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Abstract—In this paper, several implementations of the recently
introduced PGDBF decoder for LDPC codes are proposed. In [2],
the authors show that using randomness in bit-flipping decoders can
greatly improve the error correction performance. In this paper, two
models of random generators are proposed and compared through
hardware implementation and performance simulation. A conventional
implementation of the random generator through LFSR as a first design,
and a new approach using binary sequences that are produced by the
LDPC decoder, named IVRG, as second design. We show that both
implementation of the PGDBF improve greatly the error correction
performance, while maintaining the same large throughtput. However,
the performance gain requires a large hardware overhead in the case of
LFSR-PGDBF, while the overhead is limited to only 10% in the case of
the IVRG-PGDBF.
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I. INTRODUCTION

Low-Density Parity-Check (LDPC) codes have been intensively
studied in the past several years due to their excellent performance
under iterative decoding. Their practical iterative decoders vary from
Belief Propagation (BP) [6] which offers the best error correction
performance, but at the cost of intensive computation, to simple hard-
decision algorithms such as Bit-Flipping (BF) decoders [3][4][5]. All
iterative LDPC decoders share the same general concept of passing
the information between Variable Nodes (VNs) and Check Nodes
(CNs). The difference between BP-based decoders and BF-based
decoders lies in the computation of iteratively passed messages. Due
to their simple computation units, BF algorithms significantly reduce
the hardware resources needed for implementation. The drawback
of this simplification is a non-negligible performance loss compared
to BP and its variants Min-Sum (MS), normalized MS [1]. As
a consequence, many generalization of BF algorithms have been
proposed, with the objective of reducing the performance loss while
keeping the hardware complexity low as in weighted BF (WBF)
[3], modified weighted BF (MWBF) [4], Gradient-Descent BF [1][2]
algorithms.
Gradient Descent Bit Flipping (GDBF) algorithm for binary LDPC
decoders have been first proposed by Wadayama et al [1]. This algo-
rithm is derived from gradient descent formulation and its principle
consists in finding the best suitable bit (or group of bits) to be flipped
in the VN processing in order to maximize a pre-defined objective
function. GDBF algorithm shows error correction performance far
better than other BF variants and very close to normalized MS
algorithm [1]. Inspired by GDBF algorithm and the Probabilistic
BF algorithm in [5], Rasheed et al. proposed another variant of
GDBF called Probabilistic GDBF (PGDBF) [2] which has even better

performance than the original GDBF. Instead of flipping all bits
satisfying the gradient descent condition, PGDBF takes the flipping
decision in a probabilistic manner. The results in [2] show that the
randomness introduced in PGDBF makes this decoder superior to
other BF decoding algorithms.
The performance improvement of PGDBF comes at the cost of extra
hardware resources, since hardware-exhausted random generators
blocks have to be implemented, for each and every VNs units. In this
paper, we present two different hardware implementations of proba-
bilistic GDBF with a study of their trade-offs in term of performance
versus hardware resource required. A comparison with the non-
probabilistic GDBF decoder is also presented. The basic difference of
the two proposed PGDBF realizations comes from the implementation
methods of random binary sequence generators. The first method is
conventional, and makes use of linear feedback shift register (LFSR)
with a modification in using different length of registers. The second
method, called Intrinsic-Value Random Generator (IVRG), uses the
value of Check Node (CN) units and interprets these values as a
random source of bits. In IVRG, a function G is designed to obtain,
from the CN outputs, random binary sequences with a controlled
probability distribution. This method, to the best of our knowledge,
is original and has not been proposed in the literature. By using the
intrinsic values which are already generated by the existing hardware
block of the GDBF decoder, the IVRG-PGDBF significantly reduces
the hardware resource needed.

The paper is organized as follows. In section II, general notations
on LDPC codes and decoders are recalled and a short description
of the PGDBF [2] is made. We also highlight the main difference
between the probabilistic GDBF and non-probabilistic GDBF which
motivates the requirements of binary random generators in the hard-
ware implementation. In section III, the two methods for the hardware
design of the random generators are presented. In section IV, our
proposed global architecture of the PGDBF is presented and synthesis
results are produced, for different cases of the random generator
use. Additionally to our IVRG-PGDBF model, we also consider the
case of a partial use of random generators in the LFSR-PGDBF
approach, in which the random generators are applied to only part
of the VN units. Finally, in section V, we plot simulation results of
the two PGDBF decoders implementation, and discuss the trade-off
between error correction performance and hardware complexity. It is
in particular shown that with only 9.7% of slice registers and 12.1%
of slice LUTs overhead compared to the non-probabilistic PGDBF,
the IVRG-PGDBF has performance results approaching the Min-Sum
decoder. Section VI concludes the paper.



II. PROBABILISTIC GRADIENT DESCENT BIT FLIPPING

An LDPC code is defined by a sparse parity-check matrix H
with size of (M,N), where N > M . A code word is a vector
x = (x1, x2, ...xN ) ∈ {0, 1}N which satisfies H.x = 0. We denote
by y = {y1, y2, ..., yN} ∈ {0, 1}N the output of a binary symmetric
channel (BSC), in which the bits of the transmitted codeword x have
been flipped with crossover probability p0. The decoders presented in
this paper are dedicated for BSC channel. Let N (v(i)) denotes the
set of CNs connected to the VN v(i), with connexion degree dv(i).
Let also define N (c(i)) as the set of VNs connected to the CN c(j),
with connexion degree dc(i).
In BF decoders, the value of variable nodes can change over the
iterations, and we denote in this paper by v(k)(i) the value of the
variable node at the k-th iteration. We correspondly denote by c(k)(j)
the value of the parity checks at iteration k.
The CN calculation in BF algorithms is defined by checking whether
the parity check is satisfied or not. It can be written as: c(k)(j) =
XORv(i)∈N (c(j))v

(k−1)(i), (XOR is the bit-wise Exclusive-OR
operation). In the case of gradient descent BF algorithms, a function
called inversion function, is defined for each VN unit, and used to
evaluate that the value v(k)(i) should be flipped or not.
The original GDBF is designed for the Additive White Gaussian
Noise (AWGN) channel and the inversion function is defined as in (1).
In GDBF [1], only the VN having the smallest inversion function’s
value will be flipped, and sent for the next iteration.

Λ
(k)

v(i) = (1− 2v(i)(k))γi +
∑

c(j)∈N (v(i))

(1− 2c(j)(k)) (1)

where γi is the received value from AWGN channel. In [2], the
authors proposed an inversion function to apply GDBF algorithm for
the Binary Symmetric Channel (BSC) [2]. The inversion function for
BSC is modified, and the bits having the maximum value of ∆

(k)

v(i)

in (2) are flipped.

∆
(k)

v(i) = v(i)(k)yi +
∑

c(j)∈N (v(i))

c(j)(k) (2) (2)

In [2], the inversion function’s value is an integer and varies from
0 to dv(i)+1. Due to the integer representation of inversion function,
many bits can be flipped in one iteration. This fact may induce a
negative impact to the convergence of the algorithm as the analysis
of [2] shows. To avoid this effect, the PGDBF has been proposed with
the idea that, instead of flipping all the bits with maximum inversion
function value, only a random fraction of those bits are flipped. The
random fraction is fixed by a pre-defined probability p(k)i , which could
be different for each VN and each iteration. In this work, we restrict
ourself in keeping p(k)i constant for all iteration and all VNs (denoted
as p′ hereafter). The details of the PGDBF are explained in Algorithm
1.
For the hardware implementation, it can be seen that the non-
probabilistic GDBF and PGDBF have the same structure for the CN
units and for the maximum-finder. The maximum-finder is in charge
of finding the maximum value of inversion functions. In this work,
we follow the conventional method which uses the binary comparator
tree to implement the maximum-finder. In VN units of PGDBF, extra
blocks which generates sequences of random bits, denoted as R(k)

i

in algorithm 1, are needed. Those blocks are the main difference
between PGDBF and non-probabilistic GDBF and are required in
order to improve the error correction performance. In [2], it is also
shown that the optimum probability mass function for the random
binary sequence is p′ = 0.9. Two solutions for the analysis and design

of random generators having a fixed value of p′ are presented in the
next section.

Algorithm 1 Probabilistic Gradient Descent Bit-Flipping

Initialization v
(init)
i ← yi, i ∈ [1, N ]

syndrome = H.v(init)

while syndrome 6= 0 and k < Imax do
∀i ∈ [1, N ]

∆
(k)

v(i) = v
(k)
i yi +

∑
cj∈N (v(i)) XORvu∈N (c(j))v

(k)
u ,

Threshold = max(∆
(k)

v(i))

if ∆
(k)

v(i) = Threshold then
if R(k)

i = 1 then
x
(k)
i = NOT(v

(k)
i ); {p(R(k)

i = 1) = p
(k)
i }

end if
end if
syndrome = H.v(k)

k = k + 1
end while
Outputs : v(k)

III. ANALYSIS AND DESIGN OF RANDOM BINARY GENERATORS

A. LFSR random generator

The first design that we study is based on linear feedback shift
registers, with controlled probability of getting zero or ones, that
we consider for inclusion is each instantiated VNU. The generic
architecture for the random binary sequence generator is not presented
in the paper because of the lack of space, but is briefly described
thereafter. We make use of LFSR with maximum length feedback
polynomial to generate an integer number, and the generated number
is compared with a threshold to decide if the new bit in the random
sequence should be a 0 (higher than threshold) or 1 (lower than
threshold). Two aspects are of interest when designing a variable
threshold random binary sequence generator, first the period of the
random sequence, second the granularity with which the threshold
can be programmed. In the proposed architecture the period depends
on the length of the LFSRs and the granularity from the number of
LFSRs (i.e. bits) implemented. The chosen parameters guarantee a
granularity of 2−8. Moreover, having different length for each LFSR
ensures a higher period than the period of the longest LFSR. In
particular the least common multiple of all the periods lcm([2l− 1])
with l ∈ {3 . . . 10} is around 17 billions, which ensures that the
binary sequence will appear random to the decoding process. Having
different length LFSRs also reduces the total number of register
required.

B. Intrinsic-value random generator

An alternative solution is presented in this section that reduces the
cost of generating random binary sequences by means of subtituting
all local RBSGs (one per VNU) with a global one. We name this
new method intrinsic-value random generator (IVRG), which makes
use of the value of the CNs inside decoder as its inputs. In an
LDPC iterative decoder, the values of the CNs depend both on the
BSC crossover probability of p0, the degree of check nodes dc
and the iteration number. Typically, the number of CN which are
unsatisfied (value ’1’) is large during the first iterations, while it
becomes smaller as the iteration number increases. We denote by
p(c

(k)
j = 1) = F (p0, k, dc) the probability that a CN is unsatisfied,



as a function of the three mentioned parameters.
In this paper, we will use only the CN values produced at the
first iteration k = 1 in order to generate sequences of random
bits. At the first iteration, the probability mass function is given by
p(c

(1)
j = 1) = F (p0, 1, dc) = 1

2
− 1

2
(1− 2p0)dc . Figure 1 shows the

probability p(c(1)j = 1) versus p0 when the CN degree dc changes. In
order to control the random generator probability p′, we propose to
use a function G of the CN values G(c

(0)
j1 , c

(0)
j2 , ..), j1, j2 ∈ [1,M ]

that controls the desired probability p′. We briefly describe the
function G in the following.
Let cj1 and cj2 be two binary random variables with p(cj1 =
1) = p(cj2 = 1) = p, it can be proved that p(cj1ORcj2 =
1) = 2p + p2 > p and p(cj1ANDcj2 = 1) = p2 < p. More
specifically, p(cj1 = 1) = p(cj2 = 1) = p = 1

2
− 1

2
(1 − 2p0)dc ,

p(cj1XORcj2 = 1) = 1
2
− 1

2
(1 − 2p0)2dc . Using these transfor-

mations of probability, and a function G implemented as described
in figure 2, we can transform the CN output sequence into a longer
binary pseudo-random sequence with a desired probability p′. The
CNs values at first iteration are stored in the chain of Flip-Flops and
are cyclically shifted at each iteration and assigned to be the inputs
of the input-selectable-OR gates through an interconnexion network
in order to ensure randomness of the output sequence. The value
of crossover probability triggers the selectable-OR gates, in order to
control the value of p′. The more precision is put on p0, the finer is
the control on p′, but at the cost of larger hardware resource.
This IVRG has been realized and verified, for the case of p0 that
triggers the IVRG output stored on 2 bits. As a result, in running
time of the PGDBF decoder, the probability of the IVRG output is
not exactely tuned along the iterations and varies around the target
value 0.88 < p′ < 0.92.
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Fig. 1. Statistics of the CN values as a function of the BSC crossover
probability.

IV. GLOBAL ARCHITECTURE OF PROBABILISTIC GDBF

The top level architecture of the decoder is presented in Figure 3.
This architecture differs from the generic LDPC decoder architecture
in several aspects. First, the presence of a global block that takes
inputs from all VNUs (the Lambdas) and computes the maximum,
and second the presence of binary random generators. The LFSR
approach can be seen as a distributed random generator due to the
fact that it is implemented inside every VN unit.
The complexity of the interconnection network depends on the type
and size of LDPC code used as well as the chosen level of parallelism.
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Fig. 2. Architecture of Intrinsic-valued Random Generator

These aspects have been widely discussed in the literature [7] and are
not discussed here. Implementation of the RG have been discussed
in the section III.
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Fig. 3. Global architecture of PGDBF compared to the original GDBF

We have made the synthesis of the different solutions for the case
of a small LDPC code that has been proposed in the literature [8]:
a regular, quasi-cyclic LDPC code with regular connexion degrees
dv = 3 and dc = 5, with codeword length N = 155, called
the Tanner code. Table I shows the hardware resources needed to
implement the two different PGDBF structures. As benchmarks,
the resources for the non-probabilistic GDBF and 6 bits Min-
Sum decoder are shown as well. The maximum frequency and the
estimated throughput have been obtained from an implementation
using FPGA Xilinx virtex 6 of 40nm technology, after place and
route. For the throughput calculation, we use the following definition:
Throughput = fmax ∗ N/(Iaver ∗ S) where fmax, Iaver, S are
respectively the maximum frequency, the average iteration number
and the number of clock cycles needed for one iteration. We obtained
S = 1 for the PGDBF algorithms and S = 10 for the offset Min-
Sum.
The IVRG-PGDBF needs an additional 92 1-bit registers (9.7%
overhead) compared to the non-probabilistic while the LFSR-PGDBF
needs 8215 1-bit registers overhead (868.4% overhead). This large
overhead emphasize the advantage of IVRG over LFSR in terms
of implementation. Comparing the Slice LUTs required, the IVRG-
PGDBF requires 261 more slices than the non-probabilistic (12.1%)



and this number for LFSR-PGDBF is 1394 (64.8%). The extra com-
plexity brought by the RG implementation has moreover a negligible
impact on the obtained throughput (less than 2%) in all PGDBF
impementations. We can also see that the offset min-sum decoder
is far more complex than the BF type decoders, and cannot compete
in terms of decoding speed.

TABLE I. HARDWARE AND THROUGHPUT ESTIMATION FOR PGDBF
WITH DIFFERENT RG IMPLEMENTATIONS AND FOR OFFSET MIN-SUM

1-bit Register Slice LUTs Fmax (MHz) Throughput (Mbps)

Non-Probabilistic GDBF 946 2151 132.721 4114.3

PGDBF with IVRG 1038 2412 132.721 4114.3

PGDBF with LFSR 9161 3545 135.56 4202.36

offset min-sum (6 bits) 13694 15350 237.185 197.5

In order to reduce the hardware resources used in the LFSR-
PGDBF we propose to apply the RG only in a subset of the VN,
and not everywhere. The reason for this study is that putting RGs
in all the variable units might not be necessary in order to obtain
good decoding results, especially in the case of Quasi-cyclic LDPC
codes. We report in table II the synthesis results for different fractions
of VNs using LSFR-RG, from 0% (non-probabilistic) to 100%. As
expected, the complexity in registers and slices grows linearly with
the number of LSFR-RG considered. Even with only 20% of VNs
incorporating the LSFR-RG, the complexity is larger than the one of
the IVRG approach (see table I). The performance results of these
different cases are reported in the next section.

TABLE II. HARDWARE AND THROUGHPUT ESTIMATION FOR PGDBF
WITH DIFFERENT NUMBER OF LFSR IN PGDBF

1-bit Register Slice LUTs Fmax (MHz) Throughput (Mbps)

Non-Probabilistic GDBF 946 2151 132.721 4114.3

PGDBF with LFSR in 20% VNs 2589 2429 133.886 4150.466

PGDBF with LFSR in 40% VNs 4232 2708 134.426 4167.206

PGDBF with LFSR in 60% VNs 5875 2987 132.117 4095.627

PGDBF with LFSR in 80% VNs 7518 3266 134.21 4160.51

PGDBF with LFSR in 100% VNs 9161 3545 135.56 4202.36

V. NUMERICAL RESULTS

Figure 4 shows the frame error rate of the PGDBF algorithms
and non-probabilistic GDBF as a function of the channel crossover
probability. The two solutions proposed in this paper for PGDBF
algorithms produces a significant gain in performance comparing to
non-probabilistic GDBF. The IVRG-PGDBF shows a performance
loss in the error floor region (flattening) compared to the LFSR-
PGDBF. However, the performance in the waterfall region are strictly
similar. This performance loss in the error floor could come from the
correlation induced by the imprecise random generation implemented
with IVRG. We will continue the characterization of the IVRG
approach in future papers. We can also notice that the partial use of
LFSR (20%) is not sufficient to obtain good results. As a conclusion
the IVRG-PGDBF appears as the best performance vs. complexity
trade-off for the implementation of the PGDBF decoder. As expected,
hard decision decoder are still far from soft-decision ones (min-sum),
as can be seen in figure 4.

VI. CONCLUSION

In this paper, several implementations of the PGDBF decoder for
LDPC codes have been proposed. A conventional implementation of
the random generator through LFSR as a first design, and a new
approach using binary sequences that are produced by the LDPC
decoder, named IVRG, as second design. We showed that both
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Fig. 4. FER performance comparison of the different decoders on the
(N=155,K=64) Tanner code

implementation of the PGDBF improve greatly the error correction
performance compared to the non-probabilistic version, while main-
taining the same large throughtput. However, the performance gain
requires a large hardware overhead in the case of LFSR-PGDBF,
while the overhead is limited to only 10% in the case of the IVRG-
PGDBF, which appears then as a promising solution for very high
throughtput application.
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