
ROST-C: Reliability driven Optimisation and Synthesis

Techniques for Combinational Circuits

Satish Grandhi†, David McCarthy†, Christian Spagnol†, Emanuel Popovici†, Sorin Cotofana∗
† Department of Electrical and Electronic Engineering, University College Cork, Cork, Ireland
∗ Faculty of EE, Mathematics and CS, Delft University of Technology, Delft, The Netherlands

sagrand@ue.ucc.ie, david.mccarthy@ue.ucc.ie, christian.spagnol@ue.ucc.ie, e.popovici@ucc.ie, s.d.cotofana@tudelft.nl

Abstract—Traditional logic synthesis methodologies are driven by tim-
ing, power, and area constraints. However, due to aggressive technology
shrinking and lower power requirements, circuit reliability is fast turning
out to be yet another major constraint in the VLSI design flow. Soft

errors, which traditionally affected only the memories, are now also
resulting in logic circuit reliability degradation. In this paper, we present
a systematic and integrated methodology to address and improve the

combinational circuit reliability measured in terms of Soft Error Rate
(SER). The proposed SER reduction framework makes use of rewriting
based logic optimisation technique which employs local transformations.
The main idea behind our proposal is to replace parts of the circuit

with functionally equivalent but more reliable counterparts chosen from
a pre-computed subset of Negation-Permutation-Negation (NPN) classes
of 4-variable functions. Cut enumeration and Boolean matching driven
by reliability aware optimisation algorithm are used to identify best

possible replacement candidates. Our experiments on a set of MCNC
benchmark circuits and 8051 micro controller functional units indicate
that the proposed framework can achieve up to 75% reduction of output
error probability. On average, about 14% SER reduction is obtained at

the expense of very low area overhead of 6.57% that results in 13.52%
higher power consumption.

Keywords—And-Invert Graphs (AIG), ABC, Optimisation, Rewriting,
Cut Enumeration, Boolean Matching, NPN Equivalence, Reliability, Soft
Errors.

I. INTRODUCTION

In the era of deep submicron CMOS technology, spatial and

temporal variability is resulting in less predictable device behavior [2].

Stochastic logic delay variation on par with the nominal delay can

occur due to the local (or intra-die or within-die) variations in

transistor Vth [13]. Further, circuits operated in the near or sub-

threshold region in order to achieve substantial power savings results

in an increased amount of output Soft Error Rate (SER). In view of the

combined effect of variability and aging mechanisms, state of the art

CMOS gates can be regarded as being highly unreliable. To overcome

reliability related concerns, a variety of system/circuit level techniques

like Dynamic Reliability Management (DRM), and inexact computing

[14], [15], [12] have already been proposed. These techniques are

at higher abstract level and don’t leverage the significant gains that

can be achieved by employing intelligent graph modification/altering

techniques. Reliability driven logic synthesis, is one area that has

not received much attention but is gaining lot of importance in the

last few years. In [7], the circuit output Soft Error Rate (SER) is

reduced through localized circuit restructuring by taking advantage

of don’t care based re-synthesis and local rewriting. In [16], a

technique to improve the circuit robustness to soft errors based on

Redundancy Addition and Removal (RAR) by eliminating gates with

large contribution to the overall SER is proposed. Efficient algorithms

for synthesizing approximate circuits for concurrent masking of

logical and timing errors were employed in [4]. ATPG-based rewiring

method to generate functionally-equivalent yet structurally-different

implementations to reduce the SER was developed in [1].

This paper introduces a novel reliability driven circuit optimisa-

tion and synthesis flow based on the standard cut-rewriting technique

to improve the reliability of circuits built out of unreliable gates. An

And-Invert Graph circuit (AIG) representation is utilized to represent

the logic circuits. Rewriting of 4-input cuts by using a subset of

Negation-Permutation-Negation (NPN) equivalent logic configura-

tions is employed to improve circuit reliability. Key differences in the

cut enumeration and Boolean matching techniques when constraint of

optimisation is changed from area to circuit reliability are discussed in

detail. While optimizing for area, the Boolean matcher strives to pick

the best possible cut with least number of nodes. In order to improve

circuit reliability, extra redundant nodes can actually help in masking

gate errors thereby reducing output error. ABC [3], a logic synthesis

and verification tool which performs scalable logic optimisation based

has been used to accommodate all our algorithms. The tool working

procedure is explained in detail with the help of a case study on

the MCNC benchmark circuit ′cm162a′. The proposed reliability

aware logic synthesis methodology that applies the transformation

rules in a guided fashion on complex combinational circuits is detailed

out. Evaluation of the tool on a set of standard MCNC benchmark

circuits and also the standard arithmetic circuits is performed. Results

show an average reduction in output error of upto 14% while a peak

improvement of upto 75.5% is observed. Performance analysis using

Synopys Design Compiler shows that very low area overhead of

6.57% that results in 13.52% higher power consumption is the extra

cost incurred.

This paper is organized as follows. Section II provides basic gate

level synthesis background information and the terminology utilized

in this paper. Section III introduces the reliability driven circuit

optimisation algorithm as well as the associated circuit error prob-

ability computation methodology. Section IV illustrates the potential

practical implications of our approach by means of a case study

and evaluations performed on standard MCNC benchmark circuits.

Section V concludes the paper and provides directions for future

work.

II. AND INVERT GRAPHS & BASIC TERMINOLOGY

And Invert Graphs (AIGs) are common circuit representation

means where each graph node corresponds to a two-input AND

gate and the edges, representing the node interconnections, optionally

having an inverter. AIGs were proposed originally by Kuehlmann

[8] for compressing circuits to speed up verification operations. An

example circuit in both schematic and AIG form is presented in

Fig. 1(a) and Fig. 1(b) respectively. Circles represent AND nodes,

solid lines represent direct gate connections and dashed lines represent

connections through an inverter. A key AIG feature is that they are

always structurally hashed meaning that no two identical nodes (same



I1

I2

I3

I4

I5

I6

(a) Reference Circuit

I1 I2 I3 I4 I5 I6

n1 n2

n3

n4

n5 n6

n7

O1

(b) AND Invert representation

I1 I2 I3 I4 I5 I6

n1 n2

n3

n4

n5 n6

n7

O1

(c) ’4’ cut on node n7

I1 I2I3 I4 I5 I6

n1

n2 n3

n4 n5

n6

O1

(d) Boolean Equivalent

Fig. 1. And Inverter representation of Combinational Circuit

parents and same inversion) are permitted. Next, we define some of

the common terminology used throughout the paper.

– Cut : A cut of a node N in a network is a set C of nodes such

that any path from Primary Inputs (PI) to N passes through one of

the nodes from the set [9]. Obviously, node N itself forms a trivial

cut. The size of a cut refers to the number of leaves, rather than to

the number of interior nodes. Cuts of up to a specific size k are called

k-cuts or k- feasible cuts. An example is depicted in Fig. 1(c). The

node set {I6, n1, n2, n3} defines a 4-cut C on the node n7. C is a

4-cut since it has four leaves: n1, n2, n3, and I6. Clearly, every path

from a PI to n7 passes through at least one of them. Nodes n4, n5,

and n6 are the internal nodes of the cut.

– NPN equivalence : Two Boolean functions, F and G, are NPN-

equivalent , i.e., belong to the same NPN equivalence class, if F can

be transformed into G through negation of inputs (N), permutation of

inputs (P), and negation of the output (N) [6]. For example, the sub

circuit comprising nodes {n1, n2, n4} in Fig. 1(b) and Fig. 1(d),

evaluating the function G and F, are NPN-equivalent. G can be

transformed to F by employing the following procedure: (1) negate I3

and I1, (2) swap the position of I3 and I2, and (3) negate the output

node.

– Boolean matching : It is a technique widely used in technology

mapping [10]. It is the process of replacing a sub graph with another

functionally equivalent sub-graph. It is normally done by calculating

the canonical form representation of functions by employing simple

methods like negation and swapping of the nodes.

III. RELIABILITY DRIVEN LOGIC SYNTHESIS

Logic synthesis is the process of transforming higher level func-

tional representation into gate level representation. Typically, there are

two main approaches to logic synthesis. The first is rule based synthe-

sis which relies on searching the graph for specific substructures and

replacing these with alternatives [5]. The second approach to synthesis

is cut based rewriting [11]. In this section, we introduce an AIG 4-

input cuts based rewriting algorithm meant to be utilized in reliability

aware logic synthesis. We note that a key element in developing

such an efficient optimisation and synthesis tool is the availability

of accurate reliability information as well as efficient/fast algorithms

for computing the reliability of logic functions representing partial

solutions during the optimisation process. In view of this remark, we

first describe reliability estimation methodology employed within our

tool. Later, we describe the process of logic optimisation.

A. Reliability Estimation Methodology

Logic circuit reliability analysis attempts to evaluate the impact

that the gate errors could have on the circuit Primary Outputs (PO)

correctness. Traditional approach to reliability analysis begins with

elementary SPICE simulations which is practically not feasible due to

a prohibitive computation time and excessive resource requirements.

Fig. 2 graphically presents the unreliable gate model we employed

to inject errors onto the gate outputs with a pre-defined gate error

probability. We modeled an unreliable AND gate as an ideal (error

free) AND gate followed by a faulty XOR that determines the

stochastic error behavior by toggling the gate output with a pre-

defined probability. This model moves the entire error statistic on

the output and so it implicitly assumes a symmetrical error behavior

in relation to the inputs.

AND

XOR

P UA

B

E

Z*

Z

Fig. 2. Gate Error Model.

The problem of computing reliability information for combina-

tional circuits is investigated by employing two different approaches.

The first approach consist of simulating the combinatorial circuit

under test and injecting faults. One of the most important issues

related to the gate level simulation technique is the availability of

significantly random input vectors. The traditional random function

rand from the ’C’ library provides random numbers with a small

period of length 232 - 1. Since the number of required simulation steps

runs into millions, there is a high possibility that patterns are repeated

and highly correlated with each other. To overcome this problem, we

used a pseudo random number generator called Mersenne twister.

The name has derived from the concept of Mersenne prime. In

mathematics, a Mersenne prime is a prime number of the form Mn

= 2n - 1 and has a very long period of 219937 - 1. Thus, it helps us in

overcoming all the limitations. The second method called Conditional

Probabilistic Error Propagation (CPEP) builds a probabilistic error

model of the combinatorial circuit and calculates the reliability of the

circuit based on a mathematical analysis of the model. This is quite

generic in nature and can be applied for any error scenario and for

any logic gate.



CPEP methodology is used in intermediate steps where it is

required to compare two configurations to make a fast decision

of choosing the better configuration. Exact reliability numbers are

not required in this stage which enables us do with slightly less

accuracy. The simulation based methodology is very accurate but

can be time consuming specially for large circuits. This is used in

final steps which require accurate reliability numbers before signoff.

Experimental results obtained with the proposed CPEP framework are

within 2% average error and up to 1000X faster when compared to

Monte Carlo simulations. Complete details of these techniques have

been previously presented in [].1

B. Cut Based AIG Rewriting

This section presents an AIG 4-input cut based rewriting al-

gorithm which targets the optimisation of circuit reliability rather

than area, delay or power. Rewriting is a common logic optimisation

approach which relies on local transformations. Most commercially

available logic synthesis tools include a rewriting engine that may

operate multiple times on the same netlist during the optimisation

process. For traditional constraints like area/or delay, the goal is to

reduce the number of nodes and the circuit, respectively. But, when

circuit reliability is the optimisation constraint, the entire optimisation

algorithm and its output changes drastically.

In cut based rewriting, the first step is to pre-compute the best

circuits for a subset of NPN classes of 4-cuts from all possible such

functions. Forest (list of all useful cuts) construction is done once

and saved to a file, and when rewriting a circuit, the forest is loaded

from a file rather than being computed each and every time. The basic

forest constructed in this work consists of 2004 nodes implementing

106 NPN function classes. We note that ABC’s original area based

rewriting uses a forest of 1785 nodes implementing 139 function

classes. This is because in the ABC’s default rewriting algorithm

targeting area optimisation, unit XOR nodes are also used in the forest

but these are excluded from the reliability aware rewriting algorithm

since XOR node can result in huge output error.

The second step is cut-enumeration and Boolean matching. Cuts

that are rooted at a certain node are identified and functionally

equivalent alternative cuts from the precomputed forest are evaluated

as replacements for that node. For each cut, the nodes that are

computing this function and no others can be removed. New nodes

that aren’t duplicates of existing nodes must be added. The cut

implementation is then scored by the number of nodes it removes less

the number it must add. Each node in the forest exists as a function

itself and also as a fan-in for further nodes. Auxiliary tables and

linked lists are maintained grouping each node in the forest into NPN

function classes. The conditions for a node being tried to be added

to the forest is that it is either less than 2 levels deep or implements

an more complex NPN function class deemed practical, and that it

is better than each existing function implementing that class in its

output error probability.

The decomposition module within ABC encompasses all the

coding details that handle network modifications during rewriting. A

decomposition includes the new nodes that must be added or reused

(found in the network by strashing). Nodes in the original cut are

marked for removal if they are not needed elsewhere. In area based

rewriting, a decomposition must be formed for every implementation

of every cut as building the decomposition is how area change is

1This reference is intentionally left blank to facilitate blind revision

calculated. All these decompositions are still built when rewriting for

reliability so as to retain the same, known correct, code structure,

even though the decomposition could be delayed and one calculated

per cut, since the reliability information is available in the forest. For

each alternative implementation, a decomposition (possible alteration)

of the network based on substituting that implementation is formed.

Algorithm 1 Rewrite for Reliability

INPUT : Pntk, NODEcount, PIsp , Gerr

OUTPUT: POerr

for all nodes I= 1 to NODEcount do

for Node N in AIG do

Get cuts based at N

for 4-input cut C based at N do

Get truth-table F of N in terms of C

for Possible graph S of function F do

Make decomposition D corresponding to cut C

Remove original nodes from D

Add nodes of S to D

if Level > MaxLevel then

Go to Next S

end if

Compute savings as nodes that can be dropped from

network with D

Compute cost of adding new nodes.

Error = Error(S)

if Error < BestError then

BestS = S

BestD = D

end if

end for

end for

Apply decomposition BestD to the AIG

end for

end for

C. The CAD Algorithm

The main algorithm implemented in this work is called ”Rewrite

for Reliability” or ′rwrel′ for its command in ABC. This algorithm

is based on the standard cut-rewriting algorithm from ABC, adapted

so that the goal is reliability instead of area. Modified versions of the

data structures were created to include node error probability values.

The key functions of the rewriting process were then rewritten to use

reliability as a goal. All utility functions from the rewriting module

were duplicated, just changing them to work with the expanded struc-

tures instead of the originals. The cut enumeration and decomposition

modules are self contained and are used directly. Eq. 1 quantifies the

’percent decrease in error’ goal function that is used in guiding the

optimisation algorithm to select the better cut.

RMetric =
Pǫ(Old Cut)− Pǫ(New Cut)

Pǫ(Old Cut)
(1)

A pseudo-code of this algorithm is presented in Alg. 1. The aim

is to find a sequence of transformations leading to an AIG network

that minimize the cost function. We rely on a heuristic approach to

find an acceptable solution, i.e., an AIG providing a higher reliability

than the original circuit. The strategy chosen is to figure out all the

functionality equivalent cuts for a given node and choose the best



among them. Given a combinational circuit implementing the Boolean

function f and its AIG network, the algorithm, starting from PI’s,

traverses through the graph to see if any of the transformations are

applicable on the given node. For every possible transformation, the

new circuit reliability value is computed. The configuration that yields

the highest circuit reliability improvement is chosen and the new

topology is generated. This process is continued on every graph node

until we reach the primary outputs where no more transformations

are applicable.

Two versions of the algorithm were developed in this work. In

both of them, the rewrite for a given cut is selected for the least error,

based on the reliability information available in the forest. Selecting

which cut to use for node rewriting is the difference between the

two algorithm versions. The first version selects the least error for

each cut, and then selects the least error cut for the node. The second

version instead selects the most improved cut in terms of percentage

improvement in reliability, for each node. Initially the first version of

the algorithm was implemented but while the obtained results were

good, better performance was expected. One possibility considered

was that the absolute error goal function favoured situations in which

the optimisation process ended up in local minimum. Choosing the cut

with best reliability naturally favours already optimized cuts where

little progress can be made, where it might be more favourable

to select a slightly unreliable cut and improve it to have better

reliability. Thus, the second algorithm version makes use of reliability

improvement as a metric instead of the absolute error. This metric

change resulted in about three times better improvement and in view

of this all the results presented in the next section are based on the

second algorithm.

IV. EXPERIMENTAL RESULTS

In this section, the potential practical implications of the proposed

reliability aware synthesis tool is evaluated. In this view, Alg. 1 was

implemented and integrated in ABC synthesis tool as a command
′rwrel′. Another command ′printrel′ is developed to display the

node reliability statistics in the network. The total savings achieved

in terms of circuit reliability is studied by performing a set of

experiments using MCNC benchmark circuits [17] with more than

3000 node AIGs after structural hashing. A unit gate error probability

of 10−2 is assumed in all our simulations. The networks were

loaded in Berkeley Logic Interchange Format (BLIF) format and

strashed to AIGs. Functional equivalence was extensively verified

during development using the ABC equivalence check command
′cec′. We use internal technology mapping algorithms to map the

AIG network to a gate level Verilog netlist using the TSMC 65 GP

CMOS standard cell library. Synopsys Design Compiler is employed

for power, timing and area estimation on the two netlists. Also the

two netlists are verified for equivalence via Synopsys Formality. After

we established the algorithm correctness and performance, its effect

on the implementation of 8051 microcontroller basic blocks like

adder, multiplier, and divider were also tested. In this section, we

first present a case study highlighting the important differences in the

way the Boolean matcher finds alternative cuts when reliability is the

constraint. Then, we discuss the results obtained for various MCNC

benchmark circuits and 8051 functional units.

A. CM162a – A Case Study

The proposed reliability aware synthesis algorithm is applied

on the MCNC benchmark circuit ′cm162a′, which implements a

14-input 5-output logic function. The current case study considers

the cone comprising of all the gates driving the output pin ’P’.

Fig. 3(a) represents the default AIG configuration. The total number

of nodes in the default AIG representation of the circuit is 14. With

a unit gate error probability of 10−2, the output node ’P’ has an

error probability Errorg = 0.071750. We now discuss three specific

functionally equivalent logic configurations generated by our tool.

The idea is to emphasise on how the Boolean matcher works when

the constraint is set to output error optimisation instead of area.

Fig. 3(b) depicts the first sub-case : Moving the PI’s closer to

the PO’s wherever possible. It is clear that the PI node ’F’ has

been pushed closer to the PO. This helped in reducing the overall

output error on the output node to Errrwrel1 = 0.068002. Fig. 3(c)

depicts the second sub-case: insert redundant nodes in an intelligent

fashion. Extra nodes if added pragmatically can result in significant

error masking effect that reduce the overall error on the output nodes

considerably. A redundant node ′n6′ has been appended onto the

logic, thus total node count is increased to 15 and reduces the overall

output error to Errrwrel1 = 0.067668.

After multiple iterations, the final version of the optimized circuit

configuration in Fig. 3(d) is obtained. The final output error value

of the optimized circuit is Erropt = 0.063353 and the total node

count is 17. Two redundant nodes ′n9′ and ′n10′ are added into the

configuration. Also, node ′n4′ in Fig. 3(c) is modified such that the

PI node ’F’ has been pushed closer to the PO in similar lines with

the first sub-case. Finally, we list some of the important differences

observed in the way Boolean matching is performed by our reliabilty

aware rewriting algorithm when compared to the area driven approach

in [3] :

– Cuts with Primary Inputs closer to the Primary Outputs are

preferred. Primary Inputs have lower error probability when compared

to the internal nodes. Thus, moving a highly reliable node closer to

the output can result in canceling out some of the errors.

– Cones with larger circuit depth can result in higher critical path

delay and are not preferable in case of delay optimisation. But, they

can result in lowering the output error values and are often employed

by our algorithm.

– Redundant Node insertion is commonly performed. This in-

creases the total area but has higher masking effect and there by

reducing the output node error probability.

– One other significant difference that has been observed is the

matching of path lengths. Most of the time the Boolean matcher

selected cuts in such a way that the resulting circuit is more balanced

so that the level of both the left and right paths are similar.

B. Evaluation of Benchmark Circuits

To prove that the proposed methodology is scalable, we applied it

on a set of MCNC benchmark circuits. Simulation results comparing

the average circuit output errors of the original and the optimized

configuration obtained from our tool are reported in Tab. I. The name

of each circuit is given in the first column while column two provides

the output pin count of each circuit. The following three columns list

the node count of the original circuit, the optimized circuit, and the

optimisation induced node count change in percentage. Columns 6 (7)

provides the circuit depth of the default (optimized) circuits. Columns

8 (9) lists the average output error value for the default (optimized)

circuits. Columns 10 through 12 lists the average, maximum, and



K I E C D J N F

n0n1

n2

n3 n4

n5

n6

n7n8

n9

n10

n11

n12

n13

P

(a) Default Configuration

K I E C D F J N

n0n1

n2

n3n4

n5

n6

n7n8

n9

n10

n11

n12

n13

P

(b) Config1: PI closer to PO

K I E C D F J N

n0n1

n2

n3n4

n5

n6

n7

n8 n9

n10

n11

n12

n13

n14

P

(c) Config2: Redundant Node

K I E C D F J N

n0

n1

n2

n3

n4

n5

n6

n7

n8

n9 n10

n11

n12

n13

n14

n15

n16

P

(d) Config3: Optimized Version

Fig. 3. MCNC Benchmark CM162A – A Case Study

the minimum relative output error improvement. Tab. II reports the

area, timng and power analysis after applying RWREL on MCNC

benchmark circuits. In the table, Porg , Torg and Aorg are the power,

timing and area results from the original MCNC netlist. Popt, Topt

and Aopt are the power, timing and area results from the netlist

obtained via RWREL optimisation.

From the tables, it is clear that significant SER reduction can be

achieved very low area overhead of 6.57% that results in 13.52%

higher power consumption by employing the optimisation algorithms

reported in this paper. An average improvement of 14% and a peak

improvement of upto 75.5% was observed. Some interesting facts

from the simulation results are now discussed. ′I7′ benchmark is a

simple logic circuit consisting of 199 PI’s & 67 PO’s and a total

node count of 903. Output pin V 266(6) provides the peak error

improvement of 75.5%. Another important fact worth mentioning

is that benchmark circuits ′I6′, ′I7′, ′I8′ and ′too large′ report

reduction in node count. This proves that our algorithm is intelligent

enough to decide when to add redundancy and when to remove

unnecessary nodes that can result in better output reliability. Also

benchmark circuit ′too large′ reports a pretty high output error. This

is because of the fact that it has 824 nodes and just 3 output pins. It

implies that if large number of gates are placed within the cone to

emulate a particular function, higher the probability of error on the

output. Also the circuit depth of the logic resembles no direct relation

to the output error as circuit depth has reduced in certain cases while

in others it has been increased.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we first described a simple gate level simulation

methodology that computes circuit output error probability due to

individual gate failure in complex combinational circuits. Subse-

quently , a reliability driven 4-cut enumeration and Boolean matching

technique that improves circuit reliability has been proposed. The

technique of rewriting for reliability was developed by extending an

existing cut based rewriting tool to make use of local transforms

targeting a reliability metric improvement instead of area. A synthesis

algorithm that optimizes the circuit output nodes error probability

was also presented. The application of the proposed reliability aware

synthesis algorithm on various MCNC benchmark circuits with a

node count from 50 to 3000 resulted in up to 75.5% output error

probability reduction. On average, about 14% SER reduction was

obtained at the expense of less than 4.5% area overhead. We note

that the presented technique can be further improved by adopting

multiple rewriting iterations, or multiple interleaved iterations of cut-

and rule-based rewriting. Going forward, we intend to come up with

a formal mathematical procedure that can provide a much stronger

set of guidelines to the optimisation algorithm.

VI. ACKNOWLEDGEMENT

This work was supported by the Seventh Framework Programme

of the European Union, under Grant Agreement number 309129 (i-

RISC project). We would also like to thank Nan Li and Dr. Elena

Dubrova, KTH Sweden for helping us in resolving some of the

intricate issues with the ABC tool.

REFERENCES

[1] Sobeeh Almukhaizim, Yiorgos Makris, Yu-Shen Yang, and Andreas
Veneris. Seamless integration of ser in rewiring-based design space
exploration. In Test Conference, 2006. ITC’06. IEEE International,
pages 1–9. IEEE, 2006.

[2] S. Borkar. Designing reliable systems from unreliable components:
the challenges of transistor variability and degradation. Micro, IEEE,
25(6):10–16, 2005.

[3] Robert Brayton and Alan Mishchenko. Abc: An academic industrial-
strength verification tool. In Proceedings of the 22Nd International

Conference on Computer Aided Verification, pages 24–40, 2010.

[4] Mihir R Choudhury and Kartik Mohanram. Low cost concurrent error
masking using approximate logic circuits. Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on, 32(8):1163–
1176, 2013.

[5] J.A. Darringer, William H. Joyner, C.Leonard Berman, and Louise
Trevillyan. Logic synthesis through local transformations. IBM Journal

of Research and Development, 25(4):272–280, 1981.

[6] Stanley L. Hurst, Jon C. Muzio, and D. Michael Miller. Spectral

Techniques in Digital Logic. Academic Press, Inc., Orlando, FL, USA,
1985.

[7] Smita Krishnaswamy, Stephen M Plaza, Igor L Markov, and John P
Hayes. Enhancing design robustness with reliability-aware resynthesis
and logic simulation. In Computer-Aided Design, 2007. ICCAD 2007.

IEEE/ACM International Conference on, pages 149–154. IEEE, 2007.

[8] A. Kuehlmann and F. Krohm. Equivalence checking using cuts and
heaps. In Design Automation Conference, 1997. Proceedings of the

34th, pages 263–268, June 1997.

[9] Nan Li and E. Dubrova. Aig rewriting using 5-input cuts. In Computer

Design (ICCD), 2011 IEEE 29th International Conference on, pages
429–430, Oct 2011.

[10] F. Mailhot and G. De Micheli. Technology mapping using boolean
matching and don’t care sets. In Design Automation Conference, 1990.,

EDAC. Proceedings of the European, pages 212–216, Mar 1990.

[11] A. Mishchenko and R. K. Brayton. Scalable logic synthesis using a
simple circuit structure. In Proc. IWLS, pages 15–22, 2006.



TABLE I. RWREL PERFORMANCE EVALUATION ON DIFFERENT BENCHMARK CIRCUITS (GATE ERROR ǫ = 0.001)

Benchmark No. of Outputs
Node Count Circuit Depth Averaged Absolute Error Output Error Improvement (%)

NCorg NCopt Increase (%) CDorg CDopt Errorg Erropt Avg Max Min

apex7 36 221 252 14.03 14 14 0.005895 0.005240 10.44 51.33 1.74

cm162a 5 36 44 22.22 9 8 0.005874 0.005128 13.88 15.66 9.74

comp 3 107 119 11.21 18 19 0.009510 0.007232 18.31 25.31 5.98

dalu 16 1371 1602 16.85 35 35 0.019144 0.016449 13.98 19.45 7.98

I6 67 692 523 -24.42 5 4 0.008381 0.007291 12.83 15.19 4.23

I7 67 903 702 -22.26 6 5 0.009235 0.008303 10.21 75.5 3.16

I8 81 3310 2187 -33.93 21 20 0.018626 0.015219 18.83 32.04 6.8

k2 45 1998 2152 7.71 23 19 0.031802 0.028530 12.94 25.65 4.52

unreg 16 112 111 -0.89 5 5 0.006506 0.005382 18.43 19.03 17.78

vda 39 924 1042 12.77 16 18 0.030577 0.027491 12.81 65.6 5.31

too large 3 824 773 -6.19 30 27 0.053492 0.046468 13.87 17.43 11.33

8051 add 19 175 222 26.86 28 29 0.014149 0.013330 16.99 41.56 5.86

8051 mul 17 630 765 21.43 48 47 0.030946 0.029475 10.58 32.65 1.58

8051 div 17 1010 1181 16.93 198 181 0.023831 0.022888 12.31 31.75 2.18

TABLE II. AREA, DELAY AND POWER ANALYSIS – A COMPARATIVE STUDY

Benchmark
Area Delay Dynamic Power Leakage Power

Aorg Aopt Increase(%) Torg Topt Increase(%) Porg Popt Increase(%) Porg Popt Increase(%)

apex7 705.24 779.04 10.46 1.10 1.16 5.45 46.25 53.32 15.28 3.12 3.47 11.28

cm162a 121.68 137.88 13.31 0.69 0.56 -18.84 7.91 8.97 13.47 0.54 0.61 13.29

comp 360.36 405.72 12.59 1.36 1.38 1.47 34.22 36.11 5.54 1.61 1.79 11.46

dalu 4232.52 4876.2 15.21 3.41 3.15 -7.62 310.43 403.97 30.13 18.66 21.93 17.52

I6 1861.92 1677.6 -9.9 1.37 0.89 -35.04 133.68 137.11 2.57 8.28 7.62 -7.97

I7 2386.8 2144.16 -10.17 1.48 1.38 -6.76 174.82 175.92 0.63 10.66 9.65 -9.47

I8 8147.52 5780.16 -29.06 4.59 3.11 -32.24 720.15 522.14 -27.5 37.7 26.66 -29.29

k2 4675.32 5343.84 14.3 1.96 1.87 -4.59 119.51 177.1 48.19 23.53 26.07 10.79

unreg 367.2 372.6 1.47 0.48 0.52 8.33 29.36 32.16 9.53 1.64 1.71 4.34

vda 2158.92 2638.08 22.19 1.08 1.31 21.3 88.61 129.34 45.97 11.18 13.09 17.08

too large 2176.2 2087.64 -4.07 2.32 2.20 -5.17 118.6 121.57 2.5 9.45 9.16 -3.08

8051 add 595.08 723.6 21.6 2.49 2.60 4.42 74.19 84.25 13.55 2.67 3.24 21.34

8051 mul 2038.32 2432.16 19.32 3.93 3.82 -2.8 304.85 363.33 19.18 9.17 10.87 18.51

8051 div 3295.8 3781.44 14.74 16.96 15.43 -9.02 555.68 612.15 10.16 14.95 17.1 14.38

[12] K. Palem and A. Lingamneni. What to do about the end of moore’s
law, probably! In Design Automation Conference (DAC), 2012 49th

ACM/EDAC/IEEE, pages 924–929, 2012.

[13] R. Rithe, Jie Gu, A. Wang, S. Datla, G. Gammie, D. Buss, and
A. Chandrakasan. Non-linear operating point statistical analysis for
local variations in logic timing at low voltage. In Design, Automation

Test in Europe Conference Exhibition (DATE), 2010, pages 965–968,
March 2010.

[14] J. Srinivasan, S.V. Adve, P. Bose, and J.A. Rivers. The case for lifetime
reliability-aware microprocessors. In Computer Architecture, 2004.

Proceedings. 31st Annual International Symposium on, pages 276–287,
2004.

[15] Y. Wang, M. Enachescu, S.D. Cotofana, and L. Fang. Variation tol-
erant on-chip degradation sensors for dynamic reliability management
systems. Microelectronics Reliability, 52:1787–1791, September 2012.

[16] Kai-Chiang Wu and Diana Marculescu. A low-cost, systematic method-
ology for soft error robustness of logic circuits. Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on, 21(2):367–379,
2013.

[17] Saeyang Yang. Logic synthesis and optimization benchmarks user

guide: version 3.0. Microelectronics Center of North Carolina (MCNC),
1991.


