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Abstract—We present an iterative decoding algorithm for
annihilating trapping sets in low-density parity-check codes. In
addition to classic messages, subsets of variable nodes commu-
nicate directly. We show that by allowing variable nodes to
collect information from a larger part of a graph, significant
improvement can be achieved in the error-floor region, compared
to the classic hard decision decoders. We also propose a new hy-
brid hard-decision decoding algorithm which employs described
strategy and the Gallager B decoders as its components. Our
decoder outperforms all known hard-decision decoders of same
or higher complexity.

I. INTRODUCTION

Low-density parity-check (LDPC) codes under iterative
decoding have been extensively investigated over the past
decades. It is well-known that the message-passing sum-
product algorithm (SPA) [1] provides reasonably good per-
formance on Binary Symmetric Channels (BSCs). However,
high complexity of SPA makes it unfit for a number of
important applications as flash memories, fiber and free-space
optical communications. A number of quantized message-
passing decoders have been design with a goal to speed up
the decoding, and preserve the error correction capability of
the SPA decoder [2], [3]. The effects of message quantization
are mostly notable on column-weight-three codes and cause
high error-floors, as in the min-sum decoders. Other finite-
alphabet iterative decoders (FAIDs) proposed by Planjery et
al. [4], [5] perform beyond belief-propagation for a number
of practically important column-weight-three codes. However,
complexity of FAIDs is still much higher compared to hard-
decision decoders.

On the other hand hard-decision Gallager A/B and bit-
flipping (BF) decoders are fairly simple and their performance
can be evaluated for finite-length codes. Sipser and Spielman
[6] showed that BF decoders can correct a constant fraction
of errors if a underlaying Tanner graph is a good expander,
while Burshtein [7] proved that for almost all column-weight-
four codes guaranteed correction capability increases linearly
with code length. Chilappagari et al. [8]–[10] expressed the
correction capability of hard-decision decoders through girth
of Tanner graph. They showed that correction capability of BF
decoders on column-weight-four codes increases exponentially
with girth of Tanner graph [8]. The correction capability of
column-weight-three codes is modest and for a given girth g
BF and Gallager A/B decoders correct dg/4e−1 and g/2−1,

(g > 8), errors, respectively, while for the case when g = 8
the Gallager A/B decoder can not correct all weight-three error
patterns. As girth of Tanner graph grows only logarithmically
with the code length, the correction of higher number of errors
can be achieved only for large codes, while for shorter codes
hard-decision decoders are impractical regardless of their low
complexity.

To fill the performance gap between simple hard-decision
and FAID decoders, recently a number of bit-flipping and mes-
sage passing decoders on BSC have been proposed. Nguyen
and Vasic [11] proposed a class of two-bit bit-flipping (TBBF)
algorithms in which messages passed between nodes in Tanner
graph are reinforced with additional bit, which increase the
guaranteed error correction capability of column-weight-three
codes. In addition, they developed a framework for collective
error correction where complementary TBBF decoders are run
in parallel, which leads to the correction of all weight-four
error patterns with high probability. Wadayama et al. [12] ex-
ploited the non-linear optimization of the flipping function and
proposed the gradient-descent bit-flipping (GDBF) decoder.
Motivated by random perturbations caused by unreliability
of logic gates built in new VLSI technologies, Al Raseed
et al. [13] developed probabilistic GDBF (PGDBF) decoder
in which bits that meet flipping constrains are not flipped
automatically, but with some probability. Randomizing the
flipping decisions helps optimization process to escape from
local minima and converge to a correct codeword. Recently,
Ivanis et al. [14] improve the PGDBF decoder using multiple
decoding attempts and random re-initializations (MUDRI) of
decoders. There are also other popular bit-flipping decoders
[15]–[18] which use soft channel information and are unsuit-
able for application on the BSC channel.

Mobini et al. [19] proposed a message-passing algorithm
which updates a soft information, initialized from the channel,
differentially at each iteration based on the binary messages
send on edges of Tanner graph. Sassatelli et al. [20] developed
the two-bit message passing decoder capable of correcting all
weight-three error patterns on column-weight-four codes. In
our previous work [21] we have shown how randomness cause
by gate failures can be exploited to our advantage and lead to
an improved performance of the Gallager B decoder.

In this paper we propose a simple deterministic bit-flipping
decoder in which in addition to messages passed on edges of



Tanner graph, subsets of variable nodes communicate directly.
In our approach variable nodes collect information from a
larger part of a graph during a single iteration, unlike the
classic iterative decoders performed on Tanner graphs in which
messages propagate in multiple iterations. Allowing a variable
node to be aware of its surroundings helps escaping from a
trapping set and reduces error-floors. Furthermore, we show
that the complexity of our decoder is comparable with the
complexity of simple Gallager A/B decoder. In addition, we
design new hybrid hard-decision decoding algorithm which
employs described strategy and the Gallager B decoders as its
components. Our approach is simpler than the collective error
correction based on TBBF decoders where different compo-
nent decoders need to be implemented, or MUDRI strategy
where only large number of iterations lead to performance
improvement. The complexity of our decoder is roughly two
times higher then the complexity of Gallager B decoder,
but it outperform other hard-decision decoders on practically
important column-weight-three codes.

The rest of the paper is organized as follows. In Section
II the preliminaries on codes and decoding algorithms on
graphs are discussed. In Section III we introduce new decoding
approach. Section IV is dedicated to the hybrid decoder
description, which includes the guaranteed error correction
analysis. Numerical results are given in Section V, followed
by a note on the complexity in Section VI and short discussion
given in Section VII.

II. PRELIMINARIES

Consider a (γ, ρ)-regular binary LDPC code, denoted by
(n, k), with code rate R = k/n ≥ 1 − γ/ρ and parity check
matrix H. The parity check matrix is the bi-adjacency matrix
of a bipartite (Tanner) graph G = (V ∪ C,E), where V
represents the set of n variable nodes, C is the set of nγ/ρ
check nodes, and E is the set of nγ edges. The length of
shortest cycle in G is called girth and denoted by g. Each
matrix element Hj,i = 1 indicates that there is an edge
e = (vi, cj) between nodes ci ∈ C and vj ∈ V , which are
referred as neighbors. LetN (u) be a set of neighbors of a node
u, and similarly let E(u) denote a set of edges connected to
the node u. Then, |N (vi)| = γ, ∀vj ∈ V and |N (cj)| = ρ,
∀cj ∈ C, where | · | denotes cardinality. Let Ti denotes a
subgraph of G corresponding to a depth-one computation tree
of a variable node vi. The sets of variable and check nodes of
Ti are VTi and CTi , respectively.

We define an iterative hard-decision decoder by an 4-tuple
D = (B,Y,Φ(`),Ψ(`)). A set B = {0, 1} defines the binary
alphabet of messages passed over edges of the Tanner graph.
Similarly, a set of possible values received from the channel
is also binary, i.e., Y = {0, 1}. Let a sequence of bits received
from the channel be y = (y1, y2, . . . , yn), yi ∈ B, 1 ≤ i ≤ n.
In addition, let x = (x1, x2, . . . , xn) denote a codeword of an
LDPC code the input of the binary symmetric channel with
probability of error α.

The decoder operate by sending binary messages over edges
of the graph. Let µ(`)

e be a message passed on edge e = (vi, cj)

from variable node vi to the check node cj in `-th iteration.
Similarly, ν(`)

e denotes a message passed from the check node
cj to the variable node vj in the `-th iteration. The value
of µ(`)

e is obtained by mapping Φ(`) : {0, 1}γ+1 → {0, 1},
i.e., µ(`)

e = Φ(`)(ν
(`)
i , yi), where ν

(`)
i = (ν

(`)
e )e∈E(vi), while

Ψ(`) : {0, 1}ρ → {0, 1} is used to calculate ν
(`)
e as ν(`)

e =

Ψ(`)(µ
(`−1)
i ), where µ

(`−1)
i = (µ

(`−1)
e )e∈E(cj). Also, in each

iteration a check node evaluate its parity check equation, and
we have cj = 0 if the j-th equation is satisfied and cj = 1
otherwise.

III. NEW ALGORITHM FOR BREAKING TRAPPING SETS

A. Algorithm Description

The hard-decision decoders are simple but perform poorly
in the error-floor region due to existence of certain subgraph
structures called trapping sets. Basically, the decoder does
not have enough information to make correct decisions, and
became stuck in a trapping set. A problem lies in the fact that a
variable node does not know the topology of its surroundings,
which leads to a wrong decision. We will show that incorpo-
rating even a partial knowledge of the neighboring variable
nodes in the bit decision rule improves the performance.

Let U(vi) be the number of unsatisfied checks in the neigh-
borhood of the variable node vi, and let VC /VC̄ denote the set
of variable nodes whose all checks are satisfied/unsatisfied,
i.e.,

VC = {vi ∈ V |U(vi) = 0}

and

VC̄ = {vi ∈ V |U(vi) = γ}.

As an evidence of probable correctness of a variable node, we
use the function

ψ(vi) = 1− 1VC
,

where 1 is the indicator function.
The value ψ(vi) = 0 indicates that – based on neighboring

check nodes – the variable node vi is “probably correct.”
Similarly, the check node cm surrounded by the probably
correct variable nodes is “probably verified”. The set of these
check nodes is denoted by

CC = {cm ∈ C|
∑

vk∈N (cm)

ψ(vk) = 0}.

Each iteration consists of three steps. In the first step, using
the indicator ψ, we identify all probably correct variables, thus
isolating the remaining “potentially incorrect” variables, VI .
The goal of the algorithm is to reduce the cardinality of the
set of potentially incorrect variables until only truly corrupt
variables remain. Similarly, the variables in VC̄ are corrupt
with high probability as they are connected to only unsatisfied
checks. In this step we flip all such variables.

It the second step, to further reduce the set of potentially
incorrect variables VI , which after the second step contains
variables vi with 0 < U(vi) < γ unsatisfied checks, the



algorithm operates on the computation trees of such variables,
and aggregates the messages from its computation tree and
incorporates it into the flipping rule. Values of ψ(vi) are
recalculated and passed directly to all variable nodes in Ti.
If a variable node receives zeros from all variables with
whom it shares a satisfied parity check, it leaves the set
of potentially incorrect variables. However, in the third step
we flip a potentially incorrect variable vi if and only it is
connected to an unsatisfied check cj and all other variables
connected to cj are not potentially incorrect.

Note that the flipping condition is restrictive and allows
flipping of corrupt variables with high probability, while there
is negligible probability that a correct variable is flipped. We
can describe the above method in a formal way as follows.

Consider the computation tree Ti. Let Ti\j denote a sub-
graph which excludes the subgraphs induced by a particular
check cj , i.e.,

VTi\j = VTi \ N (cj),

CTi\j = CTi \ cj .

Note that the node vi is also excluded from the subgraph
Ti\j . To each subgraph we associate the criterion function
Υ : {0, 1}ρ−1 → {0, 1} defined as follows

Υ(Ti\j) =

{
0, if ∃cm ∈ CTi\j ∩ CC
1, otherwise .

The value Υ(Ti\j) = 0 indicates that vi should be excluded
from VI , while otherwise remains in VI . However, whether
a variable vi from VI will be actually flipped depends on
the other variables connected to cj , as described above. The
algorithm for breaking trapping sets can be formally expressed
as follows.

Breaking Trapping Sets Algorithm
1) Flip all bits with γ unsatisfied checks.
2) Calculate ψ(vi) and Υ(Ti\j), ∀vi ∈ V and ∀cj ∈
N (vi).

3) Flip each bit vi if ∃cj ∈ N (vi) such that cj = 1,
Υ(Ti\j) = 1 and ∀vm ∈ {N (cj) \ vi} Υ(Tm\j) = 0.

4) Repeat first three steps until there is no unsatisfied
parity check equation.

We next explain the proposed algorithm on the error pat-
tern of a (3,5)-regular code given in Fig. 1, where black
and white circles denote corrupt and correct variable bits,
respectively, while black and white squares denote, respec-
tively, odd-degree and even-degree check nodes. A subgraph
on interest G′ = (V ′ ∪ C ′, E′) contains a set of variable
nodes V ′ = {v1, v2, . . . , v5} and a set of check nodes
C ′ = {c1, c2, . . . , c9}. Let us assume that the subgraph is
isolated in a sense there is no variable node in computation
trees of N (C ′) \ V ′ that share a check with a node from V ′.
This assumption will be formalized later. Consider the check
c8 = 1, connected to the corrupt variable v4. It can be seen
that Υ(T4\8) = 1, since both c4 and c5 are connected to nodes
with unsatisfied checks. However, it can be observed that
Υ(T6\8) = 0 and Υ(T7\8) = 0 since c10 and c11 are connected

c1

v1

v2

v3

v4

v5

c2

c3

c5

c4

c6

c7
c8

...
...

...

...
...

v6

v7

c10

c11

c9

Fig. 1: Weight-three error pattern used in the example.

to nodes which are involved with only satisfied checks. Similar
argument holds for all other variables connected to c8, which
means that the variable v4 needs to be flipped. Applying the
same reasoning to c2 and c6 we can conclude that only v1 and
v3, respectively, can not provide the proof of they correctness,
and need to be flipped.

Note that in above example, successful decoding in only one
iteration was possible because the trapping set was assumed
to be isolated. However, it can be also shown that the error
pattern would be corrected if only the check c8 is isolated.
We later define a less looser isolation condition, which is an
important ingredient of our error-correction analysis.

B. Hard-Decision Decoder Implementation

In this subsection we show how our decoding algorithm can
be easily represented in a standard parallel implementation,
which assumes that during a decoding iteration, variable and
check nodes exchange one-bit messages. This means that
criterion function computation is performed locally within
variable nodes, and no global operations are needed. Con-
sequently, the number of iterations increases since flipping
decisions are prolonged until the information required for the
criterion function computation reaches all variable nodes. This
means that messages exchanged by nodes in Tanner graph
different are calculated differently from iteration to iteration.
Note that the first step of our algorithm can be performed in
one iteration, while we need three additional iterations for the
second and the third step – one to calculate ψ(vi), other to
obtain Υ(Ti\j) for each pair (vi, cj), and final one to propagate
Υ(Ti\j) to all variable nodes. However, we were able to
represent all operations by two Boolean functions performed
on binary tuples p = (p1, . . . , pA) and q = (q1, . . . , qB)
defined as follows

F (p,q) =

A∏
i=1

pi ⊕
B⊕
i=1

qi,

G(p,q) =

A∏
i=1

pi ×
B⊕
i=1

qi,

where × denotes Boolean AND. Messages passed from the
variable node vi to the check node cj on edge e are calculated



as µ(`)
e = Φ(`)(ν

(`)
i ) = F (p

(`)
e ,q

(`)
e ), where p

(`)
e = ν

(`)
i , and

q(`)
e =


{x̂i}, ` = 0 mod 4,
∅, ` = 1 mod 4,

{ν(`)
e , 1}, ` = 2 mod 4,
{x̂i, 1}, otherwise

Recall that x̂i represents the current estimate of the i-th code
bit. Similarly, the messages passed on the same edge e in the
opposite direction (from the check node cj to the variable node
vi) are calculated by

ν(`)
e = Ψ(`)(µ

(`−1)
i ) =


F (∅, p̃(`)

e ), ` = 0 mod 4,

F (p̃
(`)
e , q̃

(`)
e ), ` = 1 mod 4,

G({p̃(`)
e \ e}, q̃(`)

e ), otherwise,

where p̃
(`)
e = µ

(`−1)
i and q̃

(`)
e = {µ(`−1)

e , 1}. It can be
observed that four successive iterations form a cycle, and that
bits are only flipped at the first and the last iteration of the
cycle. Between them nodes exchange messages related only
to the number of satisfied parity check equations. After each
cycle, the decoding is restarted and estimates of the code bits
x̂i, 1 ≤ i ≤ n, obtained at the end of the cycle represents only
information passed from one to the next cycle. This means that
the decoder is symmetric and its operations do not depend on
the transmitted codewords.

For completeness we also give the formal description of our
hard-decision decoder, as illustrated in Algorithm 1.

Algorithm 1 Hard-Decision Decoder Implementation
Input: y = (y1, y2, . . . , yn)
`← 1
x̂← y, ∀vi ∈ V : µ

(0)
e ← yi,∀e ∈ E(vi)

s← x̂HT (∀cj ∈ C : sj ← F (∅, p̃(0)
e ))

while s 6= 0 and ` < L do
∀cj ∈ C : ν

(`)
e ← Ψ(`)(µ

(`−1)
i ),∀e ∈ E(cj)

∀vi ∈ V : µ
(`)
e ← Φ(`)(ν

(`)
i ),∀e ∈ E(vi)

if ` = 0 mod 4 then
x̂i ← F (p

(`)
e , {x̂i}), 1 ≤ i ≤ n

else if ` = 3 mod 4 then
x̂i ← F (p

(`)
e , {x̂i, 1}), 1 ≤ i ≤ n

end if
s← x̂HT (∀cj ∈ C : sj ← F (∅, p̃(`)

e ))
`← `+ 1

end while
Output: x̂ = (x̂1, x̂2, . . . , x̂n)

IV. MESSAGE-AGGREGATION ENHANCED DECODER AND
ERROR CORRECTION ANALYSIS

It can be observed that correction of a corrupt variable node
in the decoding algorithm proposed in Section III depends on
the correctness of the neighboring variable nodes, i.e. variable
nodes with whom it shares checks. If the number of unsatisfied
check nodes is the Tanner graph is low, the error pattern can
be corrected, but the proposed algorithm fails to correct error
patterns with too many unsatisfied checks. This means that

the algorithm performs well in the error-floor region. Now
we show that its vulnerability in the waterfall region can
be compensated by employing some other iterative decoder.
For that purpose we propose the hybrid message-aggregation
enhanced decoder D1 composed of two component decoders
D′ and D′′, which operate in parallel as illustrated in Fig. 2.

- D′ decoder. The received word is first decoded by the
Gallager B decoder. If the decoding is not successful,
the obtained code bit estimates are used as inputs for the
Algorithm 1 decoder. Additional Gallager B decoder is
used to correct any residual errors.

- D′′ decoder. The decoding starts from Algorithm 1 and
all uncorrectable error patterns are passed to the Gallager
B decoder.

Input
word

Algorithm 1

Algorithm 1

Gallager B Gallager B

Gallager B

Output
word

D’
D’’

Fig. 2: The block diagram of the hybrid message-aggregation
enhanced decoder D1.

The decoding in D′ relies on a fact that during each decoding
step the number of errors reduces. However, there exist harm-
ful structures that cause Gallager B decoder to oscillate and
even increase the number of erroneous bits. For that reason we
add D′′ in which decoding starts from Algorithm 1. It should
be noted that in practice only one Gallager B and Algorithm 1
blocks needs to be implemented, since spatial diversity can be
replaced by time diversity. We choose the Gallager B decoder
due to its simplicity and known trapping sets profiles.

We next investigate the error correction capability of the
hybrid decoder, which relies on the isolation condition defined
as follows.

Definition 1. Consider a subgraph G′ = (V ′ ∪C ′, E′), G′ ⊂
G and a set C ′′ ⊂ C ′, where C ′′ = {cj ∈ C ′|cj = 1}. G′ is
said to be isolated if ∃cj ∈ C ′′ such that ∀vi ∈ {N (cj) \ V ′}
∃cm ∈ {N (vi) \ cj} ⊂ CC .

Our decoding strategy applied to a specific subgraph which
contains corrupt variables G′ requires that nodes outside of G′

would be also involved in the decoding of V ′. The isolation
condition guarantees that those nodes will not be affected
by corrupt variables involved in the subgraph. Note that the
isolation condition do not assume the complete isolation of
a trapping set, but only forbids specific subgraph structures.
In the following proposition we investigate error-correction
capabilities of the hybrid decoder D′′.

Proposition 1. If the graph G of a column weight-three code
has girth-8 the proposed decoder D′′ can correct all weight-
three error patterns which satisfy the isolation condition.

Sketch of the proof: In Fig. 3 all four possible weight-three
error patterns in a Tanner graph with girth g = 8 are illustrated.



We address each case separately, similarly as in [20], [22]. In

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Fig. 3: All possible subgraphs subtended by three erroneous
variable nodes in a graph with girth g = 8.

Fig. 4 we illustrate the worst case situation related to Case 1.
Erroneous variables v1,v2 and v3 do not share a check, which
means that all of them will be flipped during Step 1 of our
decoder. However, correct variables v5 and v6 will be also
flipped. According to the isolation condition we assumed that
no neighbour of c1 is connected to other unsatisfied checks,
and that v4 remains correct after the first decoding step, leaving
only unsatisfied checks c2, c3, c5, c6, c8 and c9. It can be easily
shown that these checks do not share neighbours in girth-8
graphs and that v5 and v6 will be corrected during Steps 2
and 3. Note also that if the subgraph were not isolated in
sense of Definition 1 (v4 is connected to c1 not c10) the error
pattern can be corrected using the Gallager B decoder in one
iteration.

c1

v1
v2 v3

v4 v5

c3 c5c4 c6 c7 c9

v6

c8c2

c10

Fig. 4: Subgraph used in the explanation of Case 1 from Fig.
3.

In Case 2 there are two corrupt variables that share a check
and there is no other node in girth-8 Tanner graph that is
connected to all three unsatisfied checks. This means that
only one node will be flipped in Step 1. If the trapping set is
isolated, there exist a check node cj = 1 and the variable node
vi such that Υ(Ti\j) = 1. This leads to correction of a corrupt
variable connected to cj . The remaining corrupt variable will
be corrected in the next iteration. Note also that if the trapping
set were not isolated the two corrupt variables can not be
corrected by the strategy. However it is know that Gallager
B in girth-8 Tanner graph can correct all weight-two error
patterns.

In Case 3 all three corrupt variable share a check, which
means that there is no other variable node in girth-8 Tanner
graph, connected to three unsatisfied checks. According to our
decoder in Step 1 only corrupt variables will be flipped and
the error pattern will be corrected.

Case 4 is presented in Fig. 1. It is known (5,3){2} trapping
set [23] uncorrectable by the Gallager B decoder. It can be

observed that applying Algorithm 1 will lead to correction of
at least one error if the subgraph were isolated. The remaining
errors will be corrected by the subsequent Gallager B decoder.
If the graph were not isolated the correction can not be
guaranteed. However, it can be observed that there exist only
one subgraph structure that corresponds to that case. It involves
16 variable nodes and 5 odd-degree check nodes and represents
(16,5) trapping set for our decoder. �

Based on the above discussion, Proposition 1 can be refor-
mulated as follows: the decoder D′′ can correct all weight-
three error patterns on a code which Tanner graph does not
contain (16,5) trapping sets. Note that the Gallager B decoder
can correct all weight-three error patterns only if Tanner graph
does not contain (5,3) trapping sets, which are more common.
Applying Algorithm 1 the number of subgraphs that need to
be omitted from the code structure reduces. We are currently
investigated the subgraph structures that prevent correction of
weight-four patterns, which will enable us to create trapping
set profile for the D′′ decoder.

V. NUMERICAL RESULTS

In this section we numerically express frame error rate
(FER) performance of the decoder D1 introduced in Section
IV on a number of column wight-three codes. We run Gallager
A/B segments for 30 iterations, and Algorithm 1 segments for
16 iterations, which gives 122 iterations in total. The min-sum,
the PGDBF and sum-product algorithms are run for the 100
iterations. The two-bit bit-flipping decoder TBBF-D1 operates
for 30 iterations. As TBBF-D3 decoder represents parallel
concatenation of four TBBF decoders optimized for Tanner
quasi-cyclic code, it is run for 4× 30 = 120 iterations.

In Fig. 5 we compare FER performance of different de-
coders on the popular Tanner (155,64) code [24]. It can
be observed that if targeted FER is lower than 10−7 the
decoder D1 outperforms all considered decoders except SPA.
For example, D1 decoder reaches error rate of 10−6 when
α = 0.007, while TBBF-D1 decoder, which can correct all
weight-three error patterns, for the same error level needs
α < 0.003. Note also that D1 superiority does not come with
computational cost since it complexity is much lower than all
other considered decoders except the Gallager A/B decoder.
This is illustrated in the next section.

It is known that the Gallager A/B decoder performs poorly
on Tanner quasi-cyclic (155,64) code, due to existence of (5,3)
trapping sets. The decoder D1 breaks the majority of critical
structures and enables correction of low-weight error patterns
uncorrectable by the Gallager A/B decoder. However, benefits
of employing D1 are not related only to the correction of
(5,3) trapping sets, but to other harmful structures as well.
This fact is illustrated in Fig. 6, where performance of D1

and Gallager A/B decoders are compared on the code based
on Latin Squares - LS(155,64) [23]. This code has the same
length, row and column weights, girth and minimal distance
as Tanner code, but it is free from (5,3) trapping sets. This
means that the Gallager A/B decoder applied on LS(155,64)
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Fig. 5: Frame error rate performance on Tanner (155,64) code.
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Fig. 6: Frame error rate comparison of D1 and Gallager A/B
decoders on Latin Square (155,64) code.

code corrects all weight-three error patterns. Even on this
optimized code D1 outperforms Gallager A/B by an order
of magnitude in the error-floor region. For example, when
α = 0.006 Gallager A/B achieves FER approximately 10−6,
while for D1 error rate is 4× 10−8.

We also measure the improvement achievable by D1 on
longer codes, which is presented in Fig. 7. Three column-
weight-three codes are considered: iRISC(1296,972) [25]
code of length 1296, row-weight-12, and code rate 0.75;
LS(2388,1793) [23] code of length 2388, row-weight-12, and
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Fig. 7: Frame error rate comparison of D1 and Gallager A/B
decoders on different column weight-3 codes.

code rate 0.75; Margulis(2640,1320) [26] code of length 2640,
row-weight-12 and code rate 0.5. For all three codes significant
improvement by an order of magnitude high is noticed in
the error-floor region. The most superior performance are
observed on Margulis(2640,1320) code, where, for example
when α = 0.02, D1 achieves error rate lower than 10−6, while
the FER of the Gallager A/B decoder is less than 10−4.

VI. A NOTE ON DECODER COMPLEXITY

We next analyze complexity of the decoder given by Algo-
rithm 1, which we define as the number of 2-input Boolean
functions used in the decoder implementation per one code
bit.

Note that we here only investigate computational complexity
and neglect hardware overhead required for the information
storage and other auxiliary operations.

In each variable node the function F ({ν(`)
e |e ∈ E(vi)}, ∅)

needs to be calculated. This function can be implemented as
γ-input AND logic gate, which can be decomposed to γ − 1
2-input AND gates. In addition, 2 XOR operations are used
when ` = 3 (mod 4), while 2γ XOR gates correspond to the
case when ` = 2 (mod 4). Thus, variable nodes contribute with
n(3γ+1) 2-input logic gates to the overall decoder complexity.

Similarly, in each check node ρ-input XOR gate is used
when ` = 0 (mod 4). When ` = 1 (mod 4) ρ-input AND gate
and 2ρ XOR gates are used, while other iterations require ρ
(ρ− 1)-input AND gates and 2ρ XOR gates. All nγ/ρ check
nodes contribute with γρ+ 4γ − 2γ/ρ logic gates. Thus, the
complexity of the decoder given by Algorithm 1 is

CA = γρ+ 7γ − 2γ/ρ+ 1.



We compare the complexity our decoder with complexity
of the Gallager-B decoder which can be expressed by

CGB = γ(ρ+Mk − 1− 1/ρ) +Mγ ,

where k = γ − (1 + (−1)γ)/2, and Mm represents the
complexity of the m-input majority logic gate and can be
calculated as [27]

Mm =

(
m

dm/2e

)
− 1 +

dm/2e−2∑
i=0

(
m− i
dm/2e − i

)
.

Note that we include in CGB the complexity of the final bit
decision logic and syndrome checker. We compare CGB and
CA in Fig. 8. Note that for column weight-three codes the
decoder given by Algorithm 1 is slightly more complex than
Gallager-B and it can be observed that for all ρ > 5 |CA −
CGB |/CGB ≤ 20%. However, complexity of the Gallager-
B decoder increases rapidly with γ and, for example, when
γ = 5 and ρ ≤ 12 its complexity is more than twice higher
than the complexity of our decoder.
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Fig. 8: Complexity comparison of the decoder defined by
Algorithm 1 and the Gallager-B decoder.

VII. DISCUSSION

The mechanisms for breaking trapping sets proposed in
this paper investigates all variable nodes in order to identify
possible trapping sets and flips variables for which are suspects
to be involved in a harmful structure. In contrast to other
iterative decoding principles, where a flipping decisions are
made based on the information received only by neighboring
check nodes, a variable node in our decoder communicates
also with other variable nodes. However, we have shown that
cost of including additional messages is not high, and that the
complexity of our decoder is comparable with the Gallager
A/B decoder on column-weight-three codes. It can be built
only from XOR and AND logic gates and it is significantly less
complex compared to recently proposed PGDBF and TBBF

decoders. The complexity of PGDBF decoders is determined
by random generators required in each variable node processor,
while computational overhead in TBBF decoders originates
from two-bit operations required in variable and check node
processors.

We have shown that our message-aggregation enhanced
decoder, with computational complexity roughly two times
higher than the complexity of the Gallager A/B decoder
outperforms a number of state-of-the-art hard and soft deci-
sion decoders. Our decoder is not designed specifically for
particular code or trapping set profile and can be applied for
a number of different codes, as illustrated by our numerical
results. Note that we employ the Gallager A/B decoder in our
hybrid decoder due to its low complexity. However, using the
proposed strategy, a more powerful decoders can potentially be
improved. We are currently investigating the hybrid decoders
that use finite-alphabet iterative decoders.
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