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Abstract—In the 1960s–70s, Taylor and Kuznetsov obtained
a remarkable result that information can be reliably retrieved
from a noisy channel even if a decoder is made of noisy
components. The results of Vasic and Chilappagari presented
at the ITA Workshop ten years ago have revived the interest in
decoders made of noisy hardware and since then a number of
improvements of the iterative decoders have been made to bring
their performance closer to that of their perfect counterparts.
However, a common mantra has been that noisy decoders cannot
be better than their perfect counterparts. In this talk we report
an unexpected phenomenon we have recently discovered—noise
can actually improve the error correction process by reducing
the probability of decoding error, in some cases by more that
two orders of magnitude. This new form of stochastic resonance
enables us to use logic gate errors to correct channel errors.
This novelty recognizes that the decoder—essentially an iterative
minimization of the Bethe free energy on the code graph—can
get trapped in local minima, and random perturbations help the
decoder to escape from these minima and converge to a correct
code-word. In the spirit of Marcus Tullius Cicero’s “Clavus
clavo eicitur,” (“one nail drives out another”) they operate on
the principle: Error errore eicitur” - “one error drives out
another.” Crucially, such useful random perturbations require
neither additional hardware nor energy, as they are built into
the low-powered, noisy hardware itself.

I. INTRODUCTION

The maximum likelihood (ML) decoding of a binary code
is a Voronoi binning of points in the Hamming space with
codewords as centers of the regions. Voronoi decomposition
completely characterizes the performance of the decoding
algorithm, but naturally, such an algorithm has exponential
complexity and requires global knowledge of the entire space.
On the other hand, iterative message passing decoders achieve
low complexity by requiring only local knowledge - the
value of a bit and its intermediate dependencies of other
bits. The dependencies are described by a graph, and the
algorithm operates on this graph. Hence, both performance
and complexity of iterative decoders are governed by the
nature of the local computation in the code graph as well
as the choice of the graph. The suboptimality of the existing
iterative decoders results from the fact that they ignore the
topology of the bit neighborhood as they still operate under
the assumption that the graph is a tree. However, the concept

of message passing is rich enough to describe a large class
of decoders - even ML decoders - by using messages which
convey information regarding the local neighborhood of a
node in the graph. An extreme example would be a decoder
in which every message contains a description of the entire
graph. Even more extreme would be a decoder in which each
message conveys the description of the Voronoi tessellations.
A natural question that arises in this context. What are the
local message passing rules used in graph nodes to update
the messages in a given iteration in order to adequately and
efficiently use the information about the neighborhoods? At
first sight, conveying the local structure of the Tanner graph
by employing more bits in the decoder appears complicated
and one might perhaps be tempted to conjecture that the
message length and consequently the complexity would be
prohibitively large. However as our results [1] demonstrate,
small number of additional bits in the messages can implicitly
carry the topological information and a variable node can infer
such information on the basis of the incoming messages. In
other words, the topology surrounding the variable node is
compressed into a small number of bits in messages by using
knowledge of what messages are possible for a given topology.
The key point lies in the fact that all the computations in such
Finite Alphabet Iterative Decoders (FAID) still remain local
in nature [2], [3]. In addition to the fact that it lends itself
to low complexity implementation, the above low message
precision feature has another important implication. A number
of different decoders exists that employ the same number of
bits, and error patterns uncorrectable by one decoder may be
correctable by another decoders [4]. As we have shown [3],
it is beneficial to use a set of decoders and switch from one
decoder to another to ensure success on a large set of error
patterns.

In our work on ML approaching performance of FAID
decoders under the diversity framework, for a given code
we found a set of FAIDs is capable of correcting errors not
correctable by individual decoders in the set [2], [3]. Moreover,
we found that decoder diversity technique is ML approaching
when the decoder set is large (9,236 distinct decoding rules
in [3]). Moreover, the switching between decoders can be



accomplished by minor variations of the Boolean functions
representing the message maps and therefore does not require
elaborate changes to decoder architecture.

However, an interesting situation arises when a
decoder itself is made of noisy components. For
example, in low-powered submicron complementary
metal–oxide–semiconductor (CMOS) chips, the supply
voltage is kept low in order to reduce power consumption,
thus making logic gates susceptible to noise and increasing the
probability of incorrect logic gate output. Due to unreliability
of its logic gates, the correction circuit - whose purpose is to
correct errors - introduces errors in the process of correcting
errors from the storage medium. Making logic gates reliable
(for example by using larger supply voltages) appears as
a logical solution. We show that the correction circuit can
operate in the unreliable (low-power) gate - regime, and still
be able to correct more errors than the noiseless correction
circuit. Moreover, the random perturbations do not require
any additional computational resources as they are built in
the unreliable hardware itself. The main idea of this paper is
that decoder diversity is inherently present in a single noisy
decoder and that different decoders can be readily obtained
simply, for example by changing supply voltage of some
gates in the decoder, thus modifying the node update rule and
consequently the decoding dynamics.

Fault-tolerant decoding and storage has attracted significant
attention lately, and numerous approaches have been proposed
which exploit the inherent redundancy of the existing decoders
[5], [6], [7], [8]. It is not obvious that such noisy decoders can
ensure reliable storage of information because more powerful
decoders – capable of correcting more errors in the medium
– may require more logic gates, thus introducing more com-
putational errors. In light of that, it is even more surprising
that the logic gate errors may help the decoder. We proceed to
show exactly this. We present a class of noisy decoders that
perform better than their noiseless counterparts.

The first trace of using randomness in the decoder can be
found in Gallager’s work where the random flips are used
to resolve ties in the majority voting operation in the variable
node, while the first iterative decoding algorithm that explicitly
relies on randomness to correct errors is Miladinovic and
Fossorier’s Probabilistic Bit Flipping (PBF) [9]. A closely
related technique of adding noise to messages in a BP decoder
on the AWGN channel is by Leduc-Primeau et al. [10] for
reducing error floor in the context of noiseless decoders. In
these papers the randomness is deliberate. Recently it was
shown by Sundararajan et al. [11] that random perturbations
can be used to increase the performance of a gradient descent
bit flipping decoder (GDBF), introduced by Wadayama et al.
[12]. At the same time we observed that the randomness com-
ing from computational noise even more improves the GDBF
decoding performance. Based on that result we developed a
probabilistic gradient-descent bit flipping (PGDBF) algorithm
[13] for the Binary Symmetric Channel (BSC). Introducing
a random perturbation is reminiscent of the operation of
mutation in genetic algorithms [14] (the inverse or energy

function in the PGDBF algorithm is reminiscent of the fitness
function in genetic algorithms). Similar effect is observed in
neural networks. For example, Karbasi et al. [15] showed than
noise improves performance of the recall phase in associative
memories.

For the scheme to work, not all logic gates can be allowed
to be noisy. Small fraction of critical ones are made reliable.
This can be practically done using larger transistor size,
higher voltage supply or slower clock. Secondly, to avoid
accumulation of errors and divergence from the true codeword,
the decoder is periodically rewound - i.e., re-initialized and
restarted.

II. NOISY DECODER

Prior to transmission over the Binary Symmetric Channel
(BSC) with probability of error αM , each k-bit user informa-
tion is encoded by an (n, k) linear block code of length n and
code rate R = k/n. Due to channel errors, the codeword x
is received as y. Thus, y = (y1, y2, . . . , yn), the word at the
output of the channel can be expressed as y = x⊕e, where ⊕
denotes XOR operation, and the elements of the vector e are
independent Bernoulli random variables with parameter αM .
The vector y is input to the iterative decoding algorithm whose
goal is to recover x.

A noisy decoder can be defined as a circuit which performs
computations on noisy logic gates that follow the Neumann
failure mechanism. An obvious way to ensure robustness of
a decoder is to employ the von Neumann multiplexing [16].
However, this comes with a price of very large redundancy.
The first attempt to use a more advanced coding scheme from
unreliable components is due to Taylor [17] and Kuznetsov
[18]. The recent impressive developments on LDPC codes has
renewed the interest for these early works.

Our approach is based on low-density parity check (LDPC)
codes and iterative decoding [19]. It is applicable to any LDPC
code type, but for the sake of clarity, we discuss a subclass
of the (γ, ρ)-regular LDPC code ensemble [19]. The integer
parameters γ and ρ determine code rate R ≥ 1 − γ

ρ , and
the structure of the decoder, namely the number of input
arguments to Boolean functions used in the decoder.

The noisy iterative decoding algorithm [20] operates on
a graphical representation of a code G = (V ∪ C,E). The
code graph G is a bipartite graph whose edges in the set E
connect the variable nodes in the set V with check nodes
in C. The decoding algorithm consists of sending binary
messages between variable nodes v ∈ V corresponding to
code bits and check nodes, c ∈ C corresponding to parity
check equations in which the variables (bits) are involved
in. Various choices of algorithms are considered in literature.
Our decoding algorithms are based on the modification of
the Gallager-B [19] and gradient-descent bit-flipping (GDBF)
[12] algorithms, for which the messages are represented by a
single bit. For these algorithms the update functions require
only two types of logic gates: majority logic (MAJ) and XOR
gates. Note the logic gate errors can occur because of gate



unreliability, but can be also deliberately inserted with a goal
to improve the performance of the decoder.

For these noisy decoders, we represent the effect of the
noisy gates by errors on the messages exchanged between the
two sets of nodes, in the following way. The messages ν̃(`)

from variable nodes and µ̃(`) from check nodes during the `-th
iteration are expressed as

ν̃(`)v→c = ν(`)v→c ⊕ e
(`)
MAJ,v→c

µ̃(`)
c→v = µ(`)

c→v ⊕ e
(`)
⊕,c→v. (1)

where ν(`) and µ(`) represent their counterparts calculated on
reliable hardware. e(`)MAJ and e

(`)
⊕ in Eq.1 denote the errors

in majority logic and XOR gates affecting computation of the
messages ν(`)v→c and µ

(`)
c→v , respectively. If the decoder was

deterministic, then e
(`)
MAJ and e

(`)
⊕ in Eq.1 would be zero.

For noisy decoders, they are independent Bernoulli random
variables with parameters αMAJ and α⊕, respectively.

Let us now describe the specifics of the two algorithms used
in this paper.

Gallager B decoder For the Gallager B we have ν(`)v→c =

Φ1(yv,m
(`)), where m(`) = µ̃

(`)
Nv

denote the incoming mes-
sages to the variable node v from all its neighbors Nv excepts
the check node c. The variable node update function Φ1(·) can
be express as follows

Φ1(yv,m
(`)) =

{
s if |{c′ ∈ Nv \ c : µ̃

(`)
c′→v = s}| > bγ2 c,

yv otherwise.

Similarly, µ(`)
c→v = Ψ1(n(`−1)), where n(`) = ν̃

(`)
Nc

denote
all incoming messages to the check node c from its neighbors
except the variable node v. For the Gallager B, the check node
update function Ψ1(·) is a simple XOR function

Ψ1(n(`−1)) =
⊕

v′∈Nc\{v}

ν̃
(`−1)
v′,c .

GDBF decoder The Gradient Descent Bit Flipping decoder
[12] does not propagate extrinsic informations between the
nodes. Instead, all messages sent from the variable node v
in the `-th iteration are the same and represent the current
estimate of the bit ν(`)v , i.e. ν(`)v = ν

(`)
v→c, ∀c ∈ Nv . Ac-

cordingly, all messages sent from the check node c are equal,
and represent the value of the parity check i.e. µ(`)

c = µ
(`)
c→v ,

∀v ∈ Nc.
At iteration `, the bit estimate is the result of the update

function Φ2(yv, ν
(`−1)
v , m̌(`)), where m̌(`) represents the set

of all incoming noisy messages to the variable node v.

Φ2(yv, ν
(`−1)
v , m̌(`)) =

{
ν
(`−1)
v ⊕ 1 if Λ

(`)
v = b(`),

ν
(`−1)
v otherwise,

where the energy function [12] Λ
(`)
v is calculated as

Λ(`)
v = ν(`−1)v ⊕ yv +

∑
c∈Nv

µ̃(`)
c ,

the threshold value b(`) represents the maximal value of
energy function at the current iteration, i.e., b(`) = max

v
(Λ

(l)
v ).

The procedure of dynamical tuning of the threshold b(`) is
considered in [21], where we shown that the performance of
GDBF can be improved for some codes if the threshold value
changes with the iteration number. In this paper we assume
that the circuit that performs the calculation of the threshold
is made of noiseless gates.

In check nodes, only parity check equations are calculated
and passed to all neighboring variable nodes

Ψ2(ň(`−1)) =
⊕
v′∈Nc

ν̃
(`−1)
v′,c .

For both type of decoders described above, the iterative
procedure is halted when all parity checks are satisfied or the
predefined maximum number of iterations L, is reached. The
decoding is called successful if a codeword (either correct or
wrong) is found. Otherwise, the decoding is said to have failed.
The event of producing a codeword estimate which is a wrong
codeword is called an undetected error.

A. Rewinding

To allow the decoder to benefit from the noise present in
Eq. 1, large number of iterations is needed. However, too
many logic gate errors can overwhelm the decoder, and lead to
decoder failure or undetected errors. In addition to the update
rules given in the previous section, our decoders are equipped
with a key feature which prevents the accumulation of errors
in the messages when the number of iterations is large.

The decoder is initialized by the channel values, and run for
L0 iterations, after which the bit estimates, x̂v are stored in
a reference vector u = (uv)1≤v≤n, where uv = Ω(x̂

(L0)
v ),

and Ω : {±1} → Y (for the BSC, Ω(a) = sgn(a)). L0

is a predefined iteration number (determined for example as
iteration in which the noiseless decoder is expected to correct
most channel errors).

If a codeword is not found in L0 iterations, the decoding
algorithm is re-initialized with the reference vector u rather
than with the word received from the channel and run for
another r − 1 rounds where the round i has Li iterations,∑

0≤i≤r−1 Li = L. At the beginning of each round, the
decoder is rewind and initialized by the reference vector u.

u(`)v =

{
yv ` = 0

Ω(x̂
(L0)
v ) otherwise

Thus instead of running the whole L iterations, the decoder
instead runs r shorter rounds.

ν(`)v→c =

{
uv ` ∈ I
Υ(·) otherwise

where

Υ(·) =

{
Φ1(u

(`)
v ,m(`−1)) for Gallager B

Φ2(yv, x̂
(`−1)
v , m̃(`−1)) for GDBF



I = {Ii}0≤i<r−1 and the iteration numbers at the beginning
of the rounds are I0 = 0 and Ii = Ii−1 + Li−1.

A decoder with such rewinding schedule is referred to as
the rewind-decoder and denoted by F	r

(L), where L =
(L0, L1, . . . , Lr−1). To simplify explanations, we will assume
that Li = LR, 0 < i < r.

We write this as

F	r

(L) = F(L0)3F(L1)3 · · ·3F(Lr−1)︸ ︷︷ ︸
r

. (2)

where 3 denotes the rewinding schedule. Clearly, the plain
noisy Gallager-B decoder with no rewinding, denoted by
F(L), is a special case of the rewinding decoder, F(L) =
F	1

(L).

B. Critical Gates Must be Noiseless

Note that the logic gates gates used to extract the bits from
any decoder must be noiseless, otherwise the error rate would
be bounded by the reliability of these external gates [20]. Thus,
the majority-logic gates in the decoder’s decision logic (the
function Φ̂) are made of noiseless gates. We also assume that
the encoder is noiseless. The effect of errors in the encoder are
incorporated in the value of the channel error probability αM .
The register inside the decoder which temporarily stores the
word read from a memory medium (the channel values) is also
reliable. This is necessary because otherwise the codeword
estimate would drift away from the true codeword in the course
of decoding, as iterations progress. Registers for storing the
intermediate results of computations of Φ and Ψ are unreliable,
and their unreliability is accounted for in αMAJ and α⊕.

As syndrome checker is used as a decoding halting criterion,
it must be also made noiseless. To reduce power consumption
in a decoder, we may want to perform syndrome checking
not in every iteration but according to a predefined schedule.
The optimal schedule is beyond scope of this paper, and we
will simply adopt a schedule in which the decoder runs on
noisy hardware for maximum of L iterations, during which
the (noiseless) syndrome checker is used only in the a few
first iterations and in the last Z iterations.

The decoding is halted in the first of these Z iterations
in which a codeword is found. The Z/L ratio determines
the decoding efficiency, thus is kept low. In the rewinding
schedule, the syndrome checker is used in all LR iterations
in the first decoding round, and after the first rewinding it is
used in the last Z iterations in each round.

III. ANNIHILATION OF TRAPPING SETS BY LOGIC GATE
ERRORS

If a decoding graph of the LDPC code has sufficient expan-
sion [22], the noiseless iterative decoder guarantees correction
of number of errors linear in codeword length, n. We proved
that a noisy iterative decoder also tolerates a constant fraction
of failures in all the components [23]. However, since all the
gates were assumed to be noisy, the number of correctable
errors was smaller then that of the noiseless decoder. For finite
length codes, even a noiseless iterative decoder fails to correct

some low-weight error patterns due its sub-optimality. The
decoding orbit {µ(`)}`≥0 corresponding to such error pattern
exhibits periodic or fixed point behavior. Subgraphs induced
by variable nodes corresponding to the support of these error
patterns are known as trapping sets [24]. Now we show that
memory element errors inducing trapping sets can be corrected
by logic gate errors.

It is known that for small αM , dominant contribution to
the FER comes from small trapping sets [24]. Trapping sets
of Gallager-B decoding are completely characterized for the
γ = 3 case [25]. For our discussion it suffices to define an
(a, b) trapping set as a bipartite subgraph induced by a variable
nodes, which contains b odd degree check nodes.

The above trapping set phenomenon can be explained by
viewing iterative decoding as a recursive procedure for Bethe
free energy function minimization. The relation of a class
of iterative decoders, called Belief Propagation (BP) and the
Bethe free energy (BFE) minimization has been established
in [26] and studied thoroughly in recent years [27]. The fixed
points of BP correspond to the stationary points of the BFE.
While in a tree-like graph the BFE is a concave function, in
a loopy graph, local minima are present leading to oscillation
and multiple fixed points. When the BP is used to compute
the marginals of codeword symbols on (loopy) code graphs,
these local minima are responsible for decoding failures and
correspond to trapping sets [28]. The same holds for iterative
decoders that can be derived from BP, such as the Gallager-B
algorithm used in our scheme. The reason the trapping sets are
annihilated is that the randomness in message updates helps
the decoder to escape from these local minima.

Good Deeds of Logic Gate Errors
Now we provide experimental evidence that the errors in

logic gates improve the decoding performance. We first show
that a decoder with noisy gates is capable of correcting (5, 3)
trapping sets that are uncorrectable by the noiseless Gallager-
B decoder. We consider the (3, 5)-regular (n, k) = (155, 64)
LDPC code constructed by Tanner [29], which is widely
used in literature. The minimum Hamming distance between
codewords is dmin = 20, thus the noiseless maximum likeli-
hood (ML) decoder would be able to correct any nine-error
pattern. However, the noiseless Gallager-B decoder fails on
some three-error patterns [30]. In the (155, 64) Tanner code,
every uncorrectable three-error pattern induces a (5,3) trapping
set of a unique topology. Now, we show that these three-error
patterns can be corrected by our noisy decoder.

We consider two different scenarios: (i) when check node
processing is noiseless and only MAJ gates are noisy, and
(ii) when variable node processing is noiseless and only XOR
gates are noisy. The logic gate errors are von Neumann’s.

The conditional FER of the Tanner (155,64) code for the
most critical three-bit error patterns (denoted by FERe) is
presented in (Fig. 1(a) and (b)). The particular low-weight
error pattern cannot be decoded by noiseless hardware, but it
can be decoded with non-zero probability for a wide range of
gate error probabilities αMAJ and α⊕. After sufficient number



of iterations, the minimum FER is not achieved for noiseless
gates but for some nonzero value of the gate error rates αMAJ

and α⊕. For a broad range of gate error rates, our decoder
actually benefits from logic gate errors.

Increasing the maximum number of iterations, L, reduces
the probability that the error pattern remains uncorrected. The
impact of L is especially noticeable for high reliability gates
(i.e., low αMAJ and α⊕), as it can be seen From Fig. 1(a)
and Fig. 1(b). In this case, hardware errors cannot help
much in annihilating trapping sets because the state transition
probabilities in W are small for most transitions other than
those that already exist in the noiseless decoder. Consequently,
the convergence to a codeword takes longer (it also grows with
n). On the other hand, increasing Z is has stronger effect when
gates are very noisy. Hence, prolonging the second stage of
the decoding algorithm greatly improves the performance of
a decoder made of the less reliable hardware. For high gate
error rates, L has smaller impact. If some FER degradation
can be tolerated, the low ratio Z/L can be used in order
to improve the decoder energy efficiency in this case. Also,
it can be noticed that a noisy XOR gate has approximately
(ρ− 1) stronger effect on the FER performance than a noisy
MAJ gate. In other words α⊕ ≈ (ρ − 1)αMAJ would result
in approximately the same performance, as shown earlier.
Therefore, the impact of the both types of failures can be
represented by using a single parameter denoted as αG.

It is important to notice that the results in (Fig. 1) are
given for an error pattern that is uncorrectable by the noiseless
decoder. Therefore, for this particular error pattern, the noisy
decoder works better than the noiseless one for any gate failure
rates in the range αMAJ ≤ 0.02 and α⊕ ≤ 0.1, and for any
L and Z. Optimization of these parameters can lead to further
improvements in decoder performance and energy efficiency.

IV. AVERAGE FER PERFORMANCE

In Section III we have shown the performance of Gallager-
B decoder for a critical error pattern. By averaging over all
error patterns, we obtain the average FER as

FER(D) =
∑

e∈{0,1}n
Pr{e} × FERe(D). (3)

The probability of the error pattern e, Pr{e}, depends on its
Hamming weight w(e). In the case of transient i.i.d. memory
errors occurring with probability αM , the probability e, Pr{e}
can be expressed as

Pr{e} = α
w(e)
M (1− αM )n−w(e). (4)

A noiseless decoder for which αMAJ = 0 and α⊕ = 0,
converges to either one of the codeword - which are the fixed
points - or to a trapping sets - which can be either fixed points
or cycle attractors. Noiseless decoder may oscillate between
these states, and fail to converges to a codeword. On the
other hand, in a noisy decoder - where αMAJ and/or α⊕
are nonzero - every output message can be produced with a
nonzero probability. Thus, the noisy decoder will eventually
converge to a codeword - either correct or incorrect one.
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(b)
Fig. 1. The frame error rate performance of noisy Gallager-B decoder for
Tanner (155,64) code as a function of error rates in the logic gates, αMAJ and
α⊕. The FER curves are estimated by using Monte Carlo simulations. The
storage medium introduces the worst case three errors-pattern which induces
the (5, 3) trapping set. The maximum number of iterations is L = 200 and
L = 500, and the noiseless syndrome checker was used in the last Z ≤ L
iterations only. Gate errors affect (a) MAJ gates only, (b) XOR gates only.

In the case when the decoding algorithm have small prob-
ability of miscorrection in the first decoding iterations, it
is better to use the rewinding decoder with r = L/LR
rounds, where the restarts and re-initializations are performed
after LR iterations, LR << L. We denote this decoder by
D	 = F	r

(LR). From Eq. 2, it follows that the rewinding
decoder is a composition of r rounds of the non-rewinding
decoder D = F(LR) which runs for LR iterations, with Z
iterations of syndrome checking, i.e., D	 = D3D3 · · ·3D.
This fact allows us to to obtain the miscorrection probabilities
for every particular error pattern. The restart is performed only
in the case of decoding failure, i.e. when the syndrome is not
equal to zero. The miscorrection probability of this decoder is

MERe(D	) =

r∑
`=1

MERe(D) (FERe(D)−MERe(D))
`−1

,

(5)
and the frame error rate after r rewinds includes the cases of
miss-corrections in all r rounds rounds and the case when the



syndrome is not zero in all iterations. Therefore,

FERe(D	) = MERe(D	) + (FERe(D)−MERe(D))
r
.

(6)
Finally, the average FER is obtained as

FER(D	) =
∑
e

Pr{e}FERe(D	). (7)

Note that in the above discussion it is assumed that the
noiseless syndrome checker was used in every iteration. How-
ever, due to power consumption reasons, the noiseless checker
might be used in only last Z out of L iterations.

While the above expressions for FER and MER com-
pletely determine the decoder’s performance, the analysis on
an entire code graph is numerically inefficient and can be done
only for very short codes. However, the theory of noiseless
iterative decoders, gives the code graph topologies - known
as trapping sets - responsible for decoding failures. The exact
characterization of the relationship between the FER of an
LDPC code and its trapping sets is known to be a formidable
task. Thus, instead of considering the entire code graph, the
decoder performance can be estimated by its ability to escape
from Markov chain states corresponding to dominant trapping
sets, as we explain next.

V. NUMERICAL RESULTS

So far we considered the effects of the worst case error
pattern. If the storage medium is modeled as BSC, any error
pattern can occur at the decoder input with certain probability.
Therefore, we estimate the performance of noisy Gallager-B
decoder is this case as well. For the case when both XOR
and MAJ gates are noisy with α⊕=αMAJ , and the numerical
results are presented in Fig. 2(a) for the case when αM =
2× 10−3. Since the previously considered low-weight pattern
is most critical, the main effects are same as in Fig. 1. For the
noiseless decoder, the average FER is approximately equal
to the probability of appearance of the dominant trapping set
at the decoder input. In a noisy decoder, the lowest FER
is achieved for the gate error rates that maximize successful
correction of most critical trapping sets.

The noisy Gallager-B decoder is more efficient than its
noiseless counterpart for any values of the failure rates in
the logic gates less than 10−2. Even more importantly, when
L = 1000 and the gate error rates have near-optimal values,
the noisy hard-decision algorithm has better performance than
the much stronger and more complex soft-decision min-sum
algorithm realized in noiseless hardware. For low gate failure
rates, L has the dominant effect on the FER, especially for
the lower values of the failure rates as shown in Fig. 2(a). The
second stage of the algorithm is crucial, because for small Z
even very large L does not improve the performance (see e.g.,
the L = 1000, Z = 1 curve). This is the direct consequence
of the fact that in this case the absorbing states are reached in
only a small number of iterations when the syndrome checker
is turned on, while in most of the iterations only transient
states are visited.

In Fig. 2(b), the average FER as a function of number of
iterations is presented for αM = 5 × 10−3. If the rewinding
is not applied, larger values of the failure rates result in
performance improvement when compared to the noiseless
decoder, but the increase of maximum number of iterations
does not result in further decrease of FER. On the other
hand, for smaller failure rates the significant performance
improvement is noticeable for large values of parameter L.
However, if the maximum number of decoding iterations is
limited, the performance can be inferior when compared to
the case of higher failure rates. If the rewinding is applied,
the positive effect of the logic gate failures is exploited several
times for the various reinitializations. It is reasonable to chose
the rewinding period LR to be equal to the number of iterations
where the performance improvement saturates in the case
without rewinding.

A comparison of different decoding strategies suitable for
logic gates with high or low reliability is shown in Fig. 3.
The FER curves for decoding with no rewinding are shown
in Fig. 3(a). For all L, the decoder F outperforms the ideal
decoder F , and for large L its performance approaches the
ideal decoder capable of correcting any combination of nine
errors. The positive effect of the rewinding is shown in
Fig. 3(b) for various choices of L = r × LR combinations
and various maximal number of iterations L. For αG = 10−2,
the rewind decoder F	 performs beyond the bdmin−1

2 c bound.
The total number of iterations L = r × LR is kept the same
as for the corresponding decoder F .

To conclude, the above two decoding strategies cover
two gate error rate regimes. For more reliable logic gates,
large number of iterations is needed before the decoder start
benefiting from the positive effects of logic gate errors. In
this case, we apply syndrome checker in the first twenty
iterations, as the average FER rapidly decreases only at the
beginning of the decoding. Then, we turn-off both the final bit-
estimation circuit as well as the syndrome checker, and allow
for sufficient number of iterations before we again activate
the noiseless syndrome checking. Clearly, this strategy results
in energy saving as the noiseless gates are used in a reduced
number of iterations. When gate failures rate are high, errors
correctable by the noiseless decoder may turn uncorrectable,
or lead to miscorrections as they may lead to large deviations
from the trajectory of the noiseless decoder. A solution for
this case is to rewind the decoder. The higher the gate error
rate, the lower optimal rewind period LR.

Performance of the GDBF decoder with noisy XOR gates is
given in Fig. 4(a). It can be observed that noisy decoder have
better performance than its noiseless counterpart for a certain
range of failure rates in XOR gates α⊕.

In Fig. 4(b) we present the performance of the probabilistic
GDBF decoder, where the randomness in inserted intentionally
at the output of MAJ gates. The numerical results are given
for r rewind decoding rounds, per LR iterations each. Addi-
tionally, we assume that an additional decrementation of the
threshold in MAJ gate is applied periodically after n iterations.
It can be observed that PGDBF have the higher slope of FER
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Fig. 2. (a) Performance of the noisy Gallager-B decoder for Tanner (155,64)
code as a function of failure rates (bot XOR and MAJ gates are noisy with
the same failure rate); comparison with the noiseless Gallager-B decoder and
noiseless min-sum decoder, errors in memory are i.i.d. with αM = 2×10−3.
(b) The FER performance of the noisy Gallager-B decoder on the Tanner
(155,64) code as a function of number of iterations. The decoders with and
without rewinding are considered and the effect of the per-round number of
iterations LR is illustrated for αM = 2× 10−3.

curve in the error floor region when compared to SPA decoder,
both without rewinding and for the same maximum number of
iterations (L = 100). If the number of iterations is increased,
the decoder performs better. When n = 5000 and LR = 4000
the ML bound is reached, and during the simulations only
correct decoding or misscorrections appear in this case.

DISCUSSION

The noisy decoder proposed in this paper is a rare example
of a system built from a mixture of noisy and noiseless
components that works better than a noiseless system of the
same or even higher complexity. The exact energy consump-
tion analysis would require hardware implementation and is
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Fig. 3. Performance of the noisy Gallager-B decoder for Tanner (155,64)
code as a function of the BSC crossover probability αM for various decoding
strategies (no rewind decoding) (a) and rewind decoding (b)), effective for low
and high failure rate ranges.

beyond the scope of this paper, but the fact that our decoders
use the noiseless syndrome computations Z/L fraction of
time, implies overall energy savings compared to completely
noiseless decoders.

This concept can be also used in a different scenario
when errors are deliberately inserted in order to improve
performance. The errors can be in a form of random bit
flips added to logic gate outputs. Generating random bits
using noisy hardware is a known concept in the very large
scale integration (VLSI) community. The so called “true”
random number generators (TRNG) of negligible complexity
compared to pseudo random counterparts based on linear
feedback shift registers, may be realized using variety of
fundamental noise mechanisms in electronics circuits [31].
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Fig. 4. Performance of two types of the GDBF decoders for Tanner (155,64)
code as a function of the BSC crossover probability αM : Noisy GDBF
decoder for L = 100 iterations (no rewind decoding) (a) and Probabilistic
GDBF decoder for various maximum number of iterations (with rewinding)
(b)).
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[2] D. Declercq, E. Li, B. Vasić, and S. Planjery, “Approaching maximum
likelihood decoding of finite length LDPC codes via FAID diversity,” in
IEEE Information Theory Workshop, Lausanne, Switzerland, Sep. 3–7
2012, pp. 487–491.
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