

FP7-ICT / FET-OPEN – 309129 / i-RISC

D4.1

Taylor-Kuznetsov memory architectures using structured LDPC codes

Editor: Goran Đorđevid

Deliverable nature: Public

Due date: January 31, 2014

Delivery date: February 3, 2014

Version 1.0

Total number of pages: 73

Reviewed by: i-RISC members

Keywords: LDPC codes, Taylor-Kuznetsov memory, data-dependent failures, one-step
majority logic decoder, two-bit bit flipping, error-floor

Abstract

 This deliverable presents an overview of the activities carried out by the work package 4 (WP4)

during the first year of the project. These activities include performance evaluation of Gallager B

decoding algorithm and Taylor-Kuznetsov memory architecture based on structural LDPC codes,

under independent and data-dependent logic gate failures. The analytical expression for bit error

rate of one-step majority logic decoders built from unreliable logic gates is derived, which enable

faster analysis of regular LDPC codes compared to Monte Carlo simulation. Also, we investigate novel

approaches for designing low complexity decoders and codes with good performance in error-floor

region.

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Page 2 of (73) ©i-RISC, January 2014

List of Authors

Participant Authors

ELFAK Goran Đorđevid (goran.t.djordjevic@elfak.ni.ac.rs)

Bane Vasid (vasic@ece.arizona.edu)

Predrag Ivaniš (predrag.ivanis@etf.bg.ac.rs)

Srđan Brkid (brka05@gmail.com)

ENSEA David Declercq (declercq@ensea.fr)

Shiva Kumar Planjery (shiva.planjery@ensea.fr)

UPT Alexandru Amaricai (amaricai@cs.upt.ro)

mailto:goran.t.djordjevic@elfak.ni.ac.rs
mailto:vasic@ece.arizona.edu
mailto:predrag.ivanis@etf.bg.ac.rs
mailto:brka05@gmail.com
mailto:declercq@ensea.fr
mailto:shiva.planjery@ensea.fr
mailto:amaricai@cs.upt.ro

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

© i-RISC, January 2014 Page 3 of (73)

Table of Contents

List of Authors .. 2

Table of Contents ... 3

List of Figures ... 5

List of Tables .. 6

Abbreviations ... 7

List of Dissemination Activities .. 8

1. Introduction .. 9

2. Executive Summary ... 11

3. Taylor-Kuznetsov memory architectures based on structured LDPC codes 14

3.1 Summary of the Related Work ... 14

3.2 Performance Analysis of Faulty Gallager B Decoding of QC-LDPC Codes......................... 14

3.2.1 Description of Faulty Gallager-B decoder ... 14

3.2.2 Numerical Results .. 15

3.3 Performance Analysis of Taylor-Kuznetsov fault-tolerant memories under correlated gate

failures ... 18

3.3.1 The Correlated Failure Model ... 18

3.3.2 Numerical Results .. 23

3.4 Analysis of One-step Majority Logic Decoding under Correlated Data-Dependent Gate

Failures .. 24

3.4.1 Description of One-step Majority Logic Decoders and Failure Model .. 24

3.4.2 Performance Analysis .. 25

3.5 Conclusion ... 29

4. Two-Bit Bit Flipping Algorithms for LDPC Codes and Collective Error Correction 30

4.1 Related Work on Bit-Flipping Algorithms .. 30

4.2 The Class of TBF Algorithms ... 31

4.3 Construction of Trapping Set Profile ... 32

4.4 Application of the Failure Analysis in the Section of TBF Algorithms 34

4.5 Numerical Results .. 35

4.6 Conclusion ... 37

5. Failures and Error-Floors of Iterative Decoders .. 38

5.1 Overview of Decoding Failures and Error-Floor Analysis .. 38

5.2 Constructing Tanner graphs by Avoiding Trapping Sets ... 40

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Page 4 of (73) ©i-RISC, January 2014

5.3 Decimation-enhanced Finite Alphabet Iterative Decoders with Provable Guaranteed

Error-Correction for LDPC codes .. 42

6. General Conclusion and Next Steps .. 45

References ... 46

Appendix A... 49

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

© i-RISC, January 2014 Page 5 of (73)

List of Figures

Figure 3-1: Performance of Tanner code (155,64) decoded by a faulty Gallager B decoder, five

iterations. .. 16

Figure 3-2: Performance comparison of two QC-LDPC codes with different lengths (n=155 and n=305)

with dc=5, dv=3, decoded by a faulty Gallager B decoder in five iterations. ... 17

Figure 3-3: Influence of number of decoding iteration to faulty Gallager B decoder performance,

Tanner code (155,64). ... 17

Figure 3-4: Performance comparison of two QC-LDPC codes of codeword length n=155 with dc=5 and

different column weight (dv=3 and dv=4), faulty decoding in five iterations. 18

Figure 3-5: Block diagram of the Taylor-Kuznetsov memory architecture. .. 19

Figure 3-6: Error insertion into a 2-input Boolean function. ... 19

Figure 3-7: Probability of error in 3-input majority logic gate. ... 21

Figure 3-8: Comparison of majority logic gates with different number of inputs for p=2. 21

Figure 3-9: Equivalent scheme of faulty 3-input XOR logic gate. .. 22

Figure 3-10: Comparison of XOR logic gates with different number of inputs (output dependence

model). .. 23

Figure 3-11: Performance of TK scheme with EG(15,7) LDPC code in a correlated error model (p=2). 24

Figure 3-12: Part of Tanner graph used for decoding bit v. .. 26

Figure 3-14: Performance of faulty decoder under correlated gate failure (ρ=5). 28

Figure 3-15: Decoders upper bounds for different (γ,ρ) classes of LDPC codes (ε=10-2). 29

Figure 4-1: FER performance on code C1. .. 37

Figure 4-2: FER performance on code C2. ... 37

Figure 5-1: Frame error rate performance of the Tanner code and code C1 under the Gallager A/B

algorithm on the BSC with maximum of 100 iterations. ... 42

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Page 6 of (73) ©i-RISC, January 2014

List of Tables

Table 1-1: Gantt diagram of the WP 4. .. 10

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

© i-RISC, January 2014 Page 7 of (73)

Abbreviations

BER Bit Error Rate

FER Frame Error Rate

LDPC Low Density Parity Check

WP Work Package

TK Taylor-Kuznetsov

QC Quasi-Cyclic

TBF Two-bit Bit Flipping

EG Euclidean Geometry

BSC Binary Symmetric Chanel

AWGNC Additive White Gaussian Noise Channel

SPA Sum-Product Algorithm

TSO Trapping Sets Ontology

UCC University College Cork

UPT Universitatea Politehnica Timisoara

FAID Finite Alphabet Iterative Decoder

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Page 8 of (73) ©i-RISC, January 2014

List of Dissemination Activities

Published papers:

1. O. Al Rasheed, S. Brkic, P. Ivanis, B. Vasic, “Performance analysis of faulty Gallager B decoding

of QC-LDPC Codes,” In proceedings of 21st Telecommunication Forum, TELFOR 2013, 26-28

november 2013, Belgrade, Serbia, pp. 323-326.

2. S. Brkic, P. Ivanis, G. Djordjevic, B. Vasic, “Taylor-Kuznetsov fault-tolerant memories: a survey

and results under correlated gate failures“, In proceedings of 11th International Conference

on Telecommunications in Modern Satellite and Broadcasting Services, TELSIKS 2013, Nis,

Serbia, October 16-19, 2013, pp. 455- 461.

Submitted papers:

1. S. Brkic, P. Ivanis, B. Vasic, “Analysis of one-step majority logic decoding under correlated

data-dependent gate failures“, submitted to International Symposium on Information Theory

(ISIT 2014).

2. D. V. Nguyen and B. Vasic, “Two-bit bit flipping algorithms for LDPC codes and collective error

correction”, submitted to IEEE Transactions of Communications, October 2013

Workshop presentations:

1. S. Brkic, P. Ivanis, G. Djordjevic, B. Vasic, “The analysis of Taylor-Kuznetsov fault-tolerant

memories under correlated gate failures“, i-RISC Workshop presentation, European Solid-

State Circuits Conference, ESSC 2013, Bucharest Romania, September 16-19, 2013.

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

© i-RISC, January 2014 Page 9 of (73)

1. Introduction

This deliverable addresses the problem of the reliable storage of digital information on a chip built

from unreliable components. It represents summation of the research, done during the first year of i-

RISC project, conducted in order to complete tasks described in Work Package 4 (WP4) of the project

proposal. The main objectives of WP4 include analysis of the state-of-the-art memory architectures

under more realistic hardware failure modeling, proposing novel memory architectures designed for

tolerating both spatial and temporally correlated errors and designing the constrained codes that

enable reliable intra/inter-chip bus connections. The WP4 is divided into five complementary tasks,

as represented in Table 1-1, which are in the scope of our research.

In task 4.1, we investigated advanced memory architectures based on highly structured LDPC codes,

namely quasi-cyclic low density parity check (QC-LDPC) codes in conjunction with the state-of-the-art

iterative decoders as well as the decoders developed in the other work packages (especially WP3)

with a general goal to indentify the most suitable candidate for ensuring a reliable storage. The

different memory architectures are compared in terms of required sizes for a fault-tolerant memory,

or equivalently the fault-tolerance level for the same size. In task 4.2 we developed fault-tolerant

memories using bit parallel and serial flipping algorithms. In particular, we focused on the most

recent developments on multi-bit flipping decoders, which employ additional bits at a variable node

to represent its “strength”. Task 4.3 is dedicated to investigation of the error correction capabilities

of finite alphabet decoders used in faulty memories. In task 4.4, based on the task 4.1 results, a novel

approach to reliable memory design for correlated error models is presented. Task 4.5 contains

results in designing constrained codes for robust intra/inter-chip bus communications.

Successful completion of all tasks in this WP will give us theoretical guidelines for building LDPC

codes based low-complexity fault-tolerant memories and ensuring reliable date transport on

unreliable hardware. Based on techniques developed in this WP, the practical implementation of a

simple processor core is anticipated, which will present a proof of i-RISC concept viability. The

current subtasks are presented in Table 1-1 and will evolve over time.

As illustrated in Gantt diagram presented in Table 1-1, during the first year we focused mainly on

tasks 4.1, 4.2 and 4.3. Our activities include performance evaluation of Gallager B decoding algorithm

and Taylor-Kuznetsov memory architecture based on structural LDPC codes, under independent and

data-dependent logic gate failures. Also, analytical expression for bit error rate of one-step majority

logic decoders built from unreliable logic gates is derived, which enable faster analysis of regular

LDPC codes compared to Monte Carlo simulation. In addition, a new class of bit flipping algorithms

operating at perfect hardware is proposed. These solutions belong to a set of low-complexity

decoders, which makes them good candidates for fault-tolerant memories. Research conducted in an

area of error-floors of iterative decoders represents a good background for faulty iterative decoder

analysis.

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Page 10 of (73) ©i-RISC, January 2014

Table 1-1: Gantt diagram of the WP 4.

Deliverables 4.1 4.2 4.3

n

n n

n n

n n

n

YEAR 1 YEAR 2 YEAR 3
WP4: FAULT TOLERANT STORAGE/TRANSP.

T
as

k
s

T4.1: Taylor-Kuznetsov / structured LDPC

T4.2: Multi-bit flipping decoders

T4.3: Design of fast iterative decoders

T4.4: Fault tolerance for correlated error models

T4.5: On-chip reliable data transport

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

© i-RISC, January 2014 Page 11 of (73)

2. Executive Summary

In this chapter we present a short summary of the activities carried out by the WP4, during the first

year of i-RISC project and corresponding deliverables. We briefly discuss the most important

technical contributions of our work with highlights on their relevance to the overall i-RISC project

strategy.

The results of Subtask 4.1.a represent empirical evaluation of the performance of LDPC codes

constructed from circular matrices (quasi-cyclic LDPC codes) decoded using the Gallager B decoder

built from unreliable components. We assumed an independent transient fault model in which errors

occur at Tanner graph level of implementation. Although faulty Gallager B decoder has been

previously analyzed in the literature, using density evolution and EXIT function, the guidelines for

designing a good decoder are not known. We examined the influence of different code parameters,

decoder structures and fault model parameters to overall system performance in order to gain

insight in relative importance of failures in different logic gates as their relation with parameters such

as code length and number of decoding iterations. These results are of importance to designing

optimal TK-based memory architectures, which is our next research topic.

The conducted Monte Carlo simulations have shown that the faulty Gallager B decoder is more

sensitive to errors that occur in variable nodes than to errors in check nodes. The main reason for

this behavior is related to variable node ability to compensate the parity check failures. The majority

voting conducted in variable nodes can correct a fraction of parity check failures. However, if a

variable node output is erroneous the correction ability of a decoder is decreased. The results

indicate that the decoder performance can be significantly improved by better protection of variable

nodes (e.g. by making the majority voting gates more reliable). Also, it is concluded that when the

errors inserted into decoder are frequent, a codeword length may have negative impact to overall

performance. Thus, increasing codeword length for the same code rate is not always beneficial. It is

also interesting that if the check node faults are dominant, then the performance cannot be

improved significantly by increasing the number of iterations. The codes with lower rates can correct

more channel errors and therefore their performance is less degraded by decoder failures.

Independent transient failure model is only a rough approximation of the actual logic gate failures

caused by increased noise sensitivity or/and timing constrains in new nano-scale semiconductor

technologies. Although, actual failure rates are highly dependent on a digital circuit manufacturing

technology, a digital circuit can be affected by multiple errors that exhibit correlation. The error

modeling is done within Subtask 4.1.b. We present a novel approach to a faulty logic gate modeling

which assumes output logic gate error dependence on several consecutive input values. To model

such errors we use Markov chains. We investigated the influence of data-dependent failures on

performance of majority voting and multiple input XOR gates, which are basic components of TK

memory architecture. We determined the average performance of the TK scheme and identified

cases in which our model can be simplified to independent transient failure model.

By enriching our failure model with the failure rate data obtained by measurements, the actual

performance of memory architectures based on majority voting (TK memories, bit flipping based

memories) can be evaluated. Furthermore, in the next phases of the project we will direct our

research towards incorporating such more realistic failure conditions into our design. Competition of

this task will be result of collaboration with UCC and UPT teams, in which research scope is faulty

gate analysis.

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Page 12 of (73) ©i-RISC, January 2014

One-step majority logic decoders are iterative decoders in which decoding process is terminating

after only one cycle (iteration) and the bit estimates are obtained by a majority vote on multiple

parity check decisions. Due to its simplicity, one-step decoder is a good candidate for ensuring

memory reliability. Also, in contrast to iterative decoders, its performance can be evaluated

analytically.

Our work, listed as Subtask 4.1c, includes determination of the faulty one-step majority logic decoder

performance, when the component failures are modeled by a Markov chain. Based on combinatorial

interpretation of decoding process, exact closed-form BER expression is derived for any regular LDPC

code with girth length at least 6. Proposed analytical method has enabled us to accurately evaluate

the bit error rate – much faster than by Monte Carlo simulation. Different regular LDPC codes have

been examined and pronounced BER dependence of codewords order of decoding is noticed. Our

later research is directed to finding optimal mapping strategies that minimize negative effects of

date-dependence.

Bit flipping algorithms are the fastest and least complex among iterative LDPC decoders. But, their

error performance is typically inferior compared to hard-decoding message passing algorithms such

as the Gallager A/B algorithm. In Subtask 4.2a we present a novel class of bit flipping algorithms,

called two-bit bit flipping (TBF) algorithms, which significantly reduce bit error rate, compared to

standard bit flipping method, with only slightly more complex architecture. The proposed algorithms

employ one additional bit at a variable node to represent its “strength”. The introduction of this

additional bit allows an increase in the guaranteed error correction capability. An additional bit is

also employed at a check node to capture information which is beneficial to decoding. Amazingly,

efficient combining of additional information enable TBF algorithms to outperform, in some cases,

message passing algorithms such as Gallager A/B or min-sum.

By constructing the TBF trapping set profile we identified the decoder failures and analytically

predicted guaranteed error correction with high probability. Furthermore, we found different TBF

algorithms that are capable of correcting different error patterns and introduced collective error

correction. The concept and explicit construction of trapping set profiles allows rigorous selections of

multiple algorithms which, operating in parallel, can collectively correct a fixed number of errors with

high probability.

Although our analysis at this stage is restricted to decoders built entirely from reliable components,

these findings are also applicable in the faulty decoder case. We expect that when comparing two

equally complex decoders, the one with lower error level will also work better on noisy hardware.

Our future work will be directed to proving aforementioned hypothesis and comparing performance

of faulty TBF algorithms with noisy versions of other iterative decoders.

In Subtask 4.3a we analyzed iterative decoder failures and approaches for increasing LDPC codes

performance in error-floor region. Based on the progressive constructing of Tanner graphs by

avoiding trapping sets, we construct a LDPC code with same row and column weights, but superior

error-floor performance compared to well known Tanner code. Again, we are investigating

correspondence between code performance obtained under assumption of reliable computing

operations and results derived on faulty hardware. We predict that better codes will also be superior

under unreliable computing and we will next try to prove or disprove presented hypothesis.

In Subtask 4.3b we proposed a novel class of fast convergence iterative decoders called decimation-

enhanced finite alphabet iterative decoders. By deleting a number of nodes from code computation

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

© i-RISC, January 2014 Page 13 of (73)

tree we expedite the decoding process while maintaining the same error performance. Furthermore,

we showed that provable guaranteed error-correction can be achieved in a finite and small number

of iterations, which represent a first result on guaranteed error-correction of a message-passing

decoder other than Gallager-B decoder, and will hopefully lead to superior TK-memories.

As previously discussed, our main interest during the first year of the project was on error modeling

and analysis of the TK-based memory architectures. Also, we investigated a novel approaches for

designing low complexity decoders and codes with good performance in error-floor region. Next, we

compared different message passing and bit flipping algorithms in order to identify decoders that are

the most resistant to hardware faults, described by independent and correlated error models. At the

end of the project we will be able to identify best decoder classes for reliable memory architectures.

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Page 14 of (73) ©i-RISC, January 2014

3. Taylor-Kuznetsov memory architectures based on structured LDPC codes

Abstract: This technical contribution is dedicated to analysis of memory architectures constructed

based on TK principle. We first evaluated the performance of Gallager B algorithm, used for decoding

quasi-cyclic low-density parity-check (QC-LDPC) codes, under unreliable message computation. Using

Monte Carlo simulation we investigated effects of different code parameters to coding system

performance, under binary symmetric communication channel and independent transient faults

model. We next presented a method for unreliable logic gates analysis in the presence of correlated,

data-dependent gate failures, described by Markov chain model. The method is used for simulation

analysis of Taylor-Kuznetsov memory architectures constructed from 2-input logic gates. Also, a

theoretical analysis of one-step majority logic decodable codes in the presence of correlated gate

failures is conducted. The closed-form expression for average bit error rate of any regular LDPC code

with girth at least six has been derived.

3.1 Summary of the Related Work

According to new design paradigm for VLSI (Very Large Scale Integration) technologies, fully reliable

operations are not guaranteed [Ghosh10]. New nano-scale technologies are more sensitive to noise,

which appears as a consequence of radiation or electromagnetic interference. Thus, analysis of

different decoding algorithms under unreliable hardware is meaningful. A hardware component is

assumed to be unreliable if it is subject to so-called transient faults, i.e. faults that manifest

themselves at particular time instants but do not necessarily persist for later times [Hadjicostis05].

These faults have probabilistic behavior and can be described statistically through erroneous

component output probability.

Recently, different noisy LDPC decoders were analyzed by using simulation, density evolution or EXIT

chart tools. The performance of LDPC codes under faulty Gallager-A and belief propagation decoding

were determined in [Varshney11], using density evolution method. Similar analysis using EXIT

function is provided in [Leduc-Primeau12], for Gallager B algorithm. Also, probabilistic analysis of

Gallager B decoding algorithm was presented in [Yazdi13]. More general finite-alphabet decoders

were investigated in [Huang13], while noisy min-sum decoder realization was considered in

[Ngassa13].

The fault-tolerant memories were examined by Taylor [Taylor68-a], [Taylor68-b] who proposed use

of LDPC codes as restoration organs in faulty memories. His work was continued and refined by

Kuznetsov [Kuznetsov73]. Recently, as understanding of LDPC codes increases, research in this

direction continues ([Vasic07], [Chilappagari07], [Chilappagari08], [Ivkovic06]).

One-step majority decoders were analyzed in [Chilappagari06] and [Radhakrishnan07] where authors

provided a combinatorial characterization of the error in the output of the decoder in the presence

of independent hardware failures.

3.2 Performance Analysis of Faulty Gallager B Decoding of QC-LDPC Codes

3.2.1 Description of Faulty Gallager-B decoder

Decoding of LDPC codes is usually described on code’s Tanner graph. The Tanner graph is bipartite

graph composed of two sets of nodes – variable (bit) nodes and check nodes. Nodes, from a different

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

© i-RISC, January 2014 Page 15 of (73)

set, connected to a single node, are referred to as its neighbors. The degree of a node is the number

of his neighbors. In a (dv,dc) regular LDPC code, each variable node has degree dv and every check

node degree is dc.

The Gallager B algorithm represents iterative decoding procedure operating in a binary field. During

the every decoding iteration, binary messages are sent along the edges of Tanner graph. Let E(x)

represent a set of edges incident on a node x (x can be either variable or check node). Let and

 denote the messages sent on edge e from variable node to check node and check node to

variable node at iteration i, respectively. If we denote the initial value of a bit at variable node v as

r(v), the Gallager B algorithm can be summarized as follows [Shokrollahi02].

Initialization (i=1): For each variable node v, and each set E(v), messages sent to check nodes

are computed as follows

 (3-1)

Step (i) (check-node update): For each parity check node c and each set E(c), update rule for i-

th iteration, i > 1, is defined as follows

 (∑

 ⁄

) (3-2)

Step (ii) (variable-node update): For each variable node v and each set E(v), update rule for i-

th iteration, i > 1, is defined as follows

{

 ∑

 ⁄

 ∑

 ⁄

 (3-3)

where bi represent threshold dependent on iteration i. In our analysis we considered constant

threshold value ⌈ ⁄ ⌉.

Step (iv) (decision): After predefined number of iterations the final decision of transmitted bit ̂ is

made on the basis of majority of its estimates .

We studied the performance of a faulty Gallager B decoder in the presence of transient faults. In

addition to noise that exists in communication channel, errors are inserted by the LDPC decoder

itself. We assume independent transient faults model in which errors occur at the output of variable

and check node update functions. In other words, every edge in Tanner graph behaves as binary

symmetric channel (BSC) with some crossover probability. The probability that message originating

from variable node is incorrect is denoted as p, while crossover probability in BSC that corresponds

to check node message transition is equal to q. Assigning different crossover probabilities enable us

to determine the influence of faults in different nodes to overall decoder performance.

3.2.2 Numerical Results

In this section we present performance analysis of faulty Gallager B decoder, described in the

previous section. The two QC-LDPC codes have been examined and their performance are compared

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Page 16 of (73) ©i-RISC, January 2014

for several implementations of faulty Gallager B decoders. All numerical results presented in this

section are obtained by Monte Carlo simulations.

The sequence of all-zero codewords is transmitted through BSC with a predefined crossover

probability and then decoded by a faulty iterative decoder. As described earlier, messages that are

passed between nodes can be faulty. The message passes through the noise channel with

error probability p, thus, a bit estimate can be erroneous as a consequence of a majority of

unsatisfied parity checks or the faults in variable node implementation or both. Similarly, due to BSC

crossover probability q, message
 may incorrectly inform variable node if the parity check

equation is satisfied or not.

First, we evaluated the performance of Tanner code (with n=155, dv=3 and dc=5) decoded by a faulty

Gallager B decoder. The code frame error rate (FER) performance are given as a function of

communication channel crossover probability. FER curves for several values of decoder failures

probabilities p and q, when 5 decoding iterations are performed, are presented in Fig. 3-1. It can be

observed that decoder failures greatly degrade frame error rate, but failures in variable and check

nodes have different influence on the code performance. The simulation has shown that the decoder

is more sensitive to errors that occur in variable nodes. The mean reason for this behavior is related

to variable node ability to compensate the parity check failures. The majority voting conducted in

variable nodes can correct a fraction of parity check failures. However, if a variable node output is

erroneous correction ability of a decoder is decreased. Finally, the presented results indicate that the

decoder performance can be significantly improved by better protection of variable nodes (e.g. by

making the majority voting gates that perform the operation in (3-3) more reliable).

Figure 3-1: Performance of Tanner code (155,64) decoded by a faulty Gallager B decoder, five iterations.

We also evaluated performance of two QC-LDPC codes with code lengths n1=155 and n2=305, with

the same parameters dv=3 and dc=5. Performance comparison is illustrated in Fig. 3-2. Although the

code with longer codewords has better correcting capabilities, it is also more prone to processing

errors. The simulation has shown, that when the errors inserted into decoder are frequent (p=10-2 or

q=10-2), longer code length may have negative impact to overall performance. However, the longer

code achieves lower FER when hardware failures are rare (p=10-4).

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

© i-RISC, January 2014 Page 17 of (73)

Figure 3-2: Performance comparison of two QC-LDPC codes with different lengths (n=155 and n=305) with dc=5,
dv=3, decoded by a faulty Gallager B decoder in five iterations.

The performance of the Gallager B algorithm depends on the number of iterations [MacKay99], thus

assessing the effect of number of iterations of faulty decoder is meaningful. The performance of a

faulty decoder, when a different numbers of decoding iterations are used, are presented in Fig. 3-3. It

is obvious that increasing the number of decoding iteration leads to lower error rates. However, it

can be noticed that the improvement depends on the structure of the errors that exist in decoder.

Figure 3-3: Influence of number of decoding iteration to faulty Gallager B decoder performance, Tanner code
(155,64).

If the variable node faults are dominant (p=10-2, q=10-3), the performance can be improved

significantly by increasing the number of iterations. In contrast, the FER levels are much lower if the

check nodes faults have dominant effect, and cannot be improved significantly by increasing the

number of iterations. For example, when the Tanner code is decoded by a faulty Gallager B decoder

with parameters p=10-3 and q=10-2 only 20 decoding cycles is sufficient and the error rate does not

further improve.

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Page 18 of (73) ©i-RISC, January 2014

Finally, we investigated the influence of code rate on decoder performance. We compare the error

rates of two QC-LDPC codes with the same length (n=155) and check node degree (dc=5), but

different variable node degrees (dv=3 or dv=4). The obtained results are presented in Fig. 3-4. The

code with higher variable nodes degree (lower code rate) can correct more errors that appear in

communication channel, but the decoder is also more complex and more prone to errors. It is

interesting to notice that the performance of code with lower code rate is less degraded by decoder

failures.

Figure 3-4: Performance comparison of two QC-LDPC codes of codeword length n=155 with dc=5 and different
column weight (dv=3 and dv=4), faulty decoding in five iterations.

3.3 Performance Analysis of Taylor-Kuznetsov fault-tolerant memories under

correlated gate failures

3.3.1 The Correlated Failure Model

Taylor-Kuznetsov model assumes that faults of memory elements and logic gates are transient, i.e.

faults occur at a particular time instants but do not necessary persist for later times. It is also

assumes that gates fail independently of each other and that faults are not permanent, i.e. faulty

gate may produce a correct output at some time instant. Such failure mechanism is referred to as

von Neumann type of errors. In this paper we consider a more general failure model in which failures

of a given logic gate are data-dependent and correlated in time.

Our model can be used for analyzing physical phenomena such as noise influence to chips with sub-

threshold voltages. We formed a model of faulty gates through its first order statistics (probability of

erroneous circuit output) as a function of logic gates inputs or outputs. For that purpose we used

Markov chains.

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

© i-RISC, January 2014 Page 19 of (73)

Figure 3-5: Block diagram of the Taylor-Kuznetsov memory architecture.

As it can be seen in Fig. 3-5, the TK scheme [Taylor68-a] is composed of (J-1)-input majority logic

gates, K-input XOR gates and 2-input XOR gates. Because all multi-input gates in hardware are

implemented as circuits composed of 2-input Boolean logic gates, our analysis is done at the 2-input

Boolean function level. The correct binary output value of a given Boolean function, Oc(k) at discrete

time k, (k>0), depends on I1(k) and I2(k), the logic gate binary input values. This is illustrated in Fig. 3-

6. The errors are inserted into logic gate by performing XOR operation between correct gate output

sequence {Oc(k)}k>0, and the error sequence {e(k)}k>0, producing the actual output sequence {Oe(k)}k>0,

(Fig. 3-6). The error sequence {e(k)}k>0, represents the binary time series which describes the statistics

of errors. If the k-th value of error pattern is ‘1’, i.e. e(k)=1 (k>0), the output of Boolean logic gate at

time k will be faulty, i.e., the k-th actual output value will not correspond to correct one (Oe(k)≠

Oc(k)). The error sequence is modeled as a finite Markov chain. The error pattern statistics depends

on gate inputs and outputs, and in principle there are two ways to define such dependence. In the

first approach the e(k) at discrete time k taking some value depends on the current gate output Oc(k)

as well as M, M>0, previous gate outputs Oc(k-1), … Oc(k-M). In the second approach, the probability

of error pattern depends on gate inputs I1(k), I2(k), I1(k-1), I2(k-1)... I1(k-M), I2(k-M)). In this section,

our focus was on output dependence model because its complexity is half of that of the second

model, while still capturing the essential characteristics of data dependence.

Boolean function

+

e(k)

I1(k)

I2(k)

Oc(k)
Oe(k)

Figure 3-6: Error insertion into a 2-input Boolean function.

Let S be a Markov source generating the error sequence composed of 2M+1 states si, 1≤i≤2M+1, i.e.

 { } Every state corresponds to one possible logic gate output sequence of length

M+1 and captures the different data-dependent failures, expressed through different error

probabilities p(si)=Pr{e(k)=1|si}, 1≤i≤2M+1, k>0, where Pr{.} denotes probability. According to current

binary output value Oc(k), k>0, from each state si only transition to two next states sj and sm are

possible, which happens with probabilities pij and pim, respectively. The transition probabilities pij,

depend on statistic of sequence {Oc(k)}k>0, and must satisfy pij+pim=1, 1≤a≤2M+1, aϵ{i,j,m}. Although

large value of M can give us possibility to describe data-dependence in more details, complexity of

model increases exponentially. Also, long correlation is not expected in faulty logic gates. Thus, we

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Page 20 of (73) ©i-RISC, January 2014

use the simplest model with M=1, which can adequately illustrate data-dependent failures. We next

analyze AND, OR and XOR faulty logic gates.

At the output of AND logic gate correct value ‘1’ appears only if both inputs are equal to ‘1’. Thus, if

due to increased noise level one input changes its value, the gate output will be faulty. We can

conclude that gate output ‘1’ is more prone to errors. Consequently, the error probability in the state

s4=‘11’ is the highest and in the s1=’00’ state is the lowest. The last conclusion can be formulated as

follows

 { } { } (3-4)

where pAND(si) denotes the error probability at the output of AND logic gate in state si, 1≤i≤4, and Ai

represent the scaling coefficients, dependent of state si. From the discussion presented above, it is

clear that must hold

 { } (3-5)

Similar analysis can be performed for the OR logic gate. The correct output value ‘0’ can be changed

to incorrect value ‘1’ even if only one input is faulty. Thus, in this case the state ‘00’ is the most

sensitive and we can write the following expression

 { } { } (3-6)

where pOR(si) denotes the error probability at the output of OR logic gate in state si, 1≤i≤4, and Bi

represent the scaling coefficients, dependent of state si. It can be noted that following condition

must be satisfied

 { } (3-7)

Every change of input values of XOR logic gate will produce an error. Thus, probabilities of output

error will be the same regardless of current state, pXOR(si)=pXOR, 1≤i≤4, i.e. XOR error pattern can be

modeled as BSC.

As previously described, using AND, OR and XOR logic gates every multiple-input logic gate in TK

scheme can be implemented. For example, faulty 3-input majority logic gate can be presented as a

digital circuit composed of three faulty AND gates and two faulty OR gates.

The results of majority logic gates analysis are graphically presented in Fig. 3-7 and Fig. 3-8, for

several values of Ai and Bi coefficients and inputs statistics. The input statistics are described by

probability that input values Ii (i=1,2,3) are equal to ‘1’, denoted as P1. The failure model coefficients

are given in normalized form as follows

 (3-8)

In this way all coefficients are described by a single parameter (p). It should be noted that this

coefficient relations are purely theoretical and they have not been validated by real measurements.

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

© i-RISC, January 2014 Page 21 of (73)

Figure 3-7: Probability of error in 3-input majority logic gate.

 Figure 3-8: Comparison of majority logic gates with different number of inputs for p=2.

The output error probability of 3-input majority logic gate dependence of average component

failures is presented in Fig 4-3, for several values of parameter p(=1,2,3) and two input probabilities

P1=0.5 and P1=0.9. It can be noticed that input statistics have the most influence on logic gate

performance. A majority logic gate output is equal to ‘1’, if half or more inputs are equal to ‘1’. Thus,

when ones and zeros appear at the gate inputs with equal probabilities (P1=0.5) more gate output

values will be faulty, compared to case when almost all inputs are ‘1’ (P1=0.9). When P1=0.5,

parameter p, which describes presented Markov model, does not have any impact on logic gate

performance. So, for that case the presented model is excessive and can be replaced by uncorrelated

error model. When P1=0.9 differences caused by error correlation exist.

Furthermore, as the output error probability is a linear function of average component error, a faulty

majority logic gate can be modeled as correct one at which output the error pattern is inserted. Thus,

when P1=0.5, a simpler model can be used, which is characterized only by output error probability, as

it is presented in Fig. 3-9.

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Page 22 of (73) ©i-RISC, January 2014

Majority

logic
+

e

I1

I2

I3

OeOc

Figure 3-9: Equivalent scheme of faulty 3-input XOR logic gate.

It should be noted that simplification, presented in Fig. 3-9, is accurate only if autocorrelation

function of error pattern is unchanged. But, in this case, as simulation analysis has shown, presented

Markov chain produced the output error pattern which greatly resembles the uncorrelated one.

Thus, it is sufficient to determine first order statistics of the error pattern.

The performance comparison of majority logic gates with different number of inputs is presented in

Fig. 4-4, when p=2. The number of inputs of majority logic gate used in TK scheme depends of

column weight of used LDPC code parity check matrix. Thus, the comparison of different majority

logic gates can give us an insight what LDPC code will produce less errors in the decoding phase. Also,

code correcting capabilities have a significant influence in choosing the right code for TK scheme. It

can be noted that 2-input majority logic gate (which is actually a simple OR logic gate) has the lowest

output error probability when P1=0.5. But, when P1=0.9, the simulation has shown that the gate with

largest number of inputs (4-input gate) outperforms other logic gates. The gates with more inputs

are less sensitive to errors when input value ‘1’ is more frequent then value ‘0’.

We can conclude that input values statistics have a key role in majority logic gate analysis. If we can

determine the probabilities of input values we can easily generate a simpler model of faulty majority

logic gate and choose the LDPC code, which will be more resistant to hardware failures.

The faulty multi-input XOR gates are also an integral part of the TK scheme and, as already

mentioned, can be represented as 2-input faulty XOR gates. The number of inputs of XOR logic gate is

defined by the row weight of chosen LDPC code parity check matrix. Thus, it is interesting to compare

XOR gates with different number of inputs.

Performance of XOR gates with 3, 4 and 5 inputs are presented in Fig 3-10. It can be noted that

increasing the number of inputs causes higher output error probability. In multi-input XOR gate every

odd number of 2-input XOR gate failures will produce output errors. In XOR logic gates with more

inputs more 2-input XOR gate failure combination can generate an output error.

Because errors in 2-input XOR gates are uncorrelated, the number of inputs is only parameter that

affects multi-input XOR gate performance. The input values statistics do not have any impact on

output error probability in our XOR gate failure model.

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

© i-RISC, January 2014 Page 23 of (73)

Figure 3-10: Comparison of XOR logic gates with different number of inputs (output dependence model).

3.3.2 Numerical Results

In this section we present the simulation results for TK memory architecture with codeword length

equal to 15 bits. We used LDPC code constructed by Euclidean geometry principle, EG(15,7). The

parity check matrix of this code has four 1’s in every row and column. The length of the shortest cycle

of the Tanner graph representation is equal to 6.

We assumed that memory failures are independent and they can happen with probability Pm. The

failures of correcting circuit are modeled by using Markov model described in the previous section.

Thus, the probability that output of Boolean function is incorrect in the worst state Pb,

Pb=pAND(s4)=pOR(s1)=pXOR, and value of parameter p from Eq. 3-8 completely defines the failure model.

We assumed that the memory contents pass through a BSC after a time period T and then are

updated by the message passing Gallager B decoder. Initially, all-zero code word is stored in memory

registers. The message passing can be run for any number of iterations. It is also assumed that the

time for update is smaller compared to T and that memory contents do not change while the update

is in progress.

The bit error rate (BER) curves for described memory architecture when Pm=10-3 and p=2, are

presented in Fig. 3-11, for several values of Pb. The update process is terminated after four iteration

of Gallager B algorithm. It can be noted that when correcting circuits faults are of the same order of

magnitude as memory elements faults, the reliable memory cannot be achieved. If logic gate error

probability has lower values (Pb=10-4, Pb=10-5) BER does not increase rapidly and stays below memory

error probability for several time steps T.

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Page 24 of (73) ©i-RISC, January 2014

Figure 3-11: Performance of TK scheme with EG(15,7) LDPC code in a correlated error model (p=2).

3.4 Analysis of One-step Majority Logic Decoding under Correlated Data-Dependent

Gate Failures

3.4.1 Description of One-step Majority Logic Decoders and Failure Model

Let C be the (γ,ρ)-regular LDPC code of length n, with parity check matrix H which has exactly γ 1’s in

every column and ρ 1’s in every row. A codeword is stored in a memory, and

when read from the memory each bit xv is flipped by probability α and observed as rv. We refer to rv

as value of the variable node v.

Let Ex represent a set of edges incident on a node x in a Tanner graph (x can be either variable or

check node), then the one-step majority decoding may be summarized as follows.

1. Each variable node v sends rv along the edge in Ev.

2. Each check node c sends me along each edge in Ec where

 ∑

 ⁄

 (3-9)

3. At each v an estimate of the value of ̂ is made

 ̂ ,

 { } ⌊ ⁄ ⌋

 { } ⌊ ⁄ ⌋

 (3-10)

Note that, similarly as in [Chilappagari06-a], we only analyze the message passing version of one-step

majority logic decoder. This decoder needs needs γ of (ρ – 1)-input XOR gates at each check node

and a γ-input majority logic gate at each variable node. Each check node makes an estimate of the

value of a variable node based on the values of other variable nodes. The value of the variable node

itself is not used in its estimation. The final decision is made on the basis of majority of the estimates,

resulting in probability of error of an estimated bit greater than or equal to the probability of failure

of the majority logic gate. Since the error probability of the majority logic gate lower bounds the bit

error rate (BER) performance, majority logic gates must be made highly reliable. Otherwise, the

probability of error is determined by this final gate and not the error control scheme. Thus, it is

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

© i-RISC, January 2014 Page 25 of (73)

reasonable to make an assumption that majority logic gates are perfect and that only XOR gates are

faulty. We analyze a system in which different codewords are stored in an unreliable memory. While

stored in the register, each bit may be flipped, independently of other bits, with probability α. At

every cycle a different codeword is read from the memory and decoded by an unreliable one-step

majority decoder. Equivalently, we may assume that the sequence of codewords { }

 is

transmitted through the Binary Symmetric Channel (BSC) with crossover probability α and then

successively decoded by a single one-step majority decoder built from perfect majority logic gates

and faulty XOR gates.

In contrast to the state-of-the-art modeling of faulty gates that considers only the failure

dependence on the current input values, our model captures more accurately the data and time

dependence of the failures. Namely, we assume that the error at time k is affected by the

current and M-1 prior consecutive gate input vectors, i.e., its probability depends on the vector

sequence { }

,where M is a positive integer and represents

vector of gate input values at time k. Denote this probability by { }, where the gate state

at time k is defined as { }

. As previously stated, in our one-step majority logic

decoder only XOR gates are unreliable. The number of states grows exponentially with M and ρ, i.e.,

for an (ρ-1)-input XOR gate used in our decoder there are states.

The inputs of a (perfect) majority logic gate are the outputs of XOR gates in the neighboring check

nodes. Thus, at time k these gates can be associated with a state array (

),

whose elements represent states of particular XOR gates. Based on , an error probability vector

can be formed as (

)

 { | } . The values of error

probability vector can be obtained by measurements or by simulation of selected semiconductor

technology. Thus, in our analysis we assumed that these values are known.

3.4.2 Performance Analysis

A composition of a positive integer i, is an integer vector such that ∑

 .

The integers are called parts or summands, and is called the composition length. Note that

we slightly modified the standard definition of the composition by allowing the parts to be equal to

zero. Consequently, all compositions have the same length, which simplifies representation of error

patterns.

Let denote the set of first positive integers, i.e., { }. A restricted composition in

which no part size exceeds is an -composition. The number of the compositions of an integer

whose part sizes do not exceed a fixed integer is denoted by and can be calculated based on the

methods given in [Malandro13]. Alternatively, an -composition can be rewritten using its

frequency representation , where denotes the number of parts equal to j, .

For example, (1,2,1,1) is an -composition of 5 of length 4, with frequency representation f1 = 3, f2 =

1.

Let be a vector corresponding to one lexicographically ordered u-subset of the set and let the

vector contain the remaining elements of . We create a vector q by juxtapositioning and .

We can arrange all possible vectors q into rows of an (

) by array . For example, if and

 , the rows of are (1,2,3,4), (1,3,2,4), (1,4,2,3), (2,3,1,4), (2,4,1,3) and (3,4,1,2). The array

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Page 26 of (73) ©i-RISC, January 2014

 referred to as the error configuration matrix will be instrumental in book-keeping of data-

dependent patterns.

In a Tanner graph of a code with girth at least six, the variable nodes connected to the neighboring

checks, , of a variable node v, are all distinct. Without loss of generality we can label the check

nodes as , and the set of the variable nodes by the elements of .

Consider now a weight error pattern on these variable nodes, and consider the

computation tree for a variable node v, presented in Fig 3-12. It is a tree with the root v and the leafs

in , out of which are erroneous. The distribution of the weight error pattern on the leaf

nodes of the computation tree can be represented by a restricted -composition of with

parts. Each part represents the number of erroneous nodes connected to the m-th

check node (XOR gate). Since each check node in is connected to variables other than v, the

part size cannot exceed . For example, if , { } and ,

corresponds to an error pattern in which the errors are at variable nodes connected to the

check c = 1 and variable nodes connected to the check c = 3, while no variable connected to c

= 2 is in error.

...

...

1 2 ρ-1

v

γ

2(ρ-1)ρ ρ+1 (γ-1)(ρ-1)+1 γ(ρ-1)

1 2

(γ-1)(ρ-1)+2

Figure 3-12: Part of Tanner graph used for decoding bit v.

In a decoder built entirely from reliable components, every odd number of erroneous neighboring

nodes connected to the same XOR gate will result in sending an incorrect bit estimate to node v. The

number of incorrect estimates sent to node v in the error pattern can be obtained as follows

 ∑

⌈ ⁄ ⌉

 (3-11)

In a perfect decoder determining the value is sufficient to know if bit is correctly decoded,

assuming the error pattern . But, in the faulty decoder, due to XOR gate failures, some of the

correct estimates can become incorrect, and vice versa, some incorrect estimates can be received as

correct ones. Let be the error probability vector of unreliable XOR gates, used for decoding bit .

Denote as

 a vector of error probabilities that correspond to all XOR gate which,

if operate perfectly, would send incorrect bit estimates to node v. The remaining elements of

the error probability vector form a vector . Then we have the following lemma establishing the

harmfulness of the error pattern corresponding to the composition .

Lemma 3.1: The probability that node v receives p incorrect bit estimates in an error configuration
corresponding to is

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

© i-RISC, January 2014 Page 27 of (73)

 ∑ { } { }

 (3-12)

where uh=min(,p), ul=max(0,),

 { } ∑ ∏(
)

∏

(
)

 (3-13)

and

 { } ∑ ∏

∏ (
)

(
)

 (3-14)

where qt,m and rt,m denote the elements in t-th row and m-th column of the error configuration

matrices and , respectively.

The following lemma gives the bit miscorrection probability under the fixed error probability vector,

when the effect of different memory failure configurations is taken into account.

Lemma 3.2: If memory registers fail independently with probability α, then the probability that the

codeword bit of (γ,ρ)-regular LDPC code is incorrectly decoded by a faulty one-step majority logic

decoder, whose gate fail according the error probability vector , is given by

 ∑ *

 ⌊ ⁄ ⌋ ∑

 ⌊ ⁄ ⌋

+

 (3-15)

where

 ∑ () ∏ (

)

 (3-16)

and

 is the j-th composition of integer , where .

Let{ }

 be a codeword sequence stored in the memory registers. Clearly, decoding error of x(k)

depends on M – 1 codewords previously read from a memory. Let { }

 , be sequence of code bits that, if stored with no errors, will appear at inputs

of m-th XOR gate connected to node v, in the time interval . Then, using the Lemmas

1 and 2 we formulate our main theorem which captures decoder performance under correlated

data-dependent gate failures.

Theorem 3.1: The average bit error rate (BER) of (γ,ρ)-regular LDPC code, when codeword sequence

{ }

 is read from a memory and decoded by an unreliable one-step majority logic

decoder is

 ̅(
)

∑ ∑ () ∏

 (

) (

)

(3-17)

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Page 28 of (73) ©i-RISC, January 2014

where dH(a,b) denotes Hamming distance of binary vectors a and b.

For a special case of von Neumann errors, the probability () is independent of state arrays

and above expression reduces to equation (3-15). In addition, for the perfectly reliable hardware, the

equation (3-12) simplifies to only when p = δ, and it is equal to zero otherwise.

The analysis presented in this section is general and can be used for analyzing decoders built

in different nanoscale technologies. In this section we present numerical results for a special case of

transient errors that are result of timing constrains - timing errors. Due to the sampling clock

fluctuations or signal propagation delays, the output signal of a gate may be sampled or used in the

next stage before it reaches a steady value, leading to an incorrect output. Such errors are

dependent on gate history, i.e. data values processed by the gate in previous bit intervals. As the

erroneous output of a logic gate will appear only if output changes its values it is usually sufficient to

consider failure dependence on current and only one previous bit interval, i.e. M = 2. Thus, two

subsets of input value states of faulty XOR gate can be identified. First subset is constituted by states

in which gate output remains unchanged and zero failure rates correspond to this subset. If gate

output changes its value failure is possible and states from other subset have non-zero failure rates.

For simplicity, we assume that all failure rates from second subset are the same, denoted as .

The performance of the faulty decoder for two limiting cases are presented in Fig. 3.14. The best

case, denoted as X00 corresponds to storage and consecutive decoding of two same codewords. The

decoder will operate worst if two complementary codewords are stored, denoted as X01.

Performance of faulty decoders are upper bounded under decoding of X01 and lower bounded under

X00. When decoding X00 XOR gate failures are rare and have limited influence on decoder

performance, which results in practically the same BER values for both ε values (ε=10-3,10-2). Gap

between bounds depends on column weight of matrix H. The upper bounds for different (γ,ρ) classes

of LDPC codes are presented in Fig. 3.15, where negative influence of matrix H row weight can be

noticed.

Figure 3-14: Performance of faulty decoder under correlated gate failure (ρ=5).

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

© i-RISC, January 2014 Page 29 of (73)

Figure 3-15: Decoders upper bounds for different (γ,ρ) classes of LDPC codes (ε=10
-2

).

3.5 Conclusion

In this technical contribution, we evaluated the performance of QC-LDPC codes decoded by a faulty

Gallager B decoder. The influence of code length, code rate and number of decoding iteration on

coding system performance was analyzed. Particularly important was analysis of influence of failures

in different parts of a decoder. It enables us to determine the most sensitive structures in a decoder

and make them more reliable.

Due to nano-scale technologies development, assurance of the fault-tolerance became a critical

issue. Using LDPC codes, as it is done in TK scheme, can significantly increase the memory reliability.

We examined the transient faults influence to performance of multi-input digital gates used in TK

memory architecture. The error correlation model, based on Markov chain was introduced and

performance of majority logic gates and multi-input XOR gates were obtained. It was also observed

that input statistics have dominant affect on faulty one-step majority logic gate performance,

compared to error correlation modeled by Markov chain. Thus, simplification of faulty majority gate

model was presented. The error probability at the output of multi-input XOR logic gate is determined

by number of gate inputs.

Furthermore, we presented a combinatorial algorithm to calculate the exact bit error rate

performance of regular LDPC codes under faulty one-step majority logic decoding. The method was

applied to a several classes of LDPC codes and influence of transmitted codewords order on code

performance was examined. Presented analysis represents the first step in designing low-complexity

memories resistant to correlated data-dependent failures.

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Page 30 of (73) ©i-RISC, January 2014

4. Two-Bit Bit Flipping Algorithms for LDPC Codes and Collective Error

Correction

Abstract: In this technical contribution new class of bit flipping algorithms for low-density parity-

check codes over the binary symmetric channel is proposed. Compared to the regular (parallel or

serial) bit flipping algorithms, the proposed algorithms employ one additional bit at a variable node

to represent its “strength.” The introduction of this additional bit allows an increase in the

guaranteed error correction capability. An additional bit is also employed at a check node to capture

information which is beneficial to decoding. A framework for failure analysis and selection of two-bit

bit flipping algorithms is provided. The main component of this framework is the (re)definition of

trapping sets, which are the most “compact” Tanner graphs that cause decoding failures of an

algorithm. A recursive procedure to enumerate trapping sets is described. This procedure is the basis

for selecting a collection of algorithms that work well together. It is demonstrated that decoders

which employ a properly selected group of the proposed algorithms operating in parallel can offer

high speed and low error floor decoding.

4.1 Related Work on Bit-Flipping Algorithms

Among existing decoding algorithms for LDPC codes on the BSC, bit flipping algorithms are the fastest

and least complex. The check node operations of these algorithms are modulo-two additions while

the variable node operations are simple comparisons. Most importantly, their decoding speed does

not depend on the left- and right-degree of a code. The simplicity of bit flipping algorithms also

makes them amenable to analysis. Many important results on the error correction capability of bit

flipping algorithms have been derived. The parallel bit flipping algorithm was shown to be capable of

asymptotically correcting a linear number of errors (in the code length) for almost all codes in the

regular ensemble with left degree [Zyablov76]. In a later work, Sipser and Spielman used

expander graph arguments to show that this algorithm and the serial bit flipping algorithm can

correct a linear number of errors if the underlying Tanner graph is a good expander [Sipser96].

Recently, it was shown that regular codes with left degree are also capable of correcting a

linear number of errors under the parallel bit flipping algorithm [Burshtein08].

In recent years, numerous bit-flipping-oriented decoding algorithms have been proposed in [Nouh04]

[Ngatched09], [Wu09], [Ngatched07] and [Wadayama10]. However, almost all of these algorithms

require some soft information from a channel. This means that the channels assumed in these work

have larger capacity than that of the BSC. A few exceptions include the probabilistic bit flipping

algorithm (PBFA) proposed in [Miladinovic05]. In that algorithm, whenever the number of unsatisfied

check nodes suggests that a variable (bit) node should be flipped, it is flipped with some probability p

< 1 rather than being flipped automatically. This random nature of the algorithm slows down the

decoding, which was demonstrated to be helpful in practical codes whose Tanner graphs contain

cycles. The idea of slowing down the decoding can also be found in a bit flipping algorithm proposed

in [Chan98]. This algorithm, which is used on the additive white Gaussian noise channel (AWGNC),

requires a certain number of decoding iterations between two possible flips of a variable node.

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

© i-RISC, January 2014 Page 31 of (73)

4.2 The Class of TBF Algorithms

The error performance of bit flipping algorithms is typically inferior compared to hard-decoding

message passing algorithms such as the Gallager A/B algorithm. The weakness of bit flipping

decoding is especially visible for 3-left-regular codes for which the guaranteed error correction

capability is upper-bounded by ⌈ ⁄ ⌉, where g is the girth of the Tanner graph representation of

a code [Chilappagari10].

In this technical contribution we proposed the class of algorithms, in which an additional bit is

introduced to represent the strength of a variable node. Given a combination of satisfied and

unsatisfied check nodes, a decoding algorithm may reduce the strength of a variable node before

flipping it. An additional bit is also introduced at a check node to indicate its reliability. We call the

proposed algorithms two-bit bit flipping (TBF) algorithms. We next describe the principles of TBF

algorithms.

Let C denote LDPC code defined by null space of H, a parity check matrix of C. Let codeword x

be transmitted through BSC. Consider an iterative decoder which receives binary sequence

 () and let ̂ ̂
 ̂

 ̂
 be the decision vector after the -th iteration, where

 is a positive integer. Let us assign a variable node to one out of four states. Specifically, in addition

to the hard decision, a variable node v is also either a strong variable node or a weak variable node.

We use 0s, 1s, 0w and 1w to denote the state of a strong zero, strong one, weak zero and weak one

variable node, respectively. The set of possible states of a variable node is denoted by Av. Let

 be a vector in

 such that
 gives the state of variable node v at the end of

the -th iteration. The state
 of a variable node v is initialized to

 if and to
 if ,

where

 { }.

Similarly, the extra bit can be added in check node processing, indicating the state of the parity check

node, which is defined as follows.

Definition 4.1: A satisfied check node is called previously satisfied (previously unsatisfied) if it

was satisfied (unsatisfied) in the previous decoding iteration, otherwise it is called newly satisfied

(newly unsatisfied).

We use 0p, 1n, 0p and 1n to denote the states of a previously satisfied, a newly satisfied, a previously

unsatisfied and a newly unsatisfied check node, respectively. The set of possible states of a check

node is denoted by Ac. Let (

) be a vector in

 such that
 gives the state of a

check c at the beginning of -th iteration. Let (

) be a syndrome calculated at the

end of -th iteration. Thus, we have
 (

), where check node update function

 { } is defined as follows: , , and .

The state
 of a check node c is initialized to

 if
 and to

 if
 , where

{() }.

Let

 be the number of previously satisfied, newly satisfied, previously unsatisfied

and newly unsatisfied check nodes that are connected to a variable node v at the beginning of the -

th iteration, respectively. Let
 denote the set of all ordered 4-tuples such that

 and ∑ , where like in the previous sections denotes weight of variable node v. We

next define a principle of TBF algorithm.

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Page 32 of (73) ©i-RISC, January 2014

Definition 4.2: A TBF algorithm, denoted as
 , iteratively updates and

until all check nodes are satisfied or a maximal number of iteration
 is reached. The check node

update function is the previously defined function { } , while variable node update is

specified by a function
 . The function f must satisfy the following conditions: (1)

Symmetry: f must be symmetric with respect to 0 and 1 in the sense that if

and (

) { }, then the following are true: (a) (
) (

)

 , (b) (
) (

) , (c) (
) (

) and (d) (
)

 (
) ; (2) Irreducibility: Every state of a variable node must be reachable from every

other state in a finite number of iterations.

4.3 Construction of Trapping Set Profile

The purpose of trapping sets analysis is identification of structures in Tanner graph which lead to

failures of decoding process. Thus, we first introduce the definition of failures of a TBF algorithm.

Definition 4.3: Consider a Tanner graph G and a TBF algorithm
 . Let Ve denote

the set of variable nodes that are initially corrupt and let J denote the induced subgraph on Ve

(induced subgraph on Ve contains set of variable nodes Ve and all parity check nodes connected to

nodes from Ve). If under the algorithm , decoding fails after
 iterations, then we say that fails

because of the subgraph J of G.

Let us assume that during the transmission of the codeword x, the BSC makes exactly t errors.

Denote by the set of all dv-left-regular Tanner graphs with t variable nodes. It is clear that the

induced subgraph on the set of initially corrupt variable nodes is isomorphic to a graph in . Let I be a

Tanner graph in and let denote the set of Tanner graphs containing a subgraph J isomorphic

to I such that fails because of J. The following facts follow: (1) If C is represented by

⋃ , then there exist some weight-t error patterns which algorithm fails to correct. (2) If,

on the other hand, ⋃ , then algorithm is capable of correcting any weight-t error

patterns. Although these facts are simple, they are important elements in our analysis. However, the

set of Tanner graphs is undeniably too general to be useful. Hence, we will focus on a subset

 of formulated as follows.

Definition 4.4: Consider a Tanner graph such that fails because of the subgraph

J1 of S1. Then,
 consists of all S1 for which there does not exist such that: (1) fails

because of some subgraph J2 of S2, and (2) there is an isomorphism between S2 and a proper

subgraph of S1 under which the variable node set V(J2) is mapped into the variable node set V(J1).

Definition 4.5: If then S is a trapping set of .I is called an inducing set of S.

is called the trapping set profile with inducing set I of .

An important property of a trapping set, which enables the construction of a trapping set profile, is

stated in the following proposition.

Proposition 4.1: Let be a trapping set of with inducing set I. Then, there exists at

least one induced subgraph J of S which satisfies the following properties: (1) J is isomorphic to I, and

(2) fails because of J of S, and (3) Consider the decoding of on S with V(J) being the set of initially

corrupt variable nodes. Then, for any variable node , there exist an integer such that

 and

 { }.

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

© i-RISC, January 2014 Page 33 of (73)

The recursive procedure for constructing a trapping set profile
 relies on Proposition 4.1. In

particular, consider a trapping set S with an inducing set I, Proposition 4.1 states that for at least one

induced subgraph J of S which is isomorphic to I, in the decoding on S with V(J) being the set of

initially corrupt variable nodes, every variable node in V(S) is corrupt at the end of some iteration. As

a result, given the knowledge of J, it is possible to generate S by simultaneously performing decoding

and adding variable nodes to J in one specific manner. Consequently, if we simultaneously perform

decoding and add variable nodes to I in all possible ways, then all trapping sets with inducing set I

can be generated. We now describe this procedure.

Let us assume that we are only interested in trapping sets with at most nmax variable nodes. Consider

the decoding of on a Tanner graph I with V(I) being the set of initially corrupt variable nodes. Let

 . If fails because of I then
 { } and we have found the trapping set profile. If

does not fail because of I, then we expand I by recursively adding variable nodes to I until a trapping

set is found. During this process, we only add variable nodes that become corrupt at the end of a

certain iteration.

Consider all possible bipartite graphs obtained by adding one variable node, namely , to the

graph I such that when the decoding is performed on these graphs with V(I) being the set of initially

corrupt variable nodes, the newly added variable node is a corrupt variable node at the end of the

first iteration, i.e.,
 { }. Let OI denote the set of such graphs. Take one graph in OI and

denote it by U. Then, there can be two different scenarios in this step: (1) does not fail on the

subgraph I of U. In this case, U is certainly not a trapping set and we put U in a set of Tanner graphs

denoted by
 . (2) fails because of the subgraph I of U. In this case, U is a potential trapping set

and a test is carried out to determine if U is indeed one. If U is not a trapping set then it is discarded.

We complete the formation of
 by repeating the above step for all other graphs in OI.

Let us now consider a graph
 . Again, we denote by OU the set of Tanner graphs obtained by

adding one variable node, namely , to the graph U such that when the decoding is performed

on these graphs with V(I) being the set of initially corrupt variable nodes, the newly added variable

node is a corrupt variable node at the end of the first iteration, i.e.,
 { }. It is important

to note that the addition of variable node , which is initially correct, cannot change the fact that

variable node is also corrupt at the end of the first iteration. This is because the addition of

correct variable nodes to a graph does not change the states of the existing check nodes and the

decoding dynamic until the moment the newly added variable nodes get corrupted. Similar to what

has been discussed before, we now take a graph in OU and determine if it is a trapping set, or it is to

be discarded, or it is a member of the set of Tanner graph
 . By repeating this step for all other

graphs in
 , all graphs in

 can be enumerated. In a similar fashion, we obtain

 .

For the sake of convenience, we also let
 { }.

At this stage, we have considered one decoding iteration on I. It can be seen that if S is a trapping set

with at most nmax variable nodes then either S has been found, or S must contain a graph in

⋃

 . Therefore, we proceed by expanding graphs in ⋃

 .

Let K denote a Tanner graph in ⋃

 . We now repeat the above graph expanding

process starting from K. Specifically, we first obtain OK, which is defined as the set of all Tanner

graphs obtained by adding one variable node to the graph K such that when the decoding is

performed on these graphs with V(I) being the set of initially corrupt variable nodes, the newly added

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Page 34 of (73) ©i-RISC, January 2014

variable node is a corrupt variable node at the end of the second iteration, but not a corrupt variable

node at the end of the first iteration, i.e.,
 { } and

 { }. The graphs in OK

that are not trapping sets are either discarded or form the set
 . By iteratively adding variable

nodes, we enumerate all graphs in

 .

One can see that there are two different recursive algorithms. The first algorithm enumerates graphs

in ⋃

 for a given graph K by recursively adding variable nodes. The second

algorithm recursively calls the first algorithm to enumerate graphs in ⋃

 for each

graph K in ⋃

 . Each recursion of the second algorithm corresponds to a decoding

algorithm. As a result, the trapping set profile is obtained after
 recursions of the second

algorithm. The pseudocodes of the two algorithms, which we call RA1 and RA2 can be found in

[Nguyen13]. The interested readers are referred to [Nguyen13] for an example which demonstrates

the operations of these recursive algorithms.

4.4 Application of the Failure Analysis in the Section of TBF Algorithms

The failure analysis presented in the previous section enables the enumeration of all relevant

uncorrectable error patterns for a given TBF algorithm. Consequently, the selection of one good TBF

algorithm becomes simple. Nevertheless, even if the best TBF algorithm can now be found, its error

performance might not be attractive enough for certain applications. In such a scenario, because of

the simplicity and high throughput of bit flipping decoding, it is natural to consider the use of

multiple TBFAs operating in a complimentary manner. In the following discussion, we introduce the

concept of collective error correction and emphasize on the ease of selecting complimentary TBF

algorithms.

Let us consider a collection A of (general) iterative decoding algorithms for LDPC codes. Assume for a

moment that the set of all uncorrectable error patterns for each and every algorithm in A is known.

More precisely, in the context of LDPC codes, we assume that all the induced subgraphs on such

error patterns can be enumerated for each decoding algorithm. This naturally suggests the use of a

decoder D which employs multiple algorithms drawn from A. The basis for this use of multiple

algorithms is rather simple: If different algorithms are capable of correcting different error patterns,

then a decoder employing a set of properly selected algorithms can achieve provably better error

performance than any single-algorithm decoder. Although the above assumption is not valid for most

iterative algorithms, it is valid for the TBF algorithms defined in this section. This is because the

notion of trapping set of a TBF algorithm helps determine whether or not an arbitrary error pattern is

correctable. The concept and explicit construction of trapping set profiles allow rigorous selections of

multiple algorithms which can collectively correct a fixed number of errors with high probability. In

particular, a decoder employing algorithms with diverse trapping set profiles is capable of correcting

a wide range of error configurations, hence possesses desirable error correction capability. Although

the selection of algorithms can be code independent, any knowledge on the Tanner graph can be

utilized to refine the selection.

The inputs to the process of selecting a group of TBF algorithms are: (1) A large collection A of TBF

algorithms. A can be the set of all possible algorithms or it can be a subset of algorithms that satisfies

certain constraints. (2) A set of Tanner graphs with a small number of variable nodes. These are all

possible subgraphs induced on the set of initially corrupt variable nodes. (3) Optional knowledge on

the Tanner graph on which the decoder operates. The main element of the selection process is the

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

© i-RISC, January 2014 Page 35 of (73)

enumeration of trapping sets for all input algorithms to generate their trapping set profiles. Once the

trapping set profiles of all input algorithms are generated, they will be used as inputs to the

algorithm selector. The algorithm selector outputs a set of algorithms drawn from A with diverse

trapping set profiles. By cycling though these algorithms, or operating them in parallel, it is possible

to overcome the most commonly-occurring error configurations, thereby improving the error

performance.

Let

 be the smallest number of variable nodes of Tanner graphs in
 . Then, one should

select an algorithm such that

 is maximized. To justify this selection criterion, we rely on

results in extremal graph theory [McKay10].

We now consider the problem of selecting multiple algorithms. The basis for this selection is that one

should select good individual algorithms with diverse trapping set profiles. In this technical

contribution, we only consider a decoder D with algorithms operating in parallel, i.e.,

the received vector of the channel is the input vector for all algorithms. Note that one can also use

trapping set profiles to select algorithms that operate in serial, i.e., the output from one algorithm is

the input to another. For a decoder D that employs parallel algorithms, the concept of trapping sets

and trapping set profiles can be defined in the same manner as trapping sets and trapping set

profiles for a single TBF algorithm. One can easily modify the recursive procedures given in previous

section to generate trapping set profiles of the decoder D. Then, D can be designed with the same

criterion discussed previously.

4.5 Numerical Results

In this section, we give examples of selecting TBF algorithms and demonstrate the frame error rate

(FER) performance of decoders employing these algorithms. For simplicity, we assume the use of 3-

left-regular codes with girth g = 8. We also let , () and
 for all

algorithms. Our algorithms are compared with the Gallager A/B algorithm, the min-sum algorithm

and the SPA. In these comparisons, the Gallager A/B algorithm, the min-sum algorithm and the SPA

iterate for a maximum of 100 iterations. In the SPA, messages have floating-point precision. The

comparisons are made on two codes: (1) The popular (155,64) Tanner code [Tanner01], denoted by

C1. This code has dv = 3, dc = 5, rate R = 0.4129 and minimum distance dmin = 20. (2) A quasi-cyclic code

of length n = 732, rate R = 0.7527 and minimum distance dmin = 12 [Nguyen12]. We denote this code

by C2. As previously mentioned, only a subset Ar of TBF algorithms should be considered. The

constraints on TBF algorithms that define Ar are constraints on the images of the variable node

update functions f. We are considering a set of 41,472,000 algorithms that satisfy a specific set of

constraints. All the algorithms given in this task and the constraints on them can be found at

[Vasic13-a].

It is expected that a single algorithm can guarantee the correction of 3 errors in a girth-8 3-left-

regular LDPC code. Let be the set of all Tanner graphs with girth g = 8 and three variable nodes.

We generate the trapping set profiles
 for all and all . There is a set

 of 358,

851 algorithms for which
 for all . Such an algorithm can guarantee to correct all

weight-three error patterns. Our next step is to select an algorithm which is most expected to correct

a weight-four error pattern. Let be the set of all Tanner graphs with girth and four variable

nodes. Then, . We generate the trapping set profiles
 for all and all .

The largest among the smallest sizes of trapping sets in
 for all are

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Page 36 of (73) ©i-RISC, January 2014

 . There are six algorithms, denoted as for which the

smallest sizes of trapping sets in
 are . The smallest sizes of trapping

sets in
 for these algorithms overlap the most with

 . Hence, these

algorithms have the highest probability to correct a random error pattern of weight-four. Let D1

denote a decoder which uses . The FER performance of D1 on C1 and C2 are shown in Fig. 4-1(a)

and Fig. 4-2, respectively. It can be seen that D1, which operates with a maximum of only 30

iterations, outperforms the Gallager A/B algorithm in both codes and outperform the min-sum

algorithm on C2, which is a higher rate code.

Let

 denote a decoder which uses in parallel. Fig. 4-1(b) shows the performance of

 in comparison with D1. One can observe that there is no gain in the FER performance of

 .

Simply using in parallel a group of good algorithms does not necessarily result in better error

correction capability. We shall now give an example on how to properly selecting a collection of

algorithms. Assume that is already in use. We would like to select other TBF algorithms to

complement . In particular, we need to select more TBF algorithms to complement in

correcting weight-four error patterns. From the set of trapping set profiles for all algorithms in ,

we can select three algorithms, denoted as .and . The smallest sizes of trapping sets in

 for these algorithms are and

 , respectively. Note that these three algorithms are not capable of correcting all

weight-three error patterns. Let

 denote a decoder which uses and in parallel. Let

denote a decoder which uses , in parallel. Also let D2 denote a decoder which uses

 , .and in parallel. The FER performance of D2,
 2 and

 on C1 in comparison with

D1 are shown in Fig. 4-1 (b). The FER performance of D2 on C1 and C2 are also shown in Fig. 4-1(a) and

Fig. 4-2, respectively. One can observe the gradual improvement in the FER performance when more

algorithms are used. As previously mentioned, knowledge on the Tanner graph can be useful in the

selection of algorithms. By using the method of searching for subgraphs proposed in [Nguyen12], one

can conclude that the Tanner graph of C1 is free of some subgraphs included in the trapping set

profiles. After deleting irrelevant trapping sets from the trapping set profiles, we can select a set of

four TBF algorithms that are used by a decoder D3. The FER performance of D3 on C1 and C2 are shown

in Fig. 4-1(a) and Fig. 4-2, respectively. D3’s performance on C1 is also shown in Fig. 4-1(b) to facilitate

the comparison. One can observe that D3 outperforms D2 on C1. Note that although D3 also

outperforms D2 on C2, this fact is not expected to be typical.

Finally, we construct all trapping set profiles with inducing sets containing four, five and six variable

nodes for each algorithm in . Note that there are 10 possible inducing sets (Tanner graphs with

girth) containing four variable nodes, 24 possible inducing sets containing five variable nodes

and 57 possible inducing sets containing six variable nodes. Hence, for each algorithm, we construct

a total of 92 trapping set profiles. From the trapping set profiles of all algorithms, we select a

collection of 35 algorithms. Then, we simulate the performance of a decoder D4 which employs these

algorithms in parallel. The maximum total number of iterations of D4 is . Fig. 4-1(a)

shows the FER performance of D4 on C1. It can be seen that the FER performance of D4 approaches

(and might surpass) that of the SPA in the error floor region. It is also important to note that D4 can

correct any error pattern up to weight 5 on C1. Fig. 4-2 also shows the FER performance of D4 on C2. It

can be seen that the slope of the FER curve of D4 in the error floor region is higher than that of the

SPA. This indicates that the FER performance of D4 might eventually surpass that of the SPA. Finally,

we remark that the slope of the FER curve of D4 in the error floor region is between 5 and 6, which

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

© i-RISC, January 2014 Page 37 of (73)

indicates that D4 can correct error patterns of weight 4 and 5 with high probability. This also agrees

with the fact that in our simulation, no weight-four error pattern that leads to decoding failure of D4

was observed.

a)

b)

Figure 4-1: FER performance on code C1.

Figure 4-2: FER performance on code C2.

4.6 Conclusion

We proposed a novel class of bit flipping algorithms for LDPC codes. More importantly, we gave a

framework for the analysis and selection of algorithms that can together correct a fixed number of

errors with high probability. Since in TBF algorithms variable nodes take more than two states, it

would be interesting to consider the use of the proposed algorithms on channels.

Good correcting abilities of these low complexity decoders makes them potentially useful for

construction of reliable memories. Our next step is directed to analysis of presented decoders under

unreliable computation.

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Page 38 of (73) ©i-RISC, January 2014

5. Failures and Error-Floors of Iterative Decoders

Abstract: In this technical contribution we analyze iterative decoder failures and approaches for

increasing LDPC codes performance in error-floor region. Based on the progressive constructing of

Tanner graphs by avoiding trapping sets we construct a LDPC code with same row and column

weights, but superior error-floor performance compared to well known Tanner code. Additionally,

we propose a novel class of finite alphabet iterative decoders (FAIDs) named decimation-enhanced

FAIDs with fast convergence and guaranteed error correction capabilities.

5.1 Overview of Decoding Failures and Error-Floor Analysis

The properties of LDPC codes under different decoding algorithms have been analyzed by studying

ensembles of codes in the limit of code length approaching infinity, or equivalently under the

assumption that the underlying Tanner graph is a tree. Unfortunately, the methods to analyze

ensembles of codes are of limited use for the performance analysis of a given finite length code

especially at error-floor region when performance of particular codes diverge. Thus, error-floor

analysis is restricted to a particular code. In this section we define failures of iterative decoders and

describe influence of trapping sets on decoder failures.

Analytical characterization of the performance of a code requires an understanding of the conditions

that lead to the failure of the decoder under question. A decoder is said to have failed when the

output of the decoder is not a codeword. Note that it is possible that the decoder finds a codeword

different from the transmitted codeword and this is generally referred to as a decoding error. The

decoding failures and errors are a function of the code, the decoder and the channel. In the case of

iterative message algorithms, the decoders operate on the Tanner graph of the code and

consequently the failures and errors are also a function of the topological structure of the Tanner

graph. They also depend on the message update rules, on the message passing schedule and the

implementation aspects such as message precision.

To better understand the error floor phenomenon, we consider as an example, the estimation of the

FER of (N,K) LDPC code on the BSC. Denote ck as the number of configurations of received bits for

which k channel errors lead to codeword (frame) error for an iterative decoder. The FER is given by:

 ∑

 (5-1)

where α denote BSC crossover probability and i is the minimal number of channel errors that can

lead to a decoding error. On semilog scale FER is given by

 () (∑

)

 (

)

(5-2)

For a small α, the expression is dominated by the first two terms thereby reducing to

 () (5-3)

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

© i-RISC, January 2014 Page 39 of (73)

From the above expressions, we can see that on a log(FER) vs log(α) scale, the slope of the error floor

is governed by the parameter i. It is evident from previous discussions that the main element in the

analysis and estimation of error floor is the determination of smallest-weight error patterns that lead

to decoding failures. We know focus on the combinatorial characterization of decoding failures

utilizing the notion of trapping sets.

We assume that the iterative decoder performs a finite number of iterations, denoted as D. To define

the notion of trapping sets, we shall assume that D is as large as necessary. Denote by x the

transmitted codeword. Consider an iterative decoder and let ̂ ̂
 ̂

 ̂
 be the decision

vector after the -th iteration. We say that a variable node v is eventually correct if there exists a

positive integer such that for all with , ̂
 . Then, trapping sets are defined as follows.

Definition 5.1 ([Richardson03]): A trapping set for an iterative decoding algorithm is a non-empty set

of variable nodes in a Tanner graph G that are not eventually correct. Such a set of variable nodes,

say T, is called an (a,b) trapping set if it contains a variable nodes and the subgraph induced by these

variable nodes has b odd-degree check nodes.

Depending on the context, a trapping set can be understood as a set of variable nodes in a given

code with a specified induced subgraph or it can be understood as a specific subgraph independent

of a code. To differentiate between these two cases, we use the letter T to denote a set of variable

nodes in a code and use the letter to denote a type of trapping set which corresponds to a specific

subgraph.

The following definition gives the topological relations among trapping sets which represent bases of

trapping sets ontology (TSO).

Definition 5.2: A trapping set is a successor of a trapping set if there exists a proper subset of

variable nodes of that induce a subgraph isomorphic to the induced subgraph of . If is a

successor of then is a predecessor of . Furthermore, is a direct successor of if it does

not have a predecessor which is a successor of .

Remark: A trapping set can have multiple, incomparable predecessors.

 If is a successor of , then the topological relation between and is solely dictated by the

topological properties of their subgraphs. In the Tanner graph of a code C, the presence of a trapping

set T1 of type does not indicate the presence of a trapping set T2 of type . If T1 is indeed a

subset of a trapping set T2 in the Tanner graph of code C, then we say that T1 generates T2, otherwise

we say that T1 does not generate T2.

The web page [Vasic13-b] contains a complete description of trapping sets for column weight three

codes up to eight variable nodes, including their topological structure and parent-child relationships.

Chilappagari et al. [Chilappagari06] gave a method for FER estimation which consists of the following

three main steps.

1) Identifying the relevant classes of trapping sets .

2) Calculating the number of trapping sets of each class, i.e., the number of trapping sets T1 of type

 , the number of trapping sets T2 of type and so on.

3) Calculating the contribution of each class of trapping set, taking into account the topological

relationship among them, as well as whether one trapping set generates another in the Tanner

graph.

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Page 40 of (73) ©i-RISC, January 2014

Assume that in the Tanner graph that corresponds to a parity-check matrix H, there are trapping

sets of type . Let m be the critical number of type trapping sets. For simplicity, we also assume

that corresponding to one trapping set T of type , there is exactly one inducing set of cardinality m.

The contribution of a class of trapping sets , { }, to the FER is calculated by:

 { } ∑ { } { }

 (5-4)

where { } is probability that the decoder ends in a trapping set of the class , given
that the channel introduced r errors while { } is the probability that the channel
introduced r errors. Thus, we have

 { }
 (

)

(

)

 (5-5)

and

 { } (

) (5-6)

M is the maximum number of errors which can end up in the trapping set. If more than M errors are

introduced by the channel, the decoder still fails to correct these errors but in this case the decoder

does not end in the trapping set.

5.2 Constructing Tanner graphs by Avoiding Trapping Sets

From the previous section, it is clear that the error floor problem arises due to the suboptimality of

iterative decoding on loopy graphs. For this reason, to alleviate the effect of error floor, it is natural

to consider two approaches:

1) Find a Tanner graph on which a given decoding algorithm is least susceptible to (error floor)

failures.

2) Based on error floor analysis on a given Tanner graph, adjust a given decoding algorithm/decoder

to achieve better error floor performance.

In this section we present approach for progressive constructing of Tanner graphs. Unlike the well

known PEG (Progressive Edge-Growth) algorithm which constructs a Tanner graph with a given set of

parameters, in the progressive construction of Tanner graphs free of small trapping sets, the length is

usually not pre-specified. The construction is based on a check and select-or-disregard procedure.

For example, in the progressive construction of structured regular LDPC codes described in

[Nguyen12], the Tanner graph of the code is built in stages, where ρ is the row weight of parity check

matrix H. ρ is not pre-specified, and a code is constructed with the goal of making the rate as high as

possible. At each stage, a set of new variable nodes are introduced that are initially not connected to

the check nodes of the Tanner graph. Blocks of edges are then added to connect the new variable

nodes and the check nodes. After a block of edges is tentatively added, the Tanner graph is checked

to see if it contains any undesired trapping set. If it does, then that block of edges is removed and

replaced by a different block. The algorithm proceeds until no block of edges can be added without

introducing undesired trapping sets to the Tanner graph. When constructing a Tanner graph by

progressively adding variable nodes, the under-constructing Tanner graph is checked to see if it

contains certain trapping sets. This can only be done by exhaustively searching for trapping sets.

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

© i-RISC, January 2014 Page 41 of (73)

An efficient search of the Tanner graph for trapping sets relies on the topological relations defined in

the trapping set databases TSO and/or carefully analyzing their induced subgraphs. It is easy to show

that the induced subgraph of every trapping set contains at least one cycle. Therefore, the search for

trapping sets begins with enumerating cycles up to a certain length. Also a cycle with a variable

nodes is an (a,a) trapping set. After the cycles have been enumerated, they will be used in the search

for larger trapping sets. A larger trapping set can be found in a Tanner graph by expanding a smaller

trapping set. More precisely, given a trapping set T1 of type in the Tanner graph of a code C, our

techniques search for a set of variable nodes such that the union of this set with T1 forms a trapping

set T2 of type , where is a successor of . These techniques are sufficient to efficiently search

for a large number of trapping sets in the TSO.

Let us now give a general rationale for deciding which trapping sets should be forbidden in the

Tanner graph of a code. To facilitate the discussion, we assume that the forbidden trapping sets are

drawn from the TSO. It is clear that if a predecessor trapping set is not present in a Tanner graph,

then neither are its successors. Since the size of a predecessor trapping set is always smaller than the

size of its successors, a code should be constructed so that it contains as few small predecessor

trapping sets as possible. However, forbidding smaller trapping sets usually imposes stricter

constraints on the Tanner graph, resulting in a large rate penalty. This trade-off between the rate and

the choice of forbidden trapping sets is also a trade-off between the rate and the error floor

performance. While an explicit formulation of this trade-off is difficult, a good choice of forbidden

trapping sets requires the analysis of decoder failures to reveal the relative harmfulness of trapping

sets. It has been pointed out that for the BSC, the slope of the FER curve in the error floor region

depends on the size of the smallest error patterns uncorrectable by the decoder [Nguyen12]. We

therefore introduce the notion of the relative harmfulness of trapping sets in a general setting as

follows.

Relative Harmfulness: Assume that under a given decoding algorithm, a code is capable of

correcting any error pattern of weight but fails to correct some error patterns of weight . If

the failures of the decoders on error patterns of weight are due to the presence of (a1,b1)

trapping sets of type , then is the most harmful trapping set. Let us now assume that a code is

constructed so that it does not contain trapping sets and is capable of correcting any error pattern

of weight . If the presence of (a2,b2) trapping sets of type leads to decoding failure on some

error patterns of weight , then is the second most harmful trapping set. The relative

harmfulness of other trapping sets are determined in this manner.

Remarks: According to the above discussion, a smaller trapping set might not necessarily be

more harmful than a larger one. Besides, for two trapping sets with the same number of variable

nodes but with different number of odd degree check nodes, the one with the smaller number of

odd degree check nodes might not necessarily be more harmful.

We next investigate the importance of avoiding trapping sets by comparing error-floor performance

of code constructed using presented technique and well known Tanner code [Tanner01]. Tanner

code is a (3,5)-regular LDPC code with girth g = 8 and minimum distance dmin = 20. Its Tanner graph

contains (5,3) trapping sets. Since the critical number of (5,3) trapping sets is three, the code cannot

correct three errors under the Gallager A/B algorithm on the BSC. We used the construction

technique described above to construct a different code with the same length, column weight and

row weight. Let C1 denote this code. It is a (155,64) LDPC code with girth g = 8 and minimum distance

dmin = 12. The Tanner graph of C1 contains no (5,3) trapping sets. Therefore, C1 is capable of

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Page 42 of (73) ©i-RISC, January 2014

correcting any three-error pattern under the Gallager A/B algorithm on the BSC. The FER

performance of C1 under the Gallager A/B algorithm for a maximum of 100 iterations is shown in Fig.

5-1. The FER performance of the Tanner code is also shown for comparison. As suggested in Fig. 5-1,

the minimum distance does not matter in the error floor region.

Constructed code C1 has the same coding rate as Tanner code, which means that has the same

decoding complexity. Thus, we expect that C1 will also be superior under unreliable computation

decoding.

In our further investigation we will use findings described in this section as direction for assuring

reliable storage of information.

Figure 5-1: Frame error rate performance of the Tanner code and code C1 under the Gallager A/B algorithm on
the BSC with maximum of 100 iterations.

5.3 Decimation-enhanced Finite Alphabet Iterative Decoders with Provable

Guaranteed Error-Correction for LDPC codes

This activity in WP4 is still under development and we are in the process of finalizing a journal paper

submission related to this topic. We provide in this section an explanation of the problem that we

address together with a summary of our findings and results. All the technical details can be found in

appendix-A, which is composed of the self-contained description of our approach based on

decimation-enhanced FAID.

While it has been theoretically established by Taylor [Taylor68-A] and Kuznetsov [Kuznetsov73] that

iterative LDPC decoders need to be employed for fault-tolerant memories in order to achieve a non-

zero capacity asymptotically with the length of the code, for practical systems which use finite-length

codes, the decoders are known to suffer from the error floor problem. The error floor phenomenon

is an abrupt degradation in the error-rate performance of the code which occurs when the required

error-rates are very low, and on the binary symmetric channel (BSC), the slope of the error floor is

governed by the guaranteed error-correction capability [Ivkovic06-IT] of the code. Moreover,

preliminary investigations on the design of fault-tolerant memories [Vasic07] have revealed that it is

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

© i-RISC, January 2014 Page 43 of (73)

crucial for the employed LDPC decoders to be able to correct errors in a small number of iterations in

order to prevent the phenomenon of error propagation along the decoding iteration. This

phenomenon occurs when errors associated with the probabilistic gate failures are introduced with

each additional decoding iteration thereby resulting in a loss of memory efficiency. Hence, the design

of LDPC decoders that can achieve a guaranteed error-correction in the fewest possible iterations is

of paramount importance in order to be able to realize practical fault-tolerant memories.

So far, preliminary works on the design and analysis of fault-tolerant memories that have considered

iterative LDPC decoders include both the bit flipping decoders such as [Chilappagari07], as well as the

message-passing decoders such as one-step majority logic decoder [Chilappagari06] and the

Gallager-B decoder which the original TK scheme can be regarded as. Message-passing decoders are

in general more complex to analyze than bit-flipping decoders, but can also achieve a higher

reliability. Although the above considered decoders are simple hard-decision decoders that are

amenable to analysis, their error-correction capability for finite-length codes is weak. Moreover, the

finite-length analysis of fault-tolerant memories was only considered for the one-step majority logic

decoder [Chilappagari06] which uses only a single decoding iteration. In order to reduce the

redundancy rates required for fault-tolerant memories, it would be desirable to consider more

powerful message-passing decoders that are capable of correcting a higher number of errors with

only a marginal increase in complexity, and also allow the decoder analysis to consider more than

one iteration. Recently a new class of finite-precision message-passing decoders called finite

alphabet iterative decoders (FAIDs) were proposed in [Planjery13] wherein the messages belong to a

finite alphabet. These decoders are capable of surpassing the belief propagation (BP) decoder in the

error floor performance at much lower complexity and requiring only a small precision (as small as

three bits) compared to the BP algorithm to represent the messages. Therefore, FAIDs are strong

candidates to consider for application in fault-tolerant memories especially if they can be analyzed

for finite number of iterations in terms of guaranteed error-correction.

However, the finite-length analysis of any message-passing decoder (other than the Gallager-A/B

decoder) for a finite number of iterations still remains a challenge, and the guaranteed error-

correction of finite-length LDPC codes under message-passing decoding remains largely unknown.

This is because the message-passing decoder typically requires many iterations to correct a certain

number of errors, and the dynamics of message-passing becomes too complex to analyze beyond

even a few iterations due to the exponential growth in the number of nodes with the number of

iterations in the corresponding computation trees of the decoder. This is also true for the FAIDs for

which only numerical results have been provided in [Planjery13] to demonstrate their increased

guaranteed error-correction. The only results known on guaranteed error-correction of a finite-

length LDPC code is for the Gallager-B decoder which was derived in [Chilappagari10] in relation to

the girth g of the graph of the code, where the girth is the length of the shortest cycle present in the

graph. It was shown that for a column-weight-three code of girth g ≥ 10, the Gallager-B decoder

could correct (g/2-1) errors in g/2 iterations, and for girth g=8, the code required some additional

constraints on the graph to ensure it can correct three errors. In this task, our main goal is propose

new message-passing decoders that can be analyzed and proven to guarantee the correction of a

greater number of errors than Gallager-B decoder in a finite number of iterations, while also

requiring more relaxed conditions on the graph than Gallager-B so that codes with higher rates can

be designed.

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Page 44 of (73) ©i-RISC, January 2014

As a first step towards this goal, we proposed a new class of decoders called decimation-enhanced

finite alphabet iterative decoders (DFAIDs) where the technique of decimation is incorporated into

the framework of FAIDs as a tool to make the decoders more amenable to analysis while maintaining

their good performance. Decimation, a method originally developed for solving constraint

satisfaction problems in statistical physics, involves guessing the values of certain variables and fixing

them to these values while continuing to estimate the remaining variables. We utilize decimation in a

novel way by incorporating it into the decoding so that certain variable nodes are decimated after a

few iterations of message passing, and a variable node is decimated based on its incoming messages

at the end of some iteration. In this manner, decimation primarily serves as a guide to help the

decoder to converge faster on low-weight error patterns. We first proposed a simple decimation

scheme for a particular 3-bit precision 7-level FAID that is known to have good performance

surpassing floating-point BP. Using this scheme as the basis, we propose a method to analyze the

decoder and derive conditions on the graph of the code such that the decoder can be proven to

correct a certain number of t errors in a finite number of iterations. As a test case, currently we are

working on deriving conditions on the graph such that DFAIDs can correct up to t=4 errors in 3

iterations after decimation. Note that this would be a first result on guaranteed error-correction of a

message-passing decoder other than Gallager-B decoder. Also note that for now, we only perform

the analysis under a perfect decoder setting. Once we obtain the conditions on the graph to

guarantee t=4 errors, we will utilize both the code satisfying these conditions and the DFAID as a

decoder in the TK setting, and perform analysis in the presence of gate failures.

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

© i-RISC, January 2014 Page 45 of (73)

6. General Conclusion and Next Steps

Over the first year of i-RISC project our activities included analysis of Taylor-Kuznetsov memory

architecture based on structural LDPC codes, under independent and data-dependent logic gate

failures. We introduced a novel approach in gate failures modeling which enable us to capture data-

dependence in more details, compared with state-of-the-art modeling. We especially investigated

performance of one-step majority logic decoders in the presence of correlated gate failures. The

analytical expression for BER of one-step majority logic decoders built from unreliable logic gates was

derived.

In addition, a new class of bit flipping algorithms operating at perfect hardware was proposed. It was

shown that introducing the collective error correction principle TBF algorithms can outperform min-

sum and Gallager A/B message passing decoders.

We have also shown that based on the progressive constructing of Tanner graphs by avoiding

trapping sets a code with good error-floor features can be constructed.

The topics presented in this deliverable will also be investigated in the second and the third year of

the project. Our next steps include TK memory architecture performance derivation in the presence

of hardware failures obtained by real measurements, development of analytical tools for memory

analysis and attempts to design low complexity memory architectures. Based on promising result

concerning TBF algorithms we will investigate the performance of memories constructed based on

multi-bit bit flipping algorithms.

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Page 46 of (73) ©i-RISC, January 2014

References

[Ghosh10] S. Ghosh, K. Roy, “Parameter variation tolerance and error resiliency: New design paradigm for the

nanoscale era,” Proceedings of IEEE, vol. 98, no. 10, pp. 1718-1751, Oct. 2010.

[Hadjicostis05] C. N. Hadjicostis and G. C. Verghese, “Coding approaches to fault tolerance in linear dynamic

systems,” IEEE Transactions on Information Theory, vol. 51, no. 1, pp. 210-228, Jan. 2005.

[Varshney11] L. Varshney, “Performance of LDPC codes under faulty iterative decoding,” IEEE Transactions on

Information Theory, vol. 57, no. 7, pp. 4427–4444, July 2011.

[Leduc-Primeau12] F. Leduc-Primeau and W. Gross, “Faulty Gallager B decoding with optimal message

repetition,” in Proc 50th Allerton Conf. Communication, Control, and Computing, Oct. 2012, pp. 549–556.

[Yazdi13] S. M. SadeghTabatabaei Yazdi, H. Cho, L. Dolecek, “Gallager B decoder on noisy hardware,” IEEE

Transactions on Communications, vol. 61, no. 5, pp. 1660-1673, May 2013.

[Huang13] C. H. Huang and L. Dolecek, “Analysis of finite alphabet iterative decoders under processing errors,”

in Proc IEEE Int. Conf. Acoustics, Speech, Sig. Proc., May 2013, pp. 5085-5089.

[Ngassa13] C. Kameni Ngassa, V. Savin and D. Declercq, “Min-Sum-based decoders running on noisy hardware”,

in Proc. IEEE GLOBECOM, Atlanta, USA, Dec. 2013.

[Taylor68-a] M. G. Taylor, “Reliable information storage in memories designed from unreliable components”,

Bell System Technical Journal, vol. 47, no. 10, pp. 2299-2337, 1968.

[Taylor68-b] M. G. Taylor, “Reliable computation in computing systems designed from unreliable components”,

Bell System Technical Journal, vol. 47, no. 10, pp. 2339-2366, 1968.

[Kuznetsov73+ A. Kuznetsov, “Information Storage in a Memory Assembled from Unreliable Components”,

Problems of Information Transmission, vol. 9, no. 3 pp. 254-264, 1973.

[Vasic07] B. Vasic and S. K. Chilappagari, “An Information Theoretical Framework for Analysis and Design of

Nanoscale Fault-Tolerant Memories Based on Low-Density Parity-Check Codes”, IEEE Transactions on Circuits

and Systems I, Regular Papers, vol. 54, no. 11, pp. 2438-2446, Nov. 2007.

[Chilappagari07] S. K. Chilappagari and B. Vasic, “Fault Tolerant Memories Based on Expander Graphs”, In

Proceedings of IEEE Information Theory Workshop, Tahoe City, CA, USA, pp. 126-131, Sep. 2007.

[Chilappagari06-a] S. K. Chilappagari, M. Ivkovic, and B. Vasic, “Analysis of One-step Majority Logic Decoders

Constructed from Faulty Gates”, In Proceedings of IEEE Internationl Symposium on Information Theory, Seattle,

WA, USA, pp. 469-473, July 2006.

[Chilappagari08+ S. K. Chilappagari, B. Vasic, and M. Marcellin, “Can the Storage Capacity of Memories Built

from Unreliable Components Be Determined?”, In Proceedings of Information Theory and Applications

Workshop, San Diego, CA, USA, pp. 41-43, Jan. 2008.

[Ivkovic06+ M. Ivkovic, S. K. Chilappagari, and B. Vasic, “Construction of Memory Circuits Using Unreliable

Components Based on Low-Density Parity-Check Codes”, In Proceedings of IEEE Global Telecommunications

Conference 2006, GLOBECOM ‘06, San Fransisco, CA, USA, pp. 1-5, Nov. 2006.

[Radhakrishnan07+ R. Radhakrishnan, S. Sankaranarayanan, and B. Vasic, “Analytical performance of one-step

majority logic decoding of regular LDPC codes,” in Proc. 2007 IEEE Int. Symp. Inf. Theory, June 2007. pp. 231–

235.

[Malandro13+ M. E. Malandro, “Integer compositions with part sizes not exceeding k,” *Online Available+

http://arxiv.org/abs/1108.0337

[MacKay99] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Transactions

on Information Theory, vol. 45, no. 2, pp. 399–431, Mar. 1999.

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

© i-RISC, January 2014 Page 47 of (73)

[Shokrollahi02] A. Shokrollahi, “An Introduction to Low-Density Parity-Check Codes,” Theoretical Aspects of

Computer Science: Advanced Lectures, Springer-Verlag New York, Inc., New York, NY, 2002.

[Zyablov76] V. Zyablov and M. Pinsker, “Estimation of the error-correction complexity for Gallager low-density

codes,” Probl. Inf. Transm., vol. 11, no. 6, pp. 18–26, 1976.

[Sipser96] M. Sipser and D. Spielman, “Expander codes,” IEEE Trans. Inf. Theory, vol. 42, no. 6, pp. 1710–1722,

Nov. 1996.

[Burshtein08] D. Burshtein, “On the error correction of regular LDPC codes using the flipping algorithm,” IEEE

Trans. Inf. Theory, vol. 54, no. 2, pp. 517–530, Feb. 2008.

[Nouh04] A. Nouh and A. Banihashemi, “Reliability-based schedule for bit-flipping decoding of low-density

parity-check codes,” IEEE Trans. Commun., vol. 52, no. 12, pp. 2038–2040, Dec. 2004.

[Ngatched09] T. M. N. Ngatched, M. Bossert, A. Fahrner, and F. Takawira, “Two bit-flipping decoding algorithms

for low-density parity-check codes,” IEEE Trans. Commun., vol. 57, no. 3, pp. 591–596, Mar. 2009.

[Wu09] X. Wu, C. Ling, M. Jiang, E. Xu, C. Zhao, and X. You, “New insights into weighted bit-flipping decoding,”

IEEE Trans. Commun., vol. 57, no. 8, pp. 2177–2180, Aug. 2009.

[Ngatched07] T. M. N. Ngatched, F. Takawira, and M. Bossert, “A modified bit-flipping decoding algorithm for

low-density parity-check codes,” in Proc. IEEE Int. Conf. Commun., Jun. 2007, pp. 653–658.

[Wadayama10] T. Wadayama, K. Nakamura, M. Yagita, Y. Funahashi, S. Usami, and I. Takumi, “Gradient

descent bit flipping algorithms for decoding LDPC codes,” IEEE Trans. Commun., vol. 58, no. 6, pp. 1610–1614,

Jun. 2010.

[Miladinovic05] N. Miladinovic and M. Fossorier, “Improved bit-flipping decoding of low-density parity-check

codes,” IEEE Trans. Inf. Theory, vol. 51, no. 4, pp. 1594–1606, Apr. 2005.

[Chan98] A. Chan and F. Kschischang, “A simple taboo-based soft-decision decoding algorithm for expander

codes,” IEEE Commun. Letters, vol. 2, no. 7, pp. 183–185, Jul. 1998.

[Nguyen13+ D. V. Nguyen, “Improving the error floor performance of LDPC codes with better codes and better

decoders,” 2013.

[McKay10+ B. D. McKay, “Subgraphs of random graphs with specified degrees,” in Proc. Int. Congress of

Mathematicians, Hyderabad, India, Aug. 19–27 2010, pp. 2489–2501.

[Tanner01+ R. M. Tanner, D. Sridhara, and T. Fuja, “A class of group-structured LDPC codes,” in Proc. 5th Int.

Symp. Commun. Theory and Applications, Ambleside, UK, Jul. 15–20 2001.

[Nguyen12+ D. V. Nguyen, S. K. Chilappagari, B. Vasic, and M. W. Marcellin, “On the construction of structured

LDPC codes free of small trapping sets,” IEEE Trans. Inf. Theory, vol. 58, no. 4, pp. 2280–2302, Apr. 2012.

[Vasic13-a+ “Two-bit bit flipping algorithms.” *Online+. Available: http://www2.engr.arizona.edu/

_vasiclab/ProjectsHome.php

[Chilappagari10] S. K. Chilappagari, D. V. Nguyen, B. Vasic, and M. W. Marcellin, “On trapping sets and

guaranteed error correction capability of LDPC codes and GLDPC codes,” IEEE Trans. Inf. Theory, vol. 56, no. 4,

pp. 1600–1611, Apr. 2010.

[Richardson03+ T. J. Richardson, “Error floors of LDPC codes,” in Proc. 41st Annual Allerton Conf. on Commun.,

Control and Computing, 2003, pp. 1426–1435.

[Vasic13-b+ B. Vasic, S. K. Chilappagari, D. V. Nguyen, and S. K. Planjery, “Trapping set ontology.” *Online+.

Available: http://www2.engr.arizona.edu/_vasiclab/project.php?id=9

[Chilappagari06-b] S. K. Chilappagari, S. Sankaranarayanan, and B. Vasic, “Error floors of LDPC codes on the

binary symmetric channel,” in Proc. IEEE Int. Conf. On Commun., vol. 3, Istanbul, Turkey, Jun. 2006, pp. 1089–

1094.

http://www2.engr.arizona.edu/
http://www2.engr.arizona.edu/_vasiclab/project.php?id=9

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Page 48 of (73) ©i-RISC, January 2014

[Ivkovic06-IT] M. Ivkovic, S. K. Chilappagari, and B. Vasic, ““Eliminating trapping sets in low-density parity-check

codes by using Tanner graph covers,” IEEE Trans. Inf. Theory, vol. 54, no. 8, pp. 3763–3768, Aug. 2008.

[Planjery13] S. K. Planjery, D. Declercq, L. Danjean, and B. Vasic, “Finite alphabet iterative decoders, Part 1:

Decoding beyond belief propagation on the binary symmetric channel,” IEEE Trans. Commun., vol. 61, no. 10,

pp. 4033–4045, Oct. 2013.

[Chilappagari10] S. K. Chilappagari, D. V. Nguyen, B. Vasic, and M. W. Marcellin, “Error correction capability of

column-weight-three LDPC codes under the Gallager A algorithm—Part II,” IEEE Trans. Inf. Theory., vol. 56, no.

6, pp. 2626–2639, Jun. 2010.

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Appendix A

Decimation-enhanced Finite Alphabet
Iterative Decoders with Provable
Guaranteed Error-Correction for
LDPC Codes

Abstract: Finite alphabet iterative decoders (FAID) were recently proposed for LDPC

codes on the binary symmetric channel (BSC) which are capable of surpassing the belief

propagation decoder in the error floor region , but with lower complexity and lower preci-

sion requirements than BP. The FAIDs were designed for column-weight-three codes with

the goal of improving the error floor performance compared to BP on a given code using

the knowledge of trapping sets. In this paper, we address the problem of analyzing the

guaranteed error-correction capability of FAIDs for finite number of iterations by intro-

ducing decimation into the framework of FAIDs, giving rise to a new class of decoders

called decimation-enhanced FAIDs. The technique of decimation, which is incorporated

into the message update rule, involves fixing certain bits of the code to a particular value.

Decimation is utilized in a novel manner during message-passing such that the decoder

can be analyzed while maintaining the good performance of the original FAID. Further,

decimation can reduce the number of iterations required to correct a fixed number of er-

rors. We shall provide a simple decimation scheme for a particularly good 3-bit precision

FAID for column-weight three codes on the BSC. Using this scheme, we shall describe a

method to analyze the decoder for a finite number of iterations and derive conditions on

the Tanner graph of code such that a fixed number of t errors are corrected in a finite

number of I iterations. As a test case, we prove that under certain conditions satisfied

by the Tanner graph of the code, the decoder can guarantee correction of t = 4 errors.

A.1 Introduction

The design and analysis of message-passing (MP) algorithms for low-density parity-check
(LDPC) [1] codes have received much attention over the last decade. Techniques such as
density evolution [2] by Richardson and Urbanke, have been proposed for asymptotic anal-

c©i-RISC, January 2014 Page 49 of (73)

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

ysis of MP decoders on LDPC code ensembles. For finite-length analysis of codes with a
fixed number of iterations, methods such as the use of computation trees by Wiberg [3],
pseudocodeword analysis by Kelly and Sridhara [4], and graph-cover decoding analysis by
Vontobel and Koetter [5], have been proposed. The characterization of the error floor phe-
nomenon of MP algorithms has also been well investigated using the notion of stopping sets
for the binary erasure channel (BEC) [6] by Di et al., and using notions of trapping sets by
Richardson [7] and instantons by Chernyak et al. [9] for other general channels. Burshtein
and Miller proposed the technique of using expander arguments for MP for proving that
code ensembles can correct a linear fraction of errors [10].

In spite of the aforementioned techniques proposed for finite-length analysis, the problem
of analyzing a particular MP algorithm for a fixed number of iterations still remains a
challenge, and the guaranteed error-correction capability of LDPC codes under MP decoding
remains largely unknown. This is because the dynamics of MP becomes too complex beyond
a certain number of iterations, and there is exponential growth in the number of nodes with
the number of iterations in the computation trees of the decoders on the code. Although
Burshtein and Miller’s method of using expander arguments which allows for use of large
number of iterations, provides bounds of great theoretical value, they are practically less
significant. Moreover, for the binary symmetric channel (BSC), the problem of correcting a
fixed number of errors assumes greater importance as it determines the slope of the error floor
in the error-rate performance of the decoder [11]. Results on the guaranteed error-correction
capability of LDPC codes is known only for the Gallager-B decoding which was derived by
Chilappagari et al. [12] which passes only hard messages (1-bit precision messages), and
which was derived for column-weight-three codes. They proved that for a column-weight-
three code of girth g ≥ 10, the Gallager-B decoder corrects (g/2−1) errors in g/2 iterations,
and for girth g = 8, the code required some additional constraints on the graph to ensure
that it corrects (g/2 − 1) = 3 errors. However, no such results are known for any other
MP decoder due to the prohibitive complexity of the analysis in the MP especially when
the decoder utilizes soft messages. Therefore, it would be desirable to have an MP decoder
that is able to correct a higher number of errors within the fewest possible iterations while
allowing more relaxed conditions on the graph (instead of girth), and for which we will be
able to provide performance guarantees in terms of error-correction capability. Even from a
practical standpoint, this would be an attractive feature with many present-day applications
requiring much higher decoding speeds and much lower target frame error rates.

Recently a new class of finite precision decoders, referred to as finite alphabet iterative
decoders (FAID) [13] was proposed for LDPC codes on the BSC. For column-weight-three
codes, it was shown that these decoders are capable of surpassing the belief propagation
(BP) decoder in terms of error-rate performance as well as guaranteed error-correction, but
at a much lower complexity and lower precision requirements to represent the messages than
the BP decoder. These decoders were derived by identifying potentially harmful subgraphs
that could be trapping sets present in any finite-length code and designing to correct error
patterns on these subgraphs in an isolated manner. Although the numerical results in [13]
demonstrated the efficacy of these decoders, providing provable statements in terms of guar-
anteed error correction capability still remains a difficult task since the convergence of the
decoder for an error pattern in a trapping set is heavily influenced by the neighborhood of
the trapping set in a non-trivial manner. This was also identified by Declercq et al. in [14],

Page 50 of (73) c©i-RISC, January 2014

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

where subgraphs induced by codewords were used in the decoder design.

In this paper, we address the problem of analyzing the FAIDs for finite number of it-
erations and guaranteed error-correction. This is achieved by introducing the technique of
decimation into the framework of FAIDs thereby leading to a new class of decoders referred
to as decimation-enhanced finite alphabet iterative decoders. Decimation, a method origi-
nally developed for solving constraint satisfaction problems in statistical physics, involves
guessing the values of certain variables and fixing them to these values while continuing to
estimate the remaining variables. In [15], Montanari et al. analyzed a BP-guided random-
ized decimation procedure that estimates the variables in the k -SAT problem. Dimakis and
Wainwright used a similar notion in the form of facet guessing for linear programming (LP)
based decoding in [16], and Chertkov proposed a bit-guessing algorithm in order to reduce
error floors of LDPC codes under LP decoding [17].

In contrast, we utilize decimation in a novel way by incorporating it into the decoding of
LDPC codes so that certain variable nodes are decimated after a few iterations of message
passing, and a variable node is decimated based on its incoming messages at the end of some
iteration. In this manner, decimation primarily serves as a guide to help the decoder to
converge faster on low-weight error patterns. Our main insight is that the role of decimation
should not necessarily be to correct errors, but to ensure that more variable nodes in the
graph that initially receive right values from the channel are shielded from the erroneous
messages emanating from the error nodes by decimating those correct variable nodes.

We first propose a simple decimation procedure for a particular 3-bit precision 7-level
FAID algorithm (from [13]) that is known to have good error-rate performance on column-
weight-three codes. Based on this scheme, we will provide a methodology to analyze the
DFAID algorithm in order to prove the guaranteed correction of t errors in a finite number of
decoding iterations I (where I is the number of MP iterations after the decimation procedure
is completed). As a test case, we present the analysis for t = 4, and prove that on girth-8
column-weight-three codes whose Tanner graphs do not contain certain subgraphs (that will
be described subsequently), the DFAID can correct t = 4 errors in I = 3 iterations after
decimation. Note that this result on guaranteed error-correction is significant, since it is a
first result presented for an MP decoder other than Gallager-B. Also note that the Gallager-
B decoder fails to correct 4 errors on girth-8 column-weight-three codes, therefore showing
that the proposed DFAID is a provably better decoder than Gallager-B decoder in terms of
guaranteed error-correction.

The paper is organized as follows. Section A.2 provides the necessary preliminaries on
LDPC codes and FAIDs. Section A.3 introduces the technique of decimation and provides
the formal definitions on DFAIDs. Section A.4 presents the analysis of the DFAIDs for
finite number of iterations with the test case of t = 4 and describes the methodology of
proof. Finally Section A.5 presents some conclusions and final remarks describing the work
in progress.

c©i-RISC, January 2014 Page 51 of (73)

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

A.2 Preliminaries

A.2.1 LDPC codes and channel assumptions

Let G denote the Tanner graph of an (N,K) binary LDPC code C of rate R = K/N ,
which consists of the set of variable nodes V = {v1, . . . , vN} and the set of check nodes
C = {c1, . . . , cM}. The degree of a node in G is the number of its neighbors in G. A code
C is said to have a regular column-weight dv if all variable nodes in V have the same degree
dv. The set of neighbors of variable node vi is denoted as N (vi), and the set of neighbors of
check node cj is denoted by N (cj). Let N (u) denote the set of neighbors of a node u in the
graph G and let N (U) denote the set of neighbors of all u ∈ U . The girth of G is the length
of shortest cycle present in G. Let G(N,M) denote a bipartite graph containing N variable
nodes and M checks nodes. We shall use the notation

Let x = (x1, x2, . . . , xN) denote a codeword of C that is transmitted over the BSC,
where xi denotes the value of the bit associated with variable node vi, and let the vector
received from the BSC be r = {r1, r2, . . . , rN}. Let e = (e1, e2, . . . , eN) denote the error
pattern introduced by the BSC with cross-over probability α such that r = x⊕ e, and ⊕ is
the component-wise modulo-two sum. The support of an error vector e = (e1, e2, . . . , eN),
denoted by supp(e), is defined as the set of all positions i such that ei 6= 0. Let y =
(y1, y2, . . . , yN) be the input to the decoder, where each yi is calculated based on the received
value ri, and is referred to as channel value. During the analysis of decoders, we shall assume
that the all-zero codeword was transmitted. This is a valid assumption since the decoders
we consider are symmetric [2].

A.2.2 Finite Alphabet Iterative Decoders

An Ns-level FAID [13] denoted by F , is a 4-tuple given by F = (M,Y ,Φv,Φc). The messages
are levels confined to a finite alphabetM = {−Ls, . . . ,−L2,−L1, 0, L1, L2, . . . , Ls} consisting
of Ns = 2s + 1 levels, where Li ∈ R+ and Li > Lj for any i > j. The sign of a message
x ∈M can be interpreted as the estimate of the bit (positive for zero and negative for one)
associated with the variable node to or from which x is being passed, and the magnitude |x|
as a measure of how reliable this value is. The message 0 in the alphabet can be interpreted
as an erasure message.

The set Y denotes the set of possible channel values. For the case of BSC, Y =
{±C}, where C ∈ R+. By convention, we use the mapping 0 → C and 1 → −C. Let
m1,m2, . . . ,ml−1 denote the l − 1 extrinsic incoming messages of a node (check or variable)
of degree l which are used in the calculation of the outgoing message.

The function Φc :Mdc−1 →M is used for update at a check node with degree dc and is
defined as

Φc(m1, . . . ,mdc−1) =

(
dc−1∏
j=1

sgn(mj)

)
min

j∈{1,...,dc−1}
(|mj|) (A.1)

The function Φv : Y ×Mdv−1 → M is a map used for update at a variable node with
degree dv. Note that since the update function Φc is the same in all FAIDs considered, an
Ns-level FAID is uniquely defined by the function Φv.

Page 52 of (73) c©i-RISC, January 2014

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

The function Φv can described as a closed form function or simply as a dv−1-dimensional
array or look-up table (LUT). In this paper, we shall only use the LUT form. For dv = 3, a
2D array or LUT is sufficient to describe the map Φv for a channel value -C, and the map
for channel value +C can be deduced by the property of symmetry. An example of a 7-level
FAID described in LUT form is provided in Table A.1.

Table A.1: Φv of a 7-level FAID for a node vi with dv = 3 and yi = +C
m1/m2 −L3 −L2 −L1 0 +L1 +L2 +L3

-L3 -L3 -L3 -L2 -L1 -L1 -L1 L1

-L2 -L3 -L1 -L1 0 L1 L1 L3

-L1 -L2 -L1 0 0 L1 L2 L3

0 -L1 0 0 L1 L2 L3 L3

L1 -L1 L1 L1 L2 L2 L3 L3

L2 -L1 L1 L2 L3 L3 L3 L3

L3 L1 L3 L3 L3 L3 L3 L3

Note that the maps defining Φv must satisfy the following properties.

Property 1 (Property of symmetry) Φv(yi,m1, ...,mdv−1) = −Φv(−yi,−m1, ...,−mdv−1)

Property 2 (Property of monotonicity) Φv(yi,m1, . . . ,mdv−1) ≥ Φv(yi,m
′
1, . . . ,m

′
dv−1)

when mj ≥ m′j ∀ j ∈ {1, . . . , dv − 1}.

A.2.3 Trapping sets and stopping sets

We begin by providing the definition of a trapping set as originally defined by Richardson
in [7].

Definition 1 Given a decoder input y, a trapping set (TS) for an iterative decoder denoted
by T(y) is a non-empty set of variable nodes in G that are not corrected at the end of a
given number of iterations.

A common notation used to denote a TS is (a, b), where a = |T|, and b is the number of
odd-degree check nodes in the subgraph induced by T.

Let T (a, b) denote the bipartite graph associated with an (a, b) TS, where a is the number
of variable nodes and b is the number of odd-degree check nodes present in the graph. A
graph G contains an (a, b) TS of type T if there exists a subset of variable nodes T in
G whose induced subgraph is isomorphic to T (a, b). A TS is said to be elementary if T
contains only degree-one and/or degree-two check nodes. Throughout this paper, we restrict
our focus to elementary trapping sets, since they are known to be dominant in the error
floor [7, 8]. Henceforth, for convenience, whenever we refer to a TS, we will implicitly refer
to its topological structure T .

Stopping sets [6] are a sub-class of trapping sets that were introduced to characterize
failures on the BEC. Note that for the BEC, a transmitted bit is either received correctly or
is erased. Let S denote a subset of variable nodes and let N (S) denote the set of neighbors
{N (vi) : ∀vi ∈ S}.

c©i-RISC, January 2014 Page 53 of (73)

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Definition 2 A stopping set is a subset of variable nodes S in the graph G, such that every
neighbor in N (S) is connected to subset S at least twice [6].

A.2.4 Isolation assumption

The isolation assumption is a pivotal notion that enables us to analyze the message passing
of a particular decoder on potentially harmful subgraphs (or trapping sets). It is a specific
condition on the neighborhood of the subgraph such that the messages flowing into the
subgraph from its neighborhood are not in any way influenced by the messages flowing out
of the subgraph for certain number of iterations. Before we formally define the concept of
isolation assumption, we first require the notion of computation tree [18] and introduce some
notations. Note that during the analysis of any decoders, the all-zero codeword assumption
is used.

Definition 3 A computation tree corresponding to a message-passing decoder of the Tanner
graph G is a tree that is constructed by choosing an arbitrary variable node in G as its root
and then recursively adding edges and nodes to the tree that correspond to the messages
passed during decoding on G up to a certain number of iterations. For each vertex that is
added to the tree, the corresponding node update function in G is also copied.

Let T k
i (G) be the computation tree of graph G corresponding to a decoder F enumerated

for k iterations with variable node vi ∈ V as its root.
Let H be the induced subgraph of a trapping set (a, b) contained in G with variable node

set P ⊆ V and check node set W ⊆ C. Let W ′ ⊆ W denote the set of degree-one check
nodes in the subgraph H. Let P ′ ⊆ P denote the set of variable nodes in H where each
variable node has at least one neighbor in W ′. During decoding on G, for a node vi ∈ P ′,
let µl denote the message that vi receives from its neighboring degree-one check node in H
in the lth iteration.

Definition 4 A vertex w ∈ T k
i (G) is said to be a descendant of a vertex u ∈ T k

i (G) if
there exists a path starting from vertex w to the root vi that traverses through vertex u. The
set of all descendants of the vertex u in T k

i (G) is denoted as D(u). For a given vertex set
U , D(U) (with some abuse of notation) denotes the set of descendants of all u ∈ U .

Definition 5 A vertex w ∈ T k
i (G) is said to be a child of a vertex u ∈ T k

i (G) if w is
directly connected to u along the path traversing to the root. A vertex that does not have any
child nodes in T k

i (G) is called a leaf node.

Note that for the computation tree T k
i (G), all its leaf variable nodes lie at a depth of 2k

from the root of the tree. The variable nodes in the tree that lie at a depth of 2j from the
root are said to be at the jth level of the tree.

Definition 6 T k
i (H) is called the computation tree of the subgraph H enumerated for k

iterations for the decoder F , if ∀ cj ∈ W ′, µl is given for all l ≤ k, and if the root node
vi ∈ P requires only the messages computed by the nodes in H and µl to compute its binary
hard-decision value.

Page 54 of (73) c©i-RISC, January 2014

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

v1 v2 v3

v4 v5 v6

c1 c2 c3
c4 c5

c6

c10

c8 c9c7

(a)

v3

c8 c9

v4 v5

c7

c4 c1 c2 c5

v2 v1 v1 v2

(b)

Figure A.1: Subgraph H corresponding to a T (6, 2) trapping set contained in G: (a) Tanner
graph of H; (b) computational tree T 2

3 (G)

We now provide the definition for isolation assumption as follows.

Definition 7 (Isolation assumption) Let H be a subgraph of G induced by P ⊆ V with
check node set W ⊆ C. The computation tree T k

i (G) with the root vi ∈ P is said to be
isolated if and only if for any node u /∈ P ∪W in T k

i (G), u does not have any descendant
belonging to P ∪W . If T k

i (G) is isolated ∀vi ∈ P , then the subgraph H is said to satisfy the
isolation assumption in G for k iterations.

Essentially the isolation assumption of a subgraph validates the number of iterations for
which message passing can be carried out on a subgraph in an isolated manner ignoring its
neighborhood, which is done by treating it as if it were an arbitrary Tanner graph (of some
code), provided that the messages passed from the degree-one check nodes of H in each
iteration are known or determined a priori.

Note that the isolation assumption is a purely topological condition on the neighborhood
of H, as it is dependent only on the particular graph G containing H and not on the decoder
being used. Also note that the isolation assumption can still be satisfied even when there
are nodes in H that appear multiple times in T k

i (G). Whereas Gallager’s independence
assumption [1] will be violated if any node in H is repeated in T k

i (G). Hence, isolation
assumption is a weaker condition than independence. For clarity, we illustrate with an
example shown in Fig. A.1.

Example 1 Let us assume that the graph G of code C contains a subgraph H corresponding
to a T (6, 2) trapping set. Fig. A.1 shows the subgraph H, and the computation tree T 2

3 (G)
of graph G with v3 as its root enumerated for two iterations. The � denotes a odd-degree
check node present in H. The solid lines represent connections within subgraph H and the
dotted lines represent connections from the rest of the graph G outside the subgraph H. The
isolation assumption is satisfied for two iterations if none of the descendants of a node u
which is outside H and represented by a dotted circle in T 2

3 (G) are nodes in H. But the
independence assumption does not hold for two iterations.

c©i-RISC, January 2014 Page 55 of (73)

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

In order to enable the message passing of a particular decoder on a subgraph H under
isolation assumption, we need to know the messages passed from the degree-one check nodes
of H in each iteration. Assuming that the decoder F is a FAID, this can be computed with-
out knowledge of its neighborhood through the following theorem (under all-zero codeword
assumption).

Theorem 1 (Isolation theorem) Let H be a subgraph of a 3-left-regular graph G induced
by P ⊆ V with check node set W ⊆ C. Let W ′ ⊆ W denote the set of degree-one check nodes
in H and let P ′ ⊆ P denote the set of variable nodes in H for which each has at least one
neighbor in W ′. Consider decoding on G with FAID F . If r is received from the BSC such
that supp(r) ⊆ P , and if H satisfies the isolation assumption in G for k iterations, then for
each cj ∈ W ′, the message from cj to its neighbor in H in the lth iteration denoted by µl, is
the output of Φv(C, µl−1, µl−1) ∀l ≤ k, with µ0 = 0.

Proof: Firstly, since supp(r) ⊆ P and all messages are initialized to zero, all nodes vi ∈ V \P
are initially correct, and every variable node initially sends Φv(yi, 0, 0).

Now consider a computation tree T l
s (G) where l ≤ k with vs ∈ P ′ as its root. Due

to the isolation assumption of H in G satisfied for k iterations, for any cj ∈ N (vs) ∩W ′,
D(cj)∩(P∪W) = ∅. Therefore all nodes vi ∈ D(cj) are initially correct. Let q denote the level
of depth involving variable nodes in T l

s (G) such that level q = 0 denotes the base and level
q = l denotes the root of the tree. Let D(q)(cj) denote the variable node descendants of cj ∈
N (vs)∩W ′ at level q of the tree T l

s (G). At q = 1, due to the nature of Φc for FAID F along
with the fact that every correct node initially sends Φv(C, 0, 0), any vi ∈ D(1)(cj) receives
the message µ1 = Φv(C, 0, 0), from its leaf check nodes. Again, since D(cj) ∩ (P ∪W) = ∅,
at q = 2, any vi ∈ D(2)(cj) receives µ2 = Φv(C, µ1, µ1). By induction, this can be generalized
to any level q, where any node vi ∈ D(q)(cj), receives µq = Φv(C, µq−1, µq−1) from its leaf
check nodes. Therefore the root vs receives µl = Φv(C, µl−1, µl−1). �

Although the theorem is stated specifically for column-weight-three codes, it can be
generalized to left-regular codes of higher column-weight as well. Also the isolation theorem
can be restated for the min-sum decoder through the following corollary.

Corollary 1 Consider the min-sum decoder for column-weight-three codes with Y = {±1}.
If subgraph H contained in G satisfies the isolation assumption for k iterations, and if all
variable nodes outside H are initially correct, then µl of the degree-one check node for the
min-sum decoder is 2µl−1 + 1.

Corollary 2 If H is a subgraph contained in G such that it satisfies the isolation assumption
for k iterations, and if all variable nodes outside H are initially correct, then the computation
tree T k

i (G) with vi ∈ P is equivalent to T k
i (H), provided µl for each degree-one check node

in H is computed using the isolation theorem.

A.3 Decimation: A tool for analysis

A.3.1 A motivating example

We illustrate the benefit of decimation through the following example. Note once again that
we shall use the all-zero codeword assumption for the analysis of decoders.

Page 56 of (73) c©i-RISC, January 2014

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Let N (u) denote the set of neighbors of a node u in the graph G and let N (U) denote
the set of neighbors of all u ∈ U . Let m(k)(vi, cj) denote the message being passed from
a variable node vi to the check node cj, in the kth iteration, and let m(k)(cj, vi) be defined
similarly. Let m(k)(vi,N (vi)) denote the set of outgoing messages from vi to all its neighbors

in the kth iteration, and let m(k)(cj,N (cj)) be defined similarly. Recall that x̂
(k)
i denotes the

bit value of a variable node vi ∈ V decided by the decoder at the end of the kth iteration.
Consider a particular 4-error pattern on a Tanner graph G, such that the induced sub-

graph H of the four nodes in error is an 8-cycle as shown in Fig. A.2. In the figure,
represents a variable node initially in error, and # represents an initially correct node that
is in the neighborhood outside H. The � and � denote the degree one and degree two
check nodes in the induced subgraph respectively. Let V ′={v1, v2, v3, v4} denote the set of
nodes initially in error in H. Let C1={c1, c3, c5, c7} denote the set of degree one checks and
C2={c2, c4, c6, c8} denote the set of degree two checks in H.

Figure A.2: Subgraph induced by the 4-error pattern which forms an 8-cycle

We shall now examine the behavior of MP on this particular error configuration from the
context of Ns-level FAIDs without any assumptions on its neighborhood. Messages with a
positive sign will be referred to as good messages, and messages with a negative sign will be
referred to as bad messages. Also a message is referred to as strongly good (bad) or weakly
good (bad) based on the magnitude of the message. For instance, a weakly good or bad
message refers to ±L1, and a strongly good or bad message refers to ±Li where Li > L1.

Assuming that Φv(C, 0, 0) = L1, in the first iteration, for all vi ∈ V ′, m(1)(vi,N (vi)) will
consist of weakly bad messages, and for all vj ∈ N (C1 ∪C2)\V ′, m(1)(vj,N (vj)∩ (C1 ∪C2))
entering into the subgraph will consist of weakly good messages. In the second iteration, for
all vi ∈ V ′, m(2)(vi,N (vi) ∩ C2) will consist of either weakly good or weakly bad messages
depending on the Φv, but m(2)(vi,N (vi) ∩ C1) which consists of messages sent to check
nodes in C1, will be strongly bad assuming Φv(−C,−L1,−L1) = −L2. As a result, variable
nodes vi ∈ N (C1)\V ′ will start receiving a strongly bad message on at least one of its

c©i-RISC, January 2014 Page 57 of (73)

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

edges. Now if the decoder does not converge within the next few iterations, then these bad
messages become more strongly bad with circulation of bad messages within H, and this
can subsequently spread further to other nodes in the graph outside H depending how dense
the neighborhood is. Eventually too many nodes get corrupted by the bad messages being
propagated in the graph causing the decoder to fail.

There are some important observations to note from the above discussion. Firstly, at
the kth iteration, there may have been many variable nodes vi /∈ N (C1 ∪C2) whose decided

bit value x̂
(k′)
i converged to the right value in some k′ < k iteration, but eventually these

nodes became corrupted in the kth iteration due to the bad messages flowing out of the
subgraph. Secondly, if certain variable nodes initially correct in the neighborhood of H, are
isolated from the bad messages possibly through decimation, then the decoder is more likely
to converge. This is the case especially when there are relatively fewer errors introduced by
the channel that are localized to a particular part of the graph (such as the 4-cycle), and
this typically occurs in the high SNR (error floor) region. This is precisely where decimation
becomes beneficial and important.

From the example, we can see that the role of decimation is inherently linked to the
concept of isolation assumption which was defined in the previous section. Recall that the
isolation assumption is a condition on the neighborhood of a subgraph contained in the graph
such that the messages passed within the subgraph as well as messages entering into it from
outside are not influenced by the messages being passed in its neighborhood and vice versa
for certain number of iterations. In this context, the role of decimation can be understood
as trying to isolate the subgraph induced by the nodes in error from the rest of the graph, so
that the rest of the graph converges quickly and in turn helps to correct the nodes initially
in error.

It is important to note once again that the emphasis with regards to using decimation is
on low-weight error patterns typically associated with harmful trapping sets and being able
to correct these patterns in the fewest possible iterations. An error pattern is considered to
be low-weight if its weight is less than or equal to b(dmin − 1)/2c.

A.3.2 Decimation-enhanced FAIDs

We now formally define the concept of decimation, introduce the required notations, and
describe the novel way in which it is incorporated into the message passing of FAIDs. Note
that the definitions are general enough to be applicable to any column-weight-dv code, but
we will eventually restrict our discussion to only column-weight-three codes.

Definition 8 A variable node vi is said to be decimated at the end of lth iteration if x̂
(k)
i is

set to x̂∗i ∀k > l. Then m(k)(vi,N (vi)) = {(−1)x̂
∗
iLs}, ∀k ≥ l irrespective of its incoming

messages m(k)(N (vi), vi), i.e., vi will always send the strongest possible messages.

Note that if a node vi is decimated at the end of lth iteration, then this is equivalent to
effectively deleting all its descendants D(vi) in the computation tree T k

i (G) ∀k > l since the
node always sends (−1)b

∗
iLs to its parent.

A decimation rule β : Y ×Mdv → {−1, 0, 1} is a function used at the end of some lth

iteration by the decoder to decide whether a variable node should be decimated and what

Page 58 of (73) c©i-RISC, January 2014

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

value it should be decimated to based on the incoming messages and the channel value in the
lth iteration. Let γi denote the output of a decimation rule applied to a node vi. If γi = 0,
then the node is not decimated. If γi = 1, then the node is decimated with x̂∗i = 0, and if
γi = −1, then the node is decimated with x̂∗i = 1.

There are two key aspects to note regarding the application of a decimation rule that
add to the novelty of how we incorporate decimation into FAIDs.

1) The decimation rule is applied after messages are passed iteratively for some l itera-
tions.

2) After each instance of applying the decimation rule, all messages are cleared to zero
(which is practically restarting the decoder except that the decimated nodes remain
decimated).

The first aspect implies that the decoder itself decides which nodes to decimate after passing
messages for some number of iterations, which is in contrast to existing approaches that use
decimation. The second aspect aids in preventing the growth of bad messages in the graph
as well as in simplifying the analysis. More on the rationale behind this will be discussed
later. We shall refer to each instance of applying a decimation rule on all variable nodes as
a decimation round.

For now we only consider the use of a single decimation rule β which may be used in
different iterations. We will later generalize to using muliple decimation rules when we
discuss adaptive decimation. We now formally introduce the class of decimation-enhanced
Ns-level FAIDs for the BSC.

A decimation-enhanced Ns-level FAID (DFAID) denoted by FD is defined as a 4-tuple
given by FD = (M,Y ,ΦD

v ,Φc), where M = {−Ls, . . . ,−L1, 0, L1, . . . , Ls}, Y = {±C}, and
Φc are the same as defined for a Ns-level FAID. The map ΦD

v : Y×Mdv−1×{−1, 0, 1} →M
is similar to Φv of the FAID F with the minor difference that it uses the output of β in some
lth iteration as an additional argument in the function. Let m1 and m2 denote the extrinsic
incoming messages to a node vi with dv = 3. Then ΦD

v is defined as

ΦD
v (yi,m1,m2, γi) =

{
Φv(yi,m1,m2), γi = 0
γiLs, γi = ±1

In the proposed framework of DFAIDs, a decimation rule β must satisfy certain important
properties. For ease of exposition, the properties are specified below for a degree-3 variable
node.

1. β(C,m1,m2,m3) = −β(−C,−m1,−m2,−m3)
∀m1,m2,m3 ∈M

2. β(C,m1,m2,m3) 6= −1 and β(−C,m1,m2,m3) 6= 1 ∀m1,m2,m3 ∈M

3. Givenm1,m2,m3 ∈M, if β(C,m1,m2,m3) = 1, then β(C,m′1,m
′
2,m

′
3) = 1 ∀m′1,m′2,m′3 ∈

M such that m′1 ≥ m1, m
′
2 ≥ m2, and m′3 ≥ m3.

c©i-RISC, January 2014 Page 59 of (73)

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Property 1 just enforces symmetry on the function β.

Property 2 implies that a node vi can be decimated to zero only if yi = C and to one
only if yi = −C, meaning a node can be decimated only to its received value ri from BSC.
An important consequence of this is that, a node initially correct will never be decimated
to a wrong value and a node initially wrong will never be decimated to the correct value.
This means that, by Property 2, decimation will not by itself correct nodes initially in
error, but rather acts as a reinforcer to the nodes initially correct by preventing them from
being corrupted when they are decimated. The rationale behind this is that since we are
focusing on low-weight error pattens, the number of nodes initially in error are significantly
small compared nodes initially correct, so we rely on the nodes initially correct to drive the
decoder to converge. Moreover, this simplifies the analysis of the decoders. It is evident
then that a necessary condition for successful decoding is that no node initially in error is
decimated.

Property 3 ensures that there is monotonicity in the inputs with relation to the output
of the decimation rule, and this is required due to the nature of decimation. For instance,
if a degree-3 variable node initially correct is decimated when its incoming messages are L1,
L1, and L2, then it must be decimated when it receives L2, L2, and L2.

For convenience, we shall refer to variable nodes initially in error in G as error nodes and
variable nodes initially correct in G as correct nodes throughout this paper. We now propose
a simple decimation scheme on column-weight-three codes with the underlying FAID being
a 7-level FAID.

A.3.3 Proposed scheme for 7-level FAID on column-weight-three
codes

Let Nd denote the number of decimation rounds carried out by the decoder with a given
decimation rule β. The decimation scheme essentially specifies exactly which iteration the
decimation rule is applied, and the number of such decimation rounds. For the scheme, we
only consider 7-level FAIDs whose variable node update maps Φv satisfy Φv(C, 0, 0) = L1,
Φv(C, L1, L1) = L2, and Φv(C, L2, L2) = L3. This is because, all the particularly good 7-level
FAIDs were found to have this property.

The scheme we propose involves performing the first round of decimation at the end of
the third iteration, then restarting the decoder and allowing one iteration of message passing
after which the next decimation round is performed, and this is repeated until a total of Nd

decimation rounds have been completed. Note that once a node is decimated in a particular
decimation round, it remains decimated for the remainder of the entire decoding, and the
decimation rule is applied only on the non-decimated nodes. The skeleton of the proposed
scheme for a 7-level FAID on a column-weight-three code is given in Algorithm A.3.3.

There are two main reasons for performing the first decimation round at the end of the
third iteration (which are specific to the 7-level FAID). Firstly, since the bit value of a node
remains fixed once the node is decimated, we want to ensure that nodes being decimated have
reliably converged, which is partially determined by the strength of messages entering the
node. Therefore, message passing must be done for enough iterations to allow the possibility
of a message with the highest possible strength being passed in the graph. For the 7-level

Page 60 of (73) c©i-RISC, January 2014

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Algorithm 1 Decimation-enhanced FAID algorithm

1) Initialize γi = 0 ∀vi ∈ V .

2) Run the decoder for three iterations using update maps Φv and Φc defined for the
7-level FAID.

3) Perform decimation using the rule β for every vi ∈ V , which constitutes the first
decimation round.

4) Restart the decoder by resetting all the messages to zero and pass messages for one
iteration. This implies that a decimated node vi will send γiL3 and a non-decimated
nodes vj will send Φv(yj, 0, 0).

5) Repeat step 3) only for nodes vi ∈ V whose γi = 0, followed by 4) until Nd decimation
rounds have been completed.

6) Run the decoder for the remainder of iterations using maps ΦD
v and Φc.

FAIDs considered, since Φv(C, 0, 0) = L1, and Φv(C, L1, L1) = L2, at least three iterations
are required for an L3 or −L3 to be passed by a variable node. Therefore we need to allow
at least three iterations of message passing before performing the decimation.

Secondly, as illustrated in the example discussed previously, it would be desirable to
decimate the correct nodes as much as possible before they get influenced by the bad messages
emanating from the error nodes. Therefore, the decoder must not carry out too many
iterations of message passing before performing the first decimation. Based on the two
reasons, the choice of allowing three iterations for message passing seems to be an appropriate
choice. Moreover, decimating nodes after only three iterations makes the algorithm much
more amenable to analysis. For instance, it becomes possible now to analyze under what
conditions of the graph will an error node get decimated. We shall in fact derive such
conditions for the previous example of the 4-cycle.

With regards to restarting the decoder after each decimation round, the rationale behind
this is to allow the decimated correct nodes to drive the decoder convergence in the right
direction by preventing the growth of bad messages in the graph (as all messages are reset to
zero), assuming that no error node is decimated in the first decimation round. Furthermore,
by performing subsequent decimation rounds at the end of just one iteration after restarting
the decoder, it leads to the following important lemma.

Lemma 1 Consider decoding on G with DFAID FD where the first decimation round is
performed at the end of third iteration, and subsequent decimation rounds are performed
after resetting all messages to zero and passing messages for one iteration. Let β be such
that β(C, L1, L1, L1) = 0. Given an error pattern on G, if no error node gets decimated in the
first decimation round, then no error node will get decimated in the subsequent decimation
rounds.

Proof: Since no error node is decimated in the first decimation round, an error node will
send Φv(−C, 0, 0) = −L1 in the first iteration after resetting all the messages to zero. In the

c©i-RISC, January 2014 Page 61 of (73)

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Table A.2: Set Ξ consisting of all message triples such that β(C,m1,m2,m3) = 1
m1 m2 m3

L3 L3 L3

L3 L3 L2

L3 L3 L1

L3 L3 0
L3 L3 -L1

m1 m2 m3

L3 L2 L2

L3 L2 L1

L3 L2 0
L3 L2 -L1

L3 L1 L1

m1 m2 m3

L3 L1 0
L3 L1 -L1

L3 0 0
L2 L2 L2

L2 L2 L1

worst-case scenario for the error node, each of its neighboring checks can be connected to an
additional error node, in which case it receives a −L1 from all three of its neighbors at the end
of one iteration. But since β(C, L1, L1, L1) = 0 implying that β(−C,−L1,−L1,−L1) = 0 by
Property 1, an error node will not get decimated. This holds for any subsequent decimation
round. �

As a result of Lemma 1, if β is defined so that β(C, L1, L1, L1) = 0, then we need to only
ensure that an error node is not decimated at the end of third iteration, which simplifies
analysis. Moreover, any number of decimation rounds can be used without being concerned
about an error node being decimated. We now provide some insights into the design of the
decimation rule β.

A.3.4 Design of decimation rule β

It is clear from the previous discussion that the design of β is critical for ensuring that
none of the error nodes are decimated on low-weight error patterns while more correct
nodes are decimated. Also due to Lemma 1, we only consider decimation rules that satisfy
β(C, L1, L1, L1) = 0.

In order to define the decimation rule β, we define a set Ξ that consists of all unordered
triples (m1,m2,m3) ∈ M3 such that β(C,m1,m2,m3) = 1. Note that for any unordered
triple (m1,m2,m3) ∈ Ξ, β(−C,−m1,−m2,−m3) = −1 by property 1, so Ξ is sufficient to
completely specify β.

The design of the rule β can now be considered as a procedure of selecting the unordered
triples to be included in the set Ξ. This depends not only on the particular graph G of a
code but also on the particular underlying FAID being used. Given an underlying 7-level
FAID, we would like to do the selection with particular focus on correcting small number of
errors typically associated with trapping sets in the error floor region. Referring back to the
example of the 8-cycle shown in Fig. A.2, a good decimation rule would be one where γj for
most or all nodes vj ∈ N (C1 ∪ C2)\V ′ is 1 and γi for nodes vi ∈ V ′ is 0 at the end of all
decimation rounds. Let us assume we are designing a decimation rule β for a particularly
good 7-level FAID identified in the previous chapter, whose Φv is defined by Table A.1.
Although we do not describe a rigorous method to design the rule β, we highlight three main
points that are important to consider for its design.

Firstly, when considering whether a particular unordered triple (m1,m2,m3) should be
included in Ξ or not, the number of positive messages and negative messages in the triple as
well as their magnitudes play a role in the selection. For instance, (L3, L1, L1) may be a more

Page 62 of (73) c©i-RISC, January 2014

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

plausible candidate than (L3, L2,−L2), because the former has three positive messages, and
also the latter has a high negative message in −L2.

Secondly, the inherent nature of the particular Φv used in the FAID must be taken into
consideration during selection. For this, we need to look at what outgoing messages a variable
node would send when a particular triple is the set of incoming messages, and then decide
if this is good for selection. For instance, given the 7-level FAID defined by Table A.1, the
triple (L2, L2, L1) might be a more plausible candidate than (L3, L2,−L2) since the outgoing
messages for the former would be all L3, but the outgoing messages for the latter would be
L3, L3, and L1.

Thirdly, if the harmful subgraphs present in graph G of a given code are known, the
isolation assumption can be a useful tool to identify which triples should be avoided for
inclusion in Ξ. If our goal is to correct certain number of errors , say t, the MP with the
7-level FAID would be analyzed for a given t-error pattern on the subgraph under isolation
assumption. If a particular triple matches with the messages received by an error node in
the subgraph at the end of third iteration, this triple must be not be included in Ξ.

Using the approach outlined in the above three points, we provide a decimation rule
designed, with the underlying 7-level FAID defined by Table A.1, for the well-known (155, 64)
Tanner code. The rule is defined by Table A.2 which shows all unordered triples included in
the set Ξ. The rule was designed with the goal of reducing the number of iterations required
to guarantee a correction of 5 errors on the code.

Let us now revert back to our motivating example which involves an error pattern whose
induced subgraph is an 8-cycle. For the particular 7-level DFAID, we can now analyze
whether or not any error nodes get decimated assuming that their neighborhood satisfies
certain topological conditions. This is illustrated through the following theorem. Note that
the 7-level DFAID used in the theorem comprises of the decimation rule β defined by Table
A.2, and the Φv defined by Table A.1.

Theorem 2 Consider the decoding of a 4-error pattern by the 7-level DFAID on graph G
whose support is contained in an 8-cycle. If G has girth-8, and no three check nodes of the
8-cycle share a common variable node, then the error nodes will not get decimated in any
decimation round.

Proof: Firstly note that by virtue of Φv of the 7-level FAID (Table A.1), the highest magni-
tude of a message that any node vi ∈ V can send is L1 in the first iteration and L2 in the
second iteration. Since a node vj ∈ N (C1 ∪C2)\V ′ can be connected to at most two checks
in subgraph, the node vj in the worst case recieves two −L1 messages from checks in C1∪C2

and L1 from outside at the end of first iteration. Node vi ∈ V ′ will also receive two −L1

messages from check nodes in C2 and L1 from ck ∈ C1 ∩ N (vi). At the end of the second
iteration, the node vi ∈ V ′ will once again receive two −L1 from checks in C2, and L1 from
ck ∈ C1. This means that node vi will receive two −L1 messages once gain from checks in
C2 at the end of third iteration. In order for it to be decimated, from Table A.2, it must
receive −L3 from ck ∈ C1 ∩ N (vi). This means that the node vj in the worst case has to
receive at least one −L3 at the end of the second iteration, but this is not possible by virtue
of Φv in the second iteration. Hence, a node initially in error can not get decimated at the
end of third iteration and using Lemma 2, will never get decimated. �

c©i-RISC, January 2014 Page 63 of (73)

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Figure A.3: Frame error rate performance comparison of Belief Propagation (BP), Finite Al-
phabet Iterative Decoder (FAID) and Decimation-enhanced FAID (DFAID) on the (155,93)
Tanner code

Note that the above conditions on G are satisfied by most practical codes. While the
theorem pertains to only a specific error pattern, a similar statement can be proven in the
same spirit for any given error pattern by assuming certain conditions on its neighborhood.

Numerical results on the well-known (155,93) Tanner code are provided in Fig. A.3 in or-
der to demonstrate that the above designed decimation rule maintains the good performance
of the orignial FAID. The decimation-enhanced FAID was run using Nd = 4 and all decoders
used a maximum of 100 iterations. On the Tanner code, with Nd = 1, the decimation-
enhanced FAID corrects all 5 errors within 10 iterations (after decimation) whereas the
7-level FAID requires 15 iterations. At the same time, we see that decimation-enhanced
FAID performs just as good as the 7-level FAID (which was known beforehand to surpass
BP).

A.4 Provable guaranteed error correction using DFAIDs

Using the 7-level DFAID comprising of the decimation rule β defined by Ξ in Table A.2 and
the 7-level FAID defined by Table A.1, we now present a methodology to analyze a given
error pattern and based on the analysis, derive explicit conditions on the Tanner graph that
ensures a guaranteed correction of the error pattern. Using this method, we present the
analysis for the case of t = 4 and I = 3 where I is the number of iterations run by MP
decoder on the residual graph.

The analysis for guaranteed error correction under decoding can be categorized into
three main steps: 1) Analyzing the decimation of error nodes and deriving conditions on
the neighborhood of the error pattern such that no error node gets decimated, 2) Analyzing
the decimation of correct nodes in the graph, and examining what the subsequent residual
graph at the end of decimation procedure for the given error pattern, and finally 3) examining
whether the error nodes get corrected. We describe each of these steps in detail.

Page 64 of (73) c©i-RISC, January 2014

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

A.4.1 Analyzing decimation of error nodes

We previously established that as a necessary condition, no error node must be decimated
for successful decoding. Therefore, the first step in proving the guaranteed correction of all
error patterns of weight t on a graph G, is to show that for every t-error pattern, none of
the error nodes are decimated provided that graph G satisfies certain topological conditions.
These topological conditions are either known or derived during the analysis of a given error
pattern. The knowledge of these topological conditions can be considered as compromise
between knowing the exact neighborhood of the error pattern, and assuming that there is
no knowledge on the neighborhood. This was illustrated in the previous section using the
motivating example of the 4-error pattern on the 8-cycle, where conditions on the neighbor-
hood were provided so that no error node gets decimated. We shall now describe this step
in a more general setting that is applicable to any given error patten.

Given a t-error pattern that is decoded on graph G, in order to examine whether or not
an error node vi gets decimated, we need to determine the triples of messages that node vi
can receive at the end of the third iteration, and then check if that triple is included in the
set Ξ. This can be done by analyzing the message-passing on the computation tree T 3

i (G)
enumerated for three iterations. In principle, we would have to check all possible triples of
messages that node vi can receive at the end of the third iteration. However, due to the
monotonicity property (Property 3) of the decimation rule β, it is sufficient to just determine
the triple of messages with the least possible values that node vi can receive at the end of
third iteration, which we also refer to as worst-case messages. If it is determined that the
triple of worst-case messages that node vi can receive at the end of the third iteration is
excluded from the set Ξ, then vi is not decimated.

The requirement of only determining the triple of worst-case messages is a crucial aspect
in this part of the analysis as it allows us to operate on a much simpler computation tree than
the exact computation tree T 3

i (G) for the analysis if we can ensure the the message-passing
on the simplified tree provides the same worst-case messages that the exact computation tree
would. This simplified tree which we shall refer to as worst-case minimal computation tree
will be defined shortly. But before we delve further, we provide the definition of a subtree
and additional notations.

Definition 9 A computation subtree is a subset of the nodes in the computation tree T k
i (G)

that forms a tree with a variable node in T k
i (G) as its root.

Let V 1 denote the set of error nodes (variable nodes) in H. We now define the worst-case
minimal computation tree corresponding to a given error pattern e as follows. Recall that
the zeroth level of the tree T k

i (G) contains the root while the kth level contains all the leaf
nodes of the tree.

Definition 10 The worst-case minimal computation tree of an error node vi ∈ V 1 corre-
sponding to an error pattern e, denoted by S3

i , is a computation tree, that has the minimal
number of nodes for which the worst-case messages are received at the root.

Recall that the zeroth level of the tree T k
i (G) contains the root, the first level contains

the variable nodes that send outgoing messages towards the root, and the kth level contains

c©i-RISC, January 2014 Page 65 of (73)

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

all the leaf nodes of the tree. The worst-case minimal computation tree S3
i can be obtained

using the following steps.

1. For the given error pattern and with error node vi being the root, draw the branches
arising only from the check nodes in H and the error nodes at each level starting from
the zeroth level. Leave the branches emanating from the correct nodes at each level.
For instance, if the error node vi is an isolated error node which does not share a check
with any other error node, then in the first level we have only correct nodes, and we
cannot proceed further.

2. Go to the first level, and examine the correct nodes on each branch in this level. We
know that in the first level, by virtue of Φv(+C,−L2,−L2) = −L1, the worst case
message it can send is −L1. Then examine what vi receives and if the triple does
not belong to Ξ, then we have obtained the worst-case minmal computation tree and
proved that the error node is not decimated. Otherwise, consider all possibilities of
whether this correct node can be connected either two checks in H, or just one check in
H and the other being outside H, or both check being outside H. For each possibility,
we need to verify that such a connection is topologically possible. For instance, if the
girth is 8, we need to ensure such a connection does not introduce a six-cycle. In this
manner, we can also add constraints on the neighborhood to forbid the correct node
to be connected to particular checks in H. Each valid possibility leads to a subtree of
depth 2, which shall be referred to as first-level candidate subtree.

3. For each first-level candidate subtree, draw the branches arising from check nodes in
H and the error nodes. Repeat the above step for the correct nodes in the second
level and each possibility is referred to as second-level candidate subtree. Once this is
done, this automatically determines the variable nodes in the third level. Compute the
messages received at the root.

4. If there are multiple candidate subtrees at each level, choose the first-level subtrees
and second-level subtrees such that the root receives the worst possible messages.

Let us revert back to the example of the 4-error pattern on the 8-cycle and illustrate this
approach in a general manner using Fig. A.4. Let H denoted the subgraph induced by the
error pattern. Recall that the error nodes are denoted by black circles, and the correct nodes
are depicted by white circles shown in the figure. Let us determine the minimal worst-case
computation tree for node v1.

Starting with the root v1, we draw its branches. In the first level, let us assume that we
don’t know the connections of v5 but we can proceed with v2 and v4. In the second level,
we don’t know the connections of v6 and v8. Now we consider different candidate subtrees
for the correct nodes. But if the graph G must have girth-8, then nodes v6 can only be
connected to one other degree-one check of H. Same for v8. Therefore, the subtrees chosen
are the worst-case second-level subtrees. Let us also assume that v5 sends the worst possible
message regardless of its connections which is −L1. The resulting tree depicted in Fig. A.4
is the minimal worst-cast computation tree S3

1 of node v1.
We then see that the root v1 receives−L1 on all three of its edges. Since β(−C,−L1,−L1,−L1) =

0, this means that if H is contained in a girth-8 Tanner graph, then v1 will not get decimated.

Page 66 of (73) c©i-RISC, January 2014

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Assume that
this node

sends worst
possible
message

Figure A.4: Subgraph induced by the 4-error pattern and its corresponding minimal worst-
case computation tree S3

1

By using the symmetry of H, we have just proven that no error node in H gets decimated.
However, note that in general such symmetry may not exist for other error patterns. For
such a case, we must also determine the minimal worst-case computation trees of multiple
error nodes in the error pattern in order to ensure that no error node is decimated.

While we illustrated the approach for a particular 4-error pattern, we must repeat the
same for all remaining 4-error patterns in order to ensure no error node in any 4-error pattern
gets decimated. This is a necessary condition as we are subsequently required to prove that
every 4-error pattern gets corrected. Fig. A.5 shows the subgraphs of all possible 4-error
patterns.

By repeating the above procedure for all the remaining 4-error patterns, we have proved
the following lemma.

Lemma 2 If the graph Tanner graph G of a column-weight-three code has girth-8 and does
not contain a T (6, 2) trapping set, then for any 4-error pattern, no error node will get
decimated by the 7-level DFAID.

It is evident from the above procedure, that this analysis can be done for any given error
pattern of weight t. Once we have proven that for every error pattern of weight t, none of
the error nodes gets decimated, we now proceed to the next step which is to prove that they
can be corrected. The link to proving their correction is to analyze the neighboring correct
nodes and examine under what conditions of the neighborhood will they get decimated.

c©i-RISC, January 2014 Page 67 of (73)

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

(1) (2) (3) (4)

(5) (6) (7)

(8) (9) (10)

Figure A.5: Subgraphs of all possible 4-error patterns with girth-8

Page 68 of (73) c©i-RISC, January 2014

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

A.4.2 Analyzing decimation of correct nodes and proof of error-
correction

Now, we want to examine whether the given error-pattern gets corrected. In order to do
this, we once again draw the computation tree with an error node as its root, for k iterations,
and determine what messages it will receive. If it receives messages that don’t correct the
node, then this means that either constraints have to be placed on its neighborhood, or
certain correct nodes have to be decimated. We shall explain once again using the example
of 4-error pattern on the 8-cycle shown in Fig. A.4. For sake of exposition, we shall present
the description using our test case of t = 4 and I = 3 iterations.

Consider the computation tree of node v1 for three iterations. Assuming none of the
correct nodes are decimated in the tree, compute the different possible triples of messages
received by node v1 at the end of the third iteration. Observe that even if node v5 send an
L3, v1 would receive −L1 on its remaining edges. Assuming that we use the same decision
rule that is used in FAIDs, which is the sign of the total sum of the indices plus channel
value ±C, then the triple (L3,−L1,−L1) with channel value −C will still not correct node
v1. This mean nodes v6 and v8 must be decimated.

We now examine under what conditions will the nodes v6 and v8 get decimated. Recall
that V 1 denotes the set of error nodes (variable nodes) in H. Also let V 2 denote the set of
correct nodes outside the induced subgraph of the error pattern that share a check with an
error node in V 1. In other words, V 2 is the set of all correct nodes at a distance of two from
an error node. This can be done using the following steps.

1. First we analyze whether node v6 gets decimated in the first round of decimation.
This can be done by once again drawing the computation for three iterations using the
correct node at its root, and use the same procedure that was outlined for the error
nodes, except that now we determine the conditions of the neighborhood so that root
receives strong enough good messages to get decimated by the β rule.

2. If node v6 gets decimated, we are done. Else, this means that node v6 will not get
decimated in the first round. But it can still get decimated in the subsequent rounds of
decimation depending on whether its nearest neighboring correct nodes get decimated
in the first round or not. If even those nearest neighboring correct nodes do not
get decimated in the first round, we then continue to expand by examining nearest
neighboring correct nodes of those correct nodes in V 2. This continues until either we
eventually reach correct nodes that get decimated in the first round, or we obtain the
final residual graph. We then check the messages passed along the new computation
tree of root node vi where certain nodes may be decimated to see if it gets corrected
or not.

3. During this analysis, we can forbid certain topological connections emanating from
certain correct nodes to limit the amount of expansion we need to do, which in turn
eliminates certain subgraphs.

Let G(N,M) denote a forbidden graph with N variable nodes and M check nodes. Fig.
A.6 shows the forbidden subgraphs that were obtained during the analysis of the 4-error

c©i-RISC, January 2014 Page 69 of (73)

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Figure A.6: Forbidden subgraphs belonging to set F for guaranteeing correction of the t = 4
errors in I = 3 iterations

Page 70 of (73) c©i-RISC, January 2014

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

pattern on the 8-cycle. Note that {} is used to distinguish between two graphs with the
same number of variable nodes and check nodes. Let F denote the set of all forbidden
graphs depicted in Fig. A.6. For the 4-error pattern, we can prove the following theorem.

Theorem 3 If the graph G of a column-weight-three code has girth-8, and does not contain
any subgraphs belonging to F , then the DFAID requires at most two decimations, and three
iterations after decimation to correct the 4-error pattern whose induced subgraph forms an
8-cycle.

The complete proof for the case of t = 4 is currently in progress, but we believe the list
of forbidden subgraphs to avoid will not change. The complete proof for the theorem will
be provided in a revised draft of this paper.

A.5 Conclusions and Remarks

We have proposed decimation-enhanced FAIDs, and illustrated how decimation can be used
as tool to make the decoder more amenable to analysis. We have presented a methodology
to analyze the message-passing of DFAIDs for a finite number of iterations, and prove the
guaranteed error-correction capability using the analysis on decimation, and deriving condi-
tions on the neighborhood of the subgraph induced by the error pattern. The completion of
the proof of the theorem that DFAIDs can guarantee correction of t = 4 errors and I = 3
iterations is currently under progress. Then the next step would be to design codes which
do not contain the forbidden graphs to highest possible code rate, and then compare their
error-rate performance with other decoders under a few number of iterations. The broader
goal is to be able to utilize such a code and the DFAID decoder in the TK fault-tolerant
memory model in order to be able to realize practical finite-length fault-tolerant memories.

This work was supported by the Seventh Framework Program of the European Union,
under Grant Agreement number 309129 (i-RISC project).

c©i-RISC, January 2014 Page 71 of (73)

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

Bibliography

[1] R. G. Gallager, Low Density Parity Check Codes. Cambridge, MA: M.I.T. Press, 1963.

[2] T. Richardson and R. Urbanke, “Capacity of low-density parity-check codes under
message-passing decoding,” IEEE Trans. Inf. Theory, vol. 47, pp. 599–618, Feb. 2001.

[3] N. Wiberg, Codes and Decoding on General Graphs. PhD thesis, Linkoping University,
Sweden, 1996.

[4] C. A. Kelly and D. Sridhara, “Pseudocodewords of Tanner graphs,” IEEE Trans. Inf.
Theory , vol. 53, pp. 599–618, Feb. 2001.

[5] P. Vontobel and R. Koetter, “Graph-Cover Decoding and Finite-Length Analysis of
Message-Passing Iterative Decoding of LDPC Codes,” http://arxiv.org/abs/cs/

0512078.

[6] C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and R. L. Urbanke, Finite-length
analysis of low-density parity-check codes on the binary erasure channel, IEEE Trans.
on Inform. Theory, vol. IT48, no. 6, pp. 1570-1579, 2002.

[7] T. Richardson, “Error floors of LDPC codes,” in Proc. 41st Annual Allerton Conf. on
Commun., Control and Computing, 2003.

[8] S. K. Chilappagari, S. Sankaranarayanan, and B. Vasic, “Error floors of LDPC codes on
the binary symmetric channel,” Proc. IEEE Int. Conf. on Commun., Istanbul, Turkey,
pp. 1089–1094, Jun. 2006.

[9] V. Chernyak, M. Chertkov, M. Stepanov, and B. Vasic, Instanton method of posterror-
correction analytical evaluation, in Proc. IEEE Inform. Theory Workshop, pp. 220-224,
Oct. 2004.

[10] D. Burshtein and G. Miller, “Expander arguments for message-passing algorithms,”
IEEE Trans. Inf. Theory, vol. 47, Issue 2, pp. 782–790, Feb. 2001.

[11] M. Ivkovic, S. K. Chilappagari, and B. Vasic, “Eliminating trapping sets in low-density
parity-check codes by using Tanner graph covers,” IEEE Trans. on Inf. Theory, vol. 54,
no. 8, pp. 3763–3768, 2008.

[12] S. K. Chilappagari, D. V. Nguyen, B. Vasic, and M. W. Marcellin, “Error correction
capability of column-weight-three LDPC codes under the Gallager A algorithm-Part
II,” IEEE Trans. Inf. Theory., vol. 56, no. 6, pp. 2626-2639, Jun. 2010

Page 72 of (73) c©i-RISC, January 2014

D4.1: Taylor-Kuznetsov memory architectures using structured LDPC codes

[13] S. K. Planjery, D. Declercq, L. Danjean, and B. Vasic,“FAID, Part 1: Decoding beyond
BP on the BSC,” IEEE Trans. Commun., vol.61, no.10, Oct. 2013.

[14] D. Declercq, L. Danjean, E. Li, S. Planjery, and B. Vasic,“Finite alphabet iterative
decoding (FAID) of the (155,64,20) Tanner code,” in Proc. 6th Int. Symp. on Turbo
codes (ISTC’10), Sept. 2010.

[15] A. Montanari, F. Ricci-Tersenghi, and G. Semerjian, “Solving constraint satisfaction
problems through belief propagation-guided decimation,” in Proc. Allerton Conf. on
Commun., 2007.

[16] A. G. Dimakis, A. A. Gohari, M. J. Wainwright, “Guessing Facets: Polytope Structure
and Improved LP Decoder,” IEEE Trans. Inf. Theory, vol. 55, Issue 8, pp. 3479–3487,
Aug. 2009.

[17] M. Chertkov, “Reducing the error floor,” in Proc. IEEE Inf. Theory Workshop, pp.
230–235, Sept. 2007.

[18] B. J. Frey, R. Koetter, and A. Vardy, “Signal-space characterization of iterative decod-
ing,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 766–781, Feb. 2001.

[19] “Error Floors of LDPC Codes.” [Online]. Available: http://www.ece.arizona.edu/

~vasiclab/Projects/CodingTheory/ErrorFloorHome.html

[20] M. Tanner, D. Sridhara, and T. Fuja, “A class of group-structured LDPC codes,” Proc.
5th Int. Symp. Commun. Theory App., Ambleside, England, Jul. 2001.

c©i-RISC, January 2014 Page 73 of (73)

