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Abstract—This paper analyzes the robustness of Low Density
Parity Check (LDPC) encoders on faulty hardware. The faulty
hardware effect on the encoder is represented by an error model
at the XOR gate level. We review the existing LDPC encoding
solutions [1], [2] and the code constructions [3]–[5] that guarantee
low encoding complexity. For each of the existing solutions [1]–
[5], we provide the analytic expression of the encoding error
probability, and we use it to evaluate the robustness of the
encoders to hardware noise. We then identify the two best
encoding solutions in terms of robustness and we compare their
performance with Monte-Carlo simulations.

I. INTRODUCTION

Over the past few years, reliability has become a major
issue in the design of electronic devices. A huge increase
in the integration factors coupled with important chip size
reduction will make the next generations of electronic devices
much more sensitive to noise [6]. As a consequence, in the
future systems of communication and storage, errors may not
only come from the transmission channels, but also from the
faulty hardware. In this context, there is a need to evaluate
the robustness of Low Density Parity Check (LDPC) encoders
and decoders running on faulty hardware.

The robustness of LDPC decoders was widely investigated
for a large range of decoders. The performance of hard
decoders under faulty hardware was analyzed in [7] (Gallager
A) and [8] (Gallager B), while soft decoders were considered
in [7] (Belief Propagation), and [9] (quantized Min-Sum).
The results of [10] also show how to design Finite Alphabet
Iterative Decoders (FAIDs) strongly robust to hardware noise.

On the other hand, faulty LDPC encoders have not been
studied much so far, and to the best of our knowledge, [11]
is the only work considering the faulty encoding problem.
In [11], Hachem et al. evaluated the level of hardware noise
that can be tolerated in the encoder. However, the results
of [11] do not indicate how to construct a practical encoder
and do not propose any particular robust encoding solution.

When the hardware is assumed perfect, many efforts have
been made for the design of low complexity LDPC encoders.
Richardson and Urbanke [1] proposed three methods for the
construction of encoders from a given parity check matrix. Li
et al [2] also proposed low complexity encoding architectures
for Quasi-Cyclic (QC) codes. Particular code constructions
such as Zig-Zag codes [3], Irregular Repeat Accumulate
(IRA) codes [4], and Low Density Generator Matrix (LDGM)
codes [5], are known to guarantee low encoding complexity.

In this paper, we evaluate the robustness of the above
existing encoding solutions under faulty hardware. We rep-

resent the faulty hardware effect on the encoder by an error
model for the XOR gates used in the encoder. We then
review the existing encoding solutions [1], [2], and code
constructions [3]–[5]. For each of the considered encoding
solutions and code constructions, we provide an analytic
expression of the error probability of the encoder. From the
error probability expressions, we then evaluate the robustness
of all the encoders. To finish, we identify the two best encoding
solutions in terms of robustness to faulty hardware, and we
compare their performance with Monte-Carlo simulations.

The outline of the paper is as follows. Section II introduces
the notations for LDPC codes and describes the XOR gate
error model we consider. Section III evaluates the robustness of
the general encoding solutions [1] while Section IV considers
the particular code constructions [3]–[5]. Section V provides
the Monte-Carlo simulation results.

II. LDPC CODES AND ERROR MODELS

In this section, we first introduce our notations for LDPC
codes. We then describe the XOR gate error model that
represents the faulty hardware effect on the encoder .

A. LDPC Codes

Denote by H a binary parity check matrix of size n ×m.
An LDPC code is defined as the null-space of the parity check
matrix H . A binary vector x of length n is a codeword if and
only if it verifies

HTx = 0. (1)

With LDPC codes, the parity check matrix H is sparse and has
to be designed in order to obtain good decoding performance,
see [12] for instance. Once H is fixed, the corresponding
encoder has to be constructed.

Denote by u the information sequence of length k = n−m.
The encoding operation has to transform the information
sequence u into a codeword x that satisfies (1). For this, [1]
proposes three general solutions to construct an encoder from
a given parity check matrix H . Although very general as
they apply to any H , these solutions exhibit high encoding
complexity in O(n2). On the other hand, particular code
constructions such as Zig-Zag codes [3], IRA codes [4],
and LDGM codes [5], are known to guarantee low encoding
complexity.

In the following, before evaluating the robustness of the
existing encoding solutions [1] and of the particular code
constructions [3]–[5] under faulty hardware, we first introduce



the error model we consider for the faulty hardware effect on
the encoder.

B. XOR Gate Error Model

All the encoding solutions that will be considered in this
paper can be realized from XOR gates only. Consequently,
we assume that hardware errors are introduced at the XOR
gate level. Denote by pxor the error probability of a 2-inputs
XOR gate. The faulty 2-inputs XOR operator ⊕̃ is defined
as

a ⊕̃ b =

{
a⊕ b with prob. 1− pxor,
1⊕ (a⊕ b) with prob. pxor,

(2)

where a and b are binary digits and a ⊕ b is the (perfect)
XOR sum of a and b. The error model described in (2) is
memoryless and data-independent. It is considered as a first
step of the analysis.

The expression (a1 ⊕̃ . . . ⊕̃ aK) gives the faulty XOR
sum of K binary digits (a1, . . . , aK). The error probability

P (K)
e (pxor) = Pr

(
(a1 ⊕̃ . . . ⊕̃ aK) 6= (a1 ⊕ · · · ⊕ aK)

)
(3)

can be expressed from [13, Section 3.8] as

P (K)
e (pxor) =

1

2
− 1

2
(1− 2pxor)

(K−1). (4)

The error probability P (K)
e (pxor) depends on the number (K−

1) of involved 2-inputs XOR gates, and on the XOR gate error
probability pxor. However, P (K)

e (pxor) does not depend on the
order the elementary XOR operations are performed.

In the following, we rely on (4) to provide analytic expres-
sions of the error probabilities of the existing encoding solu-
tions [1]–[5] under faulty hardware. From the error probability
expressions, we then evaluate the robustness of the encoding
solutions.

III. GENERAL ENCODING SOLUTIONS

In this section, we describe the three general encoding
solutions of [1], that are encoding from the generator matrix,
Lower Triangular encoding, and Approximate Lower Trian-
gular encoding. We evaluate the robustness of these encoding
solutions under the XOR gates error model.

In the remaining of the paper, codewords will be in system-
atic form x = [u,p]T , where u is the information sequence
of length k, and p is the parity vector of length m.

A. Encoding from the Generator Matrix

From Gaussian elimination, the parity check matrix H can
be put in systematic form H = [P, Im]

T , where Im is the
identity matrix of size m×m and P is a matrix of size m×
(n−m). A generator matrix G of size n×k can be constructed
as G =

[
I(n−m), P

T
]T

. The encoding operation consists of
computing the codeword x = [u,p]T as

x = Gu. (5)

As the matrix P obtained from Gaussian elimination is not
sparse in general, the encoding operation (5) has a high
encoding complexity in O(n2).

For a given parity check matrix H in systematic form, we
express the error probability of the encoding operation (5) as

Pe =
1

n

m∑
i=1

(
1

2
− 1

2
(1− 2pxor)

(Ni−1)
)
, (6)

where Ni is the number of non-zero components in the i-th
line of P .

In order to evaluate the robustness of the encoding oper-
ation (6), we have constructed a collection of parity check
matrices from the Progressive Edge Growth (PEG) algo-
rithm [14]. All the constructed parity check matrices have the
same variable node degree dv = 3, but different check node
degrees dc and information sequence lengths m. For each of
the constructed parity check matrices H , we have calculated
the encoding error probability Pe from (6).

Figure 1 (a) represents the obtained encoding error prob-
abilities with respect to m for pxor = 10−3. The encoding
error probabilities are high because the matrices P are not
sparse. Furthermore, the error probabilities increase with the
information sequence length m. When m is large enough,
the error probabilities become even higher than the Belief
Propagation (BP) thresholds of the decoder [12], which makes
it impossible for the decoder to recover the correct codeword
x, even when the channel is noiseless. We also note that the
error probabilities increase when the code rate decrease. This
is expected because the error probability (6) increases with the
Ni which themselves increase with m and n.

As a conclusion, encoding from the generator matrix not
only induces high encoding complexity but also exhibits poor
robustness to hardware errors. In order to reduce the encoding
complexity, an encoding solution called Approximate Lower
Triangular encoding has been proposed in [1]. Approximate
Lower Triangular encoding is based on Lower Triangular
encoding which we now describe.

B. Lower Triangular Encoding

From Gaussian elimination, the parity check matrix H can
also be put in lower triangular form H = [Q T ]

T . T is a
lower triangular matrix of size m×m with ones in the diagonal
and non-zero components in the lower part of the matrix only.
Q is a matrix of size m× (n−m). The parity part p of the
codeword x can be computed from (1) by back-substitution as

p1 =

n−m∑
k=1

H1,kuk, (7)

∀i = 2, . . . ,m, pi =

n−m∑
k=1

Hi,kuk +

i−1∑
k=1

Hi,(n−m)+kpk.

As the matrices Q and T are not sparse, the encoding
complexity is still in O(n2).

We now express the error probability of Lower Triangular
encoding. Denote by Ni the number of non-zero components
in the i-th line of Q, and denote Ti the positions of the non-
zero components in the i-th line of T , excluding the diagonal
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Fig. 1. Error probabilities with respect to m, with pxor = 10−3 (a) Encoding from the generator matrix, (b) Lower Triangular encoding, (c) Approximate
Lower Triangular encoding

term. The successive error probabilities Pe,i in the parity bits
pi can be calculated recursively as

Pe,1 =
1

2
− 1

2
(1− 2pxor)

N1−1,

∀i = 2, . . . ,m, Pe,i =
1

2
− 1

2
(1− 2pxor)

Ni−1
∏
k∈Ti

(1− 2Pe,k).

The overall encoding error probability is given by

Pe =
1

n

m∑
i=1

Pe,i. (8)

Figure 1 (b) represents the encoding error probabilities with
respect to m for pxor = 10−3, for the same parity check
matrices H considered in Section III-A. We see that whatever
the considered code, the error probability is very high even
for small values of m. This is due to the non-sparsity of G
and T , and also to error propagation induced by the recursive
computation of the parity bits (7). In addition, in all cases,
the error probabilities reach saturation levels that correspond
to error probabilities of 1/2 over the parity bits.

Lower Triangular encoding shows both high complexity and
no robustness to hardware noise. However, it is an building
block of a lower complexity encoding solution called Approx-
imate Lower Triangular encoding [1], which we present in the
next paragraph.

C. Approximate Lower Triangular Encoding

In [1], it is shown that from line and column permutations,
the matrix H can be put in the following form

H =

[
A B T
C D E

]T
(9)

where A (of size (m − g) × (n −m)), B ((m − g) × g), C
(g×(n−m)), D (g×g), and E((m−g)×g) are sparse matrices
and T ((m−g)× (m−g)) is a lower triangular sparse matrix.
The parameter g is called the gap of the code. The block
matrices A, . . . , E, T , are sparse because (9) is obtained from
line and column permutations only. Here, the codeword will

be decomposed as x = [u,p1,p2]T , where p1 and p2 are
binary vectors of length g and (m− g), respectively.

In [1], it is shown that the encoding operation is equivalent
to solving the system

Au +Bp1 + Tp2 = 0 (10)

(−ET−1A+ C)u + (−ET−1B +D)p1 = 0 (11)

with respect to p1 and p2. The encoding can thus be realized
in two steps

1) Solve (11) by computing p1 = −Φ−1(−ET−1A+ C)u
where Φ = −ET−1B+D. The matrix Φ−1 is not sparse.

2) Solve (10) by computing p2 recursively as in (7). The
matrices A, B, and T are sparse.

Operations 1 and 2 induce a total encoding complexity in
O(n + g2). The authors of [1] show that it is possible
to obtain (9) with a gap value g such that the encoding
complexity is in 0.0172n2 +O(n). The encoding complexity
is still in O(n2), but the constant is very small.

The error probabilities of the encoding operations (10)
and (11) can be obtained from (6) and (8). Figure 1 (c) gives
the error probabilities with respect to m for pxor = 10−3

for the parity check matrices constructed in Section III-A.
Here again, the error probabilities are high because of non-
sparse computation in (11) and of iterative, although sparse,
computation in (10). As a consequence, Approximate Lower
Triangular encoding is not robust neither to hardware errors.

To conclude, the general encoding solutions not only induce
important encoding complexity, but they also show poor
robustness to hardware errors. To overcome the complexity
issue, several particular code constructions [2]–[5] have been
shown to guarantee low encoding complexity. The next section
describes these particular code constructions and evaluate their
robustness to faulty hardware.

IV. PARTICULAR CODE CONSTRUCTIONS

In this section, we evaluate the robustness of the en-
coding for two particular code constructions that are Zig-
Zag codes [3], and LDGM codes [5]. We also discuss IRA
codes [4], QC-codes [2], and concatenated LDGM codes [5].
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Fig. 2. Zig-Zag codes, error probabilities with respect to m, with pxor =
10−3

A. Zig-Zag codes

For Zig-Zag codes, denote by ui,j the information bits, with
i ∈ {1, . . . , I}, j ∈ {1, . . . , J}, m = I , and n = I × J . The
parity bits pi, i ∈ {1, . . . , I}, are calculated iteratively as

p1 =

J∑
j=1

u1,j , ∀i = 2, . . . , I, pi = pi−1 +

J∑
j=1

ui,j . (12)

The codeword x is composed by all the information bits ui,j ,
and by the parity bits pi. A Zig-Zag code has a low encoding
complexity in O(n).

We express the successive error probabilities Pe,i of the
parity bits pi recursively as

Pe,1 =
1

2
− 1

2
(1− 2pxor)

(J−1)

∀i = 2, · · · , I, Pe,i =
1

2
− 1

2
(1− 2pxor)

(J−1)(1− 2Pe,i).

The overall encoding error probability is given by

Pe =
1

I(J + 1)

I∑
i=1

Pe,i. (13)

Figure 2 represents the encoding error probabilities Pe with
respect to m for various values of J and for pxor = 10−3.
The error probabilities are high because of error propagation
in (12), and as a consequence Zig-Zag encoding is not robust
to hardware noise. The error probabilities are lower than for
e.g., the encoding with the generator matrix (see Figure 1 (a)).
However, the Zig-Zag codes we consider are codes with high
rate r = J/(J − 1) and low correction capabilities.

An IRA code [4] is the concatenation of an irregular
repetition code and of a Zig-Zag code. The hardware noise
does not affect the repetition encoding, but it affects the Zig-
Zag part. We have shown that Zig-Zag encoding is not robust
to hardware errors, and as a consequence, IRA encoding is
not robust to hardware errors.

B. QC codes

For QC-codes, the encoding solutions proposed in [2] have
a circuit complexity that is linear with the codeword length n.
The low circuit complexity is due to parallel computation and
electronic components reuse. However, the actual number of
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operations needed to realize the encoding is still in O(n2). As
a consequence, the encoder error probabilities will be in the
same order of magnitude of the encoding solutions presented
in Section III, and encoding for QC-codes will not be robust
to hardware errors.

C. LDGM codes

Consider the the parity check matrix H = [P Im]
T and

the generator matrix G =
[
I(n−m) PT

]T
in systematic

forms. With LDGM codes [5], the parity matrix P is directly
constructed sparse. As a result, both the matrices H and G
are sparse. The encoding can be realized from (5) and has a
complexity in O(n).

The encoding error probability is given by (6), where Ni =
d, and d is the column degree for the matrix P . For LDGM
codes, Pe does not vary with m because d is fixed and does
not depend on m. Figure 3 represents the error probabilities
with respect to pxor for various column degrees d. As P is
sparse, the encoding error probabilities are small.

LDGM codes are thus naturally robust to hardware noise.
However, the decoder performance of LDGM codes is not
as good as the performance of LDPC codes, as we now
illustrate with Monte-Carlo simulations. Note that to improve
the decoder performance, a usual solution is to concatenate
two LDGM codes [5]. However, the second LDGM code has
to be a very high rate code, with very high values of column
degree d. From (6) large values of d imply high encoder
error probability, and as a consequence, encoding with two
concatenated LDGM codes will not be robust to hardware
noise.

V. MONTE-CARLO SIMULATIONS

In this section, we discard all the encoding solutions with
error propagation (Lower Triangular, Approximate Lower Tri-
angular, Zig-Zag codes) and evaluate the performance of the
three following encoding solutions.

1) LDPC codes, encoding from the generator matrix (trans-
mission scheme of Figure 4).
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2) LDPC codes, encoding from the generator matrix, de-
coder at the encoder (transmission scheme of Figure 5).
We add a decoder D1 at the encoder part. D1 has to
recover the codeword before transmission on the channel.

3) LDGM codes, encoding from the generator matrix (trans-
mission scheme of Figure 4).

In all cases, both the encoder and the decoder are faulty. All
the decoders are faulty 7-levels offset min-sum decoders with
the Full-Depth error model described in [9] and decoder noise
parameter p = 10−3.

We first compare Solutions 1 and 2. We choose a regular
(3, 6)-code with m = 500 and we set 100 iterations for the
decoders. The channel parameter is fixed to α = 0.03. Figure 6
represents the Bit Error Rate (BER) with respect to pxor for
Solutions 1 and 2. As expected, we observe an important loss
in performance when there is no decoder D1 at the encoder
part.

We now compare Solutions 2 and 3. We consider codes of
rate 1/4 with m = 400. For LDPC codes, we consider a (3, 4)
regular codes. For LDGM codes, the matrix P is constructed
as a (4, 6) regular codes. The BERs with respect to α of both
solutions are represented in Figure 7 for various values of
pxor. For LDGM codes, we see that the BER does not vary
much with pxor. We also see that despite their robustness to
hardware errors, LDGM codes give poor BER performance,
and in particular high error floor. On the opposite, we see
that for LDPC codes, a small variation of pxor can induce
an important loss in BER performance. For pxor = 10−3 and
pxor = 8.10−4, D1 is not able to fully completely the original
codeword. For pxor = 5.10−4, D1 can correct almost all the
encoder noise and we get better BER performance.

As a conclusion, LDGM encoders are robust to hardware
errors at the price of a high error floor. Solution 2 is less robust
to hardware errors but shows better decoding performance
when the hardware noise is small enough.

VI. CONCLUSION

From the error probability analysis, we have shown that
most of the existing encoding solutions are not robust to hard-
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ware noise. The Monte-Carlo simulations show that adding
a decoder at the encoder part can help but does not provide
a strongly robust encoding solution. At the end, only LDGM
codes provide a robust encoding solution. However, the Monte-
Carlo simulations show that LDGM codes exhibit poor decod-
ing performance and in particular high error floor.

As a result, the encoding operation should be better pro-
tected by adding some redundancy either at the hardware level
or at the software level.
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