T |γ , corresponds to one possible binary

sequence of length |T |γ. Clearly, a sequence {νc,v(`)}c∈CT ,v∈T , where ν
(`)
c,v is the message passed from

the check node c to the variable node v at time `, maps to one state of the source S. A transition
from a state i at time `, to state j at time `+ 1 is obtained by the variable and check node operations,
as well as the level of unreliability of logic gates parameters ε⊕ and εMAJ .

For a perfect decoder in which εMAJ = 0 and ε⊕ = 0, the attractor basin has a relatively small
number of states. In the state diagram of this model, the states oscillate and the decoder never
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converges to a valid codeword. While in a faulty decoder where εMAJ and/or ε⊕ are sufficiently
greater than 0, the number of states is much larger than that of a perfect decoder. That is because
that in the faulty decoder, there is a positive probability for each of the possible 2|T |γ messages to
appear as a state in the Markov chain model. Moreover, there is a positive probability of leaving the
states of the attractor basin of a perfect decoder. These features of the faulty decoder may cause the
decoder to eventually correct the errors and converge to the zero codeword.

To show how the faulty gates can break a trapping set and correct the errors, we consider the (5,3)
trapping set and keep track of the messages from the check nodes to variable nodes in each iteration
of the faulty Gallager B decoder. For simplicity, we assume that εMAJ = 0. Thus, the faulty gates are
only the XOR gates with the probability of failure ε⊕ > 0. Therefore, the messages from check nodes
{c1, c2, ..., c9} to variable nodes are flipped with probability ε⊕. We know that the critical number of
the (5,3) trapping set is 3 and the 3 variable nodes that need to be in error are the those that are
connected to degree-1 check nodes. Recall that the critical number of a trapping set is the minimum
number of the erroneous variable nodes that cause the decoder fails [31]. Thus, assume that v1, v3

and v5 are in error; i.e. v1 = v3 = v5 = 1. Suppose the decoder stops if the decoder finds a codeword
or reaches the maximum number of iterations. The state transitions corresponding to the messages
from check nodes to variable nodes for ε⊕ = 0.001, ε⊕ = 0.01 and ε⊕ = 0.1 are shown in Fig. 1.2. As
can be seen in Fig. 1.2(a), for ε⊕ = 0.001, the messages oscillate between states 1 and 2. In this case,
the decoder never converges to a codeword. We note that when ε⊕ = 0, the dynamic of messages is
the same as the dynamic given in Fig. 1.2(a). Fig. 1.2(b) shows that the decoder corrects all errors in
10 iterations when ε⊕ = 0.01. As shown in Fig. 1.2(b), in the first 5 iterations, the messages oscillate
between states 1 and 2. However, after the 6th iteration, the states change from the state 3 to 7 in
which the decoder stops and corrects all errors. Finally, in Fig. 1.2(c), the dynamic of messages is
shown for ε⊕ = 0.1 that depicts the convergence of the decoder to the zero codeword in 4 iterations.

In the above discussion, we investigated the dynamic of messages from the check nodes to variable
nodes in an isolated (5,3) trapping set. To see how the faulty Gallager B decoder performs on a (5,3)
trapping set in the (155,64) Tanner code, we put 3 errors on the variable nodes connecting to degree-1
check nodes in a subgraph corresponding to the (5,3) trapping set. Then, for different values of the
probability in XOR gates, we ran the faulty Gallager B decoder for at most 100 iterations and stored
the number of variable nodes that are eventually in error. The result is shown in Fig. 1.3. As we
expected, for sufficiently small ε⊕, the decoder cannot correct errors located on the trapping set and
for large enough values of ε⊕, the decoder incorrectly decodes some other variable nodes that were
originally correct, to 1. However, there are some values of ε⊕ for which the decoder corrects all errors.

1.4 Numerical Results

In this section we further elaborate the idea that hardware unreliability can lead to the performance
improvement. We evaluate the frame error rate (FER) and the bit error rate (BER) of various LDPC
codes, under i.i.d. failures in logic gates, explained in Section 1.2.

We mostly analyze quasi-cyclic (QC) codes, based on circulant matrices [32] and Margulis codes
[33], for which are known to perform poorly in the error floors, as their bipartite graphs contains small
trapping sets [34]. We also consider Latin square (LS) based codes that are designed to be free of
small trapping sets [35], as a reference for the improvement obtained by breaking the trapping sets
in faulty gates. We only investigate (3,5)-regular LDPC codes, with girth g = 8, as they allow low
decoding complexity, but we expect that similar conclusions can be derived for other regular LDPC
codes.

First, we consider how the probability of random i.i.d. failures in XOR/MAJ gates of Gallager B
decoder affects the FER of the two codes with the same construction parameters, but different error
floor behavior. In Fig. 1.4 the two different scenarios are illustrated: (i) when check node processing
is reliable and only MAJ gates are faulty, and (ii) when variable node processing is reliable and only
XOR gates are faulty. The performance of LS(155,64) code (also denoted as C1 code in [35]), marked
with red lines, are approximately constant, up to the certain probability of logic gate failures. It
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Figure 1.3: Number of errors versus ε⊕ after running the faulty Gallager B decoder for 100 iterations
on the (155,64) Tanner code. The input of the decoder has 3 errors located on the variable nodes that
are connected to degree-1 check nodes in a (5,3) trapping set.

can be noticed that MAJ gates failures are more damaging, as the performance degradation rapidly
increase when εMAJ > 10−3, while, in the case of faulty XOR gates, the similar effect is visible only
for ε⊕ > 5 × 10−3. On the other hand, the performance of Tanner (155, 64) code, presented with
blue lines, is not necessarily degraded with the increase of logic gates unreliability. In fact, there exist
εMAJ > 0, and ε⊕ > 0, which results in the highest error-correction capability. For that optimal case
the performance of the Tanner (155, 64) code approaches closely to the performance of LS (155, 64),
which are a magnitude higher when decoding is done by the perfect decoder.

This surprising effect is related to the positive impact of hardware failures to the breaking of the
trapping sets, and it is similar to the effect reported for the gradient descent bit flipping decoder
[21]. However, we noticed that the benefit of using unreliable logic gates is related also to the mutual
relations of communication channel crossover probability α and ε⊕ and εMAJ , respectively. When
channel errors are dominant, α � ε⊕, εMAJ , the influence of hardware unreliability on the decoder
performance is limited, and FER stays mostly determined by the smallest trapping sets. On the other
hand, if the logic gate failures probabilities are much higher than the channel crossover probability
(α � ε⊕, εMAJ), gate failures are no more useful. In such a case, errors added during the decoding
prevent the correction of channel errors.

As it can be observed from Fig. 1.5, the improvement caused by XOR logic gates unreliability is
notable for a wide range of failure probabilities, and it is mostly pronounced in the error-floor region,
when channel induced errors are rare. For that case the Tanner (155, 64) code performs the same as LS
(155, 64), when decoded by the perfectly reliable decoder. However, a small degradation is observed
for high α.

This results indicates that the performance of the Tanner code (155, 64) can be improved even
when perfectly reliable decoder is used, if the random binary sequence with Pr(1) ≈ 0.01 is added in
the check nodes, or the corresponding sequence with Pr(1) ≈ 0.002 is added in variable nodes. For
this purpose, stochastic XOR/MAJ gates can be used [36]. The performance of Tanner code can be
further improved if no failures are added at the beginning of the decoding process, for instance during
the first L1 decoding iterations. In this case the Gallager B decoder is given time to correct the error
pattern, and only if decoding fails after L1 iterations the probabilism is used. The corresponding
numerical results, presented in Fig. 1.5, reveals that, when L1 adequately chosen (L1 = 10), the
perfectly reliable Gallager B decoder is outperformed for all considered crossover probabilities α. The
use of probabilism in order to improve the Gallager B decoding is included in our future research.

We next compare the performance of the Tanner code (155, 64) with the code from the same
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Figure 1.4: FER as a function of probability of the gate failure, α = 0.01, L = 100.
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Figure 1.6: FER as a function of maximum number of iterations, impact of gate failures, α = 0.01.

(3,5)-regular ensemble and approximately same code rate, but with the codeword length N = 305
(constructed over field GF(61)) [32]. The FER values of these two codes are illustrated in Fig. 1.6 as
a function of maximal number of iterations L. The results are presented for the crossover probability
α = 0.01, with and without failures in XOR gates. Although the longer code have better correction
capability when Belief-Propagation decoding algorithm is applied [32], decoding by the Gallager B
algorithm results in the minor performance improvement, when compared to the Tanner (155, 64)
code. For both codes, the decoding saturates after 15 iterations and the performance is not further
improved with the increase of parameter L. If hardware failures are present, the performance continues
to improve with increase of L, up to the number of iterations that is comparable with the codeword
length. If we allow L to be sufficiently large, FER of the code with N = 155 can be reduced for
one order of magnitude and FER of the code with N = 305 can be reduced for the two orders of
magnitude.

In Fig. 1.7, we illustrate XOR gate failures influence to the performance of QC codes with N = 305
and N = 755 [32]. Similarly, as observed for the Tanner (155, 64) code, the performance of both codes
are improved, if the number of decoding iterations is large. The code with N = 755 is of a special
interest due to its atypical behavior. It is constructed over GF(151) and has the bad distance profile,
and therefore has an inferior performance in the error floor region, when compared to the randomly
constructed code with the same codeword length and code rate [32]. By using the faulty Gallager
B decoder we implicitly randomize decoding process and the performance is improved as the impact
of the small trapping sets is minimized. It should be noted that, for the code with N = 755, the
probability of converging to a codeword different from the transmitted codeword is not negligible. We
observed that, for example, for α = 0.01 and L = 1000, in average half of the decoder failures are the
result of that phenomenon.

The general conclusion that for the large codeword length we need larger maximal number of
iterations to obtain the full gain of the gates unreliability, especially in the waterfall region, is addi-
tionally strengthened by the case of Margulis code (2640, 1320). It can be easily observed from Fig.
1.8 that decoding convergence continue for more than L = 1000 iterations for both analyzed values
of the crossover probability (α = 0.01 and α = 0.015). As the code has good distance properties
probability of miss-correction is negligible even for very large values of L. It is clear that the increase
of parameter L increase the maximum latency of the decoding process and this can be critical for
certain applications.

The past work related to the faulty Gallager B decoder was mostly dedicated to the infinite code
length analysis by the density evolution (DE) technique [4, 5]. The results obtained using the DE
tool are rather pessimistic, as they show that the BER performance converges to a rather high value,
especially when decoder is built from faulty MAJ gates. However, in Fig. 1.9 we show different
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behavior of finite length codes. For example, it can be observed that the Tanner (155, 64) code, when
L = 100, outperforms the infinite length code from the same ensemble, in the error floor region. This
additionally illustrates the significance of trapping set analysis, for the decoders built from unreliable
components.

1.5 Conclusion

In this chapter we showed that uncertainty of the logic gate operations is not always undesirable in
the message-passing decoding of LDPC codes. On the contrary, we observed that it can significantly
improve the Gallager B decoder performance. Random failures of logic gates result in correction of
some error patters that are uncorrectable by the decoder made of reliable components. By analyzing
the topology of Tanner graphs, we come to the conclusion the improvement is mostly notable with
codes that contain small trapping-sets. Accordingly, they performance in the error-flor region is highly
improved.
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Chapter 2

Iterative Decoders with Deliberate
Message Flips and Rewinding

Abstract: Many natural and man-made systems involving computing, control and communications

are made of unreliable parts or parts exhibiting stochastic behavior. No system using less reliable

components is known to operate better than a system using perfect components. Here we present

such a system. We give an architecture of a storage system consisting of a storage medium made

of unreliable memory elements and an error correction circuit made of a combination of noisy and

perfect logic gates that is capable of retaining the stored information longer and with lower probability

of error than a storage system with a correction circuit made completely of perfect logic gates. Our

correction circuit is based on iterative decoding of low-density parity check codes, and uses the positive

effect of errors in logic gates to correct errors in memory elements. In the spirit of Marcus Tullius

Cicero’s “Clavus clavo eicitur,” (“one nail drives out another”) the proposed storage system operates

on the principle: “Error errore eicitur” - “one error drives out another.” The randomness that

is present in the logic gates makes these classes of decoders superior to their perfect counterparts.

Moreover, random perturbations do not require any additional computational resources as they are

inherent to unreliable hardware itself.

2.1 Introduction

Origins of a system unreliability lie in the underlaying physics mechanisms governing the operation
of its parts. For example, in micro and nano-electronics devices it is due to low supply voltages
and imperfections in manufacturing process [37, 38], in space missions electronics due to high energy
particles striking the semiconductor devices [39]. In order to ensure the robustness of a system to noise
and/or faults in its parts, one relies on redundancy and computation, which compensate the negative
effects of unreliable parts. Typical examples are systems for storage of information. Information
written on a storage medium (magnetic, optical, flash memory, etc.) is physically represented as one
of the several stable states of the memory elements comprising the medium (magnetization direction
of magnetic grains, surface reflectivity, charge in capacitors, etc.). Since the reliability of the memory
elements cannot be improved due to the underlying physics and manufacturing cost, one relies on a
periodic refreshing of the stored data content to prevent the data decay. In this process, the errors
that may have occurred in the medium are corrected in a computational device, called a correction
circuit. Without loss of generality, a correction circuit can be assumed to perform a sequence of binary
operations, and all traditional systems rely on the assumption that the correction circuit is perfect,
i.e., made of perfect Boolean logic gates. In other words, computations performed in the correction
circuit are deterministic, while randomness (in the form of noise and/or errors) exists only in the
storage medium.

The above assumption is certainly appropriate for correction circuits in which the reliability of logic
gates is many orders of magnitude higher than reliability of memory elements. However, an interesting
situation arises when a correction circuit itself is made of noisy components. For example, in low-
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powered submicron complementary metal-oxide-semiconductor (CMOS) chips mentioned above, the
supply voltage is kept low in order to reduce power consumption, thus making logic gates susceptible
to noise and increasing the probability of incorrect logic gate output. Similar effect exists in nano
and quantum computing technologies. Due to unreliability of its logic gates, the correction circuit
- whose purpose is to correct errors - introduces errors in the process of correcting errors from the
storage medium. Making logic gates reliable (for example by using larger supply voltages) appears as
a logical solution. We show that the correction circuit can operate in the unreliable (low-power) gate
- regime, and still be able to correct more errors than the perfect correction circuit. Moreover, the
random perturbations do not require any additional computational resources as they are built in the
unreliable hardware itself. The key is to store the information in a coded form and use a special type
of decoding algorithm in the correction circuit, as we explain next.

The first trace of the deliberate error idea can be found in Gallager’s work where the random flips
are used to resolve ties in the majority voting operation in the variable node, while the first iterative
decoding algorithm that explicitly relies on randomness to correct errors is Miladinovic and Fossorier’s
Probabilistic Bit Flipping (PBF) [12]. A closely related technique of adding noise to messages in a BP
decoder on the AWGN channel is by Leduc-Primeau et al. [13] for reducing error floor in the context
of perfect decoders.

Recently it was shown by Sundararajan et al. [19] that random perturbations can be used to in-
crease the performance of a gradient descent bit flipping decoder (GDBF), introduced by Wadayama
et al. [20]. At the same time we observed that the randomness coming from computational noise even
more improves the GDBF decoding performance. Based on that result we developed a probabilistic
gradient-descent bit flipping (PGDBF) algorithm [40] for the Binary Symmetric Channel (BSC). In-
troducing a random perturbation is reminiscent of the operation of mutation in genetic algorithms
[41] (the inverse or energy function in the PGDBF algorithm is reminiscent of the fitness function
in genetic algorithms). However the similarity ends here because the gradient-descent bit flipping
does not maintain a “population” of codeword candidates, i.e., only one candidate for the codeword
estimate is kept during iterations.

The fact that noise can be used constructively has been observed in many of natural and artificial
analog signal processing systems, and is known as stochastic resonance [42,43]. However, due to huge
complexity of our correction circuits, the available stochastic resonance analysis tools are not sufficient
to characterize their improved robustness. We also note that the above positive effects of noise are
also observed in analog decoders where randomness comes from transistor mismatch [44].

A dominant method for analysis of faulty decoders is the noisy-density evolution (DE) technique
[27]. It provides a convenient measure of robustness of a decoder, but it cannot provide an explanation
why and when a noisy decoder performs better than the perfect one. The underlaying reasons are
based on the assumptions of message independence and infinite number of iterations, thus implying
an infinitely long code. For length codes, the performance of a perfect iterative decoding depends
upon the presence of trapping sets which are annihilated by the randomness in the decoder. Although
the analysis is given for the storage system modeled as the BSC, the approach is general. It can be
readily extended to different error models, including permanent failures. The proposed approach is
also applicable to other decoding algorithms.

The rest of the chapter is organized as follows. In Section 2.2 the preliminaries on iterative
message passing decoding of LDPC Codes is discussed. In Section 2.3 we give a description of our
storage system architecture. Section 2.4 is dedicated to the theoretical analysis of the noisy Gallager-B
decoder performance. The numerical results are presented in Section 2.5. Finally, some concluding
remarks and future research directions are given in Section 2.6.

2.2 Preliminaries

2.2.1 Iterative Message Passing Decoding of LDPC Codes

Consider a (γ, ρ)-regular binary LDPC code, denoted by (n, k), with code rate R = k/n ≥ 1−γ/ρ and
parity check matrix H. The parity check matrix is the bi-adjacency matrix of a bipartite (Tanner)
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graph G = (V ∪ C,E), where V represents the set of N variable nodes, C is the set of nγ/ρ check
nodes, and E is the set of nγ edges. Each matrix element Hc,v = 1 indicates that there is an edge
between nodes c ∈ C and v ∈ V , which are referred as neighbors. Let Nv (Nc) be the set of neighbors
of the variable node v (check node c). Then, |Nv| = γ, ∀v ∈ V and |Nc| = ρ, ∀c ∈ C, where | · | denotes
cardinality. In irregular LDPC codes, nodes do not necessarily have the same number of neighbors.

Let x = (x1, x2, . . . , xn) denote a codeword of an LDPC code, where xv represents the binary
value associated with the variable node v. During the transmission over a Binary Symmetric Channel
(BSC), the code bits are flipped with probability α and received as y = (y1, y2, . . . , yn). The messages

passed from a check c to a variable node v is denoted by µ
(`)
c→v. Message passed from a variable node

v to the check node c is denoted by ν
(`)
v→c.

Additionally, let m(`) = µ
(`)
Nv\c→v denote the incoming messages to a variable node v except a

message from the check node c. Similarly, n(`) = ν
(`)
Nc\v→c denote all incoming messages to the check

node c except from variable node v. Finally, we denote by l(`) = µ
(`)
Nv→v , messages incoming to v in

the `-th iteration, and by i(`) = µ
(`)
Nc→c messages incoming to c in the `-th iteration.

An iterative decoder F , is a 6-tuple F = (M,Y,Φ,Ψ, Φ̂, Ψ̂), where Y and M are the channel
(output) and message alphabets, respectively, Φ,Ψ are the update functions used in variable and
check nodes, and Φ̂ is the decision function, and Ψ̂ is the check estimate function. For the case of
BSC, Y = {±1}. By convention, +1 corresponds to the input 0 and −1 to 1. For the decoders
discussed here, messages are also binary and M = {±1}. The sign of a message x ∈ M can be
interpreted as the estimate of the bit (positive for zero and negative for one) associated with the
variable node to or from which x is being passed.

The message from variable node v are initialized to Φ(yv,0), and in each iteration updated accord-
ing to the rules Φ and Ψ. The function Ψ : {M}ρ−1 → M is used for update at a check node with

degree ρ, so that µ
(`)
c→v = Ψ(n(`−1)). Note that Ψ is a symmetric function, i.e., it any permutation of

its variables leaves the function unchanged. The function Φ : Y × {M}γ−1 →M is used for updating

outgoing message of a variable node with degree γ. ν
(`)
v→c = Φ(yv,m

(`)). Note that Φ is partially

symmetric in the variables m. The “strength” of the variable node v in `th iteration, λ
(`)
v , is used

to decide the value x̂v of the v-th code bit. Let l ∈ {M}γ , be an unordered γ-tuple representing all
incoming messages to the variable node v, from its neighbors, the decided bit value in `-th iteration

is calculated on the signs of the elements of l as x̂
(`)
v = Φ̂(l(`)) = 1

l
(`)
v <0

. An estimate of the check

node value c in the `-th iteration is σ
(`)
c = Ψ̂

(
i(`)
)

= sgn
(∏

i(`)
)
. A check node is said to be satisfied

if σc = 1, unsatisfied if σc = −1, and undecided if σc = 0. A syndrome checking verifies that all the

check node estimates σ̂
(`)
c = Ψ̂

(
x̂

(`)
Nc

)
= sgn

(∏
x̂

(`)
Nc

)
based on the decoded word x̂(`) are satisfied. In

this case, we say that a codeword is found. We say that a codeword is found if all M check nodes are
satisfied.

If t is the error correction capability of a given iterative decoder, the decoder is said not to
converge to the correct codeword if there exists some error pattern e of weight supp(e) > t, which

leads to a decoding trajectory {µ(`)
C→V }l≥0 such for arbitrary ` there is at least one bit estimate

x̂
(`)
v = Φ̂(l(`)) different from xv. The support of a vector x = (x1, x2, ..., xn) denoted by supp(x) is

the set {xi | xi 6= 0}. The decision function Φ̂ applied on l(`), the γ-tuple representing all incoming
messages to the variable node v in `-th iteration.

2.2.2 Perfect and Noisy Gallager-B Decoders

The Gallager-B decoder is a special case of the iterative decoder above, and it works by sending binary
messages over the edges of the graph. The messages are calculated based on the node update functions,
following the rule that a message sent over an edge is obtained based on all received messages except
the one arriving over that edge. The check node update function Ψ corresponds to the (ρ− 1)-input
XOR logic gate, and (γ − 1)-input majority logic (MAJ) gate is used for the variable node update
function implementation. In other words the following operations are performed until the codeword

28



is found or a maximum number of iteration reached. In each iteration iteration `, for each variable
node v ∈ V , and for all c ∈ Nv.

ν(`)
v→c =

{
yv ` = 0

Φ(yv,m
(`−1)) l > 0

where

Φ(yv,m) =

{
MAJ(m) MAJ(m) 6= 0

yv MAJ(m) = 0.
(2.1)

The function MAJ is defined as MAJ(m) = sgn(
∑

m) wherein
∑

is taken componentwise, and by
convention for the sign function, we take sgn(0) = 0. We note that an alternative rule is possible which
does not require a register for storing the channel values. In this case the previous variable estimate

is used when there is a tie in incoming messages the variable node v. More precisely, ν
(`)
v→c = x̂

(`−1)
v ,

when MAJ(m(`)) = 0. Performance superiority of the rule given in Eq. (2.1), justifies the hardware
overhead due to perfect registers for storing y. Keeping the received word in a reliable temporary
register is crucial for the decoder trajectory stabilization because it anchoress the decoder state to that
determined by the initial channel values, and prevents trajectory divergence from the initial value,
which in turns reduces the negative effects of gate errors.

In each iteration l ≥ 0 for each check node c ∈ C and for all v ∈ Nc, Ψ(n) =
∏

n, where
∏

is
taken componentwise and is equivalent to computing the XOR of the incoming bits.

The decided bit value in `-th iteration is calculated as x̂
(`)
v = Φ̂(l(`)) = Φ(yv, l

(`)), where l(`) is the
set of all incoming messages to a variable node. The estimate of the check node c in the `-th iteration

is σ
(`)
c = Ψ̂

(
i(`)
)

= sgn
(∏

i(`)
)
. where i(`) is the set of all messages coming to c.

Again, by convention, +1 corresponds to the input 0 and −1 to 1. For decoders with binary
messages, it is more convenient to define the message alphabet as M = {0, 1}. Then a check node c
performs XOR operation, and it is said to be satisfied if σc = 0, unsatisfied if σc = 1. The syndrome at

`-th iteration is the ordered set {σ̂(`)
c }c∈C obtained from the codeword estimates, i.e., σ̂

(`)
c =

⊕
x̂

(`)
Nc . A

codeword is found if all M check nodes are satisfied, i.e., if
∧
c∈C σ̂

(`)
c = 0. The last operation requires

an m-input AND gate. The output of the MAJ function is defined straightforwardly.
Due to hardware unreliability the results of the update functions are not always correctly computed.

We model this by XOR-ing the perfect output with the binary error eMAJ or e⊕.

ν(`)
v→c = Φ(m(`)) + e

(`)
MAJ

µ(`)
c→v = Ψ(n(`−1)) + e

(`)
⊕ .

We consider the von Neumann probabilistic failure model, according to which eMAJ and e⊕ as well as
the channel errors are independent Bernoulli random variables with parameters αMAJ , α⊕ and αM .
Clearly, a gate with a smaller Bernoulli parameter are more reliable. Note that different realizations

of Bernoulli random variables e
(`)
MAJ and e

(`)
⊕ correspond to different edges. To simplify the notation,

the indices v → c and c→ v are omitted.
As mentioned before, in addition to the logic gates needed for calculation of messages, the decoder

also requires logic gates for the final bit estimations and parity-checks calculation performed by the
functions Φ̂ and Ψ̂. If we allow these gates used in Φ̂ to be unreliable, the performance of the decoder
would be determined by the failure probabilities of these gates, not by the error control scheme. Thus
these gates must be made perfect.

2.2.3 Trapping Sets for the Noisy Decoder

To illustrate how the logic gate randomness can be beneficial for decoding of the finite length codes
and can annihilate trapping sets, we start with the assumption that αMAJ = 0, and that errors affect
only the XOR gates. Consider the small (3,3) trapping set shown in Fig. 2.1. The variable nodes
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(a) (b) (c)

Figure 2.1: Message passing in a noisy (6,3) trapping set. (a) Messages that are sent from checks to
variable nodes in the `-th iteration. (b) Messages sent from variable nodes to check nodes in (`+1)-th
iteration assuming perfect MAJ gates. (c) The faulty XOR gates are indicated by thick red arrows on
the check nodes and the wrong messages from the noisy checks are shown with red arrows.

in the rest of the graph are correct, and suppose that the check nodes outside the this subgraph are
perfect.

The state of a Markov chain at iteration ` is defined by the vector of messages from check nodes

µ(`) = (µ
(`)
1 , µ

(`)
2 , ..., µ

(`)
γ|T |), where µ

(`)
k for k = 1, 2, ..., γ|T | is a message from a check node c to a

variable node v where c ∈ CT , v ∈ T . In Figure 2.1(a), the messages from check nodes to variable
nodes are labeled with µk, where k = 1, 2, ..., 9. As an example, the state of a Markov chain in Figure

2.1(a) is (µ
(`)
1 , µ

(`)
2 , ..., µ

(`)
9 ) = (1, 1, 1, 1, 1, 1, 0, 0, 0).

As an example, suppose the state i of the Markov chain model at the iteration ` corresponds

to µ(`) = (µ
(`)
1 , µ

(`)
2 , ..., µ

(`)
9 ) = (1, 1, 1, 1, 1, 1, 0, 0, 0) as shown in Figure 2.1(a). Assume that we

want to find the probability of being at the state j at iteration ` + 1 corresponding to µ(`+1) =
(1, 1, 1, 1, 0, 0, 1, 1, 0). It is easy to see that if α⊕ = 0, the messages from the variable nodes at the
iteration `+ 1 would be given by the vector ν(`+1) = (1, 1, 1, 1, 1, 1, 1, 1, 1). To see this, note that the
messages from degree-1 check nodes to variable node in T are always 0 when there is no faulty XOR
gates. Finding the messages from degree-2 check nodes to variable nodes is done by updating from

variable nodes to check nodes using µ(`). For instance, ν
(`+1)
6 is the majority of values µ

(`)
1 and µ

(`)
7

that is 1. According to our previous discussion, the probability of transition from the state i to j is

Pε,δ =
∏9
β=1 P (µ

(`+1)
β |ν(`+1)

β ) = (1− α⊕)6α⊕
3.

Clearly, the perfect Gallager-B decoder cannot correct the errors in all three variable nodes. How-
ever, the elementary trapping sets, for which the degree of each check node is no more than two, can
be annihilated if α⊕ > 0. By this we mean that the decoder reaches a state in which the three bits in
a cycle are decided as zeros

MAJ(µ1, µ6, µ7) = 0, MAJ(µ2, µ3, µ8) = 0, MAJ(µ3, µ5, µ9) = 0.

Simple counting reveals that there are 80 out of 29 such states. A few examples of such states are
(1, 1, 0, 1, 0, 0, 0, 0, 0), (1, 1, 0, 1, 0, 0, 0, 0, 1) and (1, 1, 0, 1, 1, 0, 0, 0, 0).

2.3 The Proposed Storage System Architecture

In our storage system, each k-bit user information is stored as a codeword of an (n, k) linear block
code of length n and code rate R = k/n. The storage medium contains Nn memory elements and is
capable of storing Nk user bits and N(n − k) redundant bits. The memory elements are unreliable
and fail transiently and independently of each other - they follow the von Neumann failure model
[45]. To prevent data decay, the stored information is periodically refreshed. Each of N codewords
is in a round-robin fashion processed by a common correction circuit, whose n-bit output is written
back into the corresponding codeword location on the medium as shown in Fig. 2.2(a). The set
{x(1),x(2), . . . ,x(N)} in Fig. 2.2(a) denotes the set of codewords stored on a medium. Due to errors
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Figure 2.2: A block diagram of an information storage system with error correction coding. (a) A
period-1/N round-robin update of codewords. (b) Communications channel model. x is a codeword
stored on a medium, and y is an observed word. The decoder outputs x̂, an estimate of the stored
codeword, which is then written back to the storage medium.

in memory locations, x(i) is read back as y(i). The role of the correction circuit is to correct errors
in each word y(i), and write the n-bit codeword estimate x̂(i) back into the corresponding location on
the medium.

At the moment a codeword on the medium is scheduled to be processed, the probability of error
in each memory element is αM . Since the correction of each codeword is independent of others, the
storage of the codeword x can be modeled as transmission through a communication channel (Fig.
2.2(b)). The medium is modelled as the Binary Symmetric Channel (BSC) in which the code bits are
flipped independently with probability αM .

A decoder, which plays a role of the correction circuit, performs computations on noisy logic gates.
An obvious way to ensure robustness of a decoder is to employ the von Neumann multiplexing [45].
However, this comes with a price of very large redundancy because the von Neumann redundant design
does not take into account the specifics of the decoding algorithm. The first attempt to use a more
advanced coding scheme to ensure fault tolerance of storage systems made from unreliable components
is due to Taylor [24] and Kuznetsov [46]. Fault-tolerant decoding and storage has attracted significant
attention lately, and numerous approaches have been proposed which exploit the inherent redundancy
of the existing decoders [6, 23, 26, 30]. It is not obvious that such noisy decoders can ensure reliable
storage of information because more powerful decoders – capable of correcting more errors in the
medium – may require more logic gates, thus introducing more computational errors. In light of that,
it is even more surprising that the logic gate errors may help the decoder. We proceed to show exactly
this. We present a class of noisy decoders that perform better than their perfect counterparts.

The First Ingredient: An LDPC Code. Our approach is based on a special type of linear block
codes, known as low-density parity check (LDPC) codes and on their iterative decoding [47]. Our
method is applicable to any LDPC code type, but for the sake of clarity, we mostly discuss a subclass
of the (γ, ρ)-regular LDPC code ensemble [47]. The integer parameters γ and ρ determine code rate
R ≥ 1 − γ

ρ , and the structure of the decoder, namely the number of input arguments to Boolean
functions used in the decoder. Applicability of our method to the irregular codes is illustrated in
Section 4.4.

A codeword of an LDPC code, x = (x1, x2, . . . , xn), is stored on the medium, which is modeled as
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the Binary Symmetric Channel (BSC), as shown in Fig. 2.2(b). In other words, the stored bits are sub-
ject to random and independent bit flips which occur with probability αM . Thus, y = (y1, y2, . . . , yn),
the word that is read back from the storage medium, can be expressed as y = x + e, where + denotes
XOR operation, and the elements of the vector e are independent, Bernoulli random variables with
parameter αM . The vector y is input to the iterative decoding algorithm whose goal is to recover x.
The decoder must maintain the low probability of not recovering x - the so-called the frame error rate
(FER).

The Second Ingredient: Noisy Gallager-B Message Updates. The iterative decoding algo-
rithm [48] operates on a graphical representation of a code G = (V ∪ C,E). The code graph G is a
bipartite graph whose edges in the set E connect the variable nodes in the set V with check nodes in
C. The decoding algorithm consists of sending messages between variable nodes v ∈ V corresponding
to code bits and check nodes, c ∈ C corresponding to parity check equations in which the variables
(bits) are involved.

The messages ν(`) from variable nodes and µ(`) from check nodes in the `-th iteration are computed
as

ν(`)
v→c = Φ(yv,m

(`)) + e
(`)
MAJ

µ(`)
c→v = Ψ(n(`−1)) + e

(`)
⊕ . (2.2)

where m(`) = µ
(`)
Nv\c→v denote the incoming messages to a variable node v from all its neighbors Nv

except a message from the check node c. Similarly, n(`) = ν
(`)
Nc\v→c denote all incoming messages to

the check node c from its neighbors except the variable node v.
Various choices of the update functions Φ and Ψ are considered in literature. Our decoding

algorithm is based on the modification of the Gallager-B algorithm [47], where the update functions Φ
and Ψ require only two types of logic gates: (γ−1)-input majority logic (MAJ) gates and (ρ−1)-input
XOR gates [49]. These gates produce wrong output with probabilities α⊕ and αMAJ , respectively.
Note the logic gate errors can occur because of gate unreliability, but can be also deliberately inserted

with a goal to improve the performance of the decoder. With some abuse of notation, e
(`)
MAJ and e

(`)
⊕

in Eq. (2.2) denote the errors in majority logic and XOR gates affecting computation of the messages

ν
(`)
v→c and µ

(`)
c→v, respectively (we drop the indices v → c and c→ v in eMAJ and e⊕). If the decoder was

deterministic, then e
(`)
MAJ and e

(`)
⊕ in Eq.(2.2) would be zero. For noisy decoders, they are independent

Bernoulli random variables with parameters αMAJ and α⊕, respectively.

The decided bit value x̂
(`)
v in the `-th iteration is calculated as x̂

(`)
v = Φ̂(l(`)), where the γ-tuple

l ∈ {M}γ represents all incoming messages to the variable node v, and Φ̂ is the decision function. An

estimate of the check node value c in the `-th iteration, σ̂
(`)
c is obtained by XOR-ing the decisions values

of all neighboring variables Nc using the function Ψ̂. The functions Φ̂ and Ψ̂ are defined and explained
in Section 4.2. The iterative procedure in Eq. (2.2) is halted when all parity checks are satisfied or
the predefined maximum number of iterations, L, is reached. The decoding is called successful if a
codeword (either correct or wrong) is found. Otherwise, the decoding is said to have failed. The event
of producing a codeword estimate which is a wrong codeword is called miss-correction.

The Third Ingredient: Rewinding. To allow the decoder to benefit from errors, large number
of iterations is needed under some conditions of gate unreliability. However, too many logic gate
errors can overwhelm the decoder, and lead to miscorrection. In addition to the Gallager-B update
rules given in Eq. 2.2, our decoder is equipped with the following key feature which prevents the
accumulation of errors in the messages when the number of iterations is large. If a codeword is not
found after LR iterations, LR � L, the decoding algorithm is re-initialized with the word received
from the channel. Instead of running the whole L iterations, the decoder instead runs r = L/LR very
short rounds. A decoder with such rewinding schedule is referred to as the rewind-decoder and denoted
by F	r(LR). We write this as F	r(LR) = F	1

(LR)♦F	1
(LR)♦ · · ·♦F	1

(LR), where ♦ denotes the
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Figure 2.3: A block diagram of a noisy decoder. Shaded blocks are made of unreliable components,
while white blocks are reliable.

rewinding schedule, and the last expression has r terms. Clearly, the plain noisy Gallager-B decoder
with no rewinding, denoted by F(L), is a special case of the rewinding decoder, F(L) = F	1

(L).
Therefore,

F	r(LR) = F(LR)♦F(LR)♦ · · ·♦F(LR)︸ ︷︷ ︸
r

. (2.3)

Critical Gates Must be Perfect. Note that the logic gates gates used to extract the bits from
any decoder must be perfect, otherwise the error rate would be bounded by the reliability of these
external gates [48]. Thus, the majority-logic gates in the decoder’s decision logic (the function Φ̂)
are made of perfect gates. We also assume that the effect of errors in the encoder in Fig. 2.2(b) are
incorporated in the value of the memory element error probability αM .

The register inside the decoder which temporarily stores the word read from a memory medium
(the channel values) is also reliable. This is necessary because otherwise the codeword estimate would
drift away from the true codeword in the course of decoding, as iterations progress. Registers for
storing the intermediate results of computations of Φ and Ψ are unreliable, and their unreliability is
accounted for in αMAJ and α⊕. The blocks performed on perfect gates and those performed on noisy
gates are shown in Fig. 2.3.

As syndrome checker (the function Ψ̂ together with the m-input AND gate) is used as a decoding
halting criterion, it must be also made perfect. To reduce power consumption in a decoder, we may
want to perform syndrome checking not in every iteration but according to a predefined schedule. The
optimal schedule is beyond scope of this chapter, and we will simply adopt a schedule in which the
decoder runs on noisy hardware for maximum of L iterations, during which the (perfect) syndrome
checker is used only in the a few first iterations and in the last Z iterations.

The decoding is halted in the first of these Z iterations in which a codeword is found. The Z/L
ratio determines the decoding efficiency, thus is kept low. In the rewinding schedule, the syndrome
checker is used in all LR iterations in the first decoding round, and after the first rewinding it is used
in the last Z iterations in each round.

2.4 Performance Evaluation of Noisy Gallager-B Decoder

To characterize the FER performance of a given faulty decoder F , we need to compute the probability
Pr{x̂(`) 6= x} and find how it varies with the parameters αM , α⊕, αG, L and Z, and, for the rewind-
decoder F	r , also with the parameters of LR and r. We would also like to find the average number
of iterations needed for a decoder to converge to a codeword. The goal is to find a region in this
7-dimensional design space in which F and F	r outperform their perfect counterpart F .

We now introduce a Markov model which facilitates this analysis. We first derive the model for
the entire code graph, and then show that it can be simplified and applied to specific code subgraphs

while keeping its accuracy. Let ν(`) = (ν
(`)
v )v∈V be the ordered set of all messages from variable nodes
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in iteration `, and µ(`) = (µ
(`)
c )c∈C be the outgoing messages from check nodes. From Eq. (2.2), they

can be expressed as

ν(`) = ΥV (ν(`−1)) + e
(`)
ν

µ(`) = ΥC(µ(`−1)) + e
(`)
µ . (2.4)

where the functions ΥV and ΥC are the compositions of Φ and Ψ, and define the dynamical system of

the perfect decoder. The binary vectors e
(`)
ν and e

(`)
µ of length nγ (= mρ) are the realization of errors

at time ` that affect computation of messages ν and µ, respectively. Their elements are deterministic
functions of Bernoulli random variables representing the errors in the MAJ and XOR gates, and are
time invariant but not independent. Probability distributions of eν and eµ can be determined using
elementary probability.

From the discussion above, the random processes {ν(`)}`≥0 and {µ(`)}`>0 are both homogenous
Markov chains with finite state spaces. For the analysis purposes, it is sufficient to consider only the
random process {µ(`)}`>0.

For a given a decoder F and error pattern e in the memory elements, consider the Markov chain
We, with the state space S = {0, 1}|C|ρ, and the transition probability matrix P = (pε,δ)ε,δ∈S . The
transition probabilities between states, pε,δ = Pr{µ(`) = δ|µ(`−1) = ε}, depend on α⊕ and αMAJ . Since
Φ is the function of the memory output y, ΥC also depends on y, thus the transition probabilities
depend on the the channel error vector e, and for a given decoder we have an ensemble of Markov
chains {We}e∈{0,1}n .

Due to independence of logic gate errors, their effect can be combined into a single conditional
probability αG. Let δ̄ = ΥC(ε) be the state of the perfect decoder F reached from the state ε. Then

pε,δ = pε,δ̄α
dδ̄,δ
G (1− αG)|C|ρ−dδ̄,δ , (2.5)

where dδ̄,δ is the Hamming distance between the binary vectors δ̄ and δ, and αG is the probability
that a single XOR gate output in a noisy decoder F is different from the corresponding XOR gate
output in the perfect decoder F ,

αG = (1− α⊕)(1− (1− 2αMAJ)ρ−1) + α⊕(1 + (1− 2αMAJ)ρ−1).

The term multiplying (1 − α⊕) is the occurrence probability of an odd number of MAJ gate errors,
while the term multiplying α⊕ is the probability of even number of MAJ gate errors.

Note that for small logic gate error rates, the above expression can be approximated by

αG ≈ (ρ− 1)αMAJ + α⊕.

Let π
(`)
β = Pr{µ(`+1) = β} for some β ∈ S, and let π(`) = (π

(`)
β )β∈S . The initial distribution π(0)

can be readily found from error statistics in the storage medium and is a function on the memory
error vector e, αM and α⊕. For the component at the position c→ v we have

Pr{µ(1)
c→v = 1} = (1− α⊕)(1− (1− 2αM )ρ−1) + α⊕(1 + (1− 2αM )ρ−1).

Let the vectors x̂(`) and σ̂(`) be the variable node decisions and check node estimates in iteration
`. If they were computed by noisy gates, the probability of convergence to a codeword would be close
to zero for any iteration `. This follows from from from Eq. (2.4) and the fact that π(`) = π(0)P `.
This explains the requirement for using perfect gates to compute the variable node estimates by the
perfect gates.

It is instructive to classify the states of We with respect to their closeness to codewords. Due
to channel, decoder, and the gate-error mechanism symmetries (each one treats the binary zeros and
ones equally), the decoder behavior is independent on the readback codeword y. However, it depends
on the error pattern in memory elements, e. Furthermore, since the code is linear, for the FER
analysis it is sufficient to consider the all-zero codeword [50], x = 0. Let S0 ⊂ S denotes the subset
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of states for which all parity check are satisfied and the variable node decisions form the all-zero
codeword 0. Similarly, S∼0 denotes the set of states for which all parity check are satisfied, and
the variable node decisions form a non-zero codeword. The set S∼C includes all states for which the
variable node decisions are not codewords. Thus, the above three disjoint sets partition the set of
states S = S0 ∪ S∼0 ∪ S∼C . We underline that the Markov chain and hence its any state partition
depends on e.

FER Performance and Time to Absorption for a Given Error Pattern. For a given error
pattern e, the frame error probability, and the conditional miscorrection probability of the decoder
F , (i.e. miscorrection error rate (MER)) in the iteration `, Pr{x̂(`) 6= x, σ̂(`) = 0} can be now found
from W and expressed as

FER
(`)
e (F) = Pr{µ(`) ∈ S∼0 ∪ S∼C}

MER
(`)
e (F) = Pr{µ(`) ∈ S∼0}.

Theorem 1. For a noisy Gallager-B decoding algorithm D = F(L,L) on any LDPC code C, ∃L∗ and
∆, which depends on L∗, such that ∀L > L∗

|FER(L)
e (D)−MER

(L)
e (D)| < ∆. (2.6)

The average number of iterations to absorption to the states in S0 and S∼0 can be calculated from
the Markov chain We. If we combine all states in S0 into a single state, and do the same for S∼0, we
end up a with a reduced Markov chain denoted by Me. Its transition probability matrix

P =

(
I2 0
R Q

)
(2.7)

can be obtained from that of We by summing up the corresponding rows as explained in Appendix
A. Me is also homogenous and absorbing but has only two absorbing states, one corresponding to
the correct decision, and and one corresponding to miscorrection. The matrix Q in Eq. (2.7) is a
transition probability matrix between the transient states in S∼S with no zero entries, and I2 is the
2× 2 identity matrix. The transition probabilities from transient to absorbing states are given by the
matrix R = (R0, R∼0). The fundamental matrix of the absorbing chain, N = (I −Q)−1, determines
the average times to absorption from different transient states. More specifically,

∑
δ∈S∼C Nβ,δ is the

average time to absorbtion from the transient state β.

Average FER Performance. We have shown that the Markov chain model allows us to determine
these probabilities. By averaging over all error patterns, we obtain the average FER as

FER(D) =
∑

e∈{0,1}n
Pr{e} × FERe(D). (2.8)

Note that the Eq. (2.6) is valid for a given error pattern e, and it translates to the averages (i.e.,
FER(L) = MER(L)) for infinite L. However for finite L, the average FER(L)(D) and MER(L)(D) in
Eq. 2.8 can differ significantly.

The probability of the error pattern e, Pr{e}, depends on its Hamming weight w(e). In the case
of transient i.i.d. memory errors occurring with probability αM , the probability e, Pr{e} can be
expressed as

Pr{e} = α
w(e)
M (1− αM )n−w(e). (2.9)

For a perfect decoder for which αMAJ = 0 and α⊕ = 0, transitions between states are deterministic,
and the attractor basin of a dynamical system (µ(`) = ΥV (µ(`−1)) in Eq. (2.4) includes the codewords
- which are the fixed points - and trapping sets, which can be either fixed points or cycle attractors.
Perfect decoder may oscillate between these states, thus failing to converges to a codeword. On the
other hand, in a noisy decoder - where αMAJ and/or α⊕ are nonzero - every state can be reached
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with a nonzero probability. Thus, the faulty decoder will eventually converge to a codeword - either
correct or incorrect one.

In the case when the decoding algorithm have small probability of miscorrection in the first
decoding iterations, it is better to use the rewinding decoder with r = L/LR rounds, where the
restarts and re-initializations are performed after LR iterations, LR << L. We denote this decoder by
D	 = F	r(LR). From Eq. (2.3), it follows that the rewinding decoder is a composition of r rounds of
the non-rewinding decoder D = F(LR) which runs for LR iterations, with Z iterations of syndrome
checking, i.e., D	 = D♦D♦ · · ·♦D. This fact allows us to to obtain the miscorrection probabilities for
every particular error pattern. The restart is performed only in the case of decoding failure, i.e. when
the syndrome is not equal to zero. Therefore, the miscorrection probability of this decoder is

MERe(D	) =
r∑
`=1

MERe(D) (FERe(D)−MERe(D))`−1 , (2.10)

and the frame error rate after r rewinds includes the cases of miss-corrections in all r rounds rounds
and the case when the syndrome is not zero in all iterations. Therefore,

FERe(D	) = MERe(D	) + (FERe(D)−MERe(D))r . (2.11)

Finally, the average FER is obtained as

FER(D	) =
∑
e

Pr{e}FERe(D	). (2.12)

Note that in the above discussion it is assumed that the perfect syndrome checker was used in
every iteration. However, due to power consumption reasons, the perfect checker might be used in
only last Z out of L iterations. The Markov chain corresponding to this case is not absorbing in the
first L−Z iterations, and for large enough L, there is nonzero probability to reach any state. The state
probabilities after turning on the syndrome checker in the L−Z+1 iteration are π(L−Z) = π(0)PL−Z ,
and act as the initial distribution for the absorbing Markov chain W in the last Z iterations.

While the ensemble of Markov chains {We} completely determines the decoder’s FER and MER
performance on an entire code graph, its state space S is large, making the above approach numerically
inefficient. However, the theory of perfect iterative decoders, gives the code graph topologies - known
as trapping sets - responsible for decoding failures. The exact characterization of the relationship
between the FER of an LDPC code and its trapping sets is known to be a formidable task. Thus,
instead of considering the entire code graph, the decoder performance can be estimated by its ability
to escape from Markov chain states corresponding to dominant trapping sets, as we explain next.

2.5 Numerical Results

Code (5,1), analytical approach

First, we present performance analysis of a short irregular code defined with the parity check matrix

H =



1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1


with the codeword length n=5, and constant row weight (all check nodes have degree ρi=2). It is
variable-node irregular and there are two variable nodes with degree three (γ1 = γ5 = 3) and three

nodes with degree two (γ2 = γ3 = γ4 = 2). It is easy to check that
∧
c∈C σ̂

(`)
c = 0, i.e., syndrome is
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verified only if x̂(`) = 0 or x̂(`) = 1, i.e., there are only two codewords: “all-zero” codeword and “all-
one” codeword. In fact, this is a repetition code with minimum Hamming weight dmin = 5, allowing
the maximum likelihood (ML) decoder to correct all error patterns of weight t = 2 or less (this is
a perfect code which attains the sphere packing bound). At the input of the decoder 32 different
received words y can appear. As mentioned before, for the case of BSC and symmetric decoders, we
can assume that the all-zero codeword is transmitted to analyze the effect of errors.

As we showed previously, if the noisy Gallager B decoder F(L) is applied, the decoding process
can be described with Markov model where the states are defined with the massages send from check
to the variable nodes. In this particular case, every state can be represented as a binary vector of
length

∑n
i=1 γi = 12, and total number of states is 212 = 4096.

+
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Figure 2.4: Faulty Gallager-B decoder with failures in MAJ and XOR gates, illustration for updating
the first variable node in the first decoding iteration, corresponds to the graph representation from
Figure 2.5.

The corresponding hardware realization is illustrated in Fig. 2.4, and the corresponding massages
passed between the nodes in the bipartite graph are presented in Fig. 2.5. The all-zero codeword is
transmitted, and it is assumed that an error appears only in the variable node v1. Thus the received
word is x̂(0) = (1, 0, 0, 0, 0). According to this initial codeword estimate, all variable nodes send its
initial values to the check nodes.

In the case when the decoder is perfect, the XOR gates with ρj − 1 = 1 inputs generate massages

µ
(1)
cj→vi that are sent from the j-th check node to the neighboring variable nodes, as illustrated in

Figure 2.5(a), and the corresponding state vector is µ(0) = (000, 10, 10, 10, 000). According to the

messages µ
(1)
cj→vi , the codeword estimate after the first iteration is obtained as x̂(1) = (0, 0, 0, 0, 0), by

using the perfect γi-input MAJ gate. The decision rule of the γi-input MAJ gate is slightly changed.
If all inputs of the MAJ gate are the same, the output is equal to the values of the inputs. If this
condition is not satisfied, the threshold is decremented and it is allowed that one input can be different
than the other to make the decision. If more than one input is different than the others, the threshold
is further decremented until the decision is made. As the threshold does not depend on the column
weight, in the case of irregular codes this decision rule favorize the inverting of the variable nodes with
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the larger column weight, that can improve the decoder performance.

In the variable nodes, the MAJ gates with γi − 1 inputs generate massages ν
(1)
vi→cj which are

sent to the check node neighbors. As explained in Section 4.2, the initial estimate from the channel
appear at the output of a MAJ gate if number of zeros and ones at its inputs is equal. In the next

iteration, massages µ
(2)
cj→vi are send from the check nodes to the variable nodes, the corresponding

state is µ(1) = (000, 00, 00, 00, 111), and the codeword estimate after the second iteration is obtained
as x̂(2) = (0, 0, 0, 0, 1). In the subsequent iterations, the outputs of the (γi − 1) XOR gates define
inputs of the (γi − 1) MAJ gates and vice versa. In further iterations, the codeword estimates will be
x̂(3) = (0, 0, 0, 0, 0), x̂(4) = (1, 0, 0, 0, 0), etc.
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Figure 2.5: Noisy Gallager-B decoding for the example shown in Fig. 2.4. (a) Check to variable
update, ` = 1; (b) Variable to check update, ` = 1; (c) Check to variable update, ` = 2

In other words, in even iterations the codeword estimate will be incorrect and correspond to the
sent codeword, while in odd iterations the codeword estimate will result in a zaro-syndrome and will
be correct. This illustrates that increasing the maximum number of iterations L does not necessarily
result in a successful decoding if the syndrome is checked in only in one (last) iteration. In the above
case, successful decoding is possible only if the syndrome is checked (by the perfect checker) in no
less than two successive iterations. In general, the minimal required number of consecutive syndrome
checks may vary for different error patterns.

In the above example, we have assumed that all decoder components are perfect. Thus, the next
state is completely determined by the check node and variable node processor functions. For example,
if the current state of this Markov model is µ(`) = ε = (000, 10, 10, 10, 000) and the next state µ(`+1) =
δ̄ = (000, 00, 00, 00, 111) is reached with probability one, i.e. Pr{µ(`+ 1) = δ|µ(`+ 1) = ε} = 1, while
the other transitions are forbidden.

In the case of noisy Gallager-B decoder, the (ρj−1)-input XOR gates which generate the massages

µ
(`)
cj→vi and (γi − 1)-input MAJ gates which generate massages ν

(`)
vi→cj may be faulty, as well as the

corresponding register where these messages are stored in the decoder. It is only assumed that the γi-
inputs MAJ gate which produces the codeword estimation is perfect, as well as the syndrome checker
logic. For such a noisy decoder, all other states µ(`+ 1) = δ can be reached in the next iteration in
addition to the states in µ(`+ 1) = δ̄. The transition probabilities Pr{µ(`+ 1) = δ|µ(`+ 1) = ε} are
given in Eq. (2.5).

Probability that a specific error pattern is decoded by using the noisy Gallager-B algorithm in
the `-th iteration can be obtained from the transition probability matrix of the Markov chain and
input error pattern received from memory which defines the initial state of the Markov chain. As we
have shown in Section 2.4, by using a theory of absorbing Markov chains it is possible to analytically
determine the conditional FER and MER of a noisy decoder F(L,Z) for any memory error vector
e. By averaging over all error patterns, we obtain FER from Eq. (2.8), and the average MER can
be calculated similarly.

It is clear that some patterns correctable by the perfect decoder may become uncorrectable by
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the noisy decoder, but that some uncorrectable patterns may become correctable by a noisy decoder
with some probability. Now, we will illustrate the accuracy of the proposed analytical model based on
absorbing Markov chains, by comparing with the results obtained by using Monte Carlo simulations.
Also, we will show for a few illustrative error patterns and failure rates that the conditional FER
is lower bounded with the corresponding conditional MER, and if ` tends to infinity we obtain

FER
(∞)
e = MER

(∞)
e (as stated in Theorem 1). As it is previously shown that errors and XOR and

MAJ gates have the similar effect to the decoder performance, for the reason of simplicity, we will
assume that only XOR gates are faulty with probability α⊕.

First, we will consider weight-two error pattern e=(11000), uncorrectable by using the perfect
Gallager-B algorithm. As it is shown in Fig. 2.6(a), increase of the number of iterations results
in better performance for the certain values of the failure rates. Probability that the pattern is not
decoded converge to the corresponding MER, for the infinite number of the decoding iterations. Also,
it can be noticed that the convergence speed is increased for larger failure rates αG. We also consider
weight-three error pattern e = (00111), uncorrectable by using the perfect Gallager-B algorithm. This
pattern is uncorrectable also (with probability one) by using perfect ML decoder, but the numerical
results presented in Fig. 2.6(b) indicate that there is non-zero probability to correct it by using noisy
Gallager-B decoder. Although the probability of miscorrection is larger than probability of correct
decoding, this effect is not negligible. If the failure rate in the logic gates is lower, more decoding
iterations are required for successive decoding but probability that the pattern is not corrected always
converge to the MER. Numerical results obtained by using the proposed analytical approach perfectly
corresponds to the simulation results.
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Figure 2.6: Conditional FER and MER for error patterns, uncorrectable by using perfect decoder,
as a function of maximum number of iterations: (a) Error pattern e = (11000), (b) Error pattern
e = (00111).

In Fig. 2.7(a) we show that the rewinding reduces miscorrection probability. As MER lower
bounds FER, the decoder performance can be improved for any error pattern if rewinding is applied
with the appropriately chosen rewinding period LR. If the rewinding is applied in the moment where
the probability of the miscorrection is negligible and the probability of correct decoding is not negli-
gible, this will affect the overall performance after rewinding. As the numerical values for conditional
FER and MER are known for the particular error pattern are known for all iterations, the optimal
value of parameter LR can be estimated.

Average FER as a function of crossover probability is presented in Fig. 2.7(b). If the failure rate
is high, it can help us to decode some high-weight patterns uncorrectable by using perfect decoder
but the MER for low-error patterns is increased, and some error patterns correctable by using perfect
decoder are now uncorrectable with high probability. Therefore, in the case of high failure rates
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performance in error-floor region is typically poor. For the decreased failure rate, the average FER
will be reduced for a wide range of αM , with the price of increased number of iterations (effect from
Fig. 2.6(a)). If the failure rate in logic gates is high, the decoder performance can be significantly
improved by using the rewinding procedure. For the noisy decoding with α⊕ = 0.01, rewinding after
LR = 3 iterations result in performance close to the ML bound.
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Figure 2.7: (a) Conditional FER for error pattern e=(11000) as a function of Z for α⊕MAJ = 0.01 when
the retransmissions are applied, LR = 25. (b) Average FER as a function of crossover probability.

Code (155,64), experimental results

Now show that a decoder with noisy gates is capable of correcting (5, 3) trapping sets that are uncor-
rectable by the perfect Gallager-B decoder. We consider the (3, 5)-regular (n, k) = (155, 64) LDPC
code constructed by Tanner [51], which is widely used in literature. The minimum Hamming distance
between codewords is dmin = 20, thus the perfect maximum likelihood (ML) decoder would be able
to correct any nine-error pattern. However, the perfect Gallager-B decoder fails on some three-error
patterns [52]. In the (155, 64) Tanner code, every uncorrectable three-error pattern induces a (5,3)
trapping set of a unique topology [48]. Now, we show that these three-error patterns can be corrected
by our noisy decoder with high probability. We consider two different scenarios: (i) when check node
processing is perfect and only MAJ gates are noisy, and (ii) when variable node processing is perfect
and only XOR gates are noisy.

The conditional FER of the Tanner (155,64) code for the most critical three-bit error patterns
is presented in (Fig. 2.8(a) and 2.8(b)). The particular low-weight error pattern cannot be decoded
by perfect hardware, but it can be decoded with non-zero probability for a wide range of gate error
probabilities αMAJ and α⊕. After sufficient number of iterations, the minimum FER is not achieved
for perfect gates but for some nonzero value of the gate error rates αMAJ and α⊕. For a broad range
of gate error rates, our decoder actually benefits from logic gate errors.

Increasing the maximum number of iterations, L, reduces the probability that the error pattern
remains uncorrected. The impact of L is especially noticeable for high reliability gates (i.e., low αMAJ

and α⊕), as it can be seen From Fig. 2.8(a) and Fig. 2.8(b). In this case, hardware errors cannot help
much in annihilating trapping sets because the state transition probabilities in W are small for most
transitions other than those that already exist in the perfect decoder. Consequently, the convergence
to the subset S0 takes longer (it also grows with n). On the other hand, increasing Z has stronger
effect when gates are very noisy. Hence, prolonging the second stage of the decoding algorithm greatly
improves the performance of a decoder made of the less reliable hardware. For high gate error rates,
L has smaller impact. If some FER degradation can be tolerated, the low ratio Z/L can be used in
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Figure 2.8: The frame error rate performance of faulty Gallager-B decoder for Tanner (155,64) code
as a function of error rates in the logic gates, αMAJ and α⊕. The FER curves are estimated by using
Monte Carlo simulations. The storage medium introduces the worst case three errors-pattern which
induces the (5, 3) trapping set. The maximum number of iterations is L = 200 and L = 500, and the
perfect syndrome checker was used in the last Z ≤ L iterations only. Gate errors affect (a) MAJ gates
only, (b) XOR gates only.

order to improve the decoder energy efficiency in this case. Also, it can be noticed that a faulty XOR
gate has approximately (ρ − 1) stronger effect on the FER performance than a faulty MAJ gate. In
other words α⊕ ≈ (ρ−1)αMAJ would result in approximately the same performance, as shown earlier.
Therefore, the impact of the both types of failures can be represented by using a sinngle parameter
denoted as αG.

It is important to notice that the results in (Fig. 2.8) are given for an error pattern that is
uncorrectable by the perfect decoder. Therefore, for this particular error pattern, the noisy decoder
works better than the perfect one for any gate failure rates in the range αMAJ ≤ 0.02 and α⊕ ≤ 0.1,
and for any L and Z. Optimization of these parameters can lead to further improvements in decoder
performance and energy efficiency.

If the storage medium is modeled as BSC, any error pattern can occur at the decoder input with
certain probability. Therefore, we estimate the performance of noisy Gallager-B decoder is this case
as well. For the case when both XOR and MAJ gates are noisy with α⊕=αMAJ , and the numerical
results are presented in Fig. 2.9(a) for the case when αM = 2× 10−3. Since the previously considered
low-weight pattern is most critical, the main effects are same as in Fig. 2.8. For the perfect decoder,
the average FER is approximately equal to the probability of appearance of the dominant trapping
set at the decoder input. In a noisy decoder, the lowest FER is achieved for the gate error rates that
maximize successful correction of most critical trapping sets.

The faulty Gallager-B decoder is more efficient than its perfect counterpart for any values of the
failure rates in the logic gates less than 10−2. Even more importantly, when L = 1000 and the gate
error rates have near-optimal values, the noisy hard-decision algorithm has better performance than
the much stronger and more complex soft-decision min-sum algorithm realized in perfect hardware.
For low gate failure rates, L has the dominant effect on the FER, especially for the lower values of
the failure rates as shown in Fig. 2.9(a). Increasing number of iterations when syndrome checker is
applied is crucial, as for small Z even very large L does not improve the performance (see e.g., the
L = 1000, Z = 1 curve). This is the direct consequence of the fact that in this case the absorbing
states are reached in only a small number of iterations when the syndrome checker is turned on, while
in most of the iterations only transient states are visited.

In Fig. 2.9(b), the average FER as a function of number of iterations is presented for αM =
5 × 10−3. If the rewinding is not applied, larger values of the failure rates result in performance
improvement when compared to the perfect decoder, but the increase of maximum number of iterations
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Figure 2.9: (a) Performance of the faulty Gallager-B decoder for Tanner (155,64) code as a function
of failure rates (both XOR and MAJ gates are faulty with the same failure rate); comparison with
the perfect Gallager-B decoder and perfect min-sum decoder, errors in memory are i.i.d. with αM =
2× 10−3. (b) The FER performance of the faulty Gallager-B decoder on the Tanner (155,64) code as
a function of number of iterations. The decoders with and without rewinding are considered and the
effect of the per-round number of iterations LR is illustrated for αM = 5× 10−3.

does not result in further decrease of FER. On the other hand, for smaller failure rates the significant
performance improvement is noticeable for large values of parameter L. However, if the maximum
number of decoding iterations is limited, the performance can be inferior when compared to the case of
higher failure rates. If the rewinding is applied, the positive effect of the logic gate failures is exploited
several times for the various reinitializations. It is reasonable to chose the rewinding period LR to be
equal to the number of iterations where the performance improvement saturates in the case without
rewinding.

A comparison of different decoding strategies suitable for logic gates with high or low reliability is
shown in Fig. 2.10. The FER curves for decoding with no rewinding are shown in Fig. 2.10(a). For
all L, the decoder F outperforms the ideal decoder F , and for large L its performance approaches the
ideal decoder capable of correcting any combination of nine errors. The positive effect of the rewinding
is shown in Fig. 2.10(b) for various choices of L = r×LR combinations and various maximal number
of iterations L. For αG = 10−2, the rewind decoder F	 performs beyond the bdmin−1

2 c bound. The
total number of iterations L = r × LR is kept the same as for the corresponding decoder F .
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Figure 2.10: Performance of the faulty Gallager-B decoder for Tanner (155,64) code as a function of
the BSC crossover probability αM for various decoding strategies (no rewind decoding (a) and rewind
decoding (b)) effective for low and high failure rate ranges.
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To conclude, the above two decoding strategies cover two gate error rate regimes. For more reliable
logic gates, large number of iterations is needed before the decoder start benefiting from the positive
effects of logic gate errors. In this case, we apply syndrome checker in the first twenty iterations, as
the average FER rapidly decreases only at the beginning of the decoding. Then, we turn-off both
the final bit-estimation circuit as well as the syndrome checker, and allow for sufficient number of
iterations before we again activate the perfect syndrome checking. Clearly, this strategy results in
energy saving as the perfect gates are used in a reduced number of iterations. When gate failures rate
are high, errors correctable by the perfect decoder may turn uncorrectable, or lead to miscorrections
as they may lead to large deviations from the trajectory of the perfect decoder. A solution for this
case is to rewind the decoder. The higher the gate error rate, the lower optimal rewind period LR.

2.6 Conclusion

The noisy decoder proposed in this chapter is a rare example of a system built from a mixture of
noisy and perfect components that works better than a perfect system of the same or even higher
complexity. The exact energy consumption analysis would require hardware implementation and is
beyond the scope of this chapter, but the fact that our decoders use the perfect syndrome computations
Z/L fraction of time, implies overall energy savings compared to completely perfect decoders.

Our methodology can be applied to two different scenarios. In the first scenario, errors in logic
gate occur due their inherent unreliability, while in the second, the errors are inserted deliberately to
improve the decoding convergence. For example, in low-powered CMOS chips, the reliability of logic
gates can be tuned by changing their supply voltage. Underpowered noisy gates and perfect gates
are used so that only low fraction of overall computations - critical computations at critical times - is
performed on the perfect gates while the bulk of processing is done by the energy more efficient logic
gates. In the second scenario performance of iterative decoders made of perfect logic gates is improved
by deliberately inserting errors. The errors can be in a form of random bit flips added to logic gate
outputs. Generating random bits using noisy hardware is a known concept in the very large scale
integration (VLSI) community. The so called “true” random number generators (TRNG) of negligible
complexity compared to pseudo random counterparts based on linear feedback shift registers, may be
realized using variety of fundamental noise mechanisms in electronics circuits [53].
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Chapter 3

Design of Taylor-Kuznetsov Memories
built from Gallager-B LDPC Decoders

Abstract: In this part of the deliverable, we provide an analysis of the reliability of the memory

architecture proposed by Taylor [24] and Kuznetsov [46], under the framework of the i-RISC project.

We introduce a refined time-dependent memory degradation model to capture the effects of the circuit

noise. The successive error probabilities in the memory are expressed, from which we introduce a

threshold definition to characterize the set of memory degradation parameters and decoder noise

parameters that ensure the existence of a reliable memory. From the reliability analysis, we design

practical code and decoder parameters in order to minimize the redundancy per time unit of the

memory architecture.

3.1 Introduction

Over the past years, the size of electronic chips has considerably reduced, while the integration factors
on the chips have dramatically increased. Because of this huge scale change, energy consumption has
become a major issue in the design of the next generations of electronic devices. A usual solution to
lower the energy consumption is to decay the power supply of electronic chips by several orders of
magnitude [54]. However, both chip size reduction and lower power supply make electronic compo-
nents much more sensitive to noise [55, 56]. As a consequence, it is now widely recognized that the
computation and storage units built on the next generations of electronic chips will become unreliable.
This chapter addresses the issue of constructing reliable memories built from unreliable components.

Taylor [24] and Kuznetsov [46] were the first to propose a reliable memory architecture built from
unreliable components. In the Taylor-Kuznetsov memory architecture, the information is stored as a
codeword obtained from a Low Density Parity Check (LDPC) code. As the hardware introduces some
errors in the stored information, the codeword is regularly extracted from the memory and passed
through an LDPC decoder in order to correct the hardware errors. After a long time, the stored
codeword can be either very close to the initial codeword or far away if the decoder is not able to
compensate the memory degradation. The memory architecture is said to be reliable only if the initial
codeword can always be recovered from the codeword that is actually stored in the memory. As the
reliability of the memory architecture depends on the choice of the LDPC code and decoder, there is
a need for a theoretical analysis to predict which codes and decoders lead to a reliable memory.

Recently, Chilappagari et al. [57,58], and Brkic et al. [26] considered the use of a faulty One-Step
Majority Logic (OS-MAJ) decoder in the memory architecture proposed by Taylor and Kuznetsov.
The authors of [26, 57, 58] evaluated the Bit Error Rate (BER) performance under hardware error of
the OS-MAJ decoder alone. The reliability of the whole memory architecture built from an OS-MAJ
decoder was analyzed in [23,59]. The analysis of [59] is based on graph expander conditions, which is
difficult to characterize for large graphs. In [23], the reliability of the memory architecture is evaluated
through Monte-Carlo simulations. Here, we would like to consider stronger decoders than the OS-MAJ
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decoder, with possibly more than one iteration. Stronger decoders may lead to increased reliability at
the price of a more complex memory architecture.

Information theory provides the fundamental limits of communication systems as the minimum
rate at which the information can be transmitted reliably through a noisy channel. As a parallel, the
fundamental limits of computation systems may be addressed through redundancy. The redundancy
was defined in [24] as the number of noisy elements required to construct the memory architecture
divided by the memory capability k, that is the number of information bits stored by the memory.
However, as pointed out in [23], determining the minimum redundancy such that the memory built
on faulty hardware is reliable is a hard problem. Indeed, the redundancy depends on the architecture
itself, and in particular on the complexity of the considered decoder. An alternative would be to choose
a particular decoder, and to design the architecture and decoder parameters such as to minimize the
redundancy. To the best of our knowledge, this problem has not been addressed so far in the literature.

As a design parameter of the memory architecture, the refresh time can be defined as the time
duration between two decoding instances. In the previous works on the Taylor-Kuznetsov memory
architecture [2, 23,24, 26,46,57–59], the refresh time is assumed to be fixed: the memory degradation
between two decoding instances is represented by a Binary Symmetric Channel (BSC) of parameter α0

that does not depend on the refresh time. However, there is a tradeoff between the decoder complexity
and the refresh time in the sense that a stronger decoder (e.g., with more iterations) will tolerate an
increased refresh time. Thus, in addition to being an important design parameter, the refresh time
could be used to find the code and decoder parameters that minimize the redundancy per time unit
of the memory architecture.

In this chapter, we consider the Taylor-Kuznetsov memory architecture built from a Gallager B
LDPC decoder with possibly more than one iteration. As the LDPC decoder runs on the same faulty
hardware as the memory, it is assumed faulty as well. The BER performance of the faulty Gallager
B decoder alone was analyzed in [30, 60, 61] using noisy Density Evolution (DE) initially introduced
in [2]. It was shown that the Gallager B decoder under hardware errors only experiences a small loss
in performance compared to the noise-free decoder, and thus it is reasonable to use it in the memory
architecture. In this chapter, we want to design the code and decoder parameters in order to minimize
the redundancy of the memory architecture, while guaranteeing its reliability. Not only this approach
gives an upper bound on the minimum possible redundancy, but it also provides a rigorous guideline
for the construction of a low redundancy reliable memory architecture.

First, in order to be able to minimize the redundancy of the architecture by expressing the tradeoff
between the decoder complexity and the refresh time, we introduce a new time-dependent memory
degradation model. The proposed model gives the amount of errors that are introduced by the
hardware in the memory during a given time duration.

We then propose an analytical method to predict the reliability of the memory architecture for fixed
refresh time, code, and decoders parameters. In order to analyze the reliability of the architecture,
we express the evolution over time of the probability of errors in the codeword stored in the memory.
This defines a sequence of error probabilities in the memory at successive time instants. We analyze
the growing and convergence properties of this sequence of error probabilities, and based on these
properties, we introduce a threshold definition that indicates the maximum degradation level that the
memory can tolerate between two decoding instances. The threshold definition we propose is different
from the threshold definitions introduced for faulty LDPC decoders [2,62,63], as it takes into account
not only the LDPC decoder, but also the dynamic of the whole memory architecture. The threshold
definition enables us to represent reliability regions as a set of degradation levels and decoder noise
parameters for which a reliable storage of information is possible.

To finish, we proceed to the design of the memory architecture. From the reliability analysis, we
derive the minimum refresh time that can be tolerated by the memory to be reliable. We then express
the redundancy of the memory architecture, which depends both on the decoder complexity and on
the minimum refresh time. From this expression, we provide the optimal code and decoder parameters
that minimize the redundancy.

The outline of the chapter is as follows. Section 3.2 presents the memory architecture and in-
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troduces the time-dependent memory degradation model. Section 3.3 derives the sequence of error
probabilities in the memory and analyzes the growing and convergence properties of the sequence.
Section 3.4 introduces the reliability definition and the memory threshold definition. Section 3.5
addresses the design of the reliable low redundancy memory architecture.

3.2 Memory Architecture

In this section, we present the memory architecture based on LDPC codes initially proposed by Taylor
and Kuznetsov in [24, 46], and latter considered in [23, 26, 57–59]. We introduce the time-dependent
model we consider to represent the memory degradation induced by the faulty hardware. We explain
how LDPC codes enable to overcome the memory degradation induced by the faulty hardware and we
describe the faulty LDPC Gallager B decoder we use as a correction circuit in the memory architecture.

3.2.1 Memory Architecture

Assume that the memory has a storage capability of k bits. Le x(0) be a codeword obtained from an
LDPC code of dimension k defined by a parity check matrix H of size m × n, with k ≤ m − n. The
Tanner graph of the code is composed of n Variable Nodes (VN) v ∈ {1, . . . , n} and m Check Nodes
(CN) c ∈ {1, . . . ,m}. The degree of the VN v is denoted as dv and the degree of the CN c is denoted
as dc. Here, the code is assumed to be regular, i.e, dv does not depend on v, and dc does not depend
on c. Denote by N (v) the set of CNs connected to the VN v, and denote by N (c) the set of VNs
connected to the CN c.

At time instant t = 0, the codeword x(0) is written in the memory. Denote by x(t) the binary

information vector of length k that is contained in the memory at time instant t. Let x
(t)
v be the

v-th component of the vector x(t). The content stored in the memory is regularly degraded due to
the hardware noise. Consider discrete time instants t = 0,∆t, 2∆t, · · · . In the previous works on TK
memories [23,24,26,46,57–59], the memory degradation between two time instants j∆t and (j+1)∆t is
represented by a Binary Symmetric Channel (BSC) of parameter α, we denote BSC(α). Unfortunately,
because of the memory degradation, the number of errors in x(t) with respect to x(0) increases with t.
For large enough t, x(t) will contain too many errors, and it will not be possible to recover the initial
x(0) from x(t) anymore. In order to overcome this effect, an LDPC decoder is regularly applied to the
x(t) as follows.

As in [23, 24, 26, 46, 57–59], we assume that the LDPC decoder is applied at every time instant

t = j∆t. Denote y
(j)
in = x(t) the vector extracted from the memory at time instant t = j∆t and set

at the input of the LDPC decoder. Denote y
(j)
out the output of the LDPC decoder which is written

back in the memory. Here, we assume that the LDPC decoder duration δ is such that δ << T . For
simplicity, and as an abuse of notations, we thus set δ = 0. Formally speaking, it corresponds to a
discontinuity in the x(t) at all the time instants t = j∆t.

In the memory degradation model considered in [23, 24, 26, 46, 57–59], the BSC parameter α does
not depend on the time interval ∆t. This degradation model is far from being realistic since the longer
the information is stored, the more it should be degraded. In addition, the time interval ∆t is a
parameter that should be properly designed, depending on the decoder, in order to minimize the total
energy consumption of the memory. In the following, before introducing the LDPC decoder that will
be used in the memory architecture, we first introduce the memory degradation model that will be
considered in the chapter. In the degradation model we introduce, the parameter of the BSC depends
on ∆t.

3.2.2 Degradation Model

Here, we assume that the information stored in the memory continuously degrades over time, so that
the parameter of the BSC applied during ∆t depends on the value of ∆t. Consider a time instant t
such that j∆t < t < (j+ 1)∆t and a time difference δt such that j∆t < t+ δt < (j+ 1)∆t. In order to
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represent the degradation level in the vector x(t) during δt, we define a degradation function α(δt) as

α(δt) = P (x
(t+δt)
v = 1|x(t)

v = 0) = P (x(t+δt)
v = 0|x(t)

v = 1),

= P (x
(δt)
v = 1|x(0)

v = 0) = P (x(δt)
v = 0|x(0)

v = 1). (3.1)

The defined model is time-invariant. This model is equivalent to assuming that x(t+δt) is obtained by
passing x(t) through a BSC of parameter α(δt) that depends on δt. The degradation model defined
by (3.1) is symmetric since the probability that a bit is flipped does not depend on the bit value.

It is also spatially memoryless in the sense that the probability of a given bit x
(t)
v does not depend

on the probability of the other bits x
(t)
v′ , for v′ 6= v. The symmetry and memoryless assumptions

greatly simplify the analysis of the reliability of the memory architecture. More accurate models will
be considered in future works.

In order to completely define the degradation model, it remains to give an analytical expression of
the function α(δt). We rely on the time-invariant property of the error model and define the function
α within the first time interval [0,∆t]. The following proposition states the expression of α(δt) we
consider in the chapter.

Proposition 1. Denote by α0 the elementary degradation per time unit, defined as

α0dt = P (x(δt+dt)
v = 1|x(δt)

v = 0) = P (x(δt+dt)
v = 0|x(δt)

v = 1) (3.2)

The memory degradation function α(δt) defined in (3.1) then has expression

∀0 ≤ δt ≤ ∆t, α(δt) =
1

2
(1− exp(−2α0δt)). (3.3)

Proof. From (3.1), we get that α(0) = 0 and that the function α(δt) verifies α(δt + dt) = α0dt(1 −
α(δt)) + α(δt)(1− α0dt). Consequently α(δt) is the solution of the differential equation

α(0) = 0, α′(δt) = α0(1− 2α(δt)).

It it then straightforward to show that (3.3) is the solution of this differential equation.

The definition of α0 in (3.2) assumes that at time instant δt and during infinitesimal time interval
dt, the vector x(δt) is passed through a BSC of parameter α0dt. It can be shown that the resulting
function α(δt) in (3.3) is increasing with δt, and that limδt→∞ α(δt) = 1/2.

3.2.3 Gallager B decoder

We first describe the noiseless version of the LDPC Gallager B decoder we consider in the memory

architecture. The decoder runs in L iterations. Denote by η
(0)
v the initial message at VN v. At

iteration ` = 1, · · · , L, denote by γ
(`)
c→v the message from CN c to VN v, and by η

(`)
v→c the message from

VN v to CN c.
At time instant kT ′ + T , the decoder receives the vector x(kT ′+T ) and sets η

(0)
v = x

(kT ′+T )
v , and

η
(1)
v→c = x

(kT ′+T )
v . At iteration `, each CN c computes all the messages γ

(`)
c→v, for v ∈ N (c), as

γ(`)
c→v =

∑
v′∈N (c)\v

η
(`)
v′→c (3.4)

where the sum corresponds to a XOR sum. Then, each VN v computes all the messages η
(`+1)
v→c , for

c ∈ N (v), as

η(`+1)
v→c =

{
η

(0)
v ⊕ 1 if |{c′ ∈ N (v)\c : γ

(`)
c′→v = η

(0)
v ⊕ 1}| > b,

η
(0)
v otherwise,

(3.5)
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where b is a parameter of the Gallager B decoder. At the end of iteration L, A Posteriori Probability

(APP) values η
(L)
v are calculated as

η(L)
v =

{
η

(0)
v ⊕ 1 if |{c′ ∈ N (v)\c : γ

(`)
c′→v = η

(0)
v ⊕ 1}| > 0,

η
(0)
v otherwise.

(3.6)

At the end of the decoding, each VN is set as x
((k+1)T ′)
v = η

(L)
v . The resulting vector x((k+1)T ′)

corresponds to the vector stored in memory at time instant (k + 1)T ′.
In the noisy version of the Gallager B decoder, we assume that the hardware introduces some noise

at the end of the computation of γ
(`)
c→v, η

(`)
v→c, and η

(L)
v in (3.4), (3.5), (3.6). Denote by ν the binary

error probability on the message computation. Denote by γ̃
(`)
c→v, η̃

(`)
v→c, and η̃

(`)
v the noisy versions of

the messages γ
(`)
c→v, η

(`)
v→c, and η

(`)
v . The expressions of γ̃

(`)
c→v, η̃

(`)
v→c, and η̃

(`)
v are given by

γ̃(`)
c→v = γ(`)

c→v ⊕ e(`)
c→v, (3.7)

η̃(`)
v→c = η(`)

v→c ⊕ e(`)
v→c, (3.8)

η̃(L)
v = η(L)

v ⊕ e(L)
v . (3.9)

where e
(`)
c→v, e

(`)
v→c, and e

(L)
v are random variables such that P (e

(`)
c→v = 1) = ν, P (e

(`)
v→c = 1) = ν,

and P (e
(L)
v = 1) = ν. Although the defined error model may not capture all the noise effects that

could appear inside the XOR sum (3.4) and in the majority voting function (3.5), it does not require
knowledge of a particular hardware implementation of the functions. As for the memory degradation
model, the decoder error model is symmetric and memoryless. However, it appears sufficient for the
first step of the analysis and more accurate models will be considered in future works.

Now, we would like to determine whether and for which noise parameters α0 and ν the considered
memory architecture is reliable in the sense that x(0) can always be recovered from x(t), even for large
t. In order to define the recovery condition more precisely, we now explain how the stored information
is read from the memory.

3.2.4 Final Decoder

When at time instant t, the vector x(t) has to be read by a unit outside of the memory, a reconstruction
operation has to be applied to x(t) in order to recover perfectly the original x(0). Here, we will assume
that this reconstruction operation consists in applying a noiseless Belief Propagation (BP) decoder to
x(t).

At the end, the memory is said to be reliable if the original information vector x(0) can be perfectly
recovered by applying the BP decoder to any x(t), even for large values of t. To verify this condition,
we now express the evolution over time of the probability of errors in the stored codeword x(t).

3.3 Error Probability Evaluation

In this section, we analyze the reliability of the memory architecture by expressing the evolution over
time of the error probability in x(t). Between time instants t = kT ′ and t = kT ′ + T , the error
probability in x(t) is a its highest level just before decoding, at t = kT ′ + T , because α(t) is an
increasing function of t. Thus, we express the successive error probabilities in the vectors x(kT ′+T )

for k = 0, 1, 2, · · · . For the reliability analysis, we assume that the refresh time T is fixed, and we set
α = α(T ), where α corresponds to the amount of degradation in the memory between two decoding
instances.

3.3.1 Error Probability Function of the Faulty Gallager B Decoder

In order to compute the successive error probabilities in the memory, we assume that we are given
the expression of the function β → Pe,ν (β), which is the error probability function of the faulty
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Gallager B decoder considered in the memory architecture. The value β for which Pe,ν(β) is evaluated
corresponds to the error probability at the input of the decoder. Note that Pe,ν (β) also depends on ν,
the decoder noise parameter. The expression of Pe,ν (β) can be obtained from noisy Density Evolution
for the faulty Gallager B decoder, see [30,61].

The results of [30, 61] show that the faulty Gallager B decoder is symmetric in the sense of [2].
As a consequence, the error probability Pe,ν (β) does not depend on the input codeword, but only
on the input error probability β. In the following, we use the function Pe,ν (β) to express the error
probabilities in the memory at successive time instants.

3.3.2 Sequence of Error Probabilities in the Memory

From the error probability function Pe,ν (β), we now want to express the successive error probabilities
in the x(kT ′+T ), for k = 0, 1, 2, · · · . As the faulty Gallager B decoder and the memory degradation
model represented by a BSC are symmetric in the sense of [2], the successive error probabilities do
not depend on the codeword x(0) initially stored in the memory, which greatly simplifies the analysis.
According to the memory architecture defined in Section 3.2, the successive error probabilities in the
x(kT ′+T ) are given in the following proposition.

Proposition 2. Denote β
(k)
ν (α) the error probability in x(kT ′+T ) with respect to x(0), i.e., β

(k)
ν (α) =

P (x
(kT ′+T )
v = 1|x(0)

v = 0). The successive error probabilities β
(k)
ν (α) can be expressed recursively as

β(0)
ν (α) = α, (3.10)

and for all the integer values k ≥ 1,

β(k)
ν (α) = (1− α)Pe,ν

(
β(k−1)
ν (α)

)
+ α

(
1− Pe,ν

(
β(k−1)
ν (α)

))
. (3.11)

At time instant t = (k − 1)T ′ (just after the (k − 1)-th decoding), the stored vector x((k−1)T ′) has

error probability Pe,ν

(
β

(k′−1)
ν (α)

)
. It is then passed through the BSC of parameter α. The error

probability β
(k)
ν (α) (3.11) in the resulting x(kT ′+T ) comes from the concatenation of two BSCs, of

parameters Pe,ν

(
β

(k−1)
ν (α)

)
and α(T ), respectively.

Proposition 2 gives the recursive expression of the sequences {β(k)
ν (α)}+∞k=1 of error probabilities

in the memory. The memory will be reliable if the successive error probabilities are small enough so
that at any time instant, we can guarantee that x(kT ′+T ) is in a close proximity of x(0). In order to
be able to check this condition for various values of refresh time T , we first analyze the increasing and

convergence properties of the sequence {β(k)
ν (α)}+∞k=1.

3.3.3 Sequence Properties

The following proposition gives the increasing properties of the sequence {β(k)
ν (α)}+∞k=1.

Proposition 3. Consider the sequence {β(k)
ν (α)}+∞k=1 given in Proposition 2. If for fixed value of ν,

the function β → Pe,ν (β) is increasing with β, the following properties hold

1. the sequence {β(k)
ν (α)}+∞k=1 is increasing with k

2. the function α→ β
(k)
ν (α) is increasing with α.

If the function (β, ν)→ Pe,ν (β) is increasing with both β and ν, the following property holds

4) the function ν → β
(k)
ν (α) is increasing with ν.
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Proposition 3 assumes that the function Pe,ν (β) is increasing with β and with ν. Although these
increasing assumptions are reasonable, the results of [21, 64] show that the second one is not always
true. For example, for the discrete Min-Sum decoder with 7 quantization levels for the messages, the
authors of [64] observe that the noise in the decoder can sometimes improve the decoder performance
compared to the noiseless case. The same effect is observed for the Probabilistic Gradient Descent
Bit-Flipping decoders introduced in [21], and Proposition 3 does not hold for such decoders. On the
other hand, for the considered faulty Gallager B decoder, we observe that Pe,ν (β) is increasing with β
and with ν. As a consequence, for the memory architecture we consider in the chapter, higher values

of α and ν, will lead to increased error probabilities β
(k)
ν (α).

Proposition 3 also shows that the successive error probabilities β
(k)
ν (α) are increasing with k. As a

result, even with the Gallager B decoder, the hardware noise keeps degrading the stored information.

However, we hope that the sequence of error probabilities {β(k)
ν (α)}+∞k=1 converges to a fixed point

which is no too high, so that the initial x(0) can always be recovered from x(kT ′+T ), even for large

values of k. In order to verify this condition, we now analyze the convergence behavior of {β(k)
ν (α)}+∞k=1.

3.3.4 Fixed-Point Analysis

Here, we analyze the asymptotic behavior of {β(k)
ν (α)}+∞k=1 by determining the fixed points of the

sequence {β(k)
ν (α)}+∞k=1. The fixed points of the sequence {β(k)

ν (α)}+∞k=1 are the values β satisfying
β = (1− α)Pe,ν (β) + α(1− Pe,ν (β)), or equivalently if α 6= 1/2,

Pe,ν (β) =
β − α
1− 2α

. (3.12)

From the condition (3.12), the fixed points of the sequence of {β(k)
ν (α)}+∞k=1 correspond to the intersec-

tion of the curve representing Pe,ν (β) and the straight line y = β−α
1−2α . This gives a simple condition to

determine the fixed points of {β(k)
ν (α)}+∞k=1. Note that if Pe,ν (1/2) = 1/2 (which is always satisfied),

then β = 1/2 is always a fixed point of {β(k)
ν (α)}+∞k=1, whatever the value of α is.

The fixed points correspond to the possible limits of the sequence {β(k)
ν (α)}+∞k=1. We know that

β = 1/2 is always a fixed point, but it is a bad one for which we cannot recover the original x(0) from

x(kT ′+T ). Thus, we hope that the sequence {β(k)
ν (α)}+∞k=1 has other fixed points which correspond to

degradation levels that can be handled when the information vector is read from the memory. In the
following, we propose a definition of the memory reliability that accounts for this condition.

3.4 Reliability Conditions

In this section, we give a definition of the reliability of the memory. The reliability definition relies on

the above asymptotic analysis on the sequence of error probabilities {β(k)
ν (α)}+∞k=1. From the reliability

definition, we give a new threshold definition, that determines the maximum parameter α for which
the memory is reliable. We then provide reliability regions that represent the set of noise parameters
α and ν for which the memory is reliable.

3.4.1 Reliability Conditions

The reliability conditions we give here are based on the reliability conditions originally introduced
in [24, Section 2.2]. The following definition adapts the reliability conditions of [24] to our analysis of

the convergence properties of the sequence {β(k)
ν (α)}+∞k=1.

Definition 1. Consider the memory architecture of Section 3.2. Consider the sequence {β(k)
ν (α)}+∞k=1

given in Proposition 2. Denote B the set of fixed-points of {β(k)
ν (α)}+∞k=1 excluding 1/2, and denote by

β? the threshold of the noiseless BP decoder.
A memory is said to be reliable, if the following two conditions are verified
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1. Stability: The set B is nonempty,

2. Admissibility: The set B is such that maxB ≤ β?.

The condition 1 requires that the sequence {β(k)
ν (α)}+∞k=1 has fixed points other than β = 1/2. It

guarantees that the memory is stable in the sense that the error probabilities converge to a fixed point.
The condition 2 ensures that the fixed point corresponds to a degradation level that can be handled
by the final BP decoder.

The validity of Conditions 1 and 2 depend on the value of α, and on the decoder noise parameter
ν. In order to identify the set of parameters α and ν that lead to a reliable memory, we introduce a
threshold definition as follows.

3.4.2 Threshold Definition

For LDPC codes in channel coding, the noiseless threshold was defined in [65] as the maximum channel
parameter α such that Pe,ν (α) = 0. This condition cannot be applied here because of the noise
introduced by the faulty hardware, which prevents the decoder from reaching an error probability
0. This is why several other threshold definitions were introduced for noisy decoders: the Useful
Threshold [2], the target-BER Threshold [2, 6], and the Functional Threshold [62]. However, these
threshold definitions cannot be used in our context, because they characterize the behavior of the
faulty decoder alone. Here, we introduce a new threshold definition that characterizes the reliability
of the whole memory architecture.

Definition 2. Consider the memory architecture of Section 3.2 and fix the decoder noise parameters
ν. The Degradation Threshold is defined as

α = arg max
α
{The memory is reliable}. (3.13)

The Degradation Threshold α is defined as the maximum parameter α for which the memory is
reliable. The value of α can be calculated directly from the fixed-point analysis defined by (3.12).
Note that ᾱ does not correspond to the threshold definitions introduced for the noisy LDPC decoders
alone, as we now illustrate.

3.4.3 Reliability Regions

In this section, we provide reliability regions as the set of parameters α and ν that lead to a reliable
memory. We consider regular LDPC codes of VN degree dv = 3 and CN degrees dc = 4, 5, 6, 8,
respectively.

In order to verify the reliability of the memory for given parameters α and ν, we first need the
expression Pe,ν (β) of the error probability of the faulty Gallaber B decoder. The error probabilities
Pe,ν (β) are calculated from noisy-DE, [30,66]. Figure 3.1 (a) shows Pe,ν (β) as a function of β for the
four considered codes, for L = 5 iterations and ν = 10−3. As expected, the error probability increases
with β and with the code rate. However, there is no distinguishable threshold value on β that would
separate the low and the high error probability regions. Figure 3.1 (b) shows Pe,ν (β) as a function of
β for the (3, 6)-code, for various values of number of iterations L. We see that the error probability
decreases with L. As before, there is no distinguishable threshold value on β, because the values of L
are too low for a decoder threshold effect to appear. However, from the analysis carried in the chapter,

we can identify a Degradation threshold by analyzing the properties of the sequence {β(k)
ν (α)}+∞k=1.

Figure 3.2 (a) represents reliability regions as the Degradation Threshold values ᾱ with respect to
ν obtained from Definition 2, for the codes with dv = 3 and with L = 5 iterations. The reliability
regions are convex, even for large values of ν, and, as expected, the reliability regions shrink with the
code rate increase. When the decoder noise parameter ν becomes too large, the threshold value ᾱ
becomes 0, which means that the decoder noise is too high for the memory to be reliable. Figure 3.2
(b) represents the reliability regions for the (3, 6)-code, for various values of L. The reliability regions

51



10−3 10−2 10−1

10−4

10−3

10−2

10−1

β

Pe
(3,8)−code
(3,6)−code
(3,5)−code
(3,4)−code

(a)

10−3 10−2 10−1

10−4

10−3

10−2

10−1

β

Pe

2 iterations
5 iterations
10 iterations
15 iterations

(b)

Figure 3.1: Error probability curves of the Gallager B decoder (a) L = 5 iterations, dv = 3, various
values of dc , (b) (3, 6)-codes, various values of L

extend when L increases. However, as L increases, the extension of the reliability regions seems to be
less and less significant.

An increased value of L also increases the complexity of the decoder. This illustrates the tradeoff
between reliability of the memory and complexity of the decoder. In the following, we address this
tradeoff and we show how to optimize the decoder parameters.

3.5 Memory Architecture Design

In the previous section, we obtained the noise conditions, and in particular the maximum parameter
ᾱ, for which the memory is reliable. From the Degradation threshold ᾱ, we now compute, as a first
design parameter, the maximum refresh time T that the memory can tolerate to be reliable.

Both the reliability of the memory architecture and the complexity of the decoder depend on the
code and decoder parameters. In this section, we show that the tradeoff between memory reliability
and decoder complexity can be addressed from the expression of the redundancy per time unit of the
memory architecture. We then optimize the code and decoder parameters in order to minimize the
redundancy per time unit of the architecture.

3.5.1 Minimum Refresh Time

Denote by T̄ the minimum refresh time that can be tolerated for the memory architecture to be
reliable. The value of T̄ can be calculated directly from the memory degradation threshold ᾱ, as
expressed in the following proposition.

Proposition 4. Assume that the Degradation threshold ᾱ satisfies ᾱ > 0. The minimum refresh time
T̄ that can be tolerated by the memory is given by

T̄ =
1

2α0
log

(
1

1− 2ᾱ

)
. (3.14)

In addition, T̄ > 0.

Proof. The expression of T̄ in (3.14) is obtained from the definition of α(t) in (3.3), and from ᾱ = α(T̄ ).
The condition T̄ > 0 directly follows from ᾱ > 0.
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Figure 3.2: Reliability regions (a) L = 5 iterations, dv = 3, various values of dc, (b) (3, 6)-codes,
various values of L

The parameter T̄ is of practical importance in the memory architecture design as it sets how often
the decoder have to be applied in order to get a reliable memory.

The value of T̄ depends on the noise parameters α0 and ν, but also on the code and decoder
parameters such as the number of iterations L and the variable and check node degrees dv, dc. A
stronger decoder with good correction capabilities, obtained e.g. for an increased value of L, will lead
to an increased value of T̄ . However, a stronger decoder also comes at the cost of increased memory
architecture complexity. In the following, we address the tradeoff between refresh time and complexity
by expressing the redundancy per time unit of the architecture.

3.5.2 Redundancy of the Memory Architecture

Denote by C+ and Cmaj the complexity of the sum unit and of the majority voting unit, respectively.
The complexity of the Gallager B decoder can be evaluated as

Cdec = nL ((1− r)dcC+ + dvCmaj) + nCmaj. (3.15)

The complexity of the decoder alone does not take into account how often the decoder have to be
used. In order to take this into account, we assume that the refresh time is given by T̄ . We also
assume that the decoder duration δ is such that δ � T̄ , and, in order to simplify the expressions, we
thus set δ = 0. The validity of this assumption will be discussed latter in the chapter.

At the end, we express the redundancy per time unit of the whole memory architecture as

Red =
L

rT̄
((1− r)dcC+ + dvCmaj) +

Cmaj

rT̄
+ 1. (3.16)

The redundancy Red depends on the code and decoder parameters L, dv, dc. It also depends on the
minimum refresh time T̄ , which itself depends on the code and decoder parameters.

At the end, the redundancy (3.16) of the memory architecture expresses the tradeoff between the
complexity of the decoder and the minimum refresh time. The code and decoder parameters L, dv, dc,
thus have to be chosen in order to minimize the redundancy, as we now illustrate.

3.5.3 Decoder Design

In this section, we optimize the code and decoder parameters in order to minimize the redundancy
per time unit. We consider several codes with dv = 3 and with dc = 4, 5, 6, 8, respectively.
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Figure 3.3: For Gallager B decoder, ν = 10−3, α0 = 10−3 (a) Refresh time T with respect to number
of iterations L, (b) Redundancy Red with respect to number of iterations L

We first fix the memory degradation parameter α0 = 10−3 and the decoder noise parameter
ν = 10−3 and analyze the variations of the minimum refresh time T̄ and of the redundancy Red with
respect to the code and decoder parameters. Figure 3.3 (a) represents the minimum refresh time T̄
with respect to the number of iterations L. As expected, the refresh time increases with L and also
with the code rate. Figure 3.3 (b) represents the corresponding redundancy Red with respect to L.
In this case, the redundancy first decreases, and then increases with L. For the chosen parameters α0

and ν, we see that the value L = 2 always minimizes the redundancy, whatever the code. We also see
that the (3, 4)-code minimizes the redundancy.

We now analyze the influence of the noise parameters α0 and ν on the optimal number of iterations
Lopt. Figure 3.4 (a) represents the optimal number of iterations Lopt with respect to α0, for the four
considered codes, for ν = 10−3 and for ν = 10−2. We observe that the value of Lopt does not seems
to depend on α0, but depends on ν. Indeed, for ν = 10−3, the optimal value of L is always equal to
Lopt = 2, while for ν = 10−2, we always get Lopt = 1. In order to verify the dependency with respect
to ν, Figure 3.4 (b) represents the optimal number of iterations Lopt with respect to ν, for the four
considered codes. The optimal value of L is indeed Lopt = 2 for low values of ν, and Lopt = 1 for
higher values of ν. The transition on the value of L depends on the considered code. This shows that
the optimal value of the number of iterations depends on the decoder noise parameter ν and on the
considered code, but not on the memory degradation parameter α0.

To finish, we want to choose the code that will be used in the architecture. As we have observed
that the optimal choices of parameters do not depend on α0, we fix α0 = 10−3. Figure 3.5 (a) represents
the optimal refresh time Topt with respect to ν for the four considered codes. The sharp transitions
between low values and high values of Topt correspond to passing from Lopt = 2 to Lopt = 1. We
also see that low rate codes, although giving more complex decoders, have the highest refresh time
Topt. Figure 3.5 (b) represents the minimized Redundancy values Ropt with respect to ν for the four
considered codes. We see that although the redundancy values are all close, the code that minimizes
the redundancy is always the (3, 4)-code, whatever the value of ν. Paradoxically enough, the (3, 4)-code
is the code with the lowest rate, for which the decoder complexity is the highest.

As a summary, we have seen that the optimal choice of code and decoder parameters depend on ν,
but not on α0. Surprisingly, the optimization leads to a low value of L (lowers the decoder complexity),
but also to a low rate code (increases the decoder complexity). The optimization method could easily
be extended to irregular codes. Note also that the optimization process, and in particular the curves
of Figure 3.5 (b), provide upper bounds on the minimum redundancy that can be achieved by the
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Figure 3.4: Optimization of the number of iterations L, for various codes (a) Optimal value of L
with respect to α0 (b) Optimal value of L with respect to ν for α0 = 10−3

memory architecture, independently on the code and on the decoder.

3.6 Conclusion

In this chapter, we provided an analysis of the reliability of the memory architecture proposed by
Taylor [24] and Kuznetsov [46]. We introduced a new time-dependent memory degradation model.
We expressed the successive error probabilities in the memory and we introduced a threshold definition
to characterize the set of memory degradation parameters and decoder noise parameters that lead to a
reliable memory. From the reliability analysis, we designed the code and decoder parameters in order
to minimize the redundancy per time unit of the memory architecture.
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Chapter 4

Bit-flipping decoding under
data-dependent gate failures

Abstract: In this chapter we present new result related to the bit-flipping decoding under data-

dependent gate failures. We improve the results presented in Deliverable 4.2 providing a less

stricter condition for the guaranteed error correction of the bit-flipping (BF) decoder. We show

that (γ, ρ, α, (7/8 + ε)γ), ε > 0 expander codes guarantee that a fixed fraction of errors can be cor-

rected using the BF decoder whose check-node operations are prone to data-dependent gate failures.

In our previous pork we were able to prove that only (γ, ρ, α, (15/16 + ε)γ) expander codes have the

above characteristic.

4.1 Introduction

Guaranteed error correction of LDPC codes has been only studied for the iterative decoders built from
reliable components. Sipser and Spielman [67] showed that expander LDPC codes can be conveniently
used to guarantee the correction of a fraction of errors, i.e. there exist some α, 0 < α < 1, for which
the decoder can correct αn worst case errors, where n is the code length. They proved that both serial
and parallel bit-flipping algorithms can correct a fixed fraction of errors if the underlying Tanner
graph is a good expander. In the later work Burshtein [68] generalized their results and proved that
a linear number of errors can be corrected by the parallel bit-flipping algorithm with almost all codes
in (γ ≥ 4, ρ > γ)-regular ensemble. The expander graph arguments can be also used to provide
guarantees of the message passing algorithms, at it was shown by Burshtein and Miller [69] and linear
programming shown by Feldman et al. [70]. Recently, Chilappagari et al. [71] provided another look
on the guaranteed error correction of the bit-flipping algorithms. They found the relation between the
girth of the Tanner graph and the guaranteed error correction capability of an LDPC code.

In this chapter we examine the effects of data-dependent gate failures to performance of the bit-
flipping decoding. We investigate the error correction capabilities of the noisy bit-flipping decoders
and show that expander graph arguments can be used to establish lower bounds on the guaranteed
error correction capability in the presence of data-dependent gate failures.

The rest of the chapter is organized as follows. In Section 4.2 the preliminaries on codes on graphs
as well as the memory architecture are discussed. In addition, in the same section we give a description
of data-dependent approach to gate failure modeling. The error correction capability of the noisy bit-
flipping decoder is investigated in Section 4.3. The numerical results are presented in Section 4.4.
Finally, some concluding remarks and future research directions are given in Section 4.5.
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4.2 Preliminaries

4.2.1 Codes on Graphs and the Bit-Flipping Decoding

Let G = (U,E) be a graph with a set of nodes U and a set of edges E. An edge e is an unordered pair
(v, c), which connects two neighborly nodes v and c. The cardinality of U , denoted as |U |, represents
the order of the graph, while |E| defines the size of the graph. A set of neighbors of a particular node
u is denoted as N (u). The number of neighbors of a node u, denoted as d(u), is called the degree of
u. The average degree of a graph G is d̄ = 2|E|/|U |.

The girth g of a graph G is the length of smallest cycle in G. A bipartite graph G = (V ∪ C,E)
is a graph constructed from two disjoint sets of nodes V and C, such that all neighbors of nodes in
V belong to C and vice versa. The nodes in V are called variable nodes and nodes from C are check
nodes. A bipartite graph is said to be γ-left-regular if all variable nodes have degree γ, and similarly,
a graph is ρ-right-regular if all check nodes have degree ρ.

Consider a (γ, ρ)-regular binary LDPC code of length n and its graphical representation given by
γ-left-regular and ρ-right-regular Tanner bipartite graph G, with nγ/ρ check nodes and n variable
nodes. We consider expander codes, i.e. LDPC codes whose Tanner graphs satisfy expansion property
defined as follows.

Definition 3. [67] A Tanner graph G of a (γ, ρ)-regular LDPC code is a (γ, ρ, α, δ) expander if for
every subset S of at most αn variable nodes, at least δ|S| check nodes are incident to S.

Let x = (x1, x2, . . . , xn) be a codeword of a binary LDPC code, which appears at the input of a
binary symmetric channel (BSC). The output of the channel r = (r1, r2, . . . , rn), where Pr{rk 6= xk} =
p, is being decoded by our majority logic decoder. The number of flipped bits represents the Hamming
distance between the transmitted codeword x and the received word r, and is denoted as dH(x,r). The
decoder is divided into processing units that correspond to nodes in Tanner graph representation of
the decoder. Let −→mi(e) and ←−mi(e) be messages passed on an edge e from variable node to check node
and check node to variable node, during the i-th decoding iteration, respectively. Similarly −→mi(F )
and ←−mi(F ) denote sets of all messages from/to a variable node over a set of edges F ⊆ E. We next
summarize our majority logic decoder.

• At iteration i = 0 the variable-to-check messages are initialized by using values received from
the channel, i.e. −→mi(e) = rv, ∀e ∈ N (v). At iteration i, i > 0, a variable node processing unit v
performs the majority voting on binary messages received from its neighboring check nodes as
follows

Φ(←−mi−1(N (v))) =

{
s, if |{e′ ∈ N (v) :←−mi−1(e′) = s}| > dγ/2e,
rv, otherwise,

(4.1)

where s ∈ {0, 1} and dγ/2e denotes the smallest integer greater than or equal to γ/2. The
output of the majority logic (MAJ) gate, described by the function Ψ(·) is then passed to all
neighboring check nodes, i.e −→mi(e) = Φ(←−mi−1(N (v))), ∀e ∈ N (v).

• During each iteration i, i ≥ 0, a check node processing unit c performs ρ eXclusive-OR (XOR)
operations defined as follows

Ψ(−→mi(N (c) \ {e})) =
⊕

e′∈N (c)\{e′}

−→mi(e
′), ∀e ∈ N (c). (4.2)

The results of the XOR operations represent estimates of bits associated to neighboring variable
nodes and they are passed by mapping ←−mi(e) = Ψ(−→mi(N (c) \ {e})), ∀e ∈ N (c).

If the decoding is terminated after the i-th iteration, the result of Φ(←−mi(N (v))) represents the decoded
bit xv. Note that, when built from perfectly reliable logic gates, our decoder is functionally equivalent
to the parallel bit-flipping decoder [67]. Hardware unreliability in the decoder comes from unreliable
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computation of the operations Ψ(·) as XOR logic gates performing these functions are prone to data-
dependent failures, which are described in the following section. We assume that gate failures are
described by the GOS model, defined in the following subsection.

After each decoding iteration, the code bits are estimated based on the function Φ(·), which results
in probability of error of an estimated bit that is greater than or equal to the probability of failure
of the MAJ gate performing this function. Since the error probability of the MAJ gate lower bounds
the BER performance, MAJ gates must be made highly reliable. Otherwise, the probability of error
would be determined by this gate, not by the error control scheme. Thus, it is reasonable to make an
assumption that MAJ gates are perfect and that only the XOR gates are faulty. Reliable MAJ gates
can be realized, for example, by using larger transistors. Similar assumptions regarding perfect gates
were also used in other relevant literature [2, 24,26].

When the decoding is terminated after only one iteration, and a bit xv is decoded by Φ(←−m0(N (v))),
our decoder is reduced to the known One-Step Majority Logic (OS-MAJ) decoder, recently analyzed
in our previous works [26,58].

4.2.2 Gate-Output Switching Probabilistic Failure Model

Failures of subpowered CMOS logic gates are data-dependent and correlated in time and cannot be
represented in the same manner as memory failures [56,72]. In this letter we consider the probabilistic
gate-output switching model (GOS), recently proposed by Amaricai et al. [72], which assumes that a
gate failure depends on switching activity of the gate.

Let z(`τ) be the correct output of a logic gate at time `τ . Due to unreliability of the gate, the
actual output is z(`τ)⊕ ξ(`τ), where ξ(`τ) ∈ {0, 1} is the error at time `τ . In the GOS error model,
when the correct gate output is unchanged during two consecutive time instants, the actual gate
output is always correctly computed, i.e., Pr{ξ(`τ) = 1|z(`τ) = z((`− 1)τ)} = 0. On the other hand,
the gate fails to switch with probability Pr{ξ(`τ) = 1|z(`τ) 6= z((` − 1)τ)} = pg, pg > 0, g ∈ {⊕, γ},
where with slight abuse of notation γ signifies a γ-input MAJ gate. In general, the failure probability
of XOR gates p⊕ can be different from the failure probability of MAJ gates pγ . Although the GOS
model does not capture all the effects that lead to failures of subpowered CMOS circuits, it was shown
that loss of accuracy by using this modeling approach is relatively small [72]. The GOS model has
been studied recently in a number of papers [26,73,74].

4.3 Guaranteed Error Correction under the GOS Error Model

In this section we prove that the correcting capability of the iterative majority logic decoder, built
partially from unreliable gates, increases linearly with code length, when Tanner graph of a code
satisfies the expansion property, defined in Section 4.2.1. We assume that following two conditions
are satisfied: (i) the MAJ gates used in the decoder are reliable, and XOR failures follow the error
mechanism introduced in Section 4.2.3, and (ii) no more than |CXOR| gates are erroneous in the first
iteration. The need for previously described assumptions will be discussed later. Now we formulate
the theorem that gives the error correction capability of the noisy majority logic decoder.

Theorem 2. Consider a (γ, ρ, α, (7/8 + ε)γ) expander, 1/8 ≥ ε > 0. The majority logic decoder built

from unreliable check nodes can correct any pattern of |V1| <
(

3(3 + 8ε)αn/32−
√

2|CXOR|
)

errors.

Note that the decoder’s correcting capability depends not only on the expansion property of its
Tanner graph, but also on the number of XOR failures in the first iteration (|CXOR|). For too
many XOR gate failures during the first iteration, the decoding process will not converge to a correct
codeword. Recall from the GOS error model that |CXOR| depends on the XOR gates failures at time
instant prior to the first decoding iteration. We do not have any control over the number of XOR gate
failures before decoding has started, but there is a practical way to overcome this, and force |CXOR| to
be zero. Before we start decoding a new codeword we can force all transistor-level transient processes
in the decoding circuitry to reach a stationary state, so that there are no transitions at gate outputs
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nor accumulated errors, prior to the start of decoding. Practically, this can be done by slightly slowing
down the clock in the first iteration and letting the signal level stabilize. Since the clock is slower,
there are no-timing errors and the XOR computations are reliable, which yields |CXOR|=0.

We next compare our results with the results from [67] where a reliable decoder was considered.
It can be observed that the presence of the XOR gate failures reduces the number of errors that can
be tolerated by the bit-flipping decoder. For example, when the Tanner graph has the expansion of
(7/8 + ε), the perfect decoder can correct 9/16αn errors, which is two times higher than the error
correction capability of the faulty decoder. In the limiting case ε = 1/8 the number of correctable
errors is upper bounded by 3αn/8, which is only the 3/8 of the number of errors correctable by the
decoder built from reliable components.

The problem of explicit construction of expander graph, with the expansion arbitrary close to γ
(called lossless expanders), was investigated by Capalbo et al. in [75], where it was shown that the
required expansion 7/8 + ε can be achieved with graph left-degree γ = poly(log(γ/ρ), 8/(1 − 8ε)).
This proves the existence of a expander code that can tolerate a fixed fraction of errors under data-
dependent gate failures.

Another proof of the guaranteed error correction of LDPC codes was provided by Chilappagari
et al. in [71], where the correction capability of an LDPC code was expressed in terms of girth of
Tanner graph. In the following theorem we extend the results presented in [71] to the case of the noisy
decoder.

Theorem 3. Consider an LDPC code with γ-left-regular Tanner graph with γ ≥ 8 and girth g = 2g0.
Then, the majority logic decoder built from unreliable check nodes can correct any error pattern |V1|
such that |V1| < 9n0(γ/4, g0)/32−

√
2|CXOR|, where

n0(γ/4, g0) = n0(γ/4, 2j + 1) = 1 +
γ

4

j−1∑
i=0

(γ
4

)i
, g0 odd,

n0(γ/4, g0) = n0(γ/4, 2j) = 2

j−1∑
i=0

(γ
4

)i
, g0 even. (4.3)

Note that it was shown in [71] that γ ≥ 4 represents a sufficient condition for the guaranteed error
correction on a Tanner graph with girth g. However, due to logic gate failures higher expansions are
required compared to the perfect decoder, but the other conclusions remain the same as for the perfect
decoder.

4.4 Numerical Results

From Theorem 3 follows that the number of errors that can be corrected depends on the expansion
property, represented by α and ε, and the hardware failures inherited from the time instant prior
to the decoding, |CXOR|. Here we provide an upper bound on a fraction of channel errors, αtotal =
3(3 + 8ε)α/32−

√
2|CXOR|/n, that can be corrected by the decoder. We use the following lemma to

numerically obtain the upper bound.

Lemma 1. Let assume the existence of a (γ, ρ, α, (7/8+ε)γ), ε > 0 expander. Then, when code length
goes to infinity, α and ε must satisfy ε ≤ (1− (1− α)ρ)/(αρ)− 7/8.

In Fig. 4.1(a) we express αtotal(α
∗, ε∗) in terms of |CXOR|/n, for different ρ-right-regular Tanner

graphs. We consider only cases where ρ ≥ 8. We can observe that, for example for ρ = 8, when the
influence of inherited failures can be neglected, we can potentially correct more than 1% of erroneous
bits. In addition, a code correction capability reduces with the increase of ρ. When XOR gate failures
prior to the decoding become comparable with the correction capability of a code, a threshold is
reached and the bound rapidly decreases. The threshold is independent of ρ. For sufficiently large
|CXOR|/n the decoder performance is degraded up to the point where no error correction can be
guaranteed. This happens, for example for ρ = 8, when |CXOR|/n ≥ 1%.
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Figure 4.1: Guaranteed error correction under GOS error model: (a)Maximal tolerable fraction of
errors; (b) Number of tolerable errors.

Another perspective on the error correction of the noisy decoders is provided in Fig. 4.1(b).
Here we examine how the girth of γ-left-regular Tanner graphs affects the decoder performance. In
addition, we compare the results given by Theorem 3 with the correction capability of the noisy OS-
MAJ decoder, expressed by bγ/2c − |CXOR|. It can be observed that the error correction bound,
guaranteed by Theorem 3, for small girth (g ≤ 8), is not tight. It is actually lower compared to
the known OS-MAJ decoder correction capability. However, for higher girths of Tanner graphs, the
results given in Theorem 3 are significant. For example, when g = 12, |CXOR| = 0 and γ = 12, we can
guarantee correction of error patterns with weight 7, which is not possible using the OS-MAJ decoder.

4.5 Conclusion

Based on the expander properties of Tanner graphs, we established conditions required that correction
capability of the majority logic decoder increases linearly with the code length. Although we were
able to show that this property is achievable for codes with high left- and right-degrees, our results
present the first known results regarding the guaranteed error correction of LDPC decoders made of
unreliable components.
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Chapter 5

Reliability of Memories Built from
Unreliable Components under
Data-Dependent Gate Failures

Abstract: In this chapter we investigate fault-tolerance of memories built from unreliable cells. In

order to increase the memory reliability, information is encoded by a low-density parity-check (LDPC)

code, and then stored. The memory content is updated periodically by the bit-flipping decoder, built

also from unreliable logic gates, whose failures are transient and data-dependent. Based on the ex-

pander property of Tanner graph of LDPC codes, we prove that the proposed memory architecture can

tolerate a fixed fraction of component failures and consequently preserve all the stored information,

if code length tends to infinity.

Work presented in this chapter has been published in: S. Brkic, P. Ivanis, and B. Vasic, “Reliability
of memories built from unreliable components under data-dependent gate failures”, IEEE Communi-
cation Letters, vol 19, no. 12, pp. 1089-7798, December 2015 [P3]

5.1 Introduction

Recent research in the area of fault-tolerant memories based on decoders of low-density parity-check
(LDPC) codes is mainly inspired by the studies presented in the late sixties and early seventies by
Taylor [24] and Kuznetsov [46]. In their pioneering works, they proposed a memory architecture
built entirely from unreliable components, which is capable of preserving stored information over
arbitrary long time. The memory is composed of unreliable memory cells that are storing a codeword
of an LDPC code, and are periodically updated using a faulty iterative decoder. Attractiveness of
using LDPC codes lays in the theoretical guarantee that the decoding hardware overhead required to
ensure reliable operation grows only linearly with the code length even when logic gates are faulty
[24]. It was observed by Vasić et al. in [23] that an update cycle corresponds to one iteration of the
Gallager-B decoder, built from unreliable logic gates. In the later work, Varshney [2] used density
evolution analysis to prove that a memory based on the Gallager-A decoder is also capable of preserving
information in asymptotic code length. Chilappagari and Vasić [59] used the expander arguments to
show the existence of a reliable memory based on the bit-flipping algorithm. The reliability of the
same architecture was recently studied by Dupraz et al. in [76].

Both Taylor and Kuznetsov as well as most of the related work modeled logic gate unreliability as
transient independent failures, originally introduced by von Neumann [45]. Although the simplicity
of this model makes it attractive for theoretical analysis, it is unrealistic. In practice, unreliability
of logic gates is strongly data-dependent and correlated in time. One of the most dominant effects
impacting reliability of logic gates built in energy-efficient subpowered CMOS technologies comes from
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the so-called timing violations, which depend on a gate’s switching activity [56, 72]. Their effects to
different hard decision decoders have been recently studied in [26,73,74].

In this letter we establish a bound on a number of correctable errors for a memory system which
employ the bit-flipping decoder. Unlike in the prior research [59,76], we evaluate the memory reliability
in the presence of data-dependent gate failures. Following the recent work by Brkic et al. [74] on
guaranteed error correction capability of faulty bit-flipping decoders, we prove that our memory can
tolerate a fixed fraction of component failures. Consequently, we show that in the asymptotic case
the memory can preserve all stored information, which presents the first proof of memory reliability
under a failure model other then the von Neumann model. We refine the results presented in [59]
by improving conditions required for the memory reliability. In addition to our analytical results, we
present numerical results illustrating upper bounds on tolerable fractions of component failures.

5.2 System Model

5.2.1 The Memory Architecture

The information is stored in a memory as a codeword of a (γ, ρ)-regular LDPC code in n memory cells.
Each memory cell stores one code bit. In order to preserve the stored codeword, the memory cells
are periodically updated, at regular time instants τ, 2τ, . . . , Lτ, L ∈ N, based on the error correction
scheme, described as follows.

Consider a graphical representation of a (γ, ρ)-regular binary LDPC code given by Tanner bipartite
graph G = (V ∪ C,E), where V is a set of variable nodes (variables), C is a set of check nodes, and
E is a set of edges. An edge e ∈ E is an unordered pair (v, c) which connects two nodes v ∈ V and
c ∈ C. Nodes v and c are called neighbors iff there is an edge between them. Let Ev (Ec) be a set of
edges connected to a variable node v (check node c). Then, |Ev| = γ, ∀v ∈ V , and |Ec| = ρ, ∀c ∈ C,
where | · | denotes the cardinality.

Let xv(t) be a value of a memory cell associated to a variable node v at time t. Let −→m`(e) (←−m`(e))
be messages passed on an edge e from/to variable node to/from check node during an update cycle
`τ , ` > 0, respectively. The `-th update cycle can be summarized as follows.

• The content of a memory cell v, v ∈ V , at time `τ−δ0, where δ0 denotes an infinitesimal duration
of time, is passed to the neighboring check nodes, i.e., −→m`(e) = xv(`τ − δ0), ∀e ∈ Ev.

• Each check node c ∈ C calculates ρ XOR operations

←−m`(e) =
⊕

e′∈E(c)\{e′}

−→m`(e
′), ∀e ∈ Ec.

• The content of a memory cell v ∈ V is updated by using a γ-input majority logic (MAJ) gate
as follows

xv(`τ + δ0) =

{
s, if |{e′ ∈ Ev :←−m`(e

′) = s}| ≥ dγ2 e,
xv(`τ − δ0), otherwise,

where s ∈ {0, 1} and dγ/2e denotes the smallest integer greater than γ/2.

Note that during an update cycle a check node calculates estimates of the neighboring variable
nodes, rather than the parity check equation, since the value of the bit that is estimated is not used
in the calculation. However, the update cycle is functionally equivalent to one iteration of the parallel
bit-flipping decoder [67].

Hardware unreliability of the correction scheme comes from unreliable computation of messages
−→m`(e) and←−m`(e), as logic gates performing these functions are prone to data-dependent failures, which
are described in the following subsection.
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5.2.2 Failure Models

Two types of hardware components failures are considered in this letter: memory cell failures and
logic gate failures. We assume that failures in the memory cells are a consequence of supply voltage
variations. These errors are transient and manifest as random flips that corrupt values stored in
memory cells without damaging the cells [77]. Hence, we can assume that between two update cycles
memory content is transmitted through the binary symmetric channel for which Pr{xv(`τ + δ0) 6=
xv((`+ 1)τ − δ0)} = pm, ∀v ∈ V and ` > 0. On the other hand, gate failures are data-dependent and
modeled by the GOS failure model, presented in Section 4.2.2.

We will first prove that the memory architecture can tolerate a fixed fraction of errors in all
components. Then we will use Chernoff bounds to extend our results to the presented probabilistic
error models. Namely, in the first part of our proof we assume that a component failure follows the
statistics described above, but we allow only a fraction of failures during the interval ((` − 1)τ ,`τ),
` > 0. This means that the number of memory cell failures between two update cycles is bounded by
αmn. Similarly, we allow αγn MAJ logic gates to be faulty, while the rest of (1 − αγ)n MAJ gates
operate reliably. Note that we do not require reliable XOR gates, i.e., according to the GOS model
failure of every XOR gate used in the correction scheme can occur when the gate output changes.

5.2.3 Error correction of bit-flipping decoders

Our proof that the memory can tolerate a fixed fraction of errors in all components relies on expanders,
and here we give the necessary lemmas established by Sipser and Spielman [67] and Brkic et al. [74]
regarding the error correction capability of bit-flipping decoders. Lemma 1 pertains to decoders made
of reliable components, while Lemma 2 gives the correction capability of a faulty decoder whose gates
fail as described in the previous subsection.

Let V` be a set of corrupt (erroneous) variables at the beginning of the `-th decoding iteration. The
following lemmas depict the error correction capabilities of bit-flipping decoders when the underlying
Tanner graph is (γ, ρ, α, (7/8 + ε)γ), ε > 0 expander.

Lemma 2. The parallel bit-flipping decoder built from reliable components can correct any fraction of
αr < (3 + 8ε)α/4 errors after at most log2/(1−8ε) αrn iterations. Also, for every |V1| ≤ αrn and ` > 1
holds |V`+1| ≤ (1− 8ε)|V`|/2.

Proof: See [67]. �

Lemma 3. The parallel bit-flipping decoder built from unreliable check nodes can correct any fraction
of αu < 3(3 + 8ε)α/32 errors. Also, for every |V1| ≤ αun and ` > 1 holds

(1− 8ε)|V`| ≥ 2|V`+1| − (1− 8ε)|V`−1|. (5.1)

Proof: See [74]. �

5.3 Reliability of the Memory Architecture

5.3.1 Guaranteed Error Tolerance

When the memory is built entirely from unreliable components, the bits read from the memory at
some time instant, in the most of the cases will not be the same as in the originally stored codeword.
Thus, if we want to recover the information, the final step of codeword extraction must be performed
by reliable logic gates. In this letter we follow the system setup proposed by Taylor [24], which states
that memory failure is declared only if the sequence read from the memory cannot be successfully
decoded by the noiseless version of the same decoder in a finite number of iterations. We show that
our memory architecture under certain conditions achieves arbitrary low memory failure probability.

Note that logic gate failures at the time of the first update cycle depend on the instant before the
codeword is stored in the memory cells. There is a practical approach to resolve this issue by slowing
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down the clock in the first update cycle and letting the signal level stabilize [73]. This leads to fully
reliable logic gate operations in the first update cycle, which is assumed in our analysis.

We first investigate what fraction of memory failures αm can be tolerated by our memory if we
allow all gates, used in the correction scheme, to be faulty. This is given in the following lemma.

Lemma 4. The proposed memory architecture built on a (γ, ρ)-regular LDPC code free of four cycles

can tolerate a fraction of memory failures if αm ≤
⌊
γ/6
⌋
/n.

Proof: Proof was provided in Deliverable 4.2. �

Note that increasing n forces αm to reduce, and the number of tolerable memory failures αmn
cannot exceed bγ/6c. This means that under this conditions the arbitrary small memory failure
probability can be achieved only if γ tends to infinity. The main reason for a such behavior lies in the
fact that, under the GOS model, failures of MAJ gates can cancel out error correction gain achieved
during the update cycle. The only way to prevent this is to allow a number of MAJ gates to operate
fully reliable. In other words, we bound a fraction of faulty MAJ gates to αγ , but we do not put any
restrictions on the number of faults in check nodes. They all remain prone to data-dependent failures.

Theorem 4. The proposed memory architecture based on a (γ, ρ, α, (7/8 + ε)γ) expander code can
preserve all stored bits for an arbitrary long time period if

αm + αγ < 3ε(3 + 8ε)α/4. (5.2)

Proof: At t=0 a codeword of our expander code is written into the memory. The memory cells
are updated at time instants `τ , ` > 0, by performing one iteration of the bit-flipping algorithm. Let
V (t) be a set of corrupt variables (memory cells) at time t. The number of corrupt variables before
the first update |V (τ − δ0)| is bounded by

|V (τ − δ0)| ≤ nαm.

After the update cycle we have
|V (τ + δ0)| ≤ βαmn+ αγn,

where, according to Lemma 2, β = (1− 8ε)/2. In the time interval (τ, 2τ) there can be at most αmn
memory cells failures, which in the worst case will lead to αmn additional corrupt variables. Then,

|V (2τ − δ0)| ≤ βαmn+ αmn+ αγn.

Based on Eq. (5.1) and the previous discussion for all ` > 1 we obtain

|V ((`+ 1)τ − δ0)| ≤ β
(
|V (`τ − δ0)|+ |V ((`− 1)τ − δ0)|

)
+ αγn+ αmn.

From the previous inequality follows that the number of corrupt memory cells can be upper bounded,
which is formally presented in the following lemma.

Lemma 5. The number of corrupt memory cells before the `-th update cycle |V (`τ−δ0)|, for all ` > 0,
satisfies

|V (`τ − δ0)| ≤ (αmn+ αγn)/(8ε).

Since by Eq. (5.2)
(αmn+ αγn)/(8ε) < (3 + 8ε)αn/4,

from Lemma 4 follows that the number of corrupt memory cells at any time instant does not exceed
the error correction capability of the bit-flipping decoder, given by Lemma 1, and the memory content
is preserved. This proves the theorem. �
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It is important to note that, in order to prove the memory reliability bound presented in [59],
the number of faulty XOR gates had to be bounded. Here we do not need this condition for the
data-dependent failure model and the larger number of faulty components can be used in the memory.

Now we utilize Theorem 1 to bound the memory performance under the probabilistic failure model.
Let ∆m > 0 and ∆γ > 0 be such that pm + ∆m = αm and pγ + ∆γ = αγ . When condition given by
Eq. (5.2) is satisfied, the following lemma can be formulated.

Lemma 6. The probability that memory failure occurs after L update cycles, P (L), is bounded by

P (L) ≤ L(e−2∆2
mn + e−2∆2

γn).

The previous lemma describes a weak bound on the memory performance and its main goal is
to show that probability of failure P (L) decreases exponentially when the code length increases. It
proves the existence of a memory that can preserve all stored bits in asymptotic code length under
the data-dependent gate failure model.

5.3.2 The Complexity Analysis

In this subsection we compare redundances of memories that are based on Bit-Flipping (BF), Gal-
lager A (GA) and Gallager B (GB) decoders, under the same information capacity. The check node
operations are common for all three architectures. It is known that a (ρ− 1)-input XOR gate can be
implemented as serial concatenation of ρ− 2 2-input XOR gates. As there are nγ/ρ check nodes, the
total number of 2-input XOR gates needed for the decoder implementation is equal to nγ(ρ− 2).

The complexity of variable node operations is equal to nDγ , where Dγ denotes the complexity of
the γ-input MAJ gate. The following lemma bounds Dγ .

Lemma 7. The complexity of γ-input MAJ gates, γ ≥ 4, satisfies

Dγ ≤
(

γ

dγ/2e

)
− 1 +

dγ/2e−2∑
i=0

(
γ − i
dγ/2e − i

)
. (5.3)

Since the number of memory cells is equal to n, the redundancy of the BF-based architecture
satisfies

RBF ≤ n(1 +Dγ + γ(ρ− 2))/(Rn)

≤ (1 +Dγ + γ(ρ− 2))/((1− γ/ρ)). (5.4)

On the other hand, γ (γ − 1)-input MAJ gates need to be implemented in each variable node if
the GB-based architecture is used. In this case we have

RGB ≤ γ(1 +Dγ−1 + γ(ρ− 2))/((1− γ/ρ)). (5.5)

In the GA-based architecture γ (γ − 1)-input comparator gates are implemented in each variable
node. It is known that the (γ − 1)-input comparator gate can be implemented as (γ − 2) 2-input
comparator gates, which gives the following redundancy [2]

RGA ≤ (γρ− 1)/((1− γ/ρ)). (5.6)

We illustrate the redundancies of different architectures in Fig. 5.1, for γ = 4. It can be observed
that the GA-based architecture is slightly less complex then the BF-based architecture, while the
GB-based architecture requires much higher redundancy. However, the GB-based memory enables
the strongest protection against component failures. It can be noted that for all architectures exist
optimal code parameters that guarantee minimal redundancy. The lowest redundancy is achieved
when the GA-based memory architecture with (3,6)-regular LDPC code is used and it is upper bound
to 34. From Taylor’s definition follows that the storage capacity satisfies C ≥ 1/34 [2].
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Figure 5.1: Complexities of different memory architectures (γ = 4).

5.4 Numerical Results

We next show how the right side of the Eq. (5.2), denoted by αtotal(α, ε) = 3ε(3 + 8ε)α/4, can be
upper bounded. For that purpose the following Lemma 1 is used.

We can numerically express upper bounds on αtotal, which satisfy the condition given by Lemma 1,
for fixed values of ρ. The bounding values are divided between αm and αγ , which creates the tolerable
error regions presented in Fig. 5.2. It can be observed that by increasing ρ, under fixed γ, the number
of neighbors of a set with αn variable nodes reduces. On the other hand, we require that the set with
αn variable nodes have the expansion of more than 7γ/8, which can be only satisfied by reducing α.
Consequently, αtotal is inversely proportional to ρ. For example, when ρ = 8 αtotal = 0.003, while for
ρ = 24 the memory cannot tolerate the fraction of more then αtotal = 0.0009 errors.
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Figure 5.2: Upper bounds on tolerable error fractions.
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5.5 Conclusion

In this letter we proved the existence of a memory architecture that achieves arbitrary small failure
probability under the data-dependent gate failure model, which presents the first such result under
failure models other than the von Neumann model. In addition, we provided upper bounds on fractions
of component failures that can be tolerated by our memory.
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Chapter 6

Error Resilient LDPC Enhanced
3D-Memory Architecture

Abstract: In this chapter we introduce a novel error resilient memory architecture potentially appli-

cable to a large range of memory technologies from, e.g., dynamic RAM to FLASH. In contrast with

state of the art memory error correction schemes, which rely on (extended Hamming) Error Correct-

ing Codes (ECC), we make use of Low Density Parity Check (LDPC) codes due to their close to the

Shannon performance limit error correction capabilities. To allow for a cost-effective implementation

we build our approach on the top of a 3D polyhedral memory organization which inherently fast and

customizable wide-I/O vertical access allows for a smooth transfer of the required LDPC long code-

words to/from an error correction dedicated die. To make the error correction process transparent

to the memory users, e.g., processing cores, we propose an online memory scrubbing policy that per-

forms the LDPC-based error detection and correction decoupled from the normal memory operation.

After describing the proposed architecture and modus operandi we perform a preliminary performance

analysis. Our results indicate that for the same redundancy (amount of parity bits) LDPC enhanced

memories exhibit substantially higher fault resilience than state of the art extended Hamming ECC

based counterparts.

6.1 Introduction

Increased integration factor and technology shrinking make Integrated Circuits (ICs) more prone
to different defect types during the manufacturing process [78] and to in field degradations [79].
Given that the typical System on a Chip (SoC) area is memory dominated (the ITRS roadmap
predicts that the memory growing trend continues [80]), errors occurring in embedded memory systems
are a significant threat to the overall SoC correct behaviour. In view of this, powerful but cost
effective techniques to detect and correct memory errors are becoming crucial for future SoC related
developments [1].

Three dimensional stacked ICs (3D-SICs) based on Through-Silicon-Via (TSV) interconnects ([81])
is an emerging technology which further boost the trends of increasing transistor density and perfor-
mance, since it enables smaller footprints, high bandwidth low latency interconnection, and hetero-
geneous integration. Various 3D memory designs and architectures which exploit these benefits have
been proposed ever since the technology was introduced [82]. While most of the 3D memory designs
just follow a certain folding strategy the 3D polyhedral memory architecture proposed in [83] brings a
different fresh view into the field. It consist of multiple identical memory banks stacked on top of each
other, while TSVs bundles distributed across the entire memory footprint traverse all the stacked dies
to enable an enriched memory access set not achievable in planar counterparts.

In this chapter we propose a novel memory error correction mechanism which takes advantage
of the polyhedral memories flexible and powerful data access capabilities. Our approach relies on
performing Low Density Parity Check (LDPC) encoding/decoding [84] on large codewords, which
can be quickly transferred over the 3D polyhedral memory TSVs to a dedicated die, on which the
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Figure 6.1: Traditional Cache and Memory Array Layout

actual error correction and detection is performed. Given that LDPC decoding is an iterative process
An important component of the mechanism consists in an online memory scrubbing policy which
enables transparent error detection and correction, i.e., the memory behavior as seen from outside is
unaffected. We evaluated our LDPC-based proposal for various codeword lengths and compared its
error correction capability against state of the art extended Hamming Error Correcting Codes. Our
preliminary results indicate that memories with LDPC-based error correction tolerate considerable
more faults when compared to extended Hamming ECC counterparts, while maintaining the same
number of redundant parity bits.

The outline of the chapter is the following. In Section 6.2 we provide relevant background informa-
tion on traditional memory organizations, Hamming based error correction, and Low Density Parity
Check codes. In Section 6.3 we detail the implementation and basic operation of polyhedral memories.
In Section 6.4 we describe our proposed LDPC-based error correction mechanism for polyhedral mem-
ories. Section 6.5 is dedicated to a preliminary analysis of the LDPC-based error correction potential
performance and Section 6.6 concludes the chapter.

6.2 Background

In this section we first provide a brief overview of the considered traditional memory organization
layout and standard Error Correcting Codes implementations. The section ends with a Low Density
Parity Codes review.

6.2.1 Traditional 2D Memories

In order to balance area, delay, and power tradeoffs, large memories are usually constructed in a
hierarchical manner. In the following we consider the representative layout employed by the Cacti
[85] cache simulator, with a zoom-in into the design abstractions presented in Figure 6.1. At the
highest level the address space is split across several identical banks, four in this example, with each
bank having its own address and data bus, thus allowing for concurrent bank accesses. Each bank is
composed of identical sub-banks, again four in this example, with only one being active per access.
Further, each sub-bank is partitioned into multiple mats that simultaneously provide parts of the
required data (cache block in a cache data array). Finally, each mat is composed of four identical sub-
arrays that share predecoding/decoding logic and peripheral circuitry, and which again deliver together
the requested data. An H-tree routing distribution network is used to drive addresses and data to/from
the banks, and also to/from every mat inside a bank. This hierarchical memory organization approach
is employed, with slightly variations regarding the terminology, at various levels in processors memory
hierarchies, implemented in different technologies, i.e., caches ([86], [87]) and main memory ([88]).
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Figure 6.2: Error Detection and Correction Enhanced Memory

Table 6.1: Required parity bits for Hamming SEC-DED [1]

Data bits 4 8 16 32 64 128 256 512 1024 2048 4096
Parity bits 4 5 6 7 8 9 10 11 12 13 14

6.2.2 Error Correcting Codes

With continuous technology scaling employed towards meeting the requirements of increased density,
capacity, and performance, memory arrays are more sensitive to environmental aggression and ageing.
An increase in the number of bits per chip results in a significant increase in permanent (hard) and
transient (soft) errors rate [89–91], which makes mandatory the utilization of Error Correcting Codes
(ECC) to address both hard and soft errors [1].

The organization of an ECC enhanced memory is depicted in Figure 6.2. In the top of the usual
components such memory requires additional encoding/decoding circuits and each d-bit data word is
padded k-bit additional parity bits. The concatenation of the data bits with the parity bits is referred
to as a d + k codeword. During a write operation, the encoding circuit generates the codeword from
the input data bits. The generation rule of the codeword is determined by the employed ECC and
it is preferable that the ECC does not change the data bits (as it is the case in Figure 6.2) in order
to hide de computation latency associated to the parity bits calculation. During a read operation the
read codeword is decoded, the erroneous bits (if any) are identified, and their values corrected before
outputting the final data. Optionally, the corrected data and parity bits are written back into the
memory array to prevent soft error accumulation.

The detection and correction capabilities depends on the employed ECC and the amount of infor-
mation redundancy (parity bits) one is willing to store into the protected memory. In Table 6.1 the
required number of parity bits for Single-Error Correction (SEC) and Double-Error Detection (DED)
are presented for various data widths, when Hamming ECC is employed. One can observe that the
amount of storage overhead varies from 100% for 4-bit data down to about 0.34% for 4096-bit data,
which suggests that from the error correction point of view wide data organizations are advantageous.
However most of the up to date computation platforms, e.g., SoCs, rely on 32 or 64-bit architectures
which means that the typical storage overhead for SEC & DED is about 12.5% .
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6.2.3 Low Density Parity Check Codes

Low Density Parity Check (LDPC) codes [84], introduced in 1962, and later re-discovered in 1996,
are linear block codes which have error correction capabilities very close to the Shannon performance
limit, when using iterative decoding schemes [92]. For this reason, LDPC codes have been recently
adopted by many communication standards (e.g., WiFi [93], WiMAX [94], DVB-S2 [95], 10GBase-T
[96]) and have been employed in various applications (e.g., magnetic recording channels [97], space
communications [98]).

Generally speaking, adding parity bits to source information/data bits by means of LDPC en-
coding, i.e., creating a codeword, is a way to achieve reliable communication through an unreliable
channel between two parties located at the two channel ends. Each codeword should satisfy a set of
pre-determined parity check equations and parties may only send codewords over the channel. By
doing so, the receiving party gets the means to check if the received message is right and if this is not
the case to identify and apply the appropriate error corrective changes.

An LPDC code can be represented by a set of Boolean equations, that capture the parity constraints
to be satisfied by the bits of any valid codeword while LDPC decoding process attempts to find the
closest codeword to the word received via an error prone channel. The quest for the identification of
the closest codeword is guided by the parity check equations which can be perceived as an agreement
between the two parties in order to conduct reliable communications. If the agreement is violated,
it means that something went wrong during the transmission on the unreliable noisy channel and
corrective actions are required.

One commonly employed approach for iterative LDPC decoding is the sum-product algorithm,
which consists in passing messages (probability values of receiving an ”1” bit) over the edges of the
bipartite graph [99] associated with the LDPC code in use. A factor graph afferent to any LDPC
code, can be generated based on the set of constraints among the code’s information and parity bits
[99], and defines two main operations: (i) parity checks, that implement the parity-check equations,
and (ii) equality checks, that estimate and hold the being ”1” probabilities of each and every input
bit. Accordingly, the graph nodes are divided into two main groups: Parity-check Nodes (PN), and
Variable Nodes (VN). Figure 6.3 illustrates the factor graph of an LDPC code, on which edges messages
are exchanged iteratively between the parity nodes and the variable nodes, until either a codeword is
found, or a maximum number of iterations is reached.

Given that a memory can be perceived as a communication channel, on which we ”send” data
during a memory write operation and later on at a different time instance we ”receive” data during a
memory read operation, LDPC protection may be fit into the landscape. There are however a number
of hurdles which precludes its direct utilization for memory error detection and correction as follows:

• LDPC decoding exhibits a variable delay as is it may take a variable number of iterations before
a codeword is identified. Thus, if LDPC decoding instead of Hamming ECC is embedded into
the error correction framework in Figure 6.2 this will negatively affect the memory latency and
predictability and by implication the performance of the entire SoC.

• It is well known that LDPC codes are effective on messages which are at least 1Kb long while
current SoCs rely on 32 or 64-bit architectures.

However, as we demonstrate in Section 6.4 if the memory system follows the polyhedral architectural
template described in Section 6.3, LDPC based error protection can be enabled.

6.3 Polyhedral Memories

Polyhedral memories, introduced in [83], rely on a 3D-stacked memory design as presented in Fig-
ure 6.4, where every silicon die is an individually addressable memory bank. Besides the traditional
horizontal 2D interface, polyhedral memories have a vertical interface realized through TSV bundles
that traverse the entire 3D stack. The TSV bundles are distributed over the entire memory footprint
and traverse each mat through its center, being connected to the I/O data lines of each sub-array. In
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Figure 6.3: LDPC Code Factor Graph

Figure 6.4: Polyhedral Memory Design

this manner a wide-I/O vertical interface is created, having a width equal with the sub-array I/O size
multiplied by the number of sub-arrays in a mat. We note that different horizontal and vertical data
flows can coexist within the polyhedral memory array as long as they do not conflict on TSV bundles
and/or sub-banks.

The sub-array input/output data bit routing logic specific to the polyhedral approach allows for
the following operations to be performed:

1. Local data access, when the issue and the storage dies are identical. This represents the tradi-
tional memory access mode.

2. Remote data access, when the issue die is different than the storage die. This requires TSVs
utilization to perform operations on data located on a different die.

3. Vertical (wide-I/O) access, when the I/O data are transferred to/from the output/input
directly on the TSVs. This operation allows data access at different granularities: multiple
sub-banks from different banks could be simultaneously vertically accessed.

4. Inter-die (wide) transfers, when (large) data blocks need to be copied from one die (read
die) to another die (write die). Again, this operation requires TSVs utilization and could be
performed at different granularities.

In Figure 6.5 a possible access scenario is depicted, with four concurrent accesses: (i) a local access
on sub-bank 3 of bank 1, (ii) a remote access from die 4 on sub-bank 1 of bank 1, (iii) a vertical
access on sub-bank 4 of bank 1, and, (iv) another vertical access on sub-bank 2 of bank 4. It can be
noticed the multitude of accesses which can be serviced in parallel by a polyhedral memory due to the
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Figure 6.5: Concurrent Access Example in Polyhedral Memories

presence of TSVs bundles. In contrast, on a traditional 2D memory with the same number of banks,
only one of the above accesses would have been possible at a time.

Figure 6.6: Traditional ECC for Polyhedral Memories

6.3.1 Traditional ECC for Polyhedral Memories

An example of a straight forward ECC implementation for polyhedral memories is the design depicted
in Figure 6.6. The encoding/decoding circuits are physically located on each mat, and the 72-bit
codeword is distributed across all the mat’s comprising sub-arrays such that each of them stores 16
data and 2 parity bits. According to Table 6.1, by employing extended Hamming ECC, the correction
capability for 64 data bits and 8 parity bits is SEC-DED, i.e., the correction of one error and the
detection of two errors are enabled.

In the next section we propose a novel error correction mechanism for polyhedral memories, which
better exploits their enriched mechanism access set, and provides a higher error correction capability.
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Figure 6.7: LDPC-based ECC for Polyhedral Memories

6.4 LDPC-based ECC for Polyhedral Memories

As detailed in Section 6.3, polyhedral memories allow vertical data access at different granularities:
various sub-banks could be accessed in parallel on different dies, with the largest amount of vertically
accessed data being obtained when all the TSVs are utilized. In the following we make use of this
property to mitigate the issues (discussed at the and of Section 6.2.3) that preclude the direct LDPC
utilization in conjunction with state of the art architectures and introduce the LDPC protected memory
organization depicted in Figure 6.7. Specifically, we propose to: (i) form extended codewords by
combining data and parity (further referred to as check) bits from multiple (N ) sub-banks, (ii) augment
the 3D memory stack with an extra die dedicated to the execution of the LDPC encoding and decoding
actions, (iii) employ TSVs to transfer the extended codewords on/from the dedicated error correction
die, and (iv) rely on an online memory scrubbing policy which performs memory maintenance LDPC-
based error detection and correction activities without interfering with data requests coming from the
SoC computation cores.

The memory maintenance operates in a similar way the DRAM refresh does and in case of conflicts
its read/write accesses is has lower priority than normal read/write memory accesses issued by the
computation cores. We note that, different from the DRAM refresh, memory scrubbing requires
additional steps related to the codeword formation and transfer to/from the LDPC codec die and its
coding and/or decoding, thus it is much more time consuming, and by implication maintenance related
memory accesses are less frequent than the computation related ones. Consequently, the scrubbing
controller can take advantage of: (i) the polyhedral memory reach access mode set and (ii) the low
maintenance related accesses occurrence, to dynamically adapt its access schedule such that memory
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Figure 6.8: Check Bits Write Invalidation

conflicts are minimised if not completely avoided.
Following this policy the entire memory can be scanned within a certain period of time, which

depends on: (i) the LDPC codec performance determined by its iteration delay and the number of
required iterations, (ii) the bit error occurrence rate which depends on ageing and environmental
aggressions, and (iii) the overall memory capacity.

We note that from the SoC point of view, which is the one that really matters, the maintenance is
100% successful when it can keep pace with the error formation rate such that data read generated by
the running application(s) never return corrupted data. This doesn’t mean that all memory locations
should be error free, which is quite normal as memory locations not currently read by the application
do not influence its behaviour and may contain erroneous bits.

While the utilization of long codewords spanning over more than one SoC memory word is certainly
advantageous as it creates the premises for the LDPC approach to work at its best capabilities thus
has some implications on the way normal word granularity data accesses have to be handled.

When a word write is requested at address Ai the changes at that location have potential con-
sequences on all the check bits of the message Mj to which the location belongs. Thus in order to
preserve memory integrity/consistency the following actions have to take place when serving a write
request at address Ai:

1. Load via the afferent TSV bundle the entire message Mj on the codec die.

2. Interrupt the scrubbing in case only one LDPC codec can be accommodated on the codec die.

3. Decode Mj and correct possible errors if any.

4. Replace the value at Ai with the new to be written value.

5. Re-encode the message Mj .

6. Store Mj back to the memory via the same TSV bundle.

On the other hand when a word read request at address Ai (which is part of message Mj) is issued
the following actions have to take place:

1. Load via the afferent TSV bundle the entire message Mj on the codec die.
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2. Interrupt the scrubbing in case only one LDPC codec can be accommodated on the codec die.

3. Decode Mj and correct possible errors if any.

4. Send the (corrected) data value stored at Ai to the computation core that issued the request.

5. In case errors were found at Step 3

• Re-encode the message Mj .

• Store Mj back to the memory via the same TSV bundle.

While the previously mentioned write and read operations seems very expensive at the first glance
their complexity can be substantially diminished in view of the following observations:

• If the scrubbing is successful in preventing error accumulation and correcting errors before their
consequences are perceived by the application we can move the LDPC decode/encode out of
the memory read process. In this way the read complexity is reduced to the one of a normal
memory read and the computation units requests are served without any delay overhead. The
read operation mode, i.e., with and without LDPC decoding before read, can be dynamically
switched by the application by monitoring the scrubbing effectiveness. In this way the protection
level is adjusted to the environmental aggression level and SoC ageing status.

• The 3D memory is constructed by stacking identical memory dies which dimensions determine
the IC footprint. The codec die can be as large as the memory dies, thus for state of the art
memory capacities it may accommodate more than one LDPC codec. If this is the case Step 2
is not required. Moreover, if more LDPC codecs are available the memory maintenance process
can be parallelised which results an a higher error resilience.

• Write requests can be also simplified if Mj recoding is delayed until the scrubbing process
arrives to it. This can be done by means of a write invalidation, i.e., when a write operation is
performed on a message word, all the check bits of the extended codeword are invalidated, as
depicted in Figure 6.8. Depending on the bit error rate we may decide to place the invalidated
message in the front of the scrubbing queue or to take no further action as there is a large
chance that another write may occur within the same message in the close future. Nevertheless,
a read from an invalidated message immediately triggers the reconstruction of the check bits.
Note that the write invalidation policy may have an impact on the error correction capability.
Eventual bits errors which may appear between the invalidation and the actual check bits update
become undiscoverable as when they are read in relation with the message re-coding they will
be considered valid.

Finally it is worth noticing that if memory accesses have a larger granularity, e.g., an entire cache line
instead of a word, the LDPC (re-)coding overhead is diminishing, and that the read/write complexity
can be reduced by, e.g., write buffers, caching.

To get an inside in the potential of our proposal we evaluate in the next section the error correction
capability of our approach and compare it with the one of extended Hamming for the same redundancy
level.

6.5 Performance Analysis

To evaluate the performance of our proposal, we simulated the following memories:

1. Without error correction capability (uncoded).

2. With state of the art 72-bit (64 data bits and 8 parity bits) extended Hamming ECC (Hamming).
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Figure 6.9: LDPC vs Extended Hamming

3. With our proposed LDPC-based based mechanism with N × 72-bit codewords with N values of
10 and 100 (LDPC).

In the experiment, we use a regular LDPC code with variable-nodes degree dv = 3. For LDPC
decoding we used a modified version of the bit-flipping decoder and allowed for maximum 10 iterations.
To simulate memory fault occurrence, we use a Binary Symmetric Channel (BSC) with crossover
probabilities (α), i.e., the probability that a memory bit is being flipped, from 10−2 to 10−5.

The performance is assessed in terms of Word Error Rate (WER) as plotted in Figure 6.9, where
for each simulation point, 10 millions frames have been simulated. From these experimental results,
one can observe that:

1. The uncoded memory performs the worst since it has no error correction capability.

2. When a WER = 10−6 is targeted, the Hamming protected memory tolerates memory faults up
to α = 2× 10−5 while the LDPC protected ones bear up to α = 9× 10−5 and α = 4× 10−4 for
N = 10 and N = 100, respectively.

3. With respect to the same targeted WER, the LDPC based memories with N = 10 and N = 100
have coding gains of 7× 10−5 and 3.8× 10−4 in terms of crossover probability when compared
to the memory with Hamming protection, respectively.

6.6 Conclusion

In this chapter we proposed a novel LDPC-based error correction mechanism for polyhedral memories.
We proposed to utilize the polyhedral memories inherently fast and customizable wide-I/O vertical
access to transfer large LDPC codewords to/from a dedicated error correction die. The proposed
mechanism utilizes an online memory scrubbing policy that performs the LDPC-based error detection
and correction as transparent as possible to the normal memory operation. We analyzed the error
correction capability of our proposal for various LDPC codewords sizes. Our preliminary results
indicate that for the same amount of redundancy LDPC enhanced memories can tolerate considerable
more faults than the ones equipped with state of the art extended Hamming ECC.
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Chapter 7

Reliable Data Transport

Abstract:

This chapter presents our findings related to interconnect performance improvement, in terms of

transmission delay, energy consumption and robustness, by means of data encoding techniques. We

introduce and evaluate codec assisted data transport structures, e.g., bus segments, Network on Chip

(NoC) interconnects, able to deal with technology scaling related phenomena, e.g., crosstalk and

transmission delay variability, at the expense of a reasonably small area overhead. In particular we

present 3 types of data encoding techniques, namely, Constrained, Repetition, and Haar, apply them

on an 8-bit wide interconnect segment, and evaluate their practical implications when using a 45nm

commercial CMOS technology. Our simulations indicate that: (i) substantial energy savings can be

achieved by properly tuning the codec to the interconnect length and workload data profile and (ii)

the Haar codec based approach is the most general purpose one as it outperforms the other ones in

most of the considered cases. In view of (ii) we augment the Haar based interconnect with error

correction capabilities. We introduce a Single Error Correction and Double Error Detection scheme

adapted to the peculiarities of the Haar system, which makes the Haar augmented interconnect not

only energy effective but also robust against deep sub-micron noise (e.g., supply voltage variations,

electromagnetic interference) induced transmission errors.

7.1 Introduction

In this chapter we introduce and evaluate codec assisted energy effective reliable data transport struc-
tures, e.g., bus segments, Network on Chip (NoC) interconnects, able to deal with technology scaling
related phenomena, e.g., crosstalk and transmission delay variability, at the expense of a reasonably
small area overhead.

Given that the amount of energy consumed for the transmission of a certain n-bit wide data
workload W on an n-bit interconnect depends on the number of 0 → 1 and 1 → 0 transitions
experienced by each interconnect wire, data pre-processing able to diminish the transition count is
envisaged. Additionally, due to the fact that crosstalk phenomena among adjacent wires have a
negative impact on the data arrival profile (a 0 → 1 switching wire surrounded by 1 → 0 switching
wires has a larger than nominal propagation delay) the transmission of crosstalk occurrence favorable
data patterns should be avoided. Thus assuming a data workload W , with T (W ) transitions and
C(W ) crosstalk generating data patterns we seek a data transformation ENC,ENC(W ) = W e such
that T (W e) < T (W ) and C(W e) < C(W ). Note that ENC has to be reversible, i.e., a DEC function
should exist such that DEC(W e) = W .

The general idea behind our method is to improve the performance of a data transport structure by
augmenting it with pre-processing logic implementing ENC and post-processing logic implementing
DEC. This approach could be successful only if the overall energy consumed by the codec augmented
interconnect to transport a certain data workload W is smaller than the one consumed by the raw
interconnect, which essentially means that the encoding induced energy savings should be larger than
the energy consumed by the codec additional hardware. Additionally, ENC and DEC transformations
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implementable with low cost hardware and small delay should be sought.
Note that apart of energy savings we are also interested to alleviate time related aspects of the

data transport process. By eliminating cross talks we can potentially diminish the data transmission
latency (if ECN and DEC delays are small) and obtain a low variability data arrival profile, which is
a key issue for interconnect robustness (reliability) in the context of high process parameter variability
specific to deep sub-micron fabrication technologies. Moreover, given that deep sub-micron noise (e.g.,
supply voltage variations, electromagnetic interference) increases the interconnects susceptibility to
errors it could be of interest to augment ECN and DEC with error correcting features, such that we
can also combat errors arising during the data transport process.

7.2 Coding Schemes

This section presents the algorithms and the afferent hardware implementation details for the proposed
coding techniques. Aiming to reduce the interconnect energy consumption, as well as to change the
switching profile on adjacent wires such that the crosstalk induced delay is minimized, the following
3 modulation codes have been proposed and investigated:

• Constrained LUT-based coding. This coding technique makes use of two look up tables (one for
encoding the input data, before transmitting it over the wires, and one for decoding the data
at the bus receiving end), such that a consecutive sequence of input data bits are replaced by
a codeword with redundant bits when compared to the original bits sequence. Two 4 : 5 LUT-
based coding systems are proposed in Section 7.2.1, which minimize the bus switching activity,
both in time along each wire, and in space between adjacent wires.

• Repetition based coding. In this case, certain data bits are repeated on redundant additional
wires, such that the time-wise transitions along each wire are minimized. This scheme is de-
scribed in Section 7.2.2.

• Haar-based coding scheme. A 2 : 3 stage 1 Forward Haar Transform [100] based coding system
is introduced in Section 7.2.3, which reduces both the wire self transition count and the coupling
transition count between adjacent wires.

7.2.1 Constrained LUT Based Coding

The first codes that we propose belong to the class of constrained codes [101], which in lieu of tradi-
tional unconstrained codes, forbid certain patterns in the arrays of coderwords, either in a symmetric
or in an asymmetric manner, varying between different directions (e.g., isolated bit location constraint,
where every bit should agree with at least one of its four neighbours), such that signal integrity im-
pairments when certain input data patterns occur are alleviated, and a fine tuned interplay between
information rate and energy consumption is achieved.

We start by constructing in a heuristic fashion a 4/5 rate code, denoted by C v1, which attempts to
minimize the number of transitions between 0 and 1 in time. Its 4-input and 5-output corresponding
Look-Up Table (LUT) mapping is presented in Figure 7.1.

Subsequently, we construct another 4/5 rate code which aims to minimize the occurrence of the
transitions presented in Figure 7.3. The intuition behind this is that in order to diminish crosstalk
effects and energy consumption 0 should not be surrounded by 1s, and the other way around. Two
types of transitions are considered, as indicated in Figure 7.3. The LUT-based mapping between input
and output corresponding to this code, denoted by C v2, is presented in Figure 7.2.

We note that we only defined 4/5 rate codes in an attempt minimize the LUTs size and delay.
However this is not limiting their application domain as one can apply those codes to any n-bit
interconnect by splitting it n/4 4-bit sections each of them being handled by a 4/5 LUT. Thus encoding
a byte of data requires two 4 : 5 LUTs, while at the decoding end, two 5 : 4 LUTs are necessitated. We
note that one could also construct wider codes as, e.g., 8/10, but whether this approach is beneficial
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     Input word                Output codeword 

0 0 0 0                0 0 0 0 0 
1 0 0 0     1 0 0 0 0 
0 1 0 0     1 1 0 0 0 
1 1 0 0     0 1 1 0 0 
0 0 1 0     1 1 1 0 0 
1 0 1 0     0 0 1 1 0 
0 1 1 0     0 1 1 1 0 
1 1 1 0     1 1 1 1 0 
0 0 0 1     0 0 0 0 1 
1 0 0 1     1 0 0 0 1 
0 1 0 1     1 1 0 0 1 
1 1 0 1     0 0 0 1 1 
0 0 1 1     1 0 0 1 1 
1 0 1 1     0 0 1 1 1 
0 1 1 1     0 1 1 1 1 
1 1 1 1     1 1 1 1 1 

                                                 

 

 

Figure 7.1: C v1 System LUT-based Mapping.

                                                 Input word                Output codeword 

0 0 0 0   0 0 0 0 0 
0 0 0 1   0 0 0 0 1 
0 0 1 0   0 0 0 1 1 
0 0 1 1   0 0 1 1 1 
0 1 0 0   0 1 1 0 0 
0 1 0 1   0 1 1 1 1 
0 1 1 0   1 0 0 0 0 
0 1 1 1   1 0 0 0 1 
1 0 0 0   1 0 0 1 1 
1 0 0 1   1 0 1 1 1 
1 0 1 0   1 1 0 0 0 
1 0 1 1   1 1 0 0 1 
1 1 0 0   1 1 0 1 1 
1 1 0 1   1 1 1 0 0 
1 1 1 0   1 1 1 0 1 

              1 1 1 1       1 1 1 1 1 
 

Figure 7.2: C v2 System LUT-based Mapping.

when applied to an n-bit interconnect is questionable as the delay of an 8/10 LUT is most likely larger
than the one of a 4/5 LUT.
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Figure 7.3: Transition Types Targeted for Minimization.

7.2.2 Repetition Based Coding

A second category of investigated coding techniques relies on signal repetition. Following this ex-
tremely simple principle redundant wires are appended to the to initial interconnect structure, such
that certain transitions unfavorable from the energy point of view are alleviated, and thus energy sav-
ings enabled. Assuming a byte-wise transmission, we propose to add 4 additional wires, the encoder
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code, denoted subsequently as R v1, being governed by the following equations:

y1 = x0

y2 = x1

y3 = x1

y4 = x2

y5 = x3

y6 = x3

y7 = x4

y8 = x4

y9 = x5

y10 = x6

y11 = x6

y12 = x7,

where {x0, x1, x2, x3, x4, x5, x6, x7} is the input data byte desired to be transmitted over the wires,
and {y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12} represents the encoded sequence.
From the hardware implementation standpoint, as the encoding scheme is hardwired, as illustrated in
Figure 7.4 the hardware complexity is minimal, which positively impacts the transmission delay and
energy consumption figures.

 

x0 x1 x2 x3 x4 x5 x6 x7

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

Figure 7.4: R v1 System Hardwired Encoding.

7.2.3 Haar Based Coding

As in the case of the previous coding techniques described in Sections 7.2.1 and 7.2.2, the foremost goal
is on energy reduction, more specifically on reducing the energy consumption per interconnect (bus)
transaction. In particular, this is achieved via the minimization of the transition activity between
adjacent wires, (which in turn reduces the signal distortion in the form of extra current glitches and
thus the extra energy consumed), as well as the individual time-wise switching activity on every bus
wire. However, not only the energy merits enabled by the coding technique are of interest. Delay
and area criteria are also taken into account when constructing the code, as for an energy effective
data transport, the encoder and decoder circuitry must not surpass the energy savings offered by the
coding technique.
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The Haar coding scheme algorithmic aspects are discussed subsequently, together with a succinct
presentation of the afferent encoder and decoder architecture.
For the purpose of exposition, we assume that a byte-wise synchronous data transmission is desired
but the discussion is general and can be easily extended for other interconnect widths.

7.2.3.1 Haar Encoder

The Haar encoder receives as input per each clock cycle, a data byte subsequently denoted by

{x0, x1, x2, x3, x4, x5, x6, x7} ,

and generates as output a 12-bit wide encoded sequence to be sent over the bus wires.
To this end, the input data sequence is divided into 4 groups of two bits as follows:

{x0, x1} , {x2, x3} , {x4, x5} , {x6, x7} .

For each such pair of input bits, the encoder performs 1-bit pair-wise addition and subtraction. A
block scheme depicting the operating principle of the Haar encoder is given in Figure 7.5.
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 4ݔ

 5ݔ

 6ݔ

 7ݔ
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- 1 bit 

- 2 bits

Figure 7.5: Haar Encoder.

Note: Normally, the sum of two bits in 2′s complement notation requires two bits for representation
(as the exact sum value with overflow is required). However, as one may observe, only the MSB
bit of the sum (which corresponds to the carry out signal of a 1-bit full adder) is mandatory to be
represented. This is because the LSB bit of the sum is the parity bit, which is identical to the LSB bit
of the difference (since the sum of two bits has the same parity as their difference). Thus, it suffices
to compute only the MSB bit of the sum. As concerns the difference of two input bits, it is likewise
performed in 2′s complement and requires a 2-bit representation.

Specifically, for the input bits {x0, x1}, for instance, the encoder computes the following three bits:

S(0) = x0 ∧ x1 (7.1)

C1(0) = x1 (7.2)

C0(0) = x0 ∨ x1, (7.3)

where ∧ denotes a logical AND operation, and ∨ denotes a logical OR operation.

7.2.3.2 Haar Decoder

The Haar decoder receives as input 12 bits of encoded data:{
S(0), C1(0), C0(0), S(1), C1(1), C0(1), S(2), C1(2, C0(2), S(3), C1(3), C0(3)

}
,
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and outputs the data byte:
{x̂0, x̂1, x̂2, x̂3, x̂4, x̂5, x̂6, x̂7} ,

which coincides with the original transmitted data byte

{x0, x1, x2, x3, x4, x5, x6, x7} ,

under the assumption of an error-free transmission.
Conceptually speaking, if we know the sum and difference of two numbers, we can easily compute
the two numbers in cause. Exemplifying for the pair of bits {x0, x1}, the decoder is governed by the
following equations:

x̂0 = S(0) ⊕ C1(0) ⊕ C0(0) (7.4)

x̂1 = S(0) ⊕ C1(0), (7.5)

where ⊕ denotes a logical XOR operation. For an error-free transmission x̂0 = x0 and x̂1 = x1.

The following architectural related observations are in order:

• Implementation Complexity, Delay and Energy.
As concerns the hardware implementation, both the Haar encoder and decoder consist of one logic
level (one gate), and thus exhibit very low complexity. As a result, the Haar encoder/decoder
delay is very small, i.e., the delay of a single logic gate for the encoder and of two logic gates for
the decoder. Furthermore the codec simplicity has positive implications on the energy consumed
by the encoder/decoder (i.e., the energy of OR/AND gates for the encoder, and XOR gates for
the decoder), which is an important desideratum when aiming for energy-effective data transport.

• Scalability to larger interconnects.
The low hardware complexity enables its usage for larger interconnects, as it scales linearly with
respect to the number of wires (e.g., for 4 wires, the encoder requires 2 parallel OR gates and 2
parallel AND gates; for 8 wires, it requires 4 OR gates and 4 AND gates).

7.3 Simulation Results

To get inside on the practical implications of the codec enhanced data transport approach we evaluate
by means of SPICE simulations the following systems (classified using as criterium the number of
employed wires):

• One 8-wire reference system, denoted subsequently as ”Ref”.
For this scheme, uncoded, raw data are transmitted over the wires. The 8-wire system serves as
comparison reference from the timing and energy standpoints, as no coding scheme for optimizing
the energy and reliability characteristics of the data transmission is applied in this case.

• Two 10-wire systems, denoted by ”C v1” and ”C v2”.
In this setup, the raw data, prior to/after its transmission over the wires, is encoded/decoded
as described in Section 7.2.1, making use of 4 : 5 LUTs.

• Two 12-wire systems: ”H v1” and ”R v1”.
The two systems are as follows: the first 12-wire system embeds the Haar encoder/decoder whose
functional and architectural details are given in Section 7.2.3, while the other 12-wire system
makes use of the coding scheme presented in Section 7.2.2.

For each system, the SPICE simulation setup consists of encoders & input buffers, interconnect, and
output buffers & decoders. Figure 7.6 depicts the simulation setup for the proposed interconnect codec
augmented systems. The setup for the 8-wire uncoded, reference system is similar, with the exception
of the encoder and decoder blocks which are excluded.
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Figure 7.6: SPICE Simulation Setup for the Interconnect Coding-Based Systems.

The SPICE simulations were performed by using a 45nm commercial technology, under nominal op-
erating conditions. As concerns the interconnect, for given specifications (e.g., wire length, number of
parallel conductors), and technology parameters (e.g., related to the dielectric and metal layer stack
conductivity, dielectric permittivity, wire pitch, etc.), a SPICE RLGC compatible model was obtained
using the electromagnetic field solver from Synopsys, Raphael [102].
As data to be transmitted over the wires, in order to assess the systems energy savings potential
sensitivity to the transmission data activity profile, the following two situations are considered:

• 10000 randomly generated bytes, are provided as system input, one byte per clock cycle, and

• 10000 bytes, of correlated data (sampled from multi-variate copulas with different linear cor-
relation coefficients) are provided as system input, one byte per clock cycle as in the previous
case.

As qualitative and quantitative indicators of the interconnect coding schemes performance, we employ:
(i) the energy consumed by the entire system for data transmission, and the associated hardware
complexity, (ii) the system maximum achievable frequency, and data arrival profile for each wire, with
respect to each other, and (iii) the resiliency of each system to crosstalk, or other bit flip inducing
situations that can manifest during the transmission of data over wires. Subsequently, all considered
systems are analyzed with respect to each of the three interconnect performance monitors.

7.3.1 Energy and Area.

The energy consumed by each system is measured for the entire system (i.e., encoder/input buffers
+ wires + output buffers/decoder) and over the entire duration of transmission (i.e., 10000 × Tclk).
To enable a fair comparison between the various analyzed systems, Tclk is tailored for each analyzed
system (as a function of the wire length, and of the encoder/decoder maximum operation frequency),
such that the data at each system output can be correctly sampled. The energy is measured in SPICE
using the supply current integrated over the entire duration of transmission, as follows:

Energy =

∫ 10000×Tclk

0
IV DD(t) · VV DD dt, (7.6)

thus reflecting both the static and the dynamic energy components.
Various interconnect lengths are investigated: L = 1 mm, L = 5 mm, and L = 10 mm, in order to
assess the energy reduction/bit-flip errors resiliency potential of proposed coding schemes for both
short and long range interconnects and randomly generated data workloads.
Figure 7.7 graphically illustrates the energy breakdown corresponding to each system, for the consid-
ered interconnect lengths. The energy percentages are reported relative to the energy figures obtained

85



H_V1 R_V1 C_V1 C_V2

67.54% 63.51%
73.66% 73.16%

32.46% 36.49%
26.34% 26.84%

Energy Spent Energy Gain

(a) L = 1 mm.
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(c) L = 10 mm.

Figure 7.7: Energy Profile vs. Interconnect Length L.

for the reference 8-wire system, for which the raw, uncoded data are transmitted. In Figure 7.7(a),
it can be noted that for L = 1 mm, R v1 exhibits energy savings 4% bigger when compared to the
12-wire Haar system, and 10% bigger with report to the two 10-wire C v1 and C v2 systems. However,
for the L = 5 mm and L = 10 mm cases from Figure 7.7(b) and Figure 7.7(c), the R v1 system energy
gain is surpassed by all other systems by at most 15%. The two 10-wire C v1 and C v2 systems and
the 12-wire Haar system have similar energy gains for the wire lengths L = 1 mm and L = 5 mm (less
than 6%), while for L = 10 mm, the energy gain for the 12-wire Haar surpasses the energy gain of the
two 10-wire systems C v1 and C v2 by 10% and 7%, respectively.
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20.00%
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40.00%
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60.00%

H_v1 R_v1 C_v1 C_v2

L = 1 mm L= 5 mm L = 10 mm

Figure 7.8: Energy Gain vs. Interconnect Length L.

Figure 7.8 depicts the energy gain percentage (reported as previously with respect to the 8-wire con-
sumed energy values) variation with the interconnect length. Specifically, it can be observed that as
the interconnect length increases, the energy gain also increases, which is as expected, since longer
interconnects are more energy demanding than shorter ones, and thus benefit more from a switching
activity reduction on its wires. Such is the case of the energy gain increase for all systems from
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L = 1 mm to L = 5 mm: 25% for the Haar system, 15% for R v1 system, 26% for the C v1, and 27%
for C v2. The biggest percentage increase is manifested by the C v1, C v2, and Haar systems, which
makes them more energy efficient for medium range interconnects. Nevertheless, they present energy
reduction potential also for shorter interconnects (L = 1 mm) with energy gains ≈ 30%. Switching
from a length L = 5 mm to a length L = 10 mm interconnect, less energy increase is reported for all
systems: (30% less gain for R v1 system, 26% and 25% less for C v1 and C v2 systems, and 22% for
Haar system). This can be attributed to the fact that the bus and driving buffers consumed energy
is increasing for longer interconnects and begins to counterbalance the energy benefits enabled by the
coding scheme.

To assess whether the measured energy gains are consistent across input data with varying degree
of patterns dependency (as often is the case for data/address buses), a new set of linearly correlated
dataset is generated for 0.8 correlation coefficient and fed byte-wise to each system input. Measuring
the energy for each system, reveals as illustrated in Figure 7.9 that the R v1 scheme consumes 5 times
more energy when compared to the energy of the 8-wire reference system. This can be attributed to
the fact that the R v1 system data repetition is hardwired, and thus its performance energy-wise is
restricted to certain data profiles in the absence of a dynamic reshuffling scheme. Compared to the
random input data case in Figure 7.7(b), an energy gain that is less with 12% and 25% is exhibited by
the 12-wire Haar system and the 10-wire C v1 system, respectively. For the C v2 system, the energy
consumed is bigger that the reference system energy by 2%, and thus in this case the energy savings
enabled to a lesser extent by the coding scheme are surpassed by the codec energy consumption, re-
sulting in no energy gain for the entire system.
Based on our simulations (for linearly correlated data with varying correlation coefficients), it was
observed in all cases an increased resiliency of the Haar scheme and of the constraint coding scheme
C v1 to the input data profile. The situation may change in other use cases and to conjuncture a sys-
tem energy gain robustness to the input data profile, extensive simulations have to be performed, for
linearly and non linearly correlated input data. However, this is a matter of the in-field applicability
(data bus or address bus; the encompassing circuit usage scenarios, etc.), and thus it is not in the
scope of this deliverable.
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Figure 7.9: Energy Breakdown for Correlated Input Data for L = 5 mm.

Figure 7.10 depicts the compound (encoder + decoder + bus) area figures for each system under
consideration. One can observe that the 12-wire system R v1 exhibits the lowest area footprint. How-
ever, an effective energy-area trade-off assessment is hindered for this system, as without an energy
optimized data reordering algorithm (and the afferent hardware), its energy saving depend to a big
extent on a certain optimal data activity profile, contrary to the the 12-wire Haar, and 10-wire C v1
and C v2 systems which are less data sensitive. As concerns the 12-wire Haar system, a decreased
hardware complexity is obtained (1.89× the reference system area), when compared to the two 10-wire
C v1 and C v2 systems (2.17×, and 2.23× the reference area system, respectively). This is not unex-
pected, as the Haar encoder and decoder consist of a single level and two levels of logic, respectively,
as opposed to the C v1 and C v2 LUT-based systems which contain multiple levels of logic (e.g., 7
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Figure 7.10: Area w.r.t. the 8-Wire Reference System.

levels of logic for the C v1 decoder).

7.3.2 Data Arrival Profile

Another performance metric of interest is the data arrival profile at the bus receiving end, as this has
direct implications on the system maximum frequency.
In order to inspect and compare the systems propagation delay distributions, a box-and-whiskers plot
is employed, following the usual conventions as illustrated in Figure 7.11, repeated here for convenience:

 

upper outliers

top quantile 

median

lower quantile

upper fence

lower fence

Figure 7.11: Box and Whiskers Plot Semantics.

• The upper quantile marks the value above which 25% of the data points lay.

• In a similar manner, the lower quantile marks the data value below which lie 25% of the data
points.

• The median value is the middle of the dataset (not necessarily the mean), which means that
50% of the data are greater than this value.

• The upper fence corresponds to the greatest value, excluding the outlier data points.

• The lower fence corresponds to the lowest value, excluding the outlier data points.

• The upper outlier points are those data points with a value greater than 3
2× the upper quantile

value.

• Similarly, the lower outlier points are those data points with a value lower than 3
2× the lower

quantile value.

Figure 7.12 to Figure 7.16 depict the data arrival profile for all systems for the three interconnect
lengths, i.e., 1 mm, 5 mm, and 10 mm. It can be noted that as the wire length increases, so does
the arrival time spread and the maximum arrival time. It can be observed that for the reference
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8-wire system, the bit arrival time for each wire exhibit a smaller spread when compared to all other
coding based systems. However, the maximum arrival time is lower when compared to the maximum
arrival time for all other systems, except for the L = 5 mm and L = 10 mm cases. This has positive
implications on the transmission clock frequency for all coding systems, which can be increased as
follows with:

• 40% (L = 5 mm) and 47% (L = 10 mm) for the 12-wire H v1 system

• 37% (L = 5 mm) and 40% (L = 10 mm) for the 12-wire R v1 system,

• 24% (L = 5 mm) and 33% (L = 10 mm) for the 10-wire C v1 system, and

• 11% (L = 5 mm) and 29% (L = 10 mm) for the 10-wire C v2 system.

For L = 1 mm, only the R v1 enables a frequency increase with 20%, while for the Haar and the two
constraint-coding systems, the frequency is negatively impacted, as it is decreased by:

• 1.4× for the H v1 system,

• 2× for the C v1 system,

• 2.6× for the C v2 system.

The frequency decrease for L = 1 mm can be attributed to the effects of bus switching activity
diminution which are more prominent for medium and longer wires than for shorter wires (thus with
greater impact on the bus delay for longer wires rather than for shorter wires). The total delay (the
encoder+decoder+bus) of a coding-based system has to counterbalance the 8-wire bus delay, in order
to obtain frequency benefits. However for shorter wires this may not be the case even if the coding
system bus delay is reduced as result of a smaller transition count.
We note that the R v1 system doesn’t experience any frequency reduction penalty as it doesn’t in-
cludes any codec; the crosstalk effects are diminished just by wire replication (area overhead in the
interconnect only). However R v1 effectiveness is limited to some input data profiles and to make it
more general purpose (as the constrained and Haar counterparts) a programmable (partial) crossbar
has to be implemented at each interconnect side, which will result in similar or even larger operation
frequency reductions, as a crossbar implementation takes more that one gate delay.
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Figure 7.12: Data Arrival Profile for the Reference 8-Wire System.

Figure 7.17 depicts the minimum clock period for each system with regard to the interconnect length.
It can be noted that as the interconnect length increases, so does the minimum clock period. A trend
observed for each length is that the two constraint coding systems are less effective frequency-wise
when compared to the 12-wire Haar and R v1 systems.

89



Wire Number
1 2 3 4 5 6 7 8

P
ro

p
ag

at
io

n
D

el
ay

[s
#

10
!

1
0
]

1

1.5

2

2.5

3

3.5

4

(a) L = 1 mm.
Wire Number

1 2 3 4 5 6 7 8

P
ro

p
ag

at
io

n
D

el
ay

[s
#

10
!

1
0
]

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

(b) L = 5 mm.
Wire Number

1 2 3 4 5 6 7 8

P
ro

p
ag

at
io

n
D

el
ay

[s
#

10
!

1
0
]

3

4

5

6

7

8

9

10

11

12

(c) L = 10 mm.

Figure 7.13: Data Arrival Profile for the 10-Wire C v1 System.
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Figure 7.14: Data Arrival Profile for the 10-Wire C v2 System.
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Figure 7.15: Data Arrival Profile for the 12-Wire R v1 System.

7.3.3 Deep-Submicron Noise Induced Bit-Flip Resiliency

Even though the crosstalk between adjacent wires is reduced by some of the presented coding schemes,
the deep sub-micron noise (e.g., supply voltage variations, electromagnetic interference) increases the
interconnects susceptibility to errors. To combat the errors that can arise during the data transport,
Error Correcting Codes (ECC) can be employed. Subsequently, a Single Error Correction, Double
Error Detection (SECDED) [103] scheme adapted to the peculiarities of the Haar system is presented.
We note that while potentially speaking the other systems can be also augmented with ECC features
we decided to only focus on Haar as it is more general purpose and provides larger energy savings for
a wider input data profiles.

In line with the previously employed notation, let (x0, x1) denote the first two bits of an input byte
of raw, uncoded data. After the Haar encoding is applied to the input pair of bits (x0, x1), a 3-bit
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Figure 7.16: Data Arrival Profile for the 12-Wire Haar System.
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Figure 7.17: Minimum Clock Period vs Interconnect Length.

encoded sequence
{
S(0), C1(0), C0(0)

}
to be transmitted over the wires is obtained, with the below

expressions repeated here for convenience:

S(0) = x0 ∧ x1

C1(0) = x1

C0(0) = x0 ∨ x1.

At the interconnect receiving end, the decoding is governed by the equations:

x̂0 = S(0) ⊕ C1(0) ⊕ C0(0)

x̂1 = S(0) ⊕ C1(0),

If the transmission is error-free, then the estimated data bits are equal to the original data bits (i.e.,
x̂0 = x0 and x̂1 = x1). However, as previously argued, even if the encoded sequence

{
S(0), C1(0), C0(0)

}
exhibits good crosstalk resilient characteristics (which lowers the probability of crosstalk induced bit-
flips during transmission), the transmission over the interconnects may be subjected to certain error
inducing conditions, resulting in one or multiple bit-flips in the transmitted encoded sequence. Thus,
an error detection and correction mechanism is highly desirable.

Let m0 denote the encoded sequence of transmitted bits m0 = (S(0), C1(0), C0(0)), and ε the error
affecting the bits transmission. Table 7.1 summarizes all possible 1-bit error scenarios affecting m0.
The first two columns in the table represent the original data bits x0 and x1, the third and the fourth
column denote the Haar encoded message at the interconnect transmitting end, and the message at
the receiving end (Haar encoded message + noise), respectively; while the last two columns in the
table correspond to the estimated data bits after Haar decoding. As for single bit errors, all possible
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values that ε can take are: (0 1 0), (1 0 0), and (0 0 1), 3 situations should be analyzed at the
interconnect receiving end for each possible x0 and x1 combination of bits. One may note in Table

x0 x1 TX end (m0) RX end (m0 ⊕ ε) x̂0 x̂1

0 0 (0 0 0)

(1 0 0)

1 (F)

1 (F)

(0 1 0) 1 (F)

(0 0 1) 0

0 1 (0 1 1)

(1 1 1)

1 (F)

0 (F)

(0 0 1) 0 (F)

(0 1 0) 1

1 0 (0 0 1)

(1 0 1)

0 (F)

1 (F)

(0 1 1) 1 (F)

(0 0 0) 0

1 1 (1 0 0)

(0 0 0)

0 (F)

0 (F)

(1 1 0) 0 (F)

(1 0 1) 1

Table 7.1: One-Bit Error Scenarios for Haar System.

7.1, that in all one-error scenarios, the decoded value x̂0 is always erroneous. This is expected, as all
three encoded bits (S(0), C1(0), C0(0)) are involved in the computation of the decoded bit x̂0. It follows
that any single error affecting the sequence of encoded bits (S(0), C1(0), C0(0)), will always result in
an erroneous value of x̂0. Thus it is mandatory to protect the x0 value in order to be able to correct
an erroneously decoded value x̂0. On the other hand, when x̂0 is erroneous, we also need to be able
to discriminate the correct value of x̂1, in which case C0(0) has to be protected.
Generalizing from the two input bits {x0, x1} to the entire input byte {x0, x1, x2, x3, x4, x5, x6, x7}, we
propose to append the following 5 error control coding bits to the 12-bit Haar encoded sequence (i.e.,
to the 12-bit sequence

{
S(0), C1(0), C0(0), S(1), C1(1), C0(1), S(2), C1(2, C0(2), S(3), C1(3), C0(3)

}
):

E1 = x0 ⊕ x2 ⊕ x6 (7.7)

E2 = x0 ⊕ x2 ⊕ x4 (7.8)

E3 = x2 ⊕ x4 ⊕ x6 (7.9)

E4 = x0 ⊕ x4 ⊕ x6 (7.10)

E5 = C0(0) ⊕ C0(1) ⊕ C0(2) ⊕ C0(3) (7.11)

The first 4 bits {E1, E2, E3, E4} correspond to a (7, 4) Hamming code [104], while bit E5 is simply a
parity bit. Summarizing, bits E1 to E4 are used for error detection and correction of the input bits
{x0, x2, x4, x6}, while bit E5 is used for error detection and correction of the input bits {x1, x3, x5, x7}.

7.3.3.1 Single Error Detection and Correction

If there is one bit-flip error affecting any of the 17-bit sequence{
S(0), C1(0), C0(0), S(1), C1(1), C0(1), S(2), C1(2, C0(2), S(3), C1(3), C0(3), E1, E2, E3, E4, E5

}
,
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Case 1 Case 2 Error Discrimination

x̂0 = S(0) ⊕ C1(0) ⊕ C0(0) x̂0 = E1 ⊕ E2 ⊕ E4 w1 = x̂0(case1) ⊕ x̂0(case2)

x̂0 = S(1) ⊕ C1(1) ⊕ C0(1) x̂0 = E1 ⊕ E2 ⊕ E3 w2 = x̂2(case1) ⊕ x̂2(case2)

x̂0 = S(2) ⊕ C1(2) ⊕ C0(2) x̂0 = E2 ⊕ E3 ⊕ E4 w3 = x̂4(case1) ⊕ x̂4(case2)

x̂0 = S(3) ⊕ C1(3) ⊕ C0(3) x̂0 = E1 ⊕ E3 ⊕ E4 w4 = x̂6(case1) ⊕ x̂6(case2)

Table 7.2: Single Error Correction for the Haar System.

the correct value of the input byte {x0, x1, x2, x3, x4, x5, x6, x7} can always be obtained.
Any error affecting one of the bits{

S(0), C1(0), C0(0), S(1), C1(1), C0(1), S(2), C1(2, C0(2), S(3), C1(3), C0(3)
}

can be corrected as follows:
We compute in parallel each of the bits {x̂0, x̂2, x̂4, x̂6} in two manners, as summarized in the first
two columns of Table 7.2. The bits {w1, w2, w3, w4} in the third column in Table 7.2 are used for
discriminating the correct set of values between the case 1 and case 2 estimates.

• In the error free scenario, x̂0 (case 1) coincides with the value of x̂0 (case 2) and thus
{w1, w2, w3, w4} = {0, 0, 0, 0}.

• In one error occurs in the sequence{
S(0), C1(0), C0(0), S(1), C1(1), C0(1), S(2), C1(2, C0(2), S(3), C1(3), C0(3)

}
,

then:

– one value of x̂(case 1) is computed wrong;

– one of the bits {w1, w2, w3, w4} is equal to ”1”.

In this situation, the case 1 decoded bits {x̂0, x̂2, x̂4, x̂6} are the correct ones.

• If one error occurs in the sequence {E1, E2, E3, E4}, then:

– three values of x̂(case 2) are computed wrong;

– three of the bits {w1, w2, w3, w4} are equal to ”1”.

In this situation, the case 2 decode bits x̂0, x̂2, x̂4, x̂6 are the correct ones.

• Thus, to summarize the discrimination bits are used as follows:

– If w1 + w2 + w3 + w4 = 3 then choose case 2 {x̂0, x̂2, x̂4, x̂6} decoded bits;

– Otherwise, choose case 1 {x̂0, x̂2, x̂4, x̂6} decoded bits.

• Suppose one error occurred and the correct value of x̂0 was obtained using the above method-
ology. However, there are two Haar encoded 3-bit sequences for the correct value of x̂0 = 0, per
se. Specifically, (S(0), C1(0), C0(0)) is then either (0, 0, 0) or (0, 1, 1), which means we do not
know exactly whether the value of x̂1 is ”0” or ”1”.
However, since bit E5 is correct and equal to C00 ⊕ C0(1) ⊕ C0(2) ⊕ C0(3), it will allow the
determination of the correct value of x̂1. In this case x̂1 = E5 ⊕ C0(1) ⊕ C0(2) ⊕ C0(3).

• If one error occurs in the bit E5, it is of no relevance, as all the 12 S and C bits required to
restore the correct input bits {x0, x1, x2, x3, x4, x5, x6, x7} are correct.
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7.3.3.2 Double Error Detection

A first possible case is when all bit-flip errors affect any two bits from the sequence{
S(0), C1(0), C0(0), S(1), C1(1), C0(1), S(2), C1(2, C0(2), S(3), C1(3), C0(3), E1, E2, E3, E4

}
,

result in a value of w1 + w2 + w3 + w4 which is either equal to 2, or equal to 4.
A second case is when there is one bit-flip error in the previous 16-bits sequence, while the other error
affects bit E5. In such a case, the error in the sequence can be detected with the previous single
detection flow (otherwise stated, w1 + w2 + w3 + w4 has to be either equal to 1 to equal to 3), while
bit E5 can be duplicated and transmitted twice over the wires, at the extra cost of an additional
redundant wire. If area is a foremost design optimization goal, a plausible alternative is per se when
the 18 bits are sent over a 9-wire bus as 9 bits on the rising edge of the clock signal, and the other 9
bits on the falling edge of the clock signal.

7.3.3.3 Energy-Area-Delay Evaluation

Assuming one is interested in single error detection and correction, one avenue as previously described
is to use Hamming codes for protecting the even data bits {x0, x2, x4, x6}, and a parity bit for protecting
the odd data bits {x1, x3, x5, x7}. Thus, in this situation for every data byte, a 17-bit codeword has to
be transmitted over the wires. There are multiple configurations to transmit the 17-bit codeword with
trade-offs between the number of wires used for transmission and the transmission time. One such
configuration, depicted in Figure 7.18, is to use a 9-wire bus and transmit the 17 bits both on positive
and on negative edge of the clock. In this way no additional wires are employed, while keeping the

Wire number 
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ܵሺଶሻ 1ܥሺଶሻ 0ܥሺଶሻ ܵሺଷሻ 1ܥሺଷሻ 0ܥሺଷሻ ܧଷ ܧସ ܧହ 

 

Figure 7.18: 9-Wire Bus Configuration for Haar-Based System with ECC.

total transmission duration the same (i.e., 10000 × Tclk). This configuration has also the advantage
that bit E5 can be duplicated at no additional cost, enabling thus the double error detection.
An alternative is to use a 17-wire bus, as illustrated in Figure 7.19, at the expense of some area
overhead. Furthermore, in this situation, if double error detection capability is desired, an extra wire
has to be employed to accommodate the duplication of bit E5.

While to allow for an appropriate comparison of energy merits between the different coding-based

Wire number
w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16 w17
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Figure 7.19: 17-Wire Bus Configuration for Haar-Based System with ECC.

systems the 12-wire configuration was used, for evaluating the Haar-based coding system endowed
with ECC, the 9-wire configuration serves better the purpose. In view of this the following systems
are evaluated:

• 8-wire reference uncoded system, denoted as ”Ref”.

• 12-wire reference uncoded system with ECC protection, denoted as ”Ref + ECC”.
The first 8 wires are identical to the reference uncoded system, while the last 4 wires correspond
to 4 Hamming bits (as to protect 8 data bits, a (15, 11) Hamming code can be employed).
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• 9-wire Haar system with ECC capacity, denoted as denoted as ”Haar + ECC”.
This system takes advantage of both edges of the clock signal in order to transmit the data, as
previously discussed.
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Figure 7.20 depicts the energy and area figures for the ECC enabled systems ”Haar + ECC” and ”Ref
+ ECC”. Both energy and area measurements are reported to the figures obtained for the 8-wire
uncoded and unprotected system ”Ref”. One can observe that energy wise the Haar system with ECC
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Figure 7.20: Energy-Area-Delay Figures for the ECC Enabled Systems.

protection consumes 1.11× more energy than the reference 8-wire system (thus almost equal to its
energy), as opposed to the reference system protected with ECC which spends 5.97× more energy
than the ”Ref” system. Area wise, the ”Haar + ECC” system has an overhead of 1.78× the ”Ref”
system area, which is similar to the ”Ref + ECC” system area overhead of 1.95× the ”Ref” system

95



area. As concerns the minimum clock period, simulation results for L = 5 mm reveal an increase of
2× the Ref period for the ”Ref + ECC”, and a 1.41× the Ref period increase for the ”Haar + ECC”
system.

7.4 Conclusion

In this chapter we introduced energy effective reliable data transport structures able to deal with
technology scaling related phenomena, e.g., crosstalk, supply voltage variations, electromagnetic inter-
ference. Our approach relies on the augmentation of traditional interconnects, i.e., bus segments, NoC
links, with a codec infrastructure and to this end we considered 3 types of data encoding techniques,
namely, Constrained, Repetition, and Haar. We applied each of them on an 8-bit wide interconnect
segment, and evaluate their practical implications when using a 45nm commercial CMOS technology.

Our simulations indicate that substantial energy savings can be achieved by properly tuning the
codec to the interconnect length and workload data profile. In particular, when compared with
the reference uncoded interconnect, Constrained, Repetition, and Haar provides energy savings of
about 27%, 37%, and 33%, respectively, for an interconnect length L = 1 mm, 53%, 52%, and 58%,
respectively, for an interconnect length L = 5 mm, and 27%, 22%, and 37%, respectively, for an
interconnect length L = 10 mm. For correlated data Constrained and Haar provide energy savings of
about 27%, and 46%, respectively, for an interconnect length L = 5 mm, while the Repetition results
in an 500% energy increase, which is not surprising given its hardwired nature but which may be very
much different for other data correlation profiles.

Given that the considered data encoding schemes diminish the crosstalk occurrence the codec
augmented interconnects longer than L = 1 mm can operate at a higher frequency than the uncoded
ones. In particular, Constrained, Repetition, and Haar enable a clock frequency increase of about
24%, 37%, and 40%, respectively, for an interconnect length L = 5 mm, and 33%, 40%, and 47%,
respectively, for an interconnect length L = 10 mm.

The energy and data transmission delay reductions are obtained at an area increase of 2.2×, 1.5×,
and 1.9×, with respect to the reference design, for the Constrained, Repetition, and Haar based
interconnects, respectively.

Given that these results suggest that the Haar codec based approach is the most general purpose
one as it outperforms the other ones in most of the considered cases we augmented it with error
correction capabilities. We introduced a Single Error Correction and Double Error Detection scheme
adapted to the peculiarities of the Haar system, which makes the Haar augmented interconnect not
only energy effective but also robust against deep sub-micron noise (e.g., supply voltage variations,
electromagnetic interference) induced transmission errors. The Error Correcting Code (ECC) en-
hanced Haar system consumes about the same energy as the reference 8-wire system while the direct
ECC augmentation of the reference system would result in a 5.97× energy increase. Moreover, for the
same error correction/detection capability, the ECC enhanced Haar requires less area and operates at
a higher frequency than the ECC augmented reference counterpart.
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Chapter 8

General Conclusion of WP4

Here we briefly discus main contributions of WP 4. During the M1-M33 period we have made consider-
able progress beyond the state of the art on the analysis of hard decision decoders, under uncorrelated
and data-dependent gate failures. Our research was mostly aimed to proposing new analytical tools
that can be used for performance evaluation of faulty hard-decision decoders. We have also design
the probabilistic bit-flipping decoders, resistent to hardware unreliability. The main contributions for
WP 4 can be summarized as follows:

- We propose a new class of bit flipping algorithms operating at perfect hardware was proposed. It
was shown that introducing the collective error correction principle two-bit bit flipping algorithms
can outperform min-sum and Gallager A/B message passing decoders.

- We proposed a novel class of fast convergence iterative decoders called decimation-enhanced finite
alphabet iterative decoders. Furthermore, we showed that provable guaranteed error-correction
can be achieved in a finite and small number of iterations, which represent a first result on
guaranteed error-correction of a message-passing decoder other than Gallager-B decoder.

- We designed the fast convergent bit-flipping decoder resistent to hardware unreliability, which is
based on multiple decoding attempts and random re-initializations. Our decoder outperforms all
known bit-flipping decoders, and majority of of complex soft-decision message-passing decoder.

- We investigate the influence of uncorrelated gate failures to performance of Gallager B decoder.
We noticed that performance of the decoder does not monotonically decreases as unreliability
of logic gates increases. This actually means that under specific conditions the presence of
hardware unreliability improves the overall decoder performance. We showed that the main
reason for a such behaviour is the existence of small trapping sets in Tanner graph of a code.
Random perturbations of gate outputs cause that the decoder converge to a codeword rather
then to a fixed trapping set, which reduce the error rate.

- We developed the analytic tool for the finite code length analysis of the faulty decoders, subjected
to independent identically distributed logic gate failures. This tool is based on Markov chains
and enable us to follow the dynamics of iterative decoding and evaluate the performance of the
decoder when moderate code length codes are employed. The above tool tracks the improvement
cause by random perturbations in the decoder.

- We provided a new method for asymptotic analysis of memories based on one-step majority logic
and Gallager-B decoders under uncorrelated gate failures. Our fixed-point analytical approach
describes the memory reliability in more details than stat-of-the-art density evolution analysis.
We use it to predict the reliability of memory architectures for fixed refresh time, code, and
decoders parameters.

- We introduced a novel approach in gate failures modeling which enable us to capture data-
dependence in more details, compared with state-of-the-art modeling. We developed the analytic
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tool for the finite code length analysis of the one-step majority logic decoders, subjected to
data-dependent logic gate failures. This tool enable us to evaluate the performance of memory
architectures that are based on one-step majority logic decoding.

- We showed that guaranteed error correction concept can be extended to the faulty iterative
decoders. We prove that error correction capability of the faulty bit-flipping decoder, increases
linearly with code length, even when logic gates used in the decoder are prone to data-dependent
failures. We were able to show that the above fact holds for codes with column weight γ ≥ 8.
In addition we proved the existence of low complexity reliable memories under correlated gate
failures, which represents the first such result on the failure models other than simple independent
failure model.

- We created practical premisses for the LDPC utilization for memory fault detection and cor-
rection. We proposed a fault resilient 3D polyhedral memory architecture which for the same
redundancy requirements outperforms the state of the art Hamming code based counterpart
in terms of error correction capability. Meanwhile, the memory performance and availability
remain intact.

- We proposed codec enhanced data interconnects, e.g., bus segments, Network on Chip (NoC)
links, in an attempt to combat technology scaling related phenomena, e.g., crosstalk and trans-
mission delay variability, and provide error resilient energy effective data transport means in
advanced CMOS Systems on Chip. To this end we introduced and evaluated data encoding
techniques based on Constrained/Repetition coding and Haar transform. We demonstrated by
means of SPICE simulations that significant energy savings and throughput increase can be
achieved by properly tuning the codec to the interconnect length and workload data profile. We
also introduced a Single Error Correction and Double Error Detection scheme, which made the
codec assisted interconnect not only energy effective but also robust against deep sub-micron
noise (e.g., supply voltage variations, electromagnetic interference) induced transmission errors.
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