
CPE: Codeword Prediction Encoder

Abstract—The continuous scaling of the transistor length
has resulted in significant increase in the soft error rate in
combinational circuits. As a result, fault tolerant techniques that
improve circuit reliability are the need of the hour. In the context
of communication and storage, the study of novel techniques
for reliable data transmission under unreliable hardware is an
increasing priority. Traditional fault tolerant techniques analyze
the circuit reliability issue from a static point of view neglecting
the dynamic errors. This paper introduces a novel reliability
driven fault tolerant methodology known as Codeword Prediction
Encoder (CPE) for reliable LDPC encoding by augmenting
extra logic to correct the dynamic errors introduced during the
encoding process. A CAD framework known as CPE simulator
is developed providing a unified platform that comprises of novel
encoder and fault tolerant LDPC decoders. Our experiments on a
set of encoders with different coding rates and different decoders
indicate that the proposed framework can correct all errors under
certain scenarios. On average, about 10K improvement in Soft
Error Rate(SER) reduction is obtained.

Keywords—Low Density Parity Check(LDPC), Fault tolerance,
Forward Error Correction (FEC), Reliability, Soft errors.

I. INTRODUCTION

Low density parity check (LDPC) codes are known to
provide excellent error correction performance that closely
approaches the Shannon capacity of noisy transmission chan-
nels [1], [2]. As a result, they have been adopted in many
current and next generation wireless protocols such as IEEE
802.16E (WiMAX), IEEE 802.11 (Wi-Fi), and DVB-S2/T2/C2
standards, besides many other applications. With the shrinking
advanced CMOS devices, transient error rate traditionally asso-
ciated with memories is increasing there by reduced reliability
of the fundamental logic gates [3], [4]. As a consequence,
in the future systems of communication and storage, errors
may not only come from the transmission channels, but also
from the faulty hardware. Thus, the study of novel techniques
for reliable data transmission using unreliable hardware is an
increasing priority. Important work to cross the field of circuit
design with the knowledge of error correction theory has been
done by Taylor [5], [6] that used LDPC codes to build fault
tolerant storage and computation architectures on unreliable
systems. Following Taylor’s approach, LDPC decoders on
unreliable hardware have been widely investigated [7], [8]. As
a main result, it was shown that when some of the decoder
parameters (number of quantization levels, channel value, etc.)
are carefully chosen, LDPC decoders are naturally robust to
faulty hardware, with no need for additional circuitry. Unfortu-
nately, it was also shown that LDPC encoders completely fail
when they are built from unreliable gates [9]. The focus of the
current work is thus on constructing reliable LDPC encoders
built from unreliable gates.

This paper introduces a novel reliability driven fault tol-
erant methodology known as Codeword Prediction Encoder
(CPE) for reliable LDPC encoding by augmenting extra logic

to correct the errors introduced during the encoding process.
The approach presented here can be seen as an expansion of
the Check Symbols Generation [10] and the Parity Prediction
Function [11], [12], where circuitry is added to a combinato-
rial network to generate extra bit to ensure parity. We formalize
these approaches and extend them to take full advantage of
the power of error correction codes to enable correction of the
faults, and not just detection. The CPE simulator provides a
unified platform which comprises of novel encoder and fault
tolerant LDPC decoders.We employed encoders using regular
LDPC codes with different column weights for the parity check
matrix, namely dv = 3 and dv = 4, and different coding rates,
namely r = 1/2 and r = 3/4. Also, different state-of-the-
art reliability enhanced LDPC decoding mechanisms like Self-
Corrected Min-Sum (SCMS), and Gallager B with Extended
Alphabet(Gal-B) were used. Simulations results prove that it
is possible to retrieve the original information by employing
particular configurations of these encoders and decoders. In
general, output BER is reduced by upto 10K times by adopting
CPE mechanism as compared to transmitting data directly.

The remainder of the paper is organized as follows. Section
II provides a general overview of LDPC and their decoding
algorithm in the generic form. Section III presents the proposed
CPE methodology with a detailed overview of the faulty
encoder and the decoder. Section IV presents the CAD flow
employed to test the methodology. Section V presents the
experimental results based on the evaluations performed on
different set of decoders. Section VI concludes the paper.

II. LDPC CODES AND ERROR MODELS

We consider the data transmission scheme depicted in
Fig. 1. In this scheme, a binary information sequence u of
length k has to be transmitted through a noisy channel. can be
protected by adding some redundancy in the transmitted data.
As u has to be perfectly recovered at the output of the channel,
the information sequence has to be protected by adding some
redundancy in the transmitted data. The data protection can
be done with an LDPC code that encodes the information
sequence u into a codeword x of length n > k. At the output
of the channel, the received sequence y is passed through an
LDPC decoder that aims at reconstructing u.

E channel D

Fig. 1. Data transmission scheme

In this section, we first describe LDPC codes as well as
the encoding and decoding operations. We then introduce the
error model we consider for unreliable gates that constitute the
encoder and the decoder.



A. LDPC codes

Low-density parity check (LDPC) codes are a class of
linear block codes invented by Gallager [1]. An LDPC code
is defined by its binary parity check matrix H of size m× n,
see Fig. 2 (a). A binary vector x of length n is a codeword of
the LDPC code if it satisfies

HxT = 0, (1)

where T is the transpose operator. For LDPC codes, the parity
check matrix H is sparse, i.e., it contains only a few non-
zero components. In the following, we will denote by dv and
dc the number of 1’s in each row and in each column of H ,
respectively. Tanner also introduced a graphical representation
of LDPC codes as shown in Fig. 2 (b). Tanner graphs are
bipartite, which means that the nodes of the graph are separated
into two distinct sets. The first set contains n variable nodes
and the second set contains m check nodes. Edges are only
connecting nodes of two different types, and there is an edge
between variable node v and check node c if and only if there
is a 1 at the corresponding position in the parity check matrix.
At the end, the matrix representation of the LDPC code is
used for encoding, while the graph representation is used for
decoding, as we now describe.

B. LDPC Encoding and Decoding

Once the LDPC parity check matrix H is fixed, it remains
to construct the corresponding encoder that transforms any
information sequence u into a codeword x that satisfies (1).
From H , one can construct a generator matrix G of size k×n,
where k = n − m, that verifies HGT = 0. The encoding
operation can then be realized from the generator matrix as

x = uG (2)

Several solutions have been proposed to construct a gen-
erator matrix G from the parity check matrix H , see [13]
for a review. Most of the usual solutions consider systematic
encoding, for which the codeword x = [u, p]contains both the
information sequence u and m parity bits given by p. In this
case, the left hand side of the generator matrix G is the identity
matrix of size k × k.

(a) parity check matrix

(b) Tanner graph

Fig. 2. LDPC Codes

After encoding, the codeword x is transmitted on the
channel, which outputs y. If the channel is a Binary Symmetric

Channel (BSC), the received word can be written as y = x+e,
where e is the binary error pattern, and the sum above is
computed modulo 2. From condition (1), one can compute the
syndrome z = HxT + HyT = HeT . The decoding problem
consists of finding the most probable vector e that explains the
observation of the syndrome z. For LDPC codes, decoding can
be implemented by message passing algorithms that exchange
messages between variable-nodes and check-nodes, as shown
in Fig. 3. Several LDPC decoders (Gallager B, Min-Sum,
Belief Propagation, etc.) have been proposed, which consist of
different processing rules and simplifications of the message-
passing algorithm.

(a) Check-to-variable
messages

(b) Variable-to-check
messages (c) Posteriori infor-

mation

Fig. 3. LDPC message computation

LDPC codes were initially introduced under the assumption
of reliable hardware. Here, in order to analyze the performance
of LDPC codes under unreliable hardware, we introduce the
error model we consider for the unreliable gates that are used
in the encoder and in the decoder.

AND

XOR

P UA

B

E

Z*

Z

Fig. 4. Gate Error Model.

C. Gate Error Model

We represent unreliable gates by following the Von Neu-
mann model. A Von Neumann erroneous gate is modeled as
an ideal logic gate cascaded with an error injecting XOR
gate. The error-injecting XOR gate determines the stochastic
error behavior by toggling the gate output with a pre-defined
probability. As an example, Fig. 4 graphically represents an
unreliable AND gate. The noise variable E takes value 1 with
a given probability pg that represents the gate error probability.
Under this model, it was shown that LDPC decoders built from
unreliable gates are naturally robust to errors, with no need for
additional circuit protection [8], [14]. Unfortunately, it was also
shown that most of the standard LDPC encoders completely
fail when they are built from unreliable gates [9]. Thus, we
propose a novel robust LDPC encoding solution that consists
of computing extra parity bits, as we now describe.



III. CODEWORD PREDICTION ENCODER (CPE)

Consider the systematic encoding operation described
by (2). Fig. 5 represents the encoding error probability Pe

with respect to the gate error probability pg for various LDPC
codes, with k = 1000, dv = 3 and r = 1/4, 2/5, 1/2, 5/8,
respectively. We see that the encoding error probability does
not depend much on the coding rate. Fig. 5 also shows that
the encoding error probability is dramatically increased with
respect to the gate error probability pg . For example, a gate
error probability pg = 10−4 will give an encoding error
probability Pe = 10−2, which represents an increase by a
factor 100. As a result, the high encoding error probability is
going to combine with the channel noise, and at the end, the
decoder will not be able to recover the original information
sequence u from y. Hence there is a need to drastically
reduce the encoding error probability before transmission on
the channel.

Fig. 5. Encoding error probability Pe with respect to gate error probability
pg . In the legend, the (3, x)-code represents the code with dv = 3 and
dc = x.

As described in Fig. 6, a first solution consists of passing
the noisy codeword x̃ through an LDPC decoder before
channel transmission, in order to eliminate the encoding errors.
This solution will be efficient only if the gate error probability
lead to an encoding error probability lower than the correction
capability of the LDPC code. As the encoding error probability
can be high, we would like to go further than the correction
capability of the LDPC code. We thus propose the Codeword
Prediction Encoder (CPE) approach depicted in Fig 7 which
consists of two methodologies: non-systematic and systematic.

G

Encoder

noisy
D
noisy

Fig. 6. First encoding solution

In case of non-systematic encoding as described in Fig 7(a),
in addition to the parity bits p contained in x̃, we now compute
ma extra parity bits p̃a from u. The vector x̃a = [x̃, p̃a] is
called the augmented codeword. Before channel transmission,
x̃a is passed through a different LDPC decoder, denoted by
DCPE, in order to eliminate the encoding errors. The extra
parity bits p̃a serve only to help eliminate the encoding errors,
and, after decoding, only x̃ is transmitted through the channel.
Thus, both the LDPC code that produces x̃ and the one that
produces x̃a have to lead to good decoding performance.

(a) Non-systematic Encoding (b) Systematic Encoding

Fig. 7. The CPE approach

The CPE approach for systematic encoding is illustrated in
Fig 7(b). We denote by Gp the G sub-matrix of size n−k×k,
corresponding to parity bits. Thus, x= [u, p], and the parity
bits p can be computed by p = u · Gp. In this case only the
parity bits p can be affected by gate errors, while the data
bits u are assumed to be error free. We also denote the circuit
composed either by G and Pa (non-systematic case) or by Gp

and Pa (systematic case) as GCPE

The DCPE decoder used at the encoding side makes use
of both the original parity bits p̃ and of the extra parity bits
p̃a to eliminate the encoding errors. If the LDPC codes are
constructed carefully, this strategy will result in increased cor-
rection capabilities for the augmented codeword x̃a compared
to the initial codeword x̃. For good code construction, an
important condition is that the extra parity bits p̃a are inde-
pendent of the original parity bits p, which means that p̃ and
p̃a are computed from different combinations of bits from u.
To guarantee the independence while insuring good decoding
performance for both x̃a and x̃, we consider split-extended
construction introduced in [15]. Precisely, the additional parity
bits p̃a are computed in the same way as the “extended bits”
in [15], and the DCPE decoder utilizes the split-extended parity-
check matrix defined therein.

At the end, the performance of the proposed CPE approach
will depend on the choice of the code (rate, degrees, etc.)
and of the considered LDPC decoder. In the following, before
presenting the evaluation results for different codes and de-
coders, we proceed to describe how we implement the CPE
methodology.

IV. CPE SIMULATOR & CAD AUTOMATION

The CPE simulator has been developed to validate the
proposed CPE methodology and evaluate its performance.
The CPE simulator automates the process of simulating the
standard data transmission over noisy channels with circuits
build using faulty error prone gates. Fig. 8 describes the
complete CAD flow of the tool. It comprises of 2 main steps,
namely: i) Pre-Processing ii)Testing using CPE simulator. This
section describes the two steps.

A. Pre-Processing

The CPE simulator accepts all the input files namely, the
two encoders composing the GCPE encoder, and the LDPC
generator matrix. A number of scripts were developed in order
to perform pre-processing of all the input files before they can
be run through the CPE simulator. In particular, the traditional
verilog netlists that describe the encoding circuits have to be
converted into internal proprietary format that is easy to parse
by the CPE simulation engine. As a key point to understand the



whole process, we first present the internal netlist proprietary
format that we have employed.

B. Netlist Format

Any gate level synthesized representation of digital circuit
is represented as collection of gates commonly referred to as
netlist. Since CPE simulator is a tool completely developed
in C++, it cannot understand the terminology of gates. Hence,
we have developed an internal proprietary format to represent
the verilog netlists. Each gate in the circuit is converted into a
node within the internal format. The following convention is
used to represent all possible gates: 0 = NOT, 1 = AND, 2 =
OR, 3 = XOR, 4 = NAND, 5 = NOR, 6 = XNOR A node X is
called a predecessor of Y if the output of X is an input of Y
(in graph terminology, there is a directed edge from X to Y).
In this case, Y is said to be a successor of X. The indegree
of a node is defined as the number of its predecessors input
nodes must have indegree equal to zero The outdegree of a
node is defined as the number of its successors output nodes
must have outdegree equal to zero. In simple circuit design
terminology, indegree and outdegree correspond to fan-in and
fan-out of the gates. Nodes of type 0 must be of indegree =
1. Nodes of type 2-6 must be of indegree ≥ 2.

A number of consistency checks are performed in order
to make sure the netlists adhere to the syntax. All the input
nodes (numbered from 0 to N inputs − 1) are checked to have
indegree zero while the output nodes (numbered from N inputs to
N inputs +N outputs-1) must have outdegree zero. The processing
order of internal and output nodes, i.e. which nodes must be
processed in the first stage, which nodes must be processed
in the second stage, etc is precomputed to facilitate the CPE
simulator. Nodes processed in the first stage are those whose
all predecessors are input nodes. Nodes processed in stage I
(I ≥ 2) are those whose predecessors are either input nodes
or have been processed during stages 1, ..., I . If a processing
order cannot be found, consistency check error is popped and
the simulation is killed citing error in netlist files.

The internal format of circuit representation allows simu-
lating the netlist in C++ through the CPE simulator, as we now
describe.

C. CPE Simulator

In the CPE simulator itself, a source module generates
the pseudo random input vectors. The output of the source
module goes into the two encoder modules which propagates
the faults through the circuits. The output of the encoders
along with original databits is used by the DCPE decoder
module to generate the codeword that can be transmitted over
the channel. Finally, output from the decoder goes into the
BER/FER estimation module where it is compared to the
original input generated by the SRC module.

In the CPE simulator, errors are injected by flipping the
output of each gate with a pre defined error probability. For
simplicity purpose, the same value of probability is used for
all the gates, irrespective of their type or their position within
the graph. The methodology employed to insert faults is called
as “Gate output probabilistic mutant”- it alters the gate output
with a given probability.

Fig. 8. The CPE CAD flow

Some particular gates of the circuit may be critical, in the
sense that injecting only one error at the output of such gates
may result in a very large number of errors at the output of the
circuit. In the following, we explain how to identify and protect
these gates by introducing the notion of Criticality Threshold
(CT).

D. Criticality Threshold

A gate is critical when the output of the gate is propagated
to a large number of outputs of the circuit. Such error event is
characterized by a very high number of errors on the output
of the circuit and causes decoding failures with very high
probability. In order to identify the critical gates at the design
time, we use the graphical description of the netlist introduced
above, and proceed as described below.

The criticality degree of a node X , denoted by cdeg(X),
is defined as the number of output nodes to which X is
connected by at least one path. Thus, injecting an error in
node X , may produce at most cdeg(X) errors on the output.
In our simulations, we fix a criticality threshold (CT): Nodes
X with cdeg(X) > CT are considered to be “protected” (e.g.
by increasing area), so as to make then reliable (error-free).
Hence, errors are injected only in nodes X with cdeg(X) <
CT. For example, fixing CT = 5, infers that errors are injected
only in those nodes that are connected to less than 5 output
nodes (cdeg(X) < 5) A particular case is CT = −1, which
means that all nodes are error-prone (no “protected” nodes).

Now that we have presented the CPE simulator, we proceed
to describe the experimental results we obtained.

V. EXPERIMENTAL RESULTS

A number of encoders have been simulated using the
CPE simulator employing different decoding algorithms. Two
scenarios are under investigation: 1. Both encoder and de-
coder are assumed to be error prone. 2. Only the encoder
block is faulty. The first scenario is the most generic and
assumes both “encoder” and “decoder” to be fault prone. Given
such situation only LDPC codes are usable for the coding
schemes, the only known ECC for which fault tolerant decoder



exist. But, we also consider the “perfect decoder” case that
presents an evident asymmetry between the “encoder” and
the “decoder”. This allows one to use coding schemes other
than Low Density Parity Check Codes as ECC codes are not
available for faulty decoder. From the encoder point of view,
four different configurations are employed. Thus, we consider
regular LDPC codes with different column weights for the
parity check matrix, namely dv = 3 and dv = 4, and different
coding rates, namely r = 1/2 and r = 3/4. From decoder
perspective, we have employed three state-of-the-art reliability
enhanced LDPC decoders within the CPE CAD flow: Min-
Sum (MS), Self-Corrected Min-Sum (SCMS), and Gallager B
with Extended Alphabet(Gal-B). Next, we present simulations
results of the CPE scheme for different scenarios. Due to lack
of space, we focus mainly on the symmetric scenario namely,
both the encoder and the decoder are faulty. For the sake of
completion, Fig. 12 presents the CPE performance assuming
the decoder to be perfect.

TABLE I. CRITICAL GATE COUNT FOR DIFFERENT ENCODING

SCHEMES

Encoder GCPE Node Count CT=10 CT=20 CT=50

dv3-r12 44399 3373 1844 833

dv3-r34 28182 2288 1240 537

dv4-r12 45175 3424 1851 824

dv4-r34 27167 2112 1183 488

A. Critical Nodes

As defined in the previous section, criticality degree of a
gate is defined as the number of erroneous outputs generated
when the gate is in error (assuming that all the other gates are
error-free). Tab. I lists the count of total & critical nodes within
the four encoding schemes. The encoding scheme parameters
are given in the first column while column two provides the
count of total nodes within the GCPE encoder. The following
three columns list the count of critical nodes when critical
threshold CT is set to 10, 20, and 50 respectively. Critical
nodes are the ones which generate maximum number of
errors on the output nodes of the encoder. They have to be
safeguarded from external aggressions that would toggle the
output value resulting in errors. We are currently looking at
solutions to turn the critical gates into always reliable. One
possibility would be to use modular redundancy for these gates
which means that each gate is repeated N times (say 3 times)
and a majority logic gate decides the output value. The other
alternative is to make sure we define a different voltage island
for all these critical gates so that they are powered up by higher
voltage.

As expected, lower the value of critical threshold, higher
the number of critical nodes within the encoder. As a tradeoff,
a lower critical threshold is also expected to lead to lower
encoding error probability. To illustrate this, we employed an
encoder with r = 3/4 and dv = 4 and DCPE was set to
Min-Sum model. As depicted in Fig. 9, the output BER value
reduces with the critical threshold values. It infers that more
the number of nodes safe guarded from possible soft errors,
higher the possibility of retrieving the original information.

Fig. 9. Critical Threshold impact on Output BER

B. Impact of Decoder Configuration

We benchmark the reliability enhanced LDPC decoders
with respect to their performance as well as their ability
to effectively deal with the circuit fault-induced probabilistic
behavior. For faulty decoders, we assume that the output
of every variable and check node function computation is
flipped with a probability p = 10−3. For non-binary message
alphabets, flipping the output value means that a value different
from the correct one is selected uniformly at random from
the alphabet. Fig. 10 highlights the output BER values for
different faulty decoders and the default non-CPE approach
when the critical threshold is set to 20. The encoder employed
in this particular case has the following parameters r = 3/4
and dv = 3. Clearly, SCMS and MS decoders provide the best
performance by reducing the error rates to upto 10K times
better than the default encoder. Gal-B provides upto 100 times
improvement in terms of error correction. It also illustrate
the performance of CPE compared to the default encoding
mechanism. For example, for CT = 10 and for a gate error
probability Pg = 1e−4, the BER of CPE is 5.83e−8, while
the BER of the encoder without protection is 5.54e−3. This
represents a significant improvement, by more than 5 orders
of magnitude. Furthermore, by injecting errors only on non-
critical gates, the performance of CPE fared much better than
the default encoding mechanism.

Fig. 10. Decoder Configuration impact on Output BER

For the encoder with dv = 4 and r = 1/2, by setting the CT
value to 10, it is possible to provide fault free information when
the gate error rate is less than 10−4. As depicted in Fig. 11,
the CPE mechanism provides error free output for gate errors
smaller than Pg = 6e−4. We employed MS decoding scheme
and adopted an encoder with r = 1/2 and dv = 4 for achieving



this kind of performance. For the sake of completion, Fig. 12
illustrates the similar scenario assuming a perfect decoder. In
such case, we see that CPE performance improves marginally
as compared to employing faulty decoder.

Fig. 11. CPE error free scenario employing faulty decoder

Fig. 12. CPE error free scenario employing perfect decoder

VI. CONCLUSION

A novel fault tolerant methodology known as Codeword
Prediction Encoder (CPE) for reliable data transmission using
unreliable hardware is proposed. The principle idea is to adopt
additional LDPC encoder specifically to correct dynamic errors
introduced during the encoding process. The CAD flow for
CPE methodology is implemented and performance evaluation
has been completely automated. Simulation results shows that
performance of CPE is much better as compared to trans-
mitting data by employing traditional encoding methodology.
Performance evaluation using various fault tolerant LDPC
decoders were discussed. It is shown that by employing Min-
sum decoding mechanisms and a strong encoder r = 1/2 and
dv = 4, it is possible to correct all errors given that gate
errors smaller than Pg = 6e−4. In general, CPE performance
improvement of upto 10K is observed when compared to the
normal encoding mechanism.

REFERENCES

[1] R. G. Gallager, “Low-density parity-check codes,” Information Theory,

IRE Transactions on, vol. 8, no. 1, pp. 21–28, 1962.

[2] D. J. MacKay and R. M. Neal, “Near shannon limit performance of

low density parity check codes,” Electronics letters, vol. 32, no. 18, pp.

1645–1646, 1996.

[3] S. Borkar, “Designing reliable systems from unreliable components:

the challenges of transistor variability and degradation,” Micro, IEEE,

vol. 25, no. 6, pp. 10–16, 2005.

[4] C. Constantinescu, “Trends and challenges in vlsi circuit reliability,”

Micro, IEEE, vol. 23, no. 4, pp. 14–19, 2003.

[5] M. G. Taylor, “Reliable information storage in memories designed from

unreliable components,” Bell System Technical Journal, The, vol. 47,

no. 10, pp. 2299–2337, Dec 1968.

[6] ——, “Reliable computation in computing systems designed from

unreliable components,” Bell System Technical Journal, The, vol. 47,

no. 10, pp. 2339–2366, Dec 1968.

[7] B. Vasic and S. K. Chilappagari, “An information theoretical framework

for analysis and design of nanoscale fault-tolerant memories based

on low-density parity-check codes,” Circuits and Systems I: Regular

Papers, IEEE Transactions on, vol. 54, no. 11, pp. 2438–2446, 2007.

[8] C. K. Ngassa, V. Savin, E. Dupraz, and D. Declercq, “Density evolu-

tion and functional threshold for the noisy Min-Sum decoder,” IEEE

Transactions on Communications, vol. 63, no. 5, pp. 1497–1509, May

2015.

[9] E. Dupraz and D. Declercq, “Evaluation of the robustness of LDPC

encoders to hardware noise,” in IEEE BlackSeaCom conference, 2015,

pp. 1–5.

[10] M. R. Choudhury and K. Mohanram, “Low cost concurrent error

masking using approximate logic circuits,” Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on, vol. 32, no. 8,

pp. 1163–1176, 2013.

[11] E. Sogomonjan and M. Goessel, “Design of self-parity combinational

circuits for self-testing and on-line detection,” in Defect and Fault

Tolerance in VLSI Systems, 1993., The IEEE International Workshop

on, Oct 1993, pp. 239–246.

[12] S. Manich, M. Nicolaidis, and J. Figueras, “Enhancing realistic fault

secureness in parity prediction array arithmetic operators by i ddq

monitoring,” in VLSI Test Symposium, 1996., Proceedings of 14th.

IEEE, 1996, pp. 124–129.

[13] T. Richardson and R. Urbanke, “Efficient encoding of low-density

parity-check codes,” IEEE Transactions on Information Theory, vol. 47,

no. 2, pp. 638–656, 2001.

[14] C.-H. Huang, Y. Li, and L. Dolecek, “Gallager B LDPC Decoder with

Transient and Permanent Errors,” IEEE Transactions on Communica-

tions, vol. 62, no. 1, pp. 15–28, 2014.

[15] V. Savin, “Split-extended LDPC codes for coded cooperation,” in

International Symposium on Information Theory and its Applications

(ISITA), 2010, pp. 151–156.


