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Abstract

This paper addresses the problem of designing LDPC decoders for robustness to transient errors

introduced by a faulty hardware. The Finite Alphabet Iterative Decoder (FAID) framework enables to

define a large variety of decoders with common properties but potentially different abilities of robustness

to errors introduced by the hardware. Under faulty hardware symmetric error models, Density Evolution

equations are derived to obtain the asymptotic error probabilities of the noisy FAIDs. Furthermore, a

new noisy threshold definition is introduced to characterize accurately the convergence behavior of the

decoders. From this definition, we illustrate the existence of robust and non-robust FAIDs and propose

a framework for the design of naturally robust decoders. Finite-length simulations illustrate the gain at

considering robust FAIDs on faulty hardware.
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I. INTRODUCTION

Reliability is becoming a major issue in the design of modern electronic devices. Huge increase

in the integration factors coupled with important reduction of the chip sizes make them much

more sensitive to noise and may induce transient errors during operations performed by a circuit.

Furthermore, the involved delicate fabrication process make hardware components more prone

to defects and may also cause permanent computation errors. As a consequence, in the context

of communication and storage, errors may not only come from transmission channels, but also

from the faulty hardware used in transmitters and receivers.

The general problem of reliable function computation using faulty gates was first addressed

by von Neumann in [1] and the notion of redundancy was later considered in [2]–[4]. The

redundancy is the number of noisy gates required for reliable function computation divided by

the number of noiseless gates needed for the same function computation. Gács and Gál [2] and

Dobrushin and Ortyukov [3], respectively, provided lower and upper bounds on the redundancy

for reliable Boolean function computation from faulty gates. Pippenger [4] showed that finite

asymptotic redundancy can be achieved when using Low Density Parity Check (LDPC) codes for

the reliable computation of linear Boolean functions. Taylor [5] and Kuznetsov [6] considered

memories as a particular instance of this problem and provided an analysis of a memory

architecture based on LDPC decoders made of faulty components. More recently, an equivalence

between the architecture proposed by Taylor and a noisy Gallager-B decoder was identified by

Vasic et al. [7], while Chilappagari et al. [8] analyzed a memory architecture based on one-step

majority logic decoders.

As a consequence, there is a need to address the problem of constructing reliable LDPC

decoders made of faulty components not only for error correction on faulty hardware, but also

as a first step in the context of reliable function computation and storage. Formulating a general

method for construction of robust decoders requires understanding if a particular decoder is
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inherently robust to errors introduced by the faulty hardware. There is also a need for a rigorous

analysis to determine which characteristics of decoders make them robust.

To answer to the first point, Varshney [9] introduced a framework referred to as noisy

Density Evolution (noisy-DE) for the performance analysis of noisy LDPC decoders in terms

of asymptotic error probability. Based on this framework, the asymptotic performance of a

variety of noisy LDPC decoders was analyzed. In [9], infinite precision BP decoders were

investigated, which is not useful for actual implementation on faulty hardware. On the contrary,

noisy practically important hard-decision decoders, such as noisy Gallager-A [9] and Gallager-

E [10] decoders were considered. Gallager-B decoders were analyzed for binary [7], [11], [12]

and non-binary [13] alphabets under transient error models, and [12] also considered permanent

error models. From the same noisy-DE framework, [14], [15] proposed an asymptotic analysis

of the behavior of stronger discrete Min-Sum decoders, for which the exchanged messages are

no longer binary but are quantized soft information represented by a finite (and typically small)

number of bits.

Recently, a new class of LDPC decoders referred to as Finite Alphabet Iterative Decoders

(FAIDs) has been introduced [16]. In these decoders, the messages take their values in small

alphabets and the variable node update is derived through a predefined Boolean function. The

FAID framework offers the possibility to define a large collection of these functions, each

corresponding to a particular decoding algorithm. The FAIDs were originally introduced to

address the error floor problem, and designed to correct error events located on specific small

topologies of error events referred to as trapping sets that usual decoders (Min-Sum, BP-based)

cannot correct. When operating on faulty hardware, the FAIDs may potentially exhibit very

different properties in terms of tolerance to transient errors and we would like to identify the

robust ones among the large diversity of decoders.

In this paper, we propose a rigorous method for the analysis of these properties and for the de-

sign of decoding rules robust to transient errors introduced by the hardware. The design procedure
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we propose is based on an asymptotic performance analysis of noisy-FAIDs using noisy-DE. In

order to characterize the asymptotic behavior of the FAIDs from the DE equations, we introduce

a noisy-DE threshold definition referred to as the functional threshold. The functional threshold

is different from the useful threshold [9] and from the target-BER threshold [9], [14], and relies

on more stringent convergence conditions of the noisy DE recursion. The functional threshold

thus gives a criterion for the comparison of the asymptotic performance of the decoders. Based

on this criterion, we then propose a noisy-DE based framework for the design of decoders

inherently more robust to errors introduced by the hardware. Finite-length simulations illustrate

the gain in performance at considering robust FAIDs on faulty hardware.

The outline of the paper is as follows. Section II introduces the FAID framework. Section III

presents the error models we consider for the faulty hardware. Section IV gives the noisy-DE

equation and introduces the definition of the functional threshold. Section V presents the method

for the design of robust decoders. Section VI gives the finite-length simulation results.

II. FINITE ALPHABET ITERATIVE DECODERS RUNNING ON FAULTY HARDWARE

This section describes the general noiseless framework of FAIDs introduced in [16] and shows

how this framework enables to define a large collection of decoders. In the following, we assume

that the transmission channel is a Binary Symmetric Channel (BSC) with parameter α.

An Ns-level FAID is defined as a 4-tuple given by D = (M,Y ,Φv,Φc). The message alphabet

is finite and can be defined asM = {−Ls, . . . ,−L1, 0, L1, . . . , Ls}, where Li ∈ R+ and Li > Lj

for any i > j. It thus consists of Ns = 2s+1 levels to which the message values belong. For the

BSC, the set Y , which denotes the set of possible channel values, is defined as Y = {±B}, where

B ∈M. For the n-th symbol of the codeword, the channel value yn ∈ Y corresponding to node

vn is determined based on its received value. Here, we use the mapping 0 → B and 1 → −B.

In the following, µ1, . . . , µdc−1 denote the values of extrinsic incoming messages to a Check

Node (CN) of degree dc and let η1, . . . , ηdv−1 be the values of extrinsic incoming messages to

vasic
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a Variable Node (VN) of degree dv.

At each iteration of the iterative decoding process, the following operations defined in [16]

are performed on the messages. The Check Node Update (CNU) function Φc : Mdc−1 → M

is used for the message update at a Check Node (CN) of degree dc. Let µ denote an |M|-ary

(dc − 1)-tuple composed of extrinsic messages coming to a CN. The corresponding outgoing

message is calculated as

Φc(µ) =
(∏

sgn(µ)
)

min(|µ|), (1)

where sgn denotes the sign operator and all vector operators are performed componentwise on

vector elements. Φc corresponds to the CNU of the standard Min-Sum decoding. The Variable

Node Update (VNU) function Φv : Mdv−1 × Y → M used for the update at a Variable Node

(VN) vn, n = 0 . . . N − 1 of degree dv. Let η denote an |M|-ary (dv − 1)-tuple composed of

extrinsic messages coming to a VN. The corresponding outgoing message is calculated as

Φv(η, yn) = Q
(∑

η + ωn · yn
)
, (2)

where the function Q(.) is defined based on a threshold set T = {Ti : 1 ≤ i ≤ s+ 1} such that

Ti ∈ R+ and Ti > Tj if i > j, and Ts+1 =∞ and

Q(x) =

{
sgn(x)Li, if Ti ≤ |x| < Ti+1

0, otherwise

The weight ωi is computed from a symmetric function Ω :Mdv−1 → R+ whose input arguments

are the dv − 1 incoming messages of the VNU. At the end of each decoding iteration, the A

Posteriori Probability (APP) computation produces messages γ calculated from the function

Φa : Mdv × Y → M̄, where M̄ = {−Ls′ , . . . , Ls′}, s′ = 2s + 1. Let η̄ denote an |M|-ary

dv-tuple composed of extrinsic messages coming to a VN. The function Φa is given by

Φa(η̄, yn) =
∑

η̄ + yn . (3)

It is defined on a larger alphabet M̄ in order to limit the influence of saturation effects when

calculating the sum. The hard-decision bit corresponding to each variable node vn is given by
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Fig. 1. Function decomposition for the CNU

the sign of the APP computation. If Φa(ηa, yn) = 0, then the hard-decision bit is selected at

random and takes value 0 with probability 1/2.

The parameters Ti, Li, and the function Ω provide degrees of freedom to construct the decoders.

Alternatively, Φv can be represented as a Look-Up Table (LUT) that has to satisfy the properties

of the VNU function and that is defined for a specific channel value. For instance, Table I shows

an example of LUT for a 7-level FAID and column-weight three codes when the channel value is

−B. The corresponding LUT for the value +B can be deduced by symmetry. Classical decoders

such as the standard Min-Sum and the offset Min-Sum can also be seen as instances of FAIDs.

It indeed suffices to derive the specific LUT from the VNU functions of these decoders. Table II

gives the VNU of the 7-level offset Min-Sum decoder. Therefore, the VNU formulation enables

to define a large collection of decoders with common characteristics but potentially different

robustness to noise. Note that determining what makes a particular decoder robust is highly

non trivial. Before we proceed for describing a method for analyzing the asymptotic behavior

of noisy-FAIDs, we introduce error models for the faulty hardware. This method enables us

to compare decoder robustness for different choices of parameters for Φv and thus to design

decoders robust to faulty hardware.

III. ERROR MODELS FOR THE FAULTY HARDWARE

We consider a faulty error model in which noise is introduced at a message level and appears

only at the output of a function computation. More precisely, we assume that the noisy function

can be decomposed as a noiseless function followed by some noise effect (see Figure 1 for the
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TABLE I

LUT Φ(OPT)
v REPORTED IN [16] OPTIMIZED FOR THE ERROR

FLOOR

m1/m2 −L3 −L2 −L1 0 +L1 +L2 +L3

−L3 −L3 −L3 −L3 −L3 −L3 −L3 −L1

−L2 −L3 −L3 −L3 −L3 −L2 −L1 L1

−L1 −L3 −L3 −L2 −L2 −L1 −L1 L1

0 −L3 −L3 −L2 −L1 0 0 L1

L1 −L3 −L2 −L1 0 0 L1 L2

L2 −L3 −L1 −L1 0 L1 L1 L3

L3 −L1 L1 L1 L1 L2 L3 L3

TABLE II

VNU OF A 3-BIT OFFSET MIN-SUM REPRESENTED AS A

FAID

m1/m2 −L3 −L2 −L1 0 +L1 +L2 +L3

−L3 −L3 −L3 −L3 −L3 −L3 −L2 −L1

−L2 −L3 −L3 −L3 −L3 −L2 −L1 0

−L1 −L3 −L3 −L3 −L2 −L1 0 0

0 −L3 −L3 −L2 −L1 0 0 0

L1 −L3 −L2 −L1 0 0 0 L1

L2 −L2 −L1 0 0 0 L1 L2

L3 −L1 0 0 0 L1 L2 L3

case of the CNU). As a consequence, η, µ, and γ, represent the messages at the output of the

noiseless CNU, VNU, and APP computation respectively, and their noisy versions are denoted

η̃, µ̃, γ̃. The noise effects at the end of Φc and Φv are represented by probability transition

matrices Π(v) and Π(c) respectively, with

Π
(c)
k,m = Pr(η̃ = m|η = k), Π

(v)
k,m = Pr(µ̃ = m|µ = k) (4)

wherein the matrix entries are indexed by the values in M. This indexing is used for all the

vectors and matrices introduced in the remaining of the paper. The noise effect on Φa is modeled

by the probability transition matrix Π(a)

Π
(a)
k,m = Pr(γ̃ = m|γ = k) (5)

where k,m ∈ M̄. The resulting noisy messages µ̃, η̃, are then the inputs of the message updates

Φc, Φv, and APP computation Φa. The forms of the probability transition matrices depend on the

considered error models. Here, two different models are considered which exhibit quite different

behaviors in conjunction with FAIDs.

Note that the above model is in essence a memoryless noise model, where the noise is added

only at the output of the noiseless functions. A perhaps more relevant model could be to consider
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noise effect introduced inside the functions, for example during elementary operations such as

the minimum computation between two elements in Φc, as in [15]. The two models are not

equivalent in general. Indeed, in our model, the noisy output message value depends only on

the noiseless output message value, and not on the input values of the function. This is not true

for all noisy functions. For instance, the noisy minimum function defined as

η̃ =

 min(µ1, µ2) with probability 1− p

max(µ1, µ2) with probability p,
(6)

does not satisfy this condition.

While the models introduced here may not capture all the noise effects, they are sufficient for

the analysis of the behavior and robustness of noisy decoders without requiring knowledge of a

particular hardware implementation. More accurate faulty hardware models will be considered

in future works

A. Sign-Preserving error model

The first model has a Sign-Preserving (SP) property, meaning that noise is assumed to affect

only on message amplitude, but not its sign. The values associated to each VN can be estimated

from the sign of the related messages, and the amplitudes of the messages represent the reliability

of the estimated values. As a consequence, such a model allows us to study the robustness of

the decoders to errors on the reliability of the estimated value, and not on the estimated value

itself. However, it assumes extra-protection at the hardware level in computing the sign. The

probability transition matrices for the SP-Model can be constructed from a SP-transfer matrix

defined as follows.

Definition 1: The SP-transfer matrix Π(SP)(p, s) is a matrix of size (2s + 1)× (2s + 1) such
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that

Π
(SP)
k,k (p, s) = 1− p, Π

(SP)
k,0 (p, s) =

p

s
, Π

(SP)
0,k (p, s) =

p

2s

Π
(SP)
k,m (p, s) =

p

s
, for m 6= k 6= 0, sign(m) = sign(k)

0 elsewhere. (7)

According to this definition, a strictly positive message value can give only another positive

message value with respect to a (s + 1)-ary symmetric probability model of parameter p. The

same holds for strictly negative values.

The matrices Π(c), Π(v), and Π(a) can be now obtained from Π(SP) as a template. The noise level

parameter at the output of Φc is given by the parameter pc, and the corresponding probability

transition matrix is given by Π(c) = Π(SP)(pc, s). In the same way, the noise level parameters at

the output of Φ(v) and Φ(a) are denoted pv and pa respectively, and the corresponding probability

transition matrices are given by Π(v) = Π(SP)(pv, s) and Π(a) = Π(SP)(pa, s
′).

B. Full-Depth error model

The second model is called the Full-Depth (FD) model. This model is potentially more harmful

than the SP-Model but does not require hardware sign-protection any more. The FD-transfer

matrix is defined as follows.

Definition 2: The FD-transfer matrix Π(FD)(p, s) is a matrix of size (2s+ 1)× (2s+ 1) such

that

Π
(FD)
k,k (p, s) = 1− p,

Π
(FD)
k,m (p, s) =

p

s
, for m 6= k. (8)

The FD-transfer Matrix defines a (2s+ 1)-ary symmetric model of parameter p. The noise level

parameters at the end of Φc, Φv, Φa, are denoted as before pc, pv, pa, respectively. The corre-

sponding probability transition matrices are given by Π(c) = Π(FD)(pc, s), Π(v) = Π(FD)(pv, s),

and Π(a) = Π(FD)(pa, s
′).
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IV. DENSITY EVOLUTION OF NOISY MESSAGE PASSING DECODING

This section presents the noisy-DE framework for asymptotic analysis of FAIDs on faulty

hardware. The DE [9] consists of expressing the Probability Mass Function (PMF) of the

messages at successive iterations under the local independence assumption, that is the assumption

that the messages coming to a node are independent. The DE analysis enables characterization

of the asymptotic behavior of a decoding algorithm under particular decoder noise conditions.

It gives the error probability of the considered decoder and is valid on average over all possible

LDPC code constructions, when infinite codeword length is considered.

In this paper, not only the considered channel model, but also the noiseless functions and the

decoding noise models are symmetric in the sense of [9]. Indeed, Φc corresponds to the standard

min-sum CNU, while Φv is symmetric by construction (see Section II). Furthermore, as the

decoder noise is assumed to be only at the end of the function computation, [9, Definition 5]

can be applied to show that both the SP-Model and the FD-Model are symmetric. Thus the final

error probability of the decoder does not depend on the transmitted codeword and consequently

we can assume that the all-zero codeword was transmitted.

In the following, we first give the expression of the PMF of the message values at successive

iterations and then explain how they can be used to characterize the asymptotic behavior of the

decoders. The presented analysis holds for regular LDPC codes. However, the generalization to

irregular codes is straightforward.

A. Noisy Density Evolution Recursion

Let the |M|-tuple q(`) specify the PMF of an outgoing message from a VN at `-th iteration.

In other words, the µ-th component q(`)
µ of q(`) is the probability that the outgoing message

takes the value µ ∈M. Similarly, let r(`) specify the PMF of an outgoing message from a CN.

The PMFs of noisy messages are represented by q̃(`) and r̃(`), respectively. In the following,

the noisy-DE recursion is expressed with respect to general probability transition matrices Π(c),
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Π(v), Π(a) . To obtain the DE equations for a specific model, it suffices to replace these general

probability transition matrices with the ones corresponding to the considered model.

The density evolution is initialized with the PMF of the channel value

q
(0)
−B = 1− α q

(0)
+B = α q

(0)
k = 0 elsewhere.

Denote q̃
(`−1)
µ the (dc − 1)-tuple associated to µ. More precisely, if the k-th component of µ is

given by µk, then the k-th component of q̃
(`−1)
µ is given by q̃

(`−1)
µk . The PMF r(`) of the output

of the CNU is obtained from the expression of Φc as ∀η ∈M,

r(`)
η =

∑
µ:Φc(µ)=η

∏
q̃(`−1)
µ (9)

where the vector product operator is performed componentwise on vector elements. The noisy

PMF is then obtained directly in vector form as

r̃(`) = Π(c)r(`). (10)

Denote r̃
(`)
η the (dv−1)-tuple associated to η. The PMF q(`) of the output of the CNU is obtained

from the expression of Φv as ∀µ ∈M,

q(`)
µ =

∑
η:Φv(η,−B)=µ

q
(0)
−B

∏
r̃(`)
η +

∑
η:Φv(η,+B)=µ

q
(0)
+B

∏
r̃(`)
η (11)

and

q̃(`) = Π(v)q(`). (12)

Finally, applying the sequence of 4 equations (9), (10), (11) and (12) implements one recursion

of the Noisy-DE for FAIDs over the BSC channel. Note that, to prevent from an important

computational complexity increase when the VN and CN degrees increase, (9) and (11) can be

computed recursively on the inputs as in [15].

The error probability of the decoder can be obtained from the above recursion and from the

PMF of the messages at the end of the APP computation. Denote r̃
(`)
η̄ the dv-tuple associated
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to η̄, and denote q
(`)
app and q̃

(`)
app the respective noiseless and noisy PMFs of the messages at the

output of the APP computation. They can be expressed from (3) as ∀γ ∈ M̄,

q(`)
app,γ =

∑
η̄:Φa(η̄,−B)=γ

q
(0)
−B

∏
r̃

(`)
η̄ +

∑
η̄:Φa(η̄,+B)=γ

q
(0)
+B

∏
r̃

(`)
η̄

and

q̃(`)
app = Π(a)q(`)

app. (13)

Finally, for a given α and letting ν = (pv, pc, pa), the error probability at each iteration can be

computed under the all-zero codeword assumption as

P (`)
e,ν (α) =

1

2
q̃

(`)
app,0 +

∑
k<0

q̃
(`)
app,k. (14)

Proposition 1: The following lower bound holds at every iteration `

1) For the SP model, P (`)
e,ν (α) ≥ 1

2s′
pa

2) For the FD model, P (`)
e,ν (α) ≥ 1

2
pa + pa

4s′

Proof: Assume that the VNU and the CNU functions are noiseless and that the iterative

decoding process (VNU + CNU part only) has been able to correct all the errors from the channel.

Then the errors in the codeword estimate come only from the APP computation part and the

error probability is given by 1
2
q̃

(`)
app(0) = 1

2s′
pa for the SP model, and by 1

2
q̃

(`)
app(0)+

∑
k<0 q̃

(`)
app(k) =

1
2
pa + 1

4s′
pa for the FD model.

It suffices to study the asymptotic error probability for a given Φv, that is the limit of P (`)
e,ν (α)

when ` goes to infinity, to characterize the asymptotic behavior of the noisy decoder. If the limit

exists, let P (+∞)
e,ν (α) = lim

`→+∞
P (`)
e,ν (α). For noiseless decoders (pv = pc = pa = 0), the maximum

channel parameter α such that P (+∞)
e,ν (α) = 0 is called the threshold of the decoder [17]. However,

this condition cannot be reached in general for noisy-FAIDs. For instance, from Proposition 1,

we see that the noise in the APP computation prevents the decoder from achieving a zero-

error decoding. As a consequence, there is a need to introduce another threshold definition to

characterize the asymptotic behavior of noisy decoders.
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B. Analysis of Convergence Behaviors of Noisy Decoders

Varshney in [9] defines the useful region as the set of parameters α for which P (+∞)
e,ν (α) ≤ α.

The useful region indicates what are the faulty hardware and channel noise conditions that a

decoder can tolerate to reduce the level of noise. However, for a given α, it does not indicate

which decoders can correct most of the errors from the channel. On the other hand, in [9], [14],

a constant value λ is fixed and the target-BER threshold is defined as the maximum parameter

α such that P (+∞)
e,ν (α) ≤ λ. However, although the target-BER threshold enables to identify the

channel parameters for which the decoder can guarantee a given level of error probability, the

choice of λ is arbitrary and is not related to any particular intrinsic behavior of the decoder. To

finish, the threshold definition we propose in [18] characterizes accurately the behavior of the

decoder when pv = pc but can give non-consistent results when this condition is not fulfilled.

Here, we introduce another threshold definition which enables to characterize more accurately

the asymptotic behavior of a decoder. The threshold definition we propose accounts for the

Lipschitz constant of the function α 7→ P
(+∞)
e,ν (α). The definition of the Lipschitz constant is

first restated for the sake of clarity.

Definition 3: Let f : I → R be a function defined on an interval I ⊆ R. The Lipschitz

constant of f in I is defined as

L(f, I) = sup
x 6=y∈I

|f(x)− f(y)|
|x− y|

∈ R+ ∪ {+∞} (15)

For a ∈ I and δ > 0, let Ia(δ) = I ∩ (a− δ, a+ δ). The (local) Lipschitz constant of f in a ∈ I

is defined by:

L(f, a) = inf
δ>0

L(f, Ia(δ)) ∈ R+ ∪ {+∞} (16)

Note that if a is a discontinuity point of f , then L(f, a) = +∞. On the opposite, if f is

differentiable in a, then the Lipschitz constant in a corresponds to the absolute value of the

derivative. Furthermore, if L(f, I) < +∞, then f is uniformly continuous on I and almost

everywhere differentiable. In this case, f is said to be Lipschitz continuous on I .
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The functional threshold is then defined as follows.

Definition 4: For given decoder noise conditions ν = (pv, pc, pa) and a particular channel

parameter α the decoder is said to be functional if

(a) The function x 7→ P
(+∞)
e,ν (x) is defined on [0, α]

(b) P
(+∞)
e,ν is Lipschitz continuous on [0, α]

(c) L
(
P

(+∞)
e,ν , x

)
is an increasing function of x ∈ [0, α]

Then the functional threshold ᾱ is defined as

ᾱ = sup{α | conditions (a), (b) and (c) above are satisfied} (17)

The function P
(+∞)
e,ν (x) is defined provided that there exist a limit of P (`)

e,ν (x) when ` goes

to infinity. Condition (a) is required because P
(`)
e,ν (x) does not converge for some particular

decoders and noise conditions [19].

The functional threshold is defined as the transition between two modes. The first mode

corresponds to the channel parameters leading to a low level of error probability, i.e., for which

the decoder can correct most of the errors from the channel. In the second mode, the channel

parameters lead to a high level of error probability, meaning that the decoding operation actually

fails. Note that there are two possibilities. If L
(
P

(+∞)
e,ν , ᾱ

)
= +∞, then ᾱ is a discontinuity

point of P (+∞)
e,ν and the transition between the two levels is sharp. If L

(
P

(+∞)
e,ν , ᾱ

)
, then ᾱ is

an inflection point of P (+∞)
e,ν and the transition is smooth. With the Lipschitz constant, one can

characterize the transition in both cases. However, the second case corresponds to a degenerated

one, in which the hardware noise is too high and leads to a non-standard asymptotic behavior

of the decoder. That is why a set of admissible decoder noise parameters is defined as follows.

Definition 5: The set of admissible decoder noise parameters is the set of parameters (pv, pc, pa)

for which L
(
P

(+∞)
e,ν , ᾱ

)
= +∞.



15

1e-5 1e-4 1e-3 1e-2 1e-1
0

0.02

0.04

0.06

0.08

0.1

(3,5)-code

(3,8)-code

SP-Model

FD-Model

(a)

1e-5 1e-4 1e-3 1e-2 1e-1
0

0.02

0.04

0.06

0.08

0.1

(3,5)-code

(3,8)-code

SP-Model

FD-Model

(b)

1e-5 1e-4 1e-3 1e-2 1e-1
0

0.02

0.04

0.06

0.08

0.1

(3,8)-code

(3,5)-code

SP-Model

FD-Model

(c)

Fig. 2. Functional regions for the offset min-sum, for C = 1, (a) w.r.t. pv , with pc = pa = 10−3 (SP-Model) and pc =

pa = 10−4 (FD-Model), (b) w.r.t. pc, with pv = pa = 10−3 (SP-Model) and pv = pa = 10−4 (FD-Model), (c) w.r.t. pa, with

pv = pc = 10−3 (SP-Model) and pv = pc = 10−4 (FD-Model)
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Fig. 3. Asymptotic error probabilities for (3, 5) codes for the offset Min-Sum, for C = 1, for the SP-Model, with (a) pc = 10−3,

pa = 10−3, (b) pv = 10−3, pa = 10−3, (c) pv = 10−3, pc = 10−3

C. Examples of Functional regions

In this section, (3, 5) and (3, 8) regular codes are considered. Figure 2 (a) shows the functional

thresholds with respect to pv, for the offset Min-Sum decoder. For the SP-Model, we consider

pc = pa = 10−3, and for the FD-Model, pc = pa = 10−4. As expected, when the rate of the code

increases, the functional threshold values decrease. However, when pv becomes too large, the

functional threshold gives non consistent results and thus fails at characterizing the behavior of
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Fig. 4. (a) Noiseless thresholds vs functional thresholds for the SP-Model (pv = pc = pa = 10−2) , (b) Noiseless thresholds

vs functional thresholds for the FD-Model (pv = pc = pa = 5× 10−3) (c) Functional thresholds for the SP-Model (pv = pc =

pa = 10−2) vs functional thresholds for the FD-Model (pv = pc = pa = 5 × 10−3)

the decoder. Figure 3 (a) illustrates this effect. For large values of pv, there is no discontinuity

point anymore and the functional threshold is given by the inflection point of the curve. However,

this inflection point does not predict accurately which channel parameters lead to a low level of

error probability. That is why the set of admissible noise parameters is introduced in Definition 5.

From Figure 2 (b), we see that the same effect can appear with pc. To finish, from Figures 2

(c) and 3 (c), we observe that the functional threshold does not depend on the value of pa. This

result is expected, because the APP computation does not participate to the iterative decoding

process. As a consequence, the noise in the APP only adds noise in the final codeword estimate,

but does not make the decoding process fail.

V. DESIGN OF FAIDS ROBUST TO FAULTY HARDWARE

In this paper, we want to capitalize on the diversity of VNU functions to design FAIDs which

are naturally robust to transient errors introduced by the faulty hardware. Table III shows the

total numbers of different FAIDs for Ns = 5, Ns = 7, and Ns = 9 levels.
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TABLE III

NUMBER OF FAIDS [16, THEOREM 1]

Total number of VNU functions (Ns = 5) 28 314

Total number of VNU functions (Ns = 7) 530 803 988

Total number of VNU functions (Ns = 9) 230 316 871 499 560

Even by restricting the message alphabet size to Ns = 7, the number of possible FAIDs is

too large for a systematic analysis. Instead, we account for previous work on FAIDs, and start

with a collection of ND = 5291 FAIDs which correspond to column-weight tree codes and have

been selected from the analysis on trapping sets presented in [16]. As a result of this selection

process, each of the ND FAIDs have both good noiseless threshold, and good performance in

the error floor. We now conduct a noisy-DE analysis on this set by computing, for each of the

ND FAIDs, the value of their functional threshold.

As an example, Figures 4 (a) and 4 (b) represent the obtained functional thresholds with

respect to the noiseless thresholds. For the SP-Model, the functional thresholds are calculated

for pv = pc = pa = 10−2, and for the FD-Model, pv = pc = pa = 5 × 10−3. Although all the

considered decoders have good noiseless threshold (between 0.09 and 0.104), a large range of

behaviors can be observed when the decoder is noisy. Indeed, for the SP-Model, the functional

threshold values are between 0.065 and 0.095, thus illustrating the existence of both robust

and non-robust decoders. In particular, even decoders with approximately the same noiseless

threshold value (e.g. around 0.101) can exhibit different robustness abilities. This is even more

critical for the FD-Model, for which the functional threshold values are between 0.01 and 0.085.

These observations illustrate the importance of selecting robust decoders to operate on faulty

hardware.

Furthermore, Figure 4 (c) represents the functional thresholds obtained for the FD-Model (for
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TABLE IV

FAID RULE Φ(ROBUST)
v ROBUST TO THE FAULTY HARDWARE

(SP-MODEL)

m1/m2 −L3 −L2 −L1 0 +L1 +L2 +L3

−L3 −L3 −L3 −L3 −L3 −L3 −L2 0

−L2 −L3 −L3 −L3 −L3 −L2 −L2 L1

−L1 −L3 −L3 −L3 −L2 −L1 −L1 L1

0 −L3 −L3 −L2 −L1 −L1 0 L1

+L1 −L3 −L2 −L1 −L1 0 L1 L2

+L2 −L2 −L2 −L1 0 L1 L2 L2

+L3 0 L1 L1 L1 L2 L2 L3

TABLE V

FAID RULE Φ(NON-ROBUST)
v NOT ROBUST TO FAULTY

HARDWARE (SP-MODEL)

m1/m2 −L3 −L2 −L1 0 +L1 +L2 +L3

−L3 −L3 −L3 −L3 −L3 −L3 −L3 0

−L2 −L3 −L3 −L3 −L3 −L2 0 L2

−L1 −L3 −L3 −L2 −L2 −L1 0 L2

0 −L3 −L3 −L2 −L1 0 L1 L3

+L1 −L3 −L2 −L1 0 0 L1 L3

+L2 −L3 0 0 L1 L1 L1 L3

+L3 0 L2 L2 L3 L3 L3 L3

pv = pc = pa = 5 × 10−3) with respect to the functional thresholds obtained for the SP-Model

(for pv = pc = pa = 10−2). Here also a large variety of behaviors can be observed. Indeed,

only a small amount of decoders are robust to both error models, while some of them are robust

only to the SP-Model, and some others only to the FD-Model. This suggests that robustness to

different error models may require different decoders.

Following these observations, for each model, two decoders are extracted from the set of

ND FAIDs. The first one denoted Φ(robust)
v is the decoder that minimizes the discrepancy between

noiseless and noisy decoding. The second one Φ(non-robust)
v is selected to maximize the difference

between noiseless and noisy decoding. The LUTs of Φ(robust)
v and Φ(non-robust)

v are given respectively

in Tables IV and V for the SP-Model, and in Tables VI and VII for the FD-Model.

VI. FINITE LENGTH SIMULATIONS RESULTS

A. Noisy FAIDs

This section gives finite-length simulation results with the noisy FAIDs Φ(robust)
v and Φ(non-robust)

v

that have been identified by the noisy DE analysis. For the sake of comparison, a third decoder

denoted Φ(opt)
v (Table I) is introduced. It is given in [16] and has been optimized for low error
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TABLE VI

FAID RULE Φ(ROBUST)
v ROBUST TO THE FAULTY HARDWARE

(FD-MODEL)

m1/m2 −L3 −L2 −L1 0 +L1 +L2 +L3

−L3 −L3 −L3 −L3 −L3 −L3 −L1 0

−L2 −L3 −L3 −L3 −L3 −L1 −L1 L2

−L1 −L3 −L3 −L2 −L2 −L1 0 L2

0 −L3 −L3 −L2 −L1 0 0 L3

+L1 −L3 −L1 −L1 0 0 L1 L3

+L2 −L1 −L1 0 0 L1 L1 L3

+L3 0 L2 L2 L3 L3 L3 L3

TABLE VII

FAID RULE Φ(NON-ROBUST)
v NOT ROBUST TO FAULTY

HARDWARE (FD-MODEL)

m1/m2 −L3 −L2 −L1 0 +L1 +L2 +L3

−L3 −L3 −L3 −L3 −L3 −L2 −L2 0

−L2 −L3 −L3 −L3 −L3 −L2 −L1 L2

−L1 −L3 −L3 −L2 −L2 −L1 0 L2

0 −L3 −L3 −L2 −L1 0 0 L3

+L1 −L2 −L2 −L1 0 0 L1 L3

+L2 −L2 −L1 0 0 L1 L1 L3

+L3 0 L2 L2 L3 L3 L3 L3

floor when noiseless decoding is considered. In the following, the number of iterations is set to

100 and we consider the (155, 93) Tanner code with degrees (dv = 3, dc = 5) given in [20]. For

the SP-Model, we fix pv = pc = pa = 0.05, and for the FD-Model, pv = pc = pa = 0.02.

Figure 5 (a) represents the Bit Error Rates (BER) with respect to channel parameter α obtained

for the SP-Model. For the noiseless curves, as Φ(opt)
v has been optimized for low error floor, it

performs better, as expected, than the two other FAIDs. But as Φ(robust)
v and Φ(non-robust)

v belong to a

predetermined set of good FAID decoders, they also have reasonable performance in the noiseless

case. Now, from the noisy curves, we see that the results are in compliance with the conclusions

from the noisy functional thresholds analysis. Indeed,when the decoder is noisy, Φ(robust)
v performs

better than Φ(opt)
v while Φ(non-robust)

v has an important loss in performance compared to the two other

decoders.

For the FD-Model, the same conclusions are obtained from Figure 5 (b). In this case, the

noisy decoders give more important BER than for the SP-Model despite the lower decoder error

levels. The FD-Model is indeed more harmful because not only the amplitudes, but also the signs

of the messages can be corrupted by the noise. In particular, the non-robust decoder Φ(non-robust)
v
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Fig. 5. (155, 93) Tanner Code, dv = 3, dc = 5, 100 iterations, (a) BER for the SP-Model, with pv = pc = pa = 0.05,

(b) BER for the FD-Model, with pv = pc = pa = 0.02

can be seen to perform extremely poorly.

To finish, we see that the lower bound conditions of Proposition 1 are not fulfilled here.

Indeed, in our simulations, we considered an early stopping criterion, that is if the sequence

estimated from the APP is a codeword, then the decoding process is stopped before the end

of the iterations. The results of Proposition 1 consider averaged error probabilities at a fixed

number of iterations, and thus doe not take into account the early stopping criterion.

B. Self-Correction

Self-Correction (SC) was originally introduced for noiseless Min-Sum decoding in [21]. It

was considered for Min-Sum decoding on faulty hardware in [15] and shown to improve the

performance of noisy decoders. When SC is introduced, the VN messages obtained at one

iteration are stored in memory. Then, at the next iteration, the newly computed VN message

values are compared with the previously stored values. If the sign of two compared messages

is different, then the message value is reset to 0. When the decoder is noisy, if transient errors
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Fig. 6. Φ(non-robust)
v decoders, (155, 93) Tanner Code, dv = 3, dc = 5, 100 iterations, (a) BER for the SP-Model, with

pv = pc = pa = 0.05, (b) BER for the FD-Model, with pv = pc = pa = 0.02

cause the sign of some messages to change during one iteration, SC may be able to detect it and

to overcome this effect. In this section, we want to analyse the potential gain in error probability

at considering SC-FAIDs. For that purpose, here, only the non-robust decoders Φ(non-robust)
v obtained

for each model will be considered.

As in the previous section, the (155, 93) Tanner Code is considered, and the number of

iterations is set to 100. As SC may also be noisy, the error level in the SC unit is denoted psc.

As the SC information consists only of binary variables that indicate whether a given message

may be reset to 0, psc is simply the symmetric error probability over a binary random variable.

Figure 6 (a) gives the BER for the SP-Model, with pv = pc = pa = 0.05. We see that the SC

efficiently transforms Φ(non-robust)
v into a robust decoder. This conclusion holds even when the noise

level psc is relatively high (psc = 0.01 was considered).

Figure 6 (b) gives the BER for the FD-Model, with pv = pc = pa = 0.02. The same conclusions

as for the SP-Model are obtained, despite the fact that for the FD-Model, Φ(non-robust)
v performs

extremely poorly. In addition, when comparing Figure 6 (a) with Figure 6 (b), the decoder
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seems to perform even better under the FD-Model than under the SP-Model. This result could

seem surprising, even though Φ(non-robust)
v is different for each model. However, it can be explained

by the combination of two effects. First, knowing that the FD-Model is potentially more harmful,

we have considered lower decoder noise levels with the FD-Model (0.02 instead of 0.05). Second,

under the FD-Model, a transient error can corrupt both the amplitude and the sign of a message,

which makes SC particularly efficient to detect errors in this case. On the opposite, under the

SP-Model, a transient error on a positive value can only give another positive value, or 0. Then,

the newly obtained value 0 may possibly be transformed into a negative value by message

computation or by the effect of another transient error. As a consequence, with the SP-Model, at

least two operations are needed for the sign to be affected. This makes SC naturally less efficient

on this model.

VII. CONCLUSION

In this paper, we performed an analysis of asymptotic performance of noisy FAIDs using

noisy-DE. We introduced the functional threshold that enables to predict the asymptotic behavior

of noisy FAIDs. From this asymptotic analysis, we illustrated the large variety of decoders

robustness behaviors, and proposed a framework for the design of naturally robust decoders.

Finite-length simulation illustrated the gain at considering robust decoders, and noisy self-

correction was shown to improve the performance of the noisy decoders.

In future works, more accurate errors models will be considered for the faulty hardware. In

particular, models that are not sign-preserving, not symmetric, and that intervene at a boolean

level inside the function computation may be considered. In addition, as self-correction appears

to be a promising solution to overcome the noise introduced by the faulty hardware, there is a

need for a theoretical performance analysis of self-corrected, even though the introduced memory

makes difficult the use of density evolution. To finish, other applications may be considered, such

as the construction of stable memories from LDPC codes.
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