
Density Evolution and Functional Threshold for the

Noisy Min-Sum Decoder
Christiane L. Kameni Ngassa∗,#, Valentin Savin∗, Elsa Dupraz#, David Declercq#

∗CEA-LETI, Minatec Campus, Grenoble, France,

{christiane.kameningassa, valentin.savin}@cea.fr
#ETIS, ENSEA / CNRS UMR-8051 / Univ. Cergy-Pontoise, France,

{elsa.dupraz, declercq}@ensea.fr

Abstract—This paper investigates the behavior of the Min-Sum
decoder running on noisy devices. The aim is to evaluate the
robustness of the decoder in the presence of computation noise,
e.g. due to faulty logic in the processing units, which represents
a new source of errors that may occur during the decoding
process. To this end, we first introduce probabilistic models for
the arithmetic and logic units of the the finite-precision Min-
Sum decoder, and then carry out the density evolution analysis
of the noisy Min-Sum decoder. We show that in some particular
cases, the noise introduced by the device can help the Min-
Sum decoder to escape from fixed points attractors, and may
actually result in an increased correction capacity with respect
to the noiseless decoder. We also reveal the existence of a specific
threshold phenomenon, referred to as functional threshold. The
behavior of the noisy decoder is demonstrated in the asymptotic
limit of the code-length – by using “noisy” density evolution
equations – and it is also verified in the finite-length case by
Monte-Carlo simulation.

I. INTRODUCTION

In traditional models of communication or storage systems

with error correction coding, it is assumed that the operations

of an error correction encoder and decoder are deterministic

and that the randomness exists only in the transmission or

storage channel. However, with the advent of nanoelectronics,

the reliability of forthcoming circuits and computation devices

is becoming questionable. It is then becoming crucial to

design and analyze error correcting decoders able to provide

reliable error correction, even if they are made of unreliable

components.

Over the last years, the study of error correcting decoders,

especially Low-Density Parity-Check (LDPC) decoders, run-

ning on noisy hardware attracted more and more interest in the

coding community. In [1], [2], analytical methods have been

proposed to evaluate the performance of one step majority

logic LDPC decoders constructed from faulty gates. In [3], the

concentration and convergence properties were proved for the

asymptotic performance of noisy message-passing decoders,

and density evolution equations were derived for the noisy

The research leading to these results has received funding from the
European Union’s Seventh Framework Program FP7/2007-2013, under Grant
Agreement number 309129 (i-RISC project).

Part of this work has been presented at Asilomar Conference on Signals,

Systems and Computers 2013, IEEE Global Communications Conference
(GLOBECOM) 2013, and IEEE Information Theory and Applications Work-

shop (ITA) 2014.

Gallager-A and Belief-Propagation (BP) decoders. In [4]–

[8], the authors investigated the asymptotic behavior of the

noisy Gallager-B decoder defined over binary and non-binary

alphabets. Finite Alphabet Iterative Decoders (FAIDs) under

processing errors have also been investigated in [9], [10].

Recently, the Min-Sum decoding under unreliable message

storage has been investigated in [11], [12]. In all these papers

the noisy implementation of the iterative message passing

decoders was emulated by passing each of the exchanged

messages through a noisy channel.

In this paper, we investigate the asymptotic and finite-length

behavior of the noisy MS decoder. We refine the probabilistic

error models for the noisy MS decoder we used previously in

[13], [14], and discuss their symmetry properties. We derive

density evolution equations and conduct a thorough asymptotic

analysis of the noisy MS decoder. We also highlight a wide

variety of more or less conventional behaviors and reveal

the existence of a specific threshold phenomenon, which is

referred to as functional threshold. Finally, the asymptotic

results are also corroborated through finite length simulations.

The remainder of the paper is organized as follows. Sec-

tion II discusses the probabilistic error models for the noisy

arithmetic operators and Section III introduces the noisy MS

decoder. Section IV shortly discusses the density evolution

for the noisy MS decoder, and provides the notation and

definitions required to understand the asymptotic analysis of

the noisy MS decoder, which is then conducted in Section

V. Finally, Section VI corroborates the asymptotic analysis

through finite-length simulations, and Section VII concludes

the paper.

II. PROBABILISTIC ERROR MODELS FOR THE NOISY

ARITHMETIC OPERATORS

A. Noisy Message-Passing Decoders

The model for noisy Message-Passing (MP) decoders pro-

posed in [3] incorporates two different sources of noise: com-

putation noise due to noisy logic in the processing units, and

message-passing noise due to noisy wires (or noisy memories)

used to exchange messages between neighbor nodes. The

computation noise is modeled as a random variable, which

the variable-node or the check-node processing depends on.

The message-passing noise is simply modeled as a noisy

channel. Hence, transmitting a message over a noisy wire is

emulated by passing that message through the corresponding

noisy channel.

However, in [3] it has been noted that “there is no es-

sential loss of generality by combining computation noise

and message-passing noise into a single form of noise”.

Consequently, the approach adopted has been to merge com-

putation noisy into message-passing noise, and to emulate

noisy decoders by passing the exchanged messages through

different noisy channel models. Thus, the noisy Gallager-A

decoder has been emulated by passing the exchanged messages

over independent and identical BSC wires, while the noisy

BP decoder has been emulated by corrupting the exchanged

messages with bounded and symmetrically distributed additive

noise (e.g., uniform noise or truncated Gaussian noise).

The approach we follow in this work differs from the one

in [3] in that the computation noise is modeled at the lower

level of arithmetic and logic operations that compose the

variable-node and check-node processing units. This finer-

grained noise modeling is aimed at determining the level of

noise that can be tolerated in each type of operation. As the

main focus of this work is on computation noise, we shall

consider that messages are exchanged between neighbor nodes

through error-free wires (or memories). However, we note

that this work can readily be extended to include different

error models for the message-passing noise (as defined in [3]).

Alternatively, we may assume that the message-passing noise

is merged into the computation noise, in the sense that adding

noise in wires would modify the probabilistic model of the

noisy logic or arithmetic operations.

Finally, we note that the density evolution analysis of noisy

decoders has some intrinsic limitations, as it only applies to

symmetric decoding functions without memory. Since noise is

part of the decoder, it follows that the transient error model

has also to be symmetric. While we do not expect real error

models to be symmetric, the theoretical analysis conducted

in this paper is aimed at understanding the limits of iterative

MS decoding under faulty hardware, thus providing boundary

conditions on the allowed level of hardware-induced errors.

B. Error Models for Noisy Adders

We consider a θ-bit adder (θ ≥ 2). The inputs and

the output of the adder are assumed to be in V =
{−Θ, . . . ,−1, 0,+1, . . . ,+Θ}, where Θ = 2θ−1 − 1. For

inputs (x, y) ∈ V , the output of the noiseless θ-bit adder is

given by v = sV(x+ y), where sV : Z → V denotes the θ-bit

saturation map:

sV(z) = sgn(z) ·min(|z|,Θ) (1)

The output of the noisy adder will be defined by injecting

errors in the output of the noiseless one. Two main error

injection models will be used in this work, both of which

are based on a bitwise XOR operation between the noiseless

output v and an error e. The error e is assumed to be drawn

from an error set E ⊆ V , according to an error probability

distribution pE : E → [0, 1]. The two models differ in the

definition of the error set E , which is chosen such that the

bitwise XOR operation (i.e. the error injection) may or may

not affect the sign of the noiseless output. In the first case

the error injection model is said to be full-depth, while in the

second it is said to be sign-preserving.

We fix a signed number binary representation, which can be

any of the sign-magnitude, one’s complement, or two’s com-

plement representation. There are exactly 2θ signed numbers

that can be represented by θ bits in any of the above formats,

one of which does not belong to V (note that V contains only

2Θ+1 = 2θ− 1 elements for symmetry reasons!). We denote

this element by ζ. For instance, in two’s complement format,

ζ = −(Θ + 1), with binary representation 10 · · ·0.

Full-depth error injection: For this error model the error set is

E = V . For symmetry reasons, all errors e 6= 0 are assumed to

occur with the same probability. It follows that pE(0) = 1−pa
and pE(e) =

pa

2Θ , ∀e 6= 0, where pa > 0 is referred to as the

error injection probability. Finally, the error injection function

is defined by:

ı(v, e) =

{
v ⊕ e, if v ⊕ e ∈ V
e, if v ⊕ e = ζ

(2)

where ⊕ denotes the bitwise XOR operation. In can be seen

that this error model is tantamount to passing v through a |V|-
ary symmetric channel, where |V| is the number of elements

of V .

Sign-preserving error injection: For this error model the error

set is E = {0,+1, . . . ,+Θ}. The error injection probability is

denoted by pa, and all errors e 6= 0 are assumed to occur with

the same probability (for symmetry reasons). It follows that

pE(0) = 1 − pa and pE(e) = pa

Θ , ∀e 6= 0. Finally, the error

injection function is defined by:

ı(v, e) =

v ⊕ e, if v 6= 0 and v ⊕ e ∈ V
±e, if v = 0
0, if v ⊕ e = ζ

(3)

In the above definition, ı(0, e) is randomly set to either −e or

+e, with equal probability (this is due once again to symmetry

reasons). Note also that the last two conditions, namely v = 0
and v ∧ e = ζ, cannot hold simultaneously (since e 6= ζ).

Finally, both of the above error injection models satisfy the

following symmetry condition:
∑

{e| ı(v,e)=w}

pE(e) =
∑

{e| ı(−v,e)=−w}

pE(e), ∀v, w ∈ V (4)

The above condition ensures that the noisy decoder is sym-

metric, which is an essential prerequisite to density evolution

analysis (see Section IV).

A particular case in which the symmetry condition is

fulfilled is when ı(−v, e) = −ı(v, e), for all v ∈ V and

e ∈ E . In this case, the error injection model is said to be

highly symmetric. We note that both of the above models are

highly symmetric, if one of the sign-magnitude or the one’s

complement representation is used. In the case where the two’s

complement representation is used, they are both symmetric,

but not highly symmetric.

Finally, for any of the above error injection models, the

output of the noisy adder is given by:

apr(x, y) = ı (sV(x+ y), e) , (5)

where e is drawn randomly from E according to the probability

distribution pE . The error probability of the noisy adder, i.e.

Pr (apr(x, y) 6= sV(x+ y)), assuming uniformly distributed

inputs, equals the error injection probability parameter pa.

Remark: It is also possible to define a variable depth error

injection model, in which errors are injected in only the λ least

significant bits, with λ ≤ θ [13]. Hence, λ = θ corresponds to

the above full-depth model, while λ = θ − 1 corresponds to

the sign-preserving model. However, for the two’s complement

representation, such a model is not symmetric if λ < θ − 1!

Note that it might be possible to define more general

error injection models, in which the injected error depends

on the data (currently and/or previously) processed by the

adder. Such an error injection model would certainly be more

realistic, but it would also make it very difficult to analytically

characterize the behavior on noisy MP decoders. As a side

effect, the decoding error probability would be dependent on

the transmitted codeword, which would prevent the use of the

density evolution technique for the analysis of the asymptotic

decoding performance.

C. Error Models for Noisy Comparators and Noisy XOR

Operators

The noisy minimum operator with error probability pc,

denoted by mpr, is defined as follows:

mpr(x, y) =

{
min(x, y), with probability 1− pc

max(x, y), with probability pc
(6)

The noisy XOR operator, denoted by xpr, is defined by flip-

ping the output of the noiseless operator with some probability

value, which will be denoted in the sequel by px. It follows

that:

xpr(x, y) =

{
x⊕ y, with probability 1− px

x⊕ y, with probability px
(7)

Assumption: We further assume that the inputs and the output

of the XOR operator may take values in either {0, 1} or

{+1,−1} (with the usual 0 ↔ +1 and 1 ↔ −1 conversion).

This assumption will be implicitly made throughout the paper.

III. NOISY MIN-SUM DECODER

A. Notation

We consider an LDPC code defined by a Tanner graph H,

with N variable nodes denoted by n ∈ {1, 2, ..., N}, and M
check-nodes denoted by m ∈ {1, 2, ...,M}. The set of nodes

connected to a variable node n (resp. a check node m) will

be denoted by H(n) (resp. H(m)). For a message passing

decoder, we denote by γn and γ̃n the a priori and the a

posteriori information of the variable node n (i.e. decoder’s

input and output values), and by αm,n and βm,n the variable-

to-check message sent from n to m and the check-to-variable

message sent from m to n, respectively.

Algorithm 1 Noisy Min-Sum (Noisy-MS) decoding

Input: y = (y1, . . . , yN) ∈ YN ⊲ received word

Output: x̂ = (x̂1, . . . , x̂N) ∈ {−1,+1}N ⊲ estimated codeword

Initialization
for all n = 1, . . . , N do γn = q(yn);

for all n = 1, . . . , N and m ∈ H(n) do αm,n = γn;

for Iter = 1, . . . ,Max Iter
for all m = 1, . . . ,M and n ∈ H(m) do ⊲ CN-processing

βm,n = xpr

(

{sgn(αm,n′)}n′∈H(m)\n

)

·mpr

(

{|αm,n′ |}n′∈H(m)\n

)

;

for all n = 1, . . . , N and m ∈ H(n) do ⊲ VN-processing

αm,n = apr

(

{γn} ∪ {βm′,n}m′∈H(n)\m

)

;

αm,n = sM (αm,n) ;

for all n = 1, . . . , N do ⊲ AP-update

γ̃n = apr

(

{γn} ∪ {βm,n}m∈H(n)

)

;

for all {vn}n=1,...,N do x̂n = sgn(γ̃n); ⊲ hard decision

if x̂ is a codeword then exit iteration loop ⊲ syndrome check

end (iteration loop)

Remark: Let ω be any of the apr,mpr, or xpr operators. We ex-

tend the definition of ω from 2 to more operands as follows. If

{xi}i=1:n is a set of n operands, we define ω ({xi}i=1:n)
def
=

ω(x1, ω(x2, . . . ω(xn−1, xn) . . .)).

B. Noisy Min-Sum Decoding

We consider a finite-precision MS decoder, in which the a

priori information (γn) and the exchanged extrinsic messages

(αm,n and βm,n) are quantized on q bits. The a posteriori

information (γ̃n) is quantized on q̃ bits, with q̃ > q (usually

q̃ = q + 1, or q̃ = q + 2). We also denote by M the alphabet

of the a priori information and of the extrinsic messages, and

by M̃ the alphabet of the a posteriori information. Thus:

• M = {−Q, . . . ,−1, 0,+1, . . . , Q}, where Q = 2q−1−1;

• M̃ = {−Q̃, . . . ,−1, 0,+1, . . . , Q̃}, where Q̃ = 2q̃−1−1.

We further consider a quantization map q : Y → M, where Y
denotes the channel’s output alphabet. The quantization map

q determines the q-bit quantization of the decoder soft input.

The noisy finite-precision MS decoder is presented in Al-

gorithm 1. We assume that q̃-bit adders are used to compute

both αm,n messages in the VN-processing step, and γ̃n values

in the AP-update processing step. This is usually the case in

practical implementations, and allows us to use the same type

of adder in both processing steps. This assumption explains

as well the q-bit saturation of αm,n messages in the VN-

processing step. Note also that the saturation of γ̃n values

is actually done within the adder (see Equation (5)).

Finally, we note that the hard decision and the syndrome

check steps in Algorithm 1 are assumed to be noiseless. We

note however that the syndrome check step is optional, and

if missing, the decoder stops when the maximum number of

iterations is reached.

C. Sign-Preserving Properties

Let U denote any of the VN-processing or CN-processing

units of the noiseless MS decoder. We denote by Upr the

corresponding unit of the noisy MS decoder. We say that

Upr is sign-preserving if for any incoming messages and any

noise realization, the outgoing message is of the same sign as

the message obtained when the same incoming messages are

supplied to U.

Clearly, CNpr is sign-preserving if and only if the XOR-

operator is noiseless (px = 0). In case that the noisy XOR-

operator severely degrades the decoder performance, it is

possible to increase its reliability by using classical fault-

tolerant techniques (as for instance modular redundancy, or

multi-voltage design by increasing the supply voltage of the

corresponding XOR-gate). The price to pay, when compared

to the size or the energy consumption of the whole circuit,

would be reasonable.

Concerning the VN-processing, it is worth noting that the

VNpr is not sign-preserving, even if the noisy adder is so.

This is due to the fact that multiple adders must be “nested”

in order to complete the VN-processing (see footnote remark

in Algorithm 1). The motivation behind the sign-preserving

noisy adder model is to investigate its possible benefits on the

decoder performance. If the benefits are worth it (e.g., one

can ensure a target performance of the decoder), the sign-bit

of the adder could be protected by using classical fault-tolerant

techniques.

IV. DENSITY EVOLUTION

A. Concentration and Convergence Properties

First, we note that our definition of symmetry is slightly

more general than the one used in [3]. Indeed, even if the

error injection models satisfy the symmetry condition from

Equation (4), the noisy MS decoder does not necessarily

verify the symmetry property from [3]. Nevertheless, the

concentration and convergence properties proved in [3] for

symmetric noisy message-passing decoders, can easily be

generalized to our definition of symmetry.

We summarize below the most important results. We con-

sider an ensemble of LDPC codes, with length N and fixed

degree distribution polynomials [15]. We choose a random

code C from this ensemble and assume that a random code-

word x ∈ {−1,+1}N is sent over a binary-input memoryless

symmetric channel. We fix some number of decoding iterations

ℓ > 0, and denote by E
(ℓ)
C

(x) the expected fraction of incorrect

messages1 at iteration ℓ.
Theorem 1: For the noisy MS decoder from Algorithm 1,

the following properties hold:

1) [Conditional Independence of Error] For any decoding

iteration ℓ > 0, the expected fraction of incorrect

messages E
(ℓ)
C

(x) does not depend on x. Therefore, we

define E
(ℓ)
C

:= E
(ℓ)
C

(x).
2) [Cycle-Free Case] If the graph of C contains no cycles

of length 2ℓ or less, E
(ℓ)
C

does not depend on the code C

or the code-length N , but only on the degree distribution

polynomials; in this case, it will be further denoted by

E
(ℓ)
∞ (x).

1Here, “messages” may have any one of the three following meanings:
“variable-node messages”, or “check-node messages”, or “a posteriori infor-
mation values”.

3) [Concentration Around the Cycle-Free Case] For any

δ > 0, the probability that E
(ℓ)
C

lies outside the interval(
E

(ℓ)
∞ (x)− δ, E

(ℓ)
∞ (x) + δ

)
converges to zero exponen-

tially fast in N .

Sketch of proof: Let ı : V × E → V by any of the full-depth

or sign-preserving error injection models used the define the

noisy adder. For any random variable V defined on V , let φ
(ı)
V

and φ
(ı)
−V denote the probability mass functions of the random

variables obtained by injecting errors on the output of V and

−V , respectively. From Equation (4) it follows easily that:

φ
(ı)
V (w) = φ

(ı)
−V (−w), ∀w ∈ V (8)

Finally, using Equation (8), the proof of Theorem 1 can

be derived using essentially the same arguments as in [3,

Theorems 1-3]. �

B. Density Evolution Equations

The density evolution technique allows recursively comput-

ing the probability mass functions of the exchanged extrinsic

messages (αm,n and βm,n) and of the a posteriori information

(γ̃n), through the iterative decoding process. This is done

under the independence assumption of exchanged messages,

holding in the asymptotic limit of the code length, in which

case the decoding performance converges to the cycle-free

case. Due to the symmetry of the decoder, the analysis can

be further simplified by assuming that the all-zero codeword

is transmitted through the channel.

The density evolution equations for the noisy MS decoder

were included in Appendix A. Here, we only provide the

notation and definitions required to understand the asymptotic

analysis of the noisy MS decoder conducted in Section V.

C. Decoding Error Probability

The error probability at decoding iteration ℓ ≥ 0, is defined

as:

P (ℓ)
e =

−1∑

z̃=−Q̃

C̃(ℓ)(z̃) +
C̃(ℓ)(0)

2
, (9)

where C̃(ℓ)(z̃) := Pr(γ̃(ℓ) = z̃) is the probability mass

function of a posteriori information at decoding iteration ℓ.

Hence, in the asymptotic limit of the code-length, P
(ℓ)
e gives

the probability of the hard bit estimates being in error at

decoding iteration ℓ.
The following lower bounds can be derived from the

probability of error injection within the last of the nested

adders used to compute the a posteriori information value in

Algorithm 1.

Proposition 1: The error probability at decoding iteration ℓ
is lower-bounded as follows:

(a) For the sign-preserving noisy adder: P
(ℓ)
e ≥

1

2Q̃
pa.

(b) For the full-depth noisy adder: P
(ℓ)
e ≥

1

2
pa +

1

4Q̃
pa.

Noiseless decoders exhibit a threshold phenomenon, sepa-

rating the region where the decoding error probability goes to

zero (as the number of decoding iterations ℓ goes to infinity),

from that where it is bounded above zero [15]. This definition

does not hold anymore in the case of noisy decoders. First,

the decoding error probability is always bounded above zero

if pa > 0 (see Proposition 1), because of the noise in the a

posteriori computation. Second, the decoding error probability

has a more unpredictable behavior. In particular, it does not

always converge when the number of iterations goes to infinity

(see discussion in Section V). Following [3], we define in the

next section the notions of useful decoder and target error rate

threshold.

D. Useful Region and Target Error Rate Threshold

We consider a channel model depending on a channel

parameter χ, such that the channel is degraded by increasing

χ (for example, the crossover probability for the BSC, or

the noise variance for the BI-AWGN channel). In order to

account for the fact that P
(ℓ)
e depends also on the value of

the channel parameter, it will be denoted in the following by

P
(ℓ)
e (χ). Furthermore, if the following limit exists, we denote

P
(∞)
e (χ) = lim

ℓ→∞
P (ℓ)
e (χ).

1) Useful Region: The useful region is defined as the set of

channel and hardware parameters yielding an asymptotic prob-

ability of error less than the input error probability. The latter

probability is given by P
(0)
e (χ) =

∑−1
z=−Q C(z) + 1

2C(0),
where C is the probability mass function of the quantized a

priori information of the decoder (γ = q(y), see Algorithm 1).

Then the decoder is said to be useful if P
(∞)
e (χ) exists and

P (∞)
e (χ) < P (0)

e (χ) (10)

The ensemble of parameters that satisfy this condition con-

stitutes the useful region of the decoder. The useful region

indicates what are the faulty hardware conditions and the

maximum channel noise such that the decoder can reduce the

bit error probability (even though it does not indicate how

much the bit error probability can be reduced).

2) Target Error Rate Threshold: For a target error proba-

bility η, the η-threshold is defined as the maximum channel

noise such that the decoder can reduce the bit error probability

below η:

χ∗(η) = sup
{
χ | P (∞)

e (χ) exists and P (∞)
e (χ) < η

}
(11)

E. Functional Threshold

Although the η-threshold definition allows determining the

maximum channel noise for which the bit error probability

can be reduced below a target value, there is not significant

change in the behavior of the decoder when the channel noise

parameter χ increases beyond the value of χ∗(η). In this

section, a new threshold definition is introduced in order to

identify the channel and hardware parameters yielding to a

sharp change in the decoder behavior, similar to the change

that occurs around the threshold of the noiseless decoder. This

threshold will be referred to as the functional threshold. The

aim is to detect a sharp increase (e.g., discontinuity) in the

error probability of the noisy decoder, when λ goes beyond

this functional threshold value. The threshold definition we

propose make use of the Lipschitz constant of the function

χ 7→ P
(∞)
e (χ) in order to detect a sharp change of P

(∞)
e (χ)

with respect to χ. The definition of the Lipschitz constant is

first restated for the sake of clarity.

Definition 1: Let f : I → R be a function defined on an

interval I ⊆ R. The Lipschitz constant of f in I is defined as

L(f, I) = sup
x 6=y∈I

|f(x)− f(y)|

|x− y|
∈ R+ ∪ {+∞} (12)

For a ∈ I and δ > 0, let Ia(δ) = I∩(a−δ, a+δ). The (local)

Lipschitz constant of f in a ∈ I is defined by:

L(f, a) = inf
δ>0

L(f, Ia(δ)) ∈ R+ ∪ {+∞} (13)

Note that if a is a discontinuity point of f , then L(f, a) =
+∞. On the opposite, if f is differentiable in a, then the

Lipschitz constant in a corresponds to the absolute value of the

derivative. Furthermore, if L(f, I) < +∞, then f is uniformly

continuous on I and almost everywhere differentiable. In this

case, f is said to be Lipschitz continuous on I .

The functional threshold is then defined as follows.

Definition 2: For given hardware parameters and a channel

parameter χ, the decoder is said to be functional if

(a) The function x 7→ P
(∞)
e (x) is defined on [0, χ]

(b) P
(∞)
e is Lipschitz continuous on [0, χ]

(c) L
(
P

(∞)
e , x

)
is an increasing function of x ∈ [0, χ]

Then, the functional threshold χ̄ is defined as:

χ̄ = sup{χ | conditions (a), (b) and (c) are satisfied} (14)

The use of the Lipschitz constant allows a rigorous defi-

nition of the functional threshold, while avoiding the use of

the derivative (which would require P
(∞)
e (λ) to be a piecewise

differentiable function of λ). As it will be further illustrated in

Section V, the functional threshold corresponds to a transition

between two modes. The first mode corresponds to the channel

parameters leading to a low level of error probability, i.e., for

which the decoder can correct most of the errors from the

channel. In the second mode, the channel parameters lead to

a much higher error probability level. If L
(
P

(∞)
e , χ̄

)
= +∞,

then χ̄ is a discontinuity point of P
(∞)
e and the transition

between the two levels is sharp. If L
(
P

(∞)
e , χ̄

)
< +∞, then

χ̄ is an inflection point of P
(∞)
e and the transition is smooth.

With the Lipschitz constant, one can characterize the transition

in both cases. However, the second case corresponds to a

degenerated one, in which the hardware noise is too high and

leads to a non-standard asymptotic behavior of the decoder.

That is why a set of admissible hardware noise parameters is

defined as follows.

Definition 3: The set of admissible hardware parameters is

the set of hardware noise parameters (pa, pc, px) for which

L
(
P

(∞)
e , χ̄

)
= +∞.

In the following, as each threshold definition helps at illustrat-

ing different effects, one or the other definition will be used,

depending on the context.

V. ASYMPTOTIC ANALYSIS OF THE NOISY MIN-SUM

DECODER

We consider the ensemble of regular LDPC codes with

variable-node degree dv = 3 and check-node degree dc = 6.

The following parameters will be used throughout this section

with regard to the finite-precision MS decoder:

• The a priori information and extrinsic messages are quan-

tized on q = 4 bits; hence, Q = 7 and M = {−7, . . . ,+7}.

• The a posteriori information is quantized on q̃ = 5 bits;

hence, Q̃ = 15 and M̃ = {−15, . . . ,+15}.

We restrict our analysis to the BSC channel with crossover

probability p0, and further assume that the channel input and

output alphabet is Y = {−1,+1}. For each µ ∈ {1, . . . , Q}
we define the quantization map qµ : Y → M by:

qµ(−1) = −µ and qµ(+1) = +µ (15)

Thus, the a priori information of the decoder γn ∈ {±µ}. The

parameter µ will be referred to as the channel-output scale

factor, or simply the channel scale factor.

The infinite-precision MS decoder is known to be inde-

pendent of the scale factor µ. This is because µ factors out

from all the processing steps of the decoding algorithm, and

therefore does not affect in any way the decoding process.

This is no longer true for the finite precision decoder (due to

saturation effects), and we will show shortly that even in the

noiseless case, the scale factor µ may significantly impact the

performance of the finite precision MS decoder.

We start by analyzing the performance of the MS decoder

with channel scale factor µ = 1, and then we will analyze its

performance with an optimized value of µ.

A. Unconventional Behavior of the Min-Sum Decoder (µ = 1)

The case µ = 1 leads to an “unconventional” behavior, as in

some particular cases the noise introduced by the device can

help the MS decoder to escape from fixed points attractors,

and may actually result in an increased correction capacity

with respect to the noiseless decoder. This behavior will be

discussed in more details in this section.

In noiseless decoder case, the decoder exhibits a classical

threshold phenomenon: there exists a threshold value pth, such

that P
(∞)
e = 0 for any p0 < pth. This threshold value, which

can be computed by density evolution, is pth = 0.039. Now,

we consider a p0 value above the threshold of the noiseless

decoder, and investigate the effect of the noisy adder on the

decoder performance. Let us fix p0 = 0.06. Figure 1 shows

the decoding error probability at iteration ℓ, for different

error probability parameters pa ∈ {10−30, 10−15, 10−5} of the

noisy adder. For each pa value, there are two superimposed

curves, corresponding to the full-depth (“fd”, solid curve)

and sign-preserving (“sp”, dashed curve) error models of the

noisy adder. The error probability of the noiseless decoder

is also plotted (solid black curve): it can be seen that it

increases rapidly from the initial value P
(0)
e = p0 and closely

approaches the limit value P
(∞)
e = 0.323 after a few number

of iterations. When the adder is noisy, the error probability in-

creases during the first decoding iterations, behaving similarly

to the noiseless case. It may approach the limit value from

the noiseless case, but starts decreasing after some number

of decoding iterations. However, note that it remains bounded

above zero (although not apparent in the figure), according to

the lower bounds from Proposition 1, and it can actually be

numerically verified that these bounds are nearly tight.

The above behavior of the MS decoder can be explained by

examining the evolution of the probability mass function of the

a posteriori information, denoted by C̃(ℓ) (see Appendix A),

for ℓ ≥ 0. In the noiseless case, we observed by simulation

that C̃(ℓ) reaches a fixed point of the density evolution for

ℓ ≈ 20. In the noisy case, C̃(ℓ) evolves virtually the same as

in the noiseless case during the first iterations. However, for

ℓ > 20, the noise present in the adder results in a progressive

perturbation of C̃(ℓ), which eventually allows the decoder to

escape from the fixed point attractor.

We focus now on the useful region of the noisy MS decoder.

We assume that only the adder is noisy, while the comparator

and the XOR-operator are noiseless. The useful region for the

sign-preserving noisy adder model is shown in Figure 2. The

useful region is shaded in gray and delimited by either a solid

black curve or a dashed red curve. Although one would expect

that P
(∞)
e = p0 on the border of the useful region, this equality

only holds on the solid black border. On the dashed red border,

one has P
(∞)
e < p0. The reason why the useful region does not

extend beyond the dashed red border is that for points located

on the other side of this border the sequence (P
(ℓ)
e)ℓ>0 is

periodic, and hence it does not converge. The region shaded

in brown in Figure 2 is the non-convergence region of the

decoder.

B. Optimization of the Channel Scale Factor

In this section we show that the decoder performance can

be significantly improved by using an appropriate choice of

the channel scale factor µ. Figure 3 shows the threshold values

for the noiseless and several noisy decoders with channel scale

factors µ ∈ {1, 2, . . . , 7}. For the noisy decoders, the threshold

values are computed for a target error probability η = 10−5

(see Equation (11)).

The corresponding threshold values are equal to those ob-

tained in the noiseless case for µ ∈ {2, 4, 6}. For µ ∈ {1, 3, 5},

the MS decoders with noisy-adders exhibit better thresholds

than the noiseless decoder. Except for the noisy XOR-operator

with px = 3×10−4, the best choice of the channel scale factor

is µ = 6. For the noisy XOR-operator with px = 3× 10−4, the

best choice of the channel scale factor is µ = 3.

Remark: For the noiseless decoder, numerical results obtained

by density evolution show that µ = 6 is the best choice of the

channel scale factor, for any dv ∈ {3, 4} and any dv < dc ≤
20.

Assumption: In the following sections, we will investigate the

impact of the noisy adder, comparator and XOR-operator on

the MS decoder performance, assuming that the channel scale

factor is µ = 6.

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Iteration number (l)

P
e(l)

 (
de

co
di

ng
 e

rr
or

 p
ro

ba
bi

lit
y

at
 it

er
at

io
n

l)

(3,6)−regular LDPC, (4,5)−quantization, noisy adder

Noiseless MS

add
pr

[fd, p
a
=1e−30]

add
pr

[sp, p
a
=1e−30]

add
pr

[fd, p
a
=1e−15]

add
pr

[sp, p
a
=1e−15]

add
pr

[fd, p
a
=1e−5]

add
pr

[sp, p
a
=1e−5]

p
a
 = 1E−15

p
a
 = 1E−5

p
a
 = 1E−30

Figure 1. Effect of the noisy adder on the asymp-
totic performance of the MS decoder (p0 = 0.06)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Adder Error Probability (p
a
)

B
S

C
 C

ro
ss

ov
er

 P
ro

ba
bi

lit
y

(p
0)

(3,6)−regular LDPC, (4,5)−quantization, µ = 1

non−convergence region

non−convergence region

Non−Convergence Region

Useful Reg Border: P
e
∞ = p

0

Useful Reg Border: P
e
∞ < p

0

Useful
Region

A
B

C
D

P∞

e > p0

P∞

e < p0

Figure 2. Useful and non-convergence regions of
the MS decoder with sign-preserving noisy adder

1 2 3 4 5 6 7
0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

Channel Scale Factor (µ)

T
hr

es
ho

ld
 V

al
ue

(3,6)−regular LDPC, (4,5)−quantization

Noiseless MS
add[’sp’, p

a
 = 1e−4]

add[’fd’, p
a
 = 1e−5]

comp[p
c
 = 5e−3]

XOR[p
x
 = 3e−4]

XOR[p
x
 = 2e−4]

Figure 3. Threshold values of noiseless and noisy
MS decoders with various channel scale factors

C. Study of the Impact of the Noisy Adder (µ = 6)

In order to evaluate the impact of the noisy adder on the MS

decoder performance, the useful region and the η-threshold

regions have been computed, assuming that only the adders

within the VN-processing step are noisy (pa > 0), while

the CN-processing step is noiseless (px = pc = 0). These

regions are represented in Figure 4 and Figure 5, for the sign-

preserving and the full-depth noisy adder models, respectively.

The useful region is delimited by the solid black curve.

The vertical lines delimit the η-threshold regions, for η =
10−3, 10−4, 10−5, 10−6 (from right to the left).

Note that unlike the case µ = 1 (Section V-A), there is no

non-convergence region when the channel scale factor is set

to µ = 6. Hence, the border of the useful region corresponds

to points (pa, p0) for which P
(∞)
e = p0. However, it can

be observed that there is still a discontinuity line (dashed

red curve) inside the useful region. This discontinuity line

does actually correspond to the functional threshold defined

in Section IV. We note that it does not hide a periodic (non-

convergent) behavior, but it is due to the occurrence of an

early plateau phenomenon in the convergence of (P
(ℓ)
e)ℓ (for

details see [16]).

In Figure 6, we plotted the asymptotic error probability

P
(∞)
e as a function of p0, for the noiseless decoder (pa = 0),

and for the sign-preserving noisy adder with error probability

values pa = 10−4 and pa = 0.05. In each plot we have

also represented two points p
(U)
0 and p

(FT)
0 , corresponding

respectively to the values of p0 on the upper-border of the

useful region, and on the discontinuity line. Hence, p
(FT)
0

corresponds to the functional threshold χ̄ from Definition 2. It

coincides with the classical threshold in the noiseless case, and

can be seen as an appropriate generalization of the classical

threshold to the case of noisy decoders. A similar behavior

can be observed for the full-depth noisy adder. Moreover, from

Figure 4 and Figure 5, it can be seen that as pa goes to zero,

the functional threshold value (red line) converges to 0.077,

which is the classical threshold value of the noiseless decoder.

In the following, the region located below the discontinuity

line will be referred to as the functional region.

Finally, we note that the functional threshold phenomenon

can also be observed for the MS decoder with noisy XOR-

operator (px > 0) or noisy comparator (pc > 0), although

not illustrated in this paper due to space limitations. Similar

to the noisy adder case, when px and pc go to zero, the

functional threshold value converges to the threshold value

of the noiseless decoder. It is also worth noting that the MS

decoder with noisy comparator exhibits actually a classical

threshold phenomenon, i.e., P
(∞)
e = 0 for any point in

the functional region. This is explained by the fact that if

the crossover probability of the channel is small enough, in

the CN-processing step only the sign of check-to-variable

messages is important, but not their amplitudes. In other words

a decoder that only computes (reliably) the signs of check-

node messages and randomly chooses their amplitudes, would

be able to perfectly decode the received word. For more

details, the reader may refer to [16].

D. Comparison of the Impact of the Different Noisy Compo-

nents (µ = 6)

To compare the impact of the different noisy components on

the decoder performance, the useful region and the η-threshold

regions have been plotted for a channel parameter value close

to, but slightly below the functional threshold: p0 = 0.07 (this

value is fixed throughout this section). Sign-preserving adders

are considered in Figure 7 and full-depth adders in Figure 8.

In Figure 7(a) comparators are assumed to be noiseless

(pc = 0) and the regions are plotted with respect to pa and

px. While for the useful region the maximum admissible value

of px is slightly less than the maximum admissible value of

pa, they tend to become increasingly closer as the the target η
value decreases. Hence, we conclude that the sign-preserving

noisy adder and the noisy XOR-operator have comparable

impact on the MS decoder performance, especially for target

bit error rates below 10−6.

In Figure 7(b) XOR operators are assumed to be noiseless

(px = 0) and the regions are plotted with respect to pa and

pc. It can be seen that the maximum admissible value of pc
is significantly above the the maximum admissible value of

pa, especially for low η-values, which confirms that the MS

decoder performance is much more sensitive to adder noise

than to comparator noise. Moreover, it can be observed that

the η-regions are delimited on the top by the same curve, given

by pc = 0.023 for pa < 10−4. This actually corresponds to

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Adder Error Probability (p
a
)

B
S

C
 C

ro
ss

ov
er

 P
ro

ba
bi

lit
y

(p
0)

(3,6)−regular LDPC, (4,5)−quantization, MS/ sign−preserving noisy adder

10
−4

 <
 P

e(∞
) <

 1
0−3

10
−5

 <
 P

e(∞
) <

 1
0−4

10
−6

 <
 P

e(∞
) <

 1
0−5

P
e(∞

) <
 1

0−6

P
e
(∞) < p

0

A

B

Discontinuity Line
(Functional Threshold)

Useful Reg Border (P
e
(∞) = p0)

Figure 4. Regions of the MS decoder with sign-preserving noisy adder

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Adder Error Probability (p
a
)

B
S

C
 C

ro
ss

ov
er

 P
ro

ba
bi

lit
y

(p
0)

(3,6)−regular LDPC, (4,5)−quantization, MS/ full−depth noisy adder

10
−4

 <
 P

e(∞
) <

 1
0−3

10
−5

 <
 P

e(∞
) <

 1
0−4

10
−6

 <
 P

e(∞
) <

 1
0−5

P
e(∞

) <
 1

0−6

P
e
(∞) < p

0

Useful Reg Border (P
e
(∞) = p0)

(Functional Threshold)
Discontinuity Line

Figure 5. Regions of the MS decoder with full-depth noisy adder

0 0.02 0.04 0.06 0.08 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

p
0
 (BSC crossover probability)

P
e(∞

) (
de

co
di

ng
 e

rr
or

 p
ro

ba
bi

lit
y)

(3,6)−LDPC, (4,5)−quantization, MS/ noiseless, µ = 6

p 0(F
T

) =
 0

.0
77

p 0(U
) =

 0
.0

85

P
e
(∞)

P
e
(∞) = 0

(a) pa = 0 (noiseless decoder)

0 0.02 0.04 0.06 0.08 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

p
0
 (BSC crossover probability)

P
e(∞

) (
de

co
di

ng
 e

rr
or

 p
ro

ba
bi

lit
y)

(3,6)−LDPC, (4,5)−quantization, MS/sign preserv. noisy adder, µ = 6

p 0(F
T

) =
 0

.0
77

p 0(U
) =

 0
.0

85

P
e
(∞)

P
e
(∞) ≈ 3.33 E−6

(b) pa = 10−4

0 0.02 0.04 0.06 0.08 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

p
0
 (BSC crossover probability)

P
e(∞

) (
de

co
di

ng
 e

rr
or

 p
ro

ba
bi

lit
y)

(3,6)−LDPC, (4,5)−quantization, MS/sign preserv. noisy adder, µ = 6

p 0(F
T

) =
 0

.0
65

p 0(U
) =

 0
.0

72

0.0017 ≤ P
e
(∞) ≤ 0.0033

P
e
(∞)

(c) pa = 0.05

Figure 6. Asymptotic error probability P
(∞)
e as a function of p0; noiseless and noisy MS with sign-preserving noisy adder

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Adder Error Probability (P
a
)

X
O

R
 E

rr
or

 P
ro

ba
bi

lit
y

(P
x)

Sign protected

Useful

η = 10−3

η = 10−4

η = 10−5

η = 10−6

(a) Noisy XOR-operator and noiseless comparator

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

Adder Error Probability (P
a
)

C
om

p.
 E

rr
or

 P
ro

ba
bi

lit
y

(P
c)

Sign protected

Useful

η = 10−3

η = 10−4

η = 10−5

η = 10−6

(b) Noisy comparator and noiseless XOR-operator

Figure 7. Useful and η-threshold regions for p0 = 0.07 with sign-preserving noisy adder

the threshold pc-value of the noisy-comparator MS decoder,

for a channel crossover probability p0 = 0.07 (as discussed in

Section V-C, the MS decoder with noisy comparator exhibits

a classical threshold phenomenon).

Figure 8 presents a similar analysis, when considering the

full-depth noisy-adder model. It can be seen that the maximum

admissible value of pa is less than the maximum admissible

values of both pc and px, which shows that the full-depth noisy

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Adder Error Probability (P
a
)

X
O

R
 E

rr
or

 P
ro

ba
bi

lit
y

(P
x)

Full depth

Useful

η = 10−3

η = 10−4

η = 10−5

η = 10−6

(a) Noisy XOR-operator and noiseless comparator

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Adder Error Probability (P
a
)

X
O

R
 E

rr
or

 P
ro

ba
bi

lit
y

(P
c)

Full depth

Useful

η = 10−3

η = 10−4

η = 10−5

η = 10−6

(b) Noisy comparator and noiseless XOR-operator

Figure 8. Useful and η-threshold regions for p0 = 0.07 with full-depth noisy adder

adder is the most critical component of the noisy MS decoder.

VI. FINITE LENGTH PERFORMANCE OF THE NOISY

MIN-SUM DECODER

The goal of this section is to corroborate the asymptotic

analysis from the previous section, through finite-length simu-

lations. Unless otherwise stated, the (3, 6)-regular LDPC code

with length N = 1008 bits from [17] will be used throughout

this section.

A. Early stopping criterion

As described in Algorithm 1, each decoding iteration also

comprises a hard decision step, in which each transmitted bit is

estimated according to the sign of the a posteriori information,

and a syndrome check step, in which the syndrome of the

estimated word is computed. Both steps are assumed to be

noiseless, and the syndrome check step acts as an early

stopping criterion: the decoder stops when either the syndrome

is +1 (the estimated word is a codeword) or a maximum

number of iterations is reached. We note however that the

syndrome check step is optional and, if missing, the decoder

stops when the maximum number of iterations is reached.

The reason why we stress the difference between the MS

decoder with and without the syndrome check step is because

the noiseless early stopping criterion may significantly im-

prove the bit error rate performance of the noisy decoder in

the error floor region (see Section VI-C).

Unless otherwise stated, the MS decoder is assumed to

implement the noiseless stopping criterion (syndrome check

step). The maximum number of decoding iterations is fixed to

100 throughout this section.

B. Finite-length performance for various channel scale factors

Figure 9 shows the bit error rate (BER) performance of the

finite-precision MS decoder (both noiseless and noisy) with

various channel scale factors. For comparison purposes, we

also included the BER performance of the Belief-Propagation

decoder (solid black curve, no markers) and of the infinite-

precision MS decoder (dashed blue curve, no markers). These

decoders are implemented in floating point, and the input LLR

values are computed, as usual, by γn = yn log ((1 − p)/p),
with yn ∈ ±1.

It can be observed that the worst performance is achieved by

the infinite-precision MS decoder (!) and the finite-precision

noiseless MS decoder with channel scale factor µ = 1
(both curves are virtually indistinguishable). The BER per-

formance of the latter improves significantly when using a

sign-preserving noisy adder with error probability pa = 0.001
(dashed red curve with empty circles).

For a channel scale factor µ = 6, both noiseless and

noisy decoders have almost the same performance (solid and

dashed green curves, with triangular markers). Remarkably,

the achieved BER is very close to the one achieved by the

Belief-Propagation decoder!

These results corroborate the asymptotic analysis from

Section V-B concerning the channel scale factor optimization.

C. Error floor performance

Surprisingly, the BER curves of the noisy decoders from

Figure 9 do not show any error floor down to 10−7. However,

according to Proposition 1, the decoding error probability

should be lower-bounded by P
(ℓ)
e ≥ 1

2Q̃
pa = 3.33 × 10−5

(see also the η-threshold regions in Figure 4). The fact

that the observed decoding error probability may decrease

below the above lower-bound is due to the early stopping

criterion (syndrome check step) implemented within the MS

decoder. Indeed, as we observed in the previous section, the

above lower-bound is tight, when ℓ (the iteration number) is

sufficiently large. Therefore, as the iteration number increases,

the expected number of erroneous bits gets closer and closer

to 1

2Q̃
paN = 0.034 (for N = 1008), and the probability of

not having any erroneous bit within one iteration approaches

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Crossover probability (p
0
)

B
it

E
rr

or
 R

at
e

(3,6)−regular LDPC, N = 1008; (4,5)−quantization

BP, float−point (noiseless)
MS, float−point (noiseless)

MS, noiseless, µ = 1

MS, add[’sp’, p
a
 = 0.001], µ = 1

MS, noiseless, µ = 6

MS, add[’sp’, p
a
 = 0.001], µ = 6

Figure 9. BER performance of noiseless and noisy MS decoders with
various channel scale factors

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Crossover probability (p
0
)

B
it

E
rr

or
 R

at
e

(3,6)−regular LDPC, (4,5)−quantization, sign−protected noisy adder, p
a
 = 0.001

N
 =

 1
00

00

F
un

c.
 T

hr
es

ho
ld

 =
 0

.0
77

N
 =

 1
00

8

N = 1008, with syndrome check
N = 1008, wout syndrome check
N = 10000, with syndrome check
N = 10000, wout syndrome check

Figure 10. BER performance with and without early stopping criterion
(sign-preserving noisy adder, pa = 0.001)

(
1− 1

2Q̃
pa

)N

= 0.967. As the decoder performs more and

more iterations, it will eventually reach an error free iteration.

The absence of errors is at once detected by the noiseless

syndrome check step, and the decoder stops.

To illustrate this behavior, we plotted the Figure 10 the

BER performance of the noisy MS decoder, with and without

early stopping criterion. The noisy MS decoder comprises

a sign-preserving noisy adder with pa = 0.001, while the

comparator and the XOR-operator are assumed to be noiseless

(pc = px = 0). Two codes are simulated, the first with length

N = 1008 bits, and the second with length N = 10000 bits.

In the case where the noiseless early stopping criterion is

implemented (solid curves), it can be seen that none of the

BER curves show any error floor down to 10−8. However,

if the early stopping criterion is not implemented (dashed

curves), corresponding BER curves exhibit an error floor at

≈ 3.33× 10−5, as predicted by Proposition 1.

While the noiseless early stopping criterion allows elim-

inating the error floor caused by the noisy components of

the decoder, the price to pay might be a possible increase

in the number of decoding iterations. However, our simulation

results show that for the noisy decoders presented in Figure 10,

the average number of decoding iterations increases by less

than 0.5 iterations with respect to the noiseless decoders.

Indeed, when the noiseless decoder completes, the probability

of not having any erroneous bit within one iteration of the

noisy decoder is sufficiently high, approaching 0.967 (for

N = 1008), as discussed above. While this value is reflecting

in the error floor performance, it has a negligible impact on

the expected number of extra iterations to be run before the

noiseless syndrome check step detects an error-free iteration.

D. Finite-Length Performance for Various Parameters of the

Probabilistic Error Models

In this section we investigate the finite-length performance

when all the MS components (adder, comparator, and XOR-

operator) are noisy. In order to reduce the number of simula-

tions, we assume that pa = pc ≥ px. The BER performance is

evaluated for both sign-preserving and full-depth noisy adder

error models. Simulation results are presented in Figures 11–

12. In case the noisy-adder is sign-preserving, it can be seen

that the MS decoder can provide reliable error protection for

all the noise parameters that have been simulated. However,

depending on the error probability parameters of the noisy

components, there is a more or less important degradation of

the achieved BER with respect to the noiseless case. But in

all cases the noisy decoder can achieve a BER less than 10−7.

This is no longer true for the full-depth noisy adder: it can

be seen that for pc = pa ≥ 0.005, the noisy decoder cannot

achieve bit error rates below 10−2.

CONCLUSION

This paper investigated the asymptotic and finite length

behavior of the noisy MS decoder. We demonstrated the

impact of the channel scale factor on the decoder performance,

both for the noiseless and for the noisy decoder. We also

highlighted the fact that an inappropriate choice the channel

scale factor may lead to an unconventional behavior, in the

sense that the noise introduce by the device may actually result

in an increased correction capacity with respect to the noiseless

decoder. We analyzed the asymptotic performance of the noisy

MS decoder in terms of useful regions and target-BER thresh-

olds, and further revealed the existence of a different threshold

phenomenon, which was referred to as functional threshold.

Finally, we also corroborated the asymptotic analysis through

finite-length simulations.

Note: An extended version of this paper, including re-

sults for both BSC and BI-AWGN channels, is available at

http://arxiv.org/abs/1405.6594.

APPENDIX A

DENSITY EVOLUTION

In this appendix we derive density evolution equations for

the noisy finite-precision MS decoding for a regular (dv, dc)

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Crossover probability (p
0
)

B
it

E
rr

or
 R

at
e

(3,6)−regular LDPC, (4,5)−quantization, add[sign−protected], p
c
 = p

a
, p

x
 = 0.0001

Noiseless Min−Sum
p

a
 = p

c
 = 0.0001, p

x
 = 0.0001

p
a
 = p

c
 = 0.001, p

x
 = 0.0001

p
a
 = p

c
 = 0.005, p

x
 = 0.0001

p
a
 = p

c
 = 0.01, p

x
 = 0.0001

Figure 11. BER performance, noisy MS, sign-preserving noisy adder,
pc = pa, px = 0.0001

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Crossover probability (p
0
)

B
it

E
rr

or
 R

at
e

(3,6)−regular LDPC, (4,5)−quantization, add[full−depth], p
c
 = p

a
, p

x
 = 0.0001

Noiseless Min−Sum
p

a
 = p

c
 = 0.0001, p

x
 = 0.0001

p
a
 = p

c
 = 0.001, p

x
 = 0.0001

p
a
 = p

c
 = 0.005, p

x
 = 0.0001

p
a
 = p

c
 = 0.01, p

x
 = 0.0001

Figure 12. BER performance, noisy MS, full-depth noisy adder, pc =
pa, px = 0.0001

LDPC code. The study can be easily generalized to irregular

LDPC codes, simply by averaging according to the degree

distribution polynomials.

Let ℓ > 0 denote the decoding iteration. Superscript (ℓ)
will be used to indicate the messages and the a posteriori

information computed at iteration ℓ. To indicate the value of

a message on a randomly selected edge, we drop the variable

and check node indexes from the notation (and we proceed in

a similar manner for the a priori and a posteriori information).

The corresponding probability mass functions are denoted as

follows.

C(z) = Pr(γ = z), ∀z ∈ M

C̃(ℓ)(z̃) = Pr(γ̃(ℓ) = z̃), ∀z̃ ∈ M̃

A(ℓ)(z) = Pr
(
α(ℓ) = z

)
, ∀z ∈ M

B(ℓ)(z) = Pr
(
β(ℓ) = z

)
, ∀z ∈ M

1) Expression of the input probability mass function C:

The probability mass function C depends only on the channel

and the quantization map q : Y → M, where Y denotes the

channel output alphabet. We also note that for ℓ = 0, we have

A(0) = C.

For the BSC, the channel output alphabet is Y = {−1,+1}.

For a positive integer µ ≤ Q, the quantization map qµ is

defined by qµ(y) = µ·y, ∀y ∈ Y = {−1,+1}. Considering

the all-zero (+1) codeword assumption, the probability mass

function C can be computed as follows (where ε is the

crossover probability of the BSC):

C(z) =

1− ε, if z = µ
ε, if z = −µ
0, otherwise

(16)

2) Expression of B(ℓ) as a function of A(ℓ−1):

In the sequel, we make the convention that Pr(sgn(0) =
1) = Pr(sgn(0) = −1) = 1/2. The following notation will be

used:

• A[x,y] =

y∑

z=x

A(z), for x ≤ y ∈ M

• A[0+,y] =
1

2
A(0) +

y∑

z=1

A(z), for y ∈ M, y > 0

• A[x,0−] =
1

2
A(0) +

−1∑

z=x

A(z), for x ∈ M, x < 0

For the sake of simplicity, we drop the iteration index, thus

B := B(ℓ) and A := A(ℓ−1). We proceed by recursion on

i = 2, . . . , dc − 1, where dc denotes the check-node degree.

Let β1 := α1, and for i = 2, . . . , dc − 1 define:

βi = xpr(sgn(βi−1), sgn(αi))mpr(|βi−1|, |αi|)

Let also Bi−1 and Bi denote the probability mass functions

of βi−1 and βi, respectively (hence, B1 = A).

First of all, for z = 0, we have:
Bi(0) = Pr(βi = 0) = A(0)Bi−1(0) +

[Bi−1(0)(1−A(0)) +A(0)(1 −Bi−1(0))] (1− pc)

For z 6= 0, we proceed in several steps as follows:

For z > 0:

F ′
i (z)

def
= Pr(βi ≥ z | px = 0)

=
[
Bi−1[0+,z−1]A[z,Q−1] +A[0+,z−1]Bi−1[z,Q−1]

]
pc

+
[
Bi−1[1−z,0−]A[−Q,−z] +A[1−z,0−]Bi−1[−Q,−z]

]
pc

+ Bi−1[z,Q−1]A[z,Q−1] + Bi−1[−Q,−z]A[−Q,−z]

Fi(z)
def
= Pr(βi ≥ z)
= (1− px).F

′
i (z) + px.G

′
i(−z)

Bi(z) = Pr(βi = z) = Fi(z)− Fi(z + 1)

For z < 0:
G′

i(z)
def
= Pr(βi ≤ z | px = 0)

=
[
Bi−1[0+,−z−1]A[−Q,z] +A[0+,−z−1]Bi−1[−Q,z]

]
pc

+
[
Bi−1[−z,Q−1]A[z+1,0−] +A[−z,Q−1]Bi−1[z+1,0−]

]
pc

+ Bi−1[−z,Q−1]A[−Q,z] +A[−z,Q−1]Bi−1[−Q,z]

Gi(z)
def
= Pr(βi ≥ z)
= (1− px).G

′
i(z) + px.F

′
i (−z)

Bi(z) = Pr(βi = z) = Gi(z)−Gi(z + 1)
Finally, we have that B = Bdc−1.

3) Expression of A(ℓ) as a function of B(ℓ) and C: We

derive at the same time the expression of C̃(ℓ) as a function

of B(ℓ) and C.

For simplicity, we drop the iteration index, so A := A(ℓ),

B := B(ℓ), and C̃ := C̃(ℓ). We denote by ı : M̃ × E → M̃
the error injection model (either full-depth or sign-preserving)

used to define the noisy adder. We decompose each noisy

addition into three steps (noiseless infinite-precision addition,

saturation, and error injection), and proceed by recursion on

i = 0, 1, . . . , dv, where dv denotes the variable-node degree:

• For i = 0:
Ω0

def
= γ ∈ M ⊆ M̃,

C̃0(z̃)
def
= Pr(Ω0 = z̃) =

{
C(z̃), if z̃ ∈ M

0, if z̃ ∈ M̃ \M
• For i = 1, . . . , dv:

ωi
def

= Ωi−1 + βmi,n ∈ Z,

ci(w)
def
= Pr(ωi = w)

=
∑

u C̃i−1(u)B(w − u), ∀w ∈ Z

ω̃i
def
= s

M̃
(ωi) ∈ M̃,

c̃i(w̃)
def
= Pr(ω̃i = w̃)

=

ci(w̃), if w̃ ∈ M̃ \ {±Q̃}∑
w≤−Q̃

ci(w), if w̃ = −Q̃∑
w≥+Q̃

ci(w), if w̃ = +Q̃

Ωi
def
= ı(ω̃i, e) ∈ M̃,

C̃i(z̃)
def
= Pr(Ωi = z̃)

=
∑

ω̃

∑
e δ

z̃
ı(ω̃,e)pE(e)c̃i(ω̃), ∀z̃ ∈ M̃

where δyx = 1 if x = y, and δyx = 0 if x 6= y.

Note that in the definition of Ωi above, e denotes an error

drawn from the error set E according to the error probability

distribution pE .

Finally, we have: A = sM

(
C̃dv−1

)
and C̃ = C̃dv

.

Note that applying the saturation operator sM on the

probability mass function C̃dv−1 means that all the proba-

bility weights corresponding to values w̃ outside M must be

accumulated to the probability of the corresponding boundary

value of M (that is, either −Q or +Q, according to whether

w̃ < −Q or w̃ < +Q).

Remark: For a noisy adder defined by the full-depth or the

sign preserving error injection models defined in Section II,

the third equation from the above recursion (expression of C̃i

as a function of c̃i) may be rewritten as follows:

Sign-preserving bitwise-XORed noisy adder

C̃i(z̃) =

(1− pa)c̃i(z̃) +
1

Q̃
pa

(
c̃i [≤ 0−] − c̃i(z)

)
, if z̃ < 0

(1− pa)c̃i(0) +
1

Q̃
pa (1− c̃i(0)) , if z̃ = 0

(1− pa)c̃i(z̃) +
1

Q̃
pa

(
c̃i [≥ 0+] − c̃i(z)

)
, if z̃ > 0

(17)

where c̃i [≤ 0−] =
∑

ω̃<0 c̃i(ω̃) + 1
2 c̃i(0), and c̃i [≥ 0+] =

1
2 c̃i(0) +

∑
ω̃>0 c̃i(ω̃).

Full-depth bitwise-XORed noisy adder

C̃i(z̃) = (1− pa)c̃i(z̃) +
1

2Q̃
pa (1− c̃i(z̃)) (18)

Finally, we note that the density evolution equations for

the noiseless finite-precision MS decoder can be obtained by

setting pa = pc = px = 0.

REFERENCES

[1] S. K. Chilappagari, M. Ivkovic, and B. Vasic, “Analysis of one step
majority logic decoders constructed from faulty gates,” in Proc. of IEEE

Int. Symp. on Inf. Theory (ISIT), 2006, pp. 469–473.
[2] B. Vasic and S. K. Chilappagari, “An information theoretical framework

for analysis and design of nanoscale fault-tolerant memories based on
low-density parity-check codes,” IEEE Trans. on Circuits and Systems

I: Regular Papers, vol. 54, no. 11, pp. 2438–2446, 2007.
[3] L. R. Varshney, “Performance of LDPC codes under faulty iterative

decoding,” IEEE Trans. Inf. Theory, vol. 57, no. 7, pp. 4427–4444, 2011.
[4] S. Yazdi, H. Cho, Y. Sun, S. Mitra, and L. Dolecek, “Probabilistic

analysis of Gallager B faulty decoder,” in Proc. IEEE Int. Conf. on

Comm. (ICC), 2012, pp. 7019–7023.
[5] S. Yazdi, C. Huang, and L. Dolecek, “Optimal design of a Gallager B

noisy decoder for irregular LDPC codes,” IEEE Comm. Letters, vol. 16,
no. 12, pp. 2052–2055, 2012.

[6] S. Yazdi, H. Cho, and L. Dolecek, “Gallager B decoder on noisy
hardware,” IEEE Trans. on Comm., vol. 66, no. 5, pp. 1660–1673, 2013.

[7] C.-H. Huang, Y. Li, and L. Dolecek, “Gallager B LDPC decoder with
transient and permanent errors,” in Proc. IEEE Int. Symp. on Inf. Theory

(ISIT), July 2013, pp. 3010–3014.
[8] ——, “Gallager B LDPC decoder with transient and permanent errors,”

IEEE Trans. on Comm., vol. 62, no. 1, pp. 15–28, January 2014.
[9] C.-H. Huang and L. Dolecek, “Analysis of finite-alphabet iterative

decoders under processing errors,” in Proc. IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing (ICASSP), May 2013.

[10] E. Dupraz, D. Declercq, V. Vasic, and V. Savin, “Finite alphabet iterative
decoders robust to faulty hardware: Analysis and selection,” in Proc.

IEEE Int. Symp. on Turbo Codes and Iterative Inf. Processing (ISTC),
August 2014.

[11] A. Balatsoukas-Stimming, C. Studer, and A. Burg, “Characterization of
min-sum decoding of LDPC codes on unreliable silicon,” in Inf. Theory

and Applications Workshop (ITA), 2014.
[12] A. Balatsoukas-Stimming and A. Burg, “Density evolution for min-

sum decoding of LDPC codes under unreliable message storage,” IEEE

Comm. Letters, vol. PP, no. 99, pp. 1–4, 2014.
[13] C. L. Kameni Ngassa, V. Savin, and D. Declercq, “Min-sum-based

decoders running on noisy hardware,” in proc. of IEEE Global Comm.

Conf. (GLOBECOM), 2013.
[14] C. L. Ngassa, V. Savin, and D. Declercq, “Analysis of min-sum based

decoders implemented on noisy hardware,” in Proc. Asilomar Conf. on

Signals, Systems and Computers, 2013.
[15] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-

check codes under message-passing decoding,” IEEE Trans. on Inf.

Theory, vol. 47, no. 2, pp. 599–618, 2001.
[16] C. L. Kameni Ngassa, V. Savin, and D. Declercq, “Unconventional

behavior of the noisy min-sum decoder over the binary symmetric
channel,” in Proc. Inf. Theory and Applications Workshop (ITA), 2014.

[17] D. J. MacKay. Encyclopedia of sparse graph codes. [Online]. Available:
http://www.inference.phy.cam.ac.uk/mackay/codes/data.html

