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Abstract—Lowering the supply voltage below the threshold 
voltage of the transistors brings important benefits 
regarding the power consumption. However, the main issue 
of sub-threshold CMOS circuits is the abrupt reliability 
decrease. This paper proposes a simulated fault injection 
approach for reliability assessment of gate-level designs 
supplied at low voltages. The proposed method uses 
previously determined probabilities of failure of sub-
threshold logic gates in order to perform fault injection 
campaigns based on simulator commands and scripts for 
several types of adders. The overhead of this method is 6x – 
30x with respect to the fault-free circuit simulation time. We 
have validated our technique’s accuracy by comparing the 
results with those of equivalent fault injection 
methodologies, based on HDL code alteration. 

I. INTRODUCTION 
 
Reducing the power consumption of digital integrated 

circuits has become one of the hot topics in the last years 
and it is critical for the survival of the semiconductor 
industry. The method which has been employed more and 
more often lately is represented by the reduction of the 
supply voltage of the transistors, which brings important 
power savings by lowering both the static and the dynamic 
components of the total power. Transistors supplied at a 
voltage only slightly higher than the threshold voltage, in 
the so-called near-threshold region, are proved to reduce 
the total power by an order of magnitude. However, the 
minimum energy point of the circuit usually occurs in the 
sub-threshold region, where the supply voltage is lowered 
below the threshold voltage of the transistor [1][2].  

The significant power savings obtained in the sub-
threshold region are accompanied by two important 
drawbacks: the performance loss and the dramatic 
decrease of the reliability parameters. Nanoscale 
transistors operating at very low supply voltages have an 
increased susceptibility to process-voltage-temperature 
(PVT) variations, which are usually caused by low I_on / 
I_off ratios, lithographic irregularities, varying dopant 
concentrations or heat flux fluctuations [3]. These factors 
impose analyzing the behavior of these circuits in a 
stochastic manner, knowing that the correct logic value at 
the output of a gate will be obtained with a probability less 
than one. 

 The dependability parameters of digital systems have 
been thoroughly investigated in the literature, the most 
widely used approach being based on fault injection [4]. 
Simulation-based fault injection represents the preferred 

method for performing dependability assessment because 
it permits the identification of design flaws in the early 
stages of the development of a digital system. Simulated 
fault injection (SFI) techniques have been successfully 
implemented for a wide range of systems, from SRAM 
based FPGAs [5] to quantum circuits [6]. 

 
  This paper proposes a SFI technique for the 

reliability analysis of digital circuits functioning in the 
sub-threshold regime. During previous work [7][8], the 
probabilities of failure for logic gates supplied at very low 
voltages have been derived using SPICE simulations and 
they have been used for a gate-level SFI techniques based 
on code alteration (mutants and saboteurs). In contrast 
with the previous paper, this approach doesn’t interfere 
with the Verilog hardware description language (HDL) 
code of the system, but it uses simulator commands and 
scripts to inject errors at the outputs of the logic gates 
contained by the fault-free design.  

The errors are injected during several simulation 
campaigns for ripple carry adders (RCA) and carry select 
adders (CSeA), according to the previously determined 
probabilities of failure. The novel approach is validated by 
comparing the reliability parameters with the ones 
obtained in paper [7]. Our implementation has been 
realized using two different methods: one that uses a 
dedicated Verilog module for the generation of the 
moments when faults are injected and one based entirely 
on simulator commands. The main advantage of the 
second method is that it brings no additional overhead to 
the HDL code of the design being tested, so it requires 
lower computational resources. The simulation time 
claimed by each campaign is measured and the simulation 
overhead of this novel methodology is analyzed. Although 
higher than the mutant-based fault injection methodology, 
the temporal cost associated with the proposed solution is 
affordable for small and medium size circuits simulated 
on modern computers. 

  
This paper is organized as follows: Section II explains 

the reliability issues encountered by sub-threshold circuits 
and the methods used for an effective quantification of 
these problems. Section III describes the phases and the 
particularities of the proposed fault injection technique, 
while the results and their interpretation are discussed in 
Section IV. The last part of the paper, Section V, analyzes 
some concluding aspects and gives directions of future 
development. 



II. RELIABILITY ISSUES IN SUB-THRESHOLD CMOS 
CIRCUITS  

 
Shrinking geometries, low supply voltages and high 

frequencies of operation all contribute to an increase in the 
number of faults occurrences. Among the three types of 
faults, permanent, intermittent and transient, the faults 
from the third category are responsible for over 85% of all 
computer failures [11]. 

As transistors scale more and more, down into the 
nanometer region, each technology generation manifests 
an increased vulnerability to process variations. Within-
die (WID) process variations are caused by both 
systematic effects (i.e. lithographic irregularities) and 
random effects (i.e. fluctuations in the dopant 
concentration) [3]. These variations have a negative 
impact mainly on two process parameters, the threshold 
voltage and the effective channel length, which affect the 
transistor switching speed and the static power 
consumption [3]. 

The fact that the transistor switching speed is affected 
by variation means a reduction of the operating frequency 
of the circuit. The delay constraint must be set accordingly 
to the time window required by a transistor to perform the 
correct switch. If the delay is too small, the probability 
that the transistor switched correctly decreases. In the sub-
threshold region, this delay constraint means a frequency 
of operation which is reported in the range of tens of kHz 
to a few MHz [1][2]. This is the reason why the 

probability of failure for a logic gate supplied at very low 
voltages must be expressed as a function of the delay. 
These probabilities have been derived in [7] for basic 
logic gates affected by PVT variations, supplied at 0.25, 
0.3 and 0.35 V, respectively. The results in [7] show the 
trade-off which can be made between performance and 
failure rate. A delay greater than 3 ns brings an important 
performance penalty (low frequency), but is associated 
with a probability of correctness of approximately 100 %, 
while a smaller delay means good performance with high 
failure rate. 

III. GATE LEVEL SIMULATED FAULT INJECTION BASED 
ON SIMULATOR COMMANDS 

 
In order to evaluate the dependability attributes of 

digital systems, fault injection represents a wide-spread 
approach. The three main categories of fault injection 
techniques are: physical or hardware implemented fault 
injection (HWIFI), software-implemented (SWIFI) and 
simulation-based [9]. The techniques based on simulation 
have the advantage that they can be used to evaluate the 
circuit under test (CUT) during the design phase, using 
computer-aided design (CAD) software, bringing 
important benefits in terms of time and costs. For an 
effective simulation, accurate input parameters, validation 
of the results and suitable fault models and fault patterns 
are required. SFI techniques fall into two main categories, 
according to [9]: approaches that require modifications of 
the HDL code (based on mutants and saboteurs) and 

 
Fig. 1 Simulated fault injection methodology, based on simulator commands 

 



approaches that don’t require any code instrumentation 
(simulator commands and scripts). The second category 
uses the commands of the simulator at simulation time to 
alter the value or timing of the signals and variables 
comprised by the model, without modifying the HDL 
code.  

For this paper, we have used a SFI methodology based 
on simulator commands and scripts [10]. Like other SFI 
methodologies, it consists of three main phases: the set-up 
phase, the actual simulation and the results analysis phase. 
The block diagram of the proposed methodology is 
depicted in fig. 1. During the set-up phase, the script is 
prepared according to the parameters of the faults that are 
desired to be injected in the design. The probability of 
occurrence of a fault on the output of a logic gate depends 
on the Vdd, temperature and delay of the gate, as stated in 
[7]. The proposed method injects faults at the output of the 
gates and the transitions that occur at the inputs of the gate 
are not taken into account. In order to generate the 
moment when a fault is inserted in the design, according 
to the desired probabilities, we have used two equivalent 
methods, which have the same results: 

(1) For the first method, we have created a fault 
injection module in Verilog HDL which asserts a series of 
control signals in the design whenever a fault must be 
injected, according to the gate-specific probabilities of 
failure considered in [7] for the Gate Output Switching 
(GOS) model. This unit comprises several random number 
generator modules and probability function modules, 
which are used to generate the failure condition by 
asserting one of the control signals. Each control signals 
generation step is triggered by the presence of a new 
vector at the inputs of the adder, which announces the 
beginning of a new run. These signals are parsed by a 
script and each time a fault injection control signal is 
asserted, the script alters the logic value of the output of 
one or more gates in the design. 

This method brings an auxiliary overhead to the Verilog 
code because the random number generation and the 
probability calculation are performed by an additional 
Verilog module. A sequence of the actual TCL script that 
is controlling the simulation campaigns for this case is 

presented as follows. The time related parameter found in 
the “force” commands ( {10ns}, fig. 1 ) shows the 
transient nature of the faults being injected in the design. 
The script also contains the code lines required to measure 
the total simulation time of one campaign. 

(2)  The second method moves the computation 
required for random number generation and probability 
calculation from the Verilog code to the TCL script code, 
so it brings an additional overhead to the commands 
executed by the simulator.  

A part of the TCL script developed for this method is 
presented on the right side of fig. 1. The random_int 
procedure is used to generate a random number between 1 
and the upper_limit parameter. PTF represents the 
probability to failure parameter. The beginning of a new 
step, which comprises the generation of new random 
numbers, is triggered by the presence of a new vector at 
the inputs of the adder. This condition is verified by the 
instruction: when {sim:/RCA_6bits_tb/adder1/x }. 
 
     The second phase of the SFI methodology consists in 
the actual simulation of the circuit under test and the 
results analysis, which is performed immediately after 
each run. A Verilog testbench module controls the actual 
simulation and the results interpretation: it establishes the 
total number of runs, it applies the input vectors for each 
run and it compares the faulty trace obtained at the outputs 
of the circuit with the golden trace obtained for a fault-free 
run. The equations for the dependability parameters are 
also implemented in the testbench module.  

IV. SIMULATION RESULTS 
 
We have performed multiple simulation campaigns for 

several types of adders, described in Verilog HDL at gate-
level, using only NAND gates. The results of these 
campaigns are included in tables I and II. The simulations 
have been carried out using Modelsim 10.05 SE 
commercial simulator on desktop computer with Intel 
Core i5 at 3.2 GHz and 4 GB of main memory with 
Windows 8.1 OS. We have applied a number of 16000 

TABLE II. 
SIMULATION RESULTS FOR 6-BIT CSEA 

Vdd 
[V] 

Delay 
[ns] 

Gate 
failure 

probability 
[%] 

Result bits failure probabilities [%] Circuit 
failure 
prob. 
[%] 

Circuit 
failure 
prob. 

obtained 
in [7] 
[%] 

Run-
time 
[s] 

6 5 4 3 2 1 0 

0.35 
1.5 

0.2827 3.7437 6.8438 5.2687 4.0938 3.6938 1.6563 1.2375 12.2063 12.1687 3 
0.30 1.9460 20.9875 38.1000 30.5125 22.0562 19.8813 10.6563 9.7188 65.0250 55.5938 14 
0.25 10.1300 72.5750 81.0750 68.6000 43.7625 43.9937 37.0250 35.1625 93.3875 91.0875 63 
Correct circuit 0 0 0 0 0 0 0 0 0 0 0.5 
 

TABLE I.   
SIMULATION RESULTS FOR 6-BIT RCA 

Vdd 
[V] 

Delay 
[ns] 

Gate 
failure 

probability 
[%] 

Result bits failure probabilities [%] Circuit 
failure 
prob. 
[%] 

Circuit 
failure 
prob. 

obtained 
in [7] 
[%] 

Run-
time 
[s] 

6 5 4 3 2 1 0 

0.35 
1.5 

0.2827 3.0187 5.3125 4.9875 4.3438 3.6938 1.6563 1.2375 11.5813 10.1625 3 
0.30 1.9460 17.9750 29.7813 28.3562 23.1563 19.8813 10.6563 9.7188 62.0187 50.0875 15 
0.25 10.1300 21.6375 14.1938 28.0375 49.1938 43.9937 37.0250 35.1625 90.7062 90.1625 70 
Correct circuit 0 0 0 0 0 0 0 0 0 0 0.5 
 



test vectors (16 input vectors * 1000 runs) at the inputs of 
each adder, in order to maintain the compatibility with the 
simulation settings applied in [7]. For easily validating the 
proposed methodology by confronting it with the solution 
presented in [7], we have analyzed two dependability 
parameters: the probability of failure for each bit of the 
result and the probability of failure of the whole output 
vector representing the result. Moreover, the simulation 
time required by each campaign was measured. 

The proposed methodology has been applied for 6-bit 
ripple carry adders (RCA) and carry select adders (CSeA). 
We have kept the same 6-bit configuration as the one 
described in [7], in order to perform the results 
comparison between the two methods on the same 
circuits.  

The first simulation campaign has been carried out for a 
6-bit ripple carry adder (RCA) configuration with the 
same delay of 1.5 ns for each gate of the design. The 
supply voltage was also considered the same for each gate 
of the design, taking the following values: 0.25, 0.30 and 
0.35 V respectively. The results are depicted in Table I. 

Regarding the results obtained for the 6-bit RCA, we 
can observe that the bit-independent failure probabilities 
and the overall probability of failure of the result are 
approximately the same, only slightly higher than the ones 
obtained in [7] for the Gate Output Switching (GOS) 
model. The differences in the probabilities are justified by 
the fact that the GOS model injects a fault for a gate 
output, with a given probability, only when the gate 
performed a switch (from logic 0 to logic 1 or vice-versa). 
Our new methodology injects more faults in the 
considered time window because it employs the same 
probabilities but it doesn’t account for gate switching.  

The second simulation campaign has been carried out 
for a 6-bit carry select adder (CSeA) configuration with 
the same delay of 1.5 ns for each NAND gate. The results 
for the CSeA are presented in Table II. 

The simulation of the correct RCA and CSeA adders 
both require 0.5 s. According to tables I and II, a 
simulation campaign of 1000 runs, based on simulator 
commands and scripts requires between 3 and 70 seconds, 
depending on the number of faults that must be injected in 
the design. For usual gate probabilities of failure, found in 
practice, the simulation overhead is 6x – 30x with respect 
to the gold circuit. The authors in [9] expect that the 
techniques based on simulator commands will provide the 
lowest temporal cost associated with the simulation. 
However, our measurements suggest that the temporal 
cost of this method is higher with respect to the one 
required by the mutant-based method, but it still 
represents an affordable value for simulations running on 
modern computers. 

V. CONCLUSIONS 
 

This paper addresses the reliability issues of sub-
threshold CMOS circuits and proposes a novel approach 
for the reliability assessment of small and medium digital 
systems. The proposed methodology consists in simulated 
fault injection techniques based on simulator commands 
and scripts. The methodology is validated by confronting 

the results with a similar technique, based on code 
alteration, which was developed in [7]. 

The main advantages of the proposed technique are the 
easiness in the simulation set-up process and the 
flexibility. The technique was implemented by two 
different means and the one based entirely on simulator 
commands has the supplementary advantage of producing 
no overhead for the Verilog code of the CUT. The 
methodology has been applied for several types of adders 
in order to prove that the simulation time is reasonable 
for small and medium gate-level netlists and the obtained 
probabilities of failure are similar to the results obtained 
in [7]. 
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