
Sub-Threshold CMOS Circuits Reliability
Assessment Using Simulated Fault Injection

Based on Simulator Commands
Sergiu Nimara, Alexandru Amaricai, Mircea Popa

Politehnica University Timisoara, Romania
sergiu.nimara@student.upt.ro, alexandru.amaricai@cs.upt.ro, mircea.popa@upt.ro

Abstract—Lowering the supply voltage below the threshold
voltage of the transistors brings important benefits
regarding the power consumption. However, the main issue
of sub-threshold CMOS circuits is the abrupt reliability
decrease. This paper proposes a simulated fault injection
approach for reliability assessment of gate-level designs
supplied at low voltages. The proposed method uses
previously determined probabilities of failure of sub-
threshold logic gates in order to perform fault injection
campaigns based on simulator commands and scripts for
several types of adders. The overhead of this method is 6x –
30x with respect to the fault-free circuit simulation time. We
have validated our technique’s accuracy by comparing the
results with those of equivalent fault injection
methodologies, based on HDL code alteration.

I. INTRODUCTION

Reducing the power consumption of digital integrated

circuits has become one of the hot topics in the last years
and it is critical for the survival of the semiconductor
industry. The method which has been employed more and
more often lately is represented by the reduction of the
supply voltage of the transistors, which brings important
power savings by lowering both the static and the dynamic
components of the total power. Transistors supplied at a
voltage only slightly higher than the threshold voltage, in
the so-called near-threshold region, are proved to reduce
the total power by an order of magnitude. However, the
minimum energy point of the circuit usually occurs in the
sub-threshold region, where the supply voltage is lowered
below the threshold voltage of the transistor [1][2].

The significant power savings obtained in the sub-
threshold region are accompanied by two important
drawbacks: the performance loss and the dramatic
decrease of the reliability parameters. Nanoscale
transistors operating at very low supply voltages have an
increased susceptibility to process-voltage-temperature
(PVT) variations, which are usually caused by low I_on /
I_off ratios, lithographic irregularities, varying dopant
concentrations or heat flux fluctuations [3]. These factors
impose analyzing the behavior of these circuits in a
stochastic manner, knowing that the correct logic value at
the output of a gate will be obtained with a probability less
than one.

 The dependability parameters of digital systems have
been thoroughly investigated in the literature, the most
widely used approach being based on fault injection [4].
Simulation-based fault injection represents the preferred

method for performing dependability assessment because
it permits the identification of design flaws in the early
stages of the development of a digital system. Simulated
fault injection (SFI) techniques have been successfully
implemented for a wide range of systems, from SRAM
based FPGAs [5] to quantum circuits [6].

 This paper proposes a SFI technique for the

reliability analysis of digital circuits functioning in the
sub-threshold regime. During previous work [7][8], the
probabilities of failure for logic gates supplied at very low
voltages have been derived using SPICE simulations and
they have been used for a gate-level SFI techniques based
on code alteration (mutants and saboteurs). In contrast
with the previous paper, this approach doesn’t interfere
with the Verilog hardware description language (HDL)
code of the system, but it uses simulator commands and
scripts to inject errors at the outputs of the logic gates
contained by the fault-free design.

The errors are injected during several simulation
campaigns for ripple carry adders (RCA) and carry select
adders (CSeA), according to the previously determined
probabilities of failure. The novel approach is validated by
comparing the reliability parameters with the ones
obtained in paper [7]. Our implementation has been
realized using two different methods: one that uses a
dedicated Verilog module for the generation of the
moments when faults are injected and one based entirely
on simulator commands. The main advantage of the
second method is that it brings no additional overhead to
the HDL code of the design being tested, so it requires
lower computational resources. The simulation time
claimed by each campaign is measured and the simulation
overhead of this novel methodology is analyzed. Although
higher than the mutant-based fault injection methodology,
the temporal cost associated with the proposed solution is
affordable for small and medium size circuits simulated
on modern computers.

This paper is organized as follows: Section II explains

the reliability issues encountered by sub-threshold circuits
and the methods used for an effective quantification of
these problems. Section III describes the phases and the
particularities of the proposed fault injection technique,
while the results and their interpretation are discussed in
Section IV. The last part of the paper, Section V, analyzes
some concluding aspects and gives directions of future
development.

II. RELIABILITY ISSUES IN SUB-THRESHOLD CMOS
CIRCUITS

Shrinking geometries, low supply voltages and high

frequencies of operation all contribute to an increase in the
number of faults occurrences. Among the three types of
faults, permanent, intermittent and transient, the faults
from the third category are responsible for over 85% of all
computer failures [11].

As transistors scale more and more, down into the
nanometer region, each technology generation manifests
an increased vulnerability to process variations. Within-
die (WID) process variations are caused by both
systematic effects (i.e. lithographic irregularities) and
random effects (i.e. fluctuations in the dopant
concentration) [3]. These variations have a negative
impact mainly on two process parameters, the threshold
voltage and the effective channel length, which affect the
transistor switching speed and the static power
consumption [3].

The fact that the transistor switching speed is affected
by variation means a reduction of the operating frequency
of the circuit. The delay constraint must be set accordingly
to the time window required by a transistor to perform the
correct switch. If the delay is too small, the probability
that the transistor switched correctly decreases. In the sub-
threshold region, this delay constraint means a frequency
of operation which is reported in the range of tens of kHz
to a few MHz [1][2]. This is the reason why the

probability of failure for a logic gate supplied at very low
voltages must be expressed as a function of the delay.
These probabilities have been derived in [7] for basic
logic gates affected by PVT variations, supplied at 0.25,
0.3 and 0.35 V, respectively. The results in [7] show the
trade-off which can be made between performance and
failure rate. A delay greater than 3 ns brings an important
performance penalty (low frequency), but is associated
with a probability of correctness of approximately 100 %,
while a smaller delay means good performance with high
failure rate.

III. GATE LEVEL SIMULATED FAULT INJECTION BASED
ON SIMULATOR COMMANDS

In order to evaluate the dependability attributes of

digital systems, fault injection represents a wide-spread
approach. The three main categories of fault injection
techniques are: physical or hardware implemented fault
injection (HWIFI), software-implemented (SWIFI) and
simulation-based [9]. The techniques based on simulation
have the advantage that they can be used to evaluate the
circuit under test (CUT) during the design phase, using
computer-aided design (CAD) software, bringing
important benefits in terms of time and costs. For an
effective simulation, accurate input parameters, validation
of the results and suitable fault models and fault patterns
are required. SFI techniques fall into two main categories,
according to [9]: approaches that require modifications of
the HDL code (based on mutants and saboteurs) and

Fig. 1 Simulated fault injection methodology, based on simulator commands

approaches that don’t require any code instrumentation
(simulator commands and scripts). The second category
uses the commands of the simulator at simulation time to
alter the value or timing of the signals and variables
comprised by the model, without modifying the HDL
code.

For this paper, we have used a SFI methodology based
on simulator commands and scripts [10]. Like other SFI
methodologies, it consists of three main phases: the set-up
phase, the actual simulation and the results analysis phase.
The block diagram of the proposed methodology is
depicted in fig. 1. During the set-up phase, the script is
prepared according to the parameters of the faults that are
desired to be injected in the design. The probability of
occurrence of a fault on the output of a logic gate depends
on the Vdd, temperature and delay of the gate, as stated in
[7]. The proposed method injects faults at the output of the
gates and the transitions that occur at the inputs of the gate
are not taken into account. In order to generate the
moment when a fault is inserted in the design, according
to the desired probabilities, we have used two equivalent
methods, which have the same results:

(1) For the first method, we have created a fault
injection module in Verilog HDL which asserts a series of
control signals in the design whenever a fault must be
injected, according to the gate-specific probabilities of
failure considered in [7] for the Gate Output Switching
(GOS) model. This unit comprises several random number
generator modules and probability function modules,
which are used to generate the failure condition by
asserting one of the control signals. Each control signals
generation step is triggered by the presence of a new
vector at the inputs of the adder, which announces the
beginning of a new run. These signals are parsed by a
script and each time a fault injection control signal is
asserted, the script alters the logic value of the output of
one or more gates in the design.

This method brings an auxiliary overhead to the Verilog
code because the random number generation and the
probability calculation are performed by an additional
Verilog module. A sequence of the actual TCL script that
is controlling the simulation campaigns for this case is

presented as follows. The time related parameter found in
the “force” commands ({10ns}, fig. 1) shows the
transient nature of the faults being injected in the design.
The script also contains the code lines required to measure
the total simulation time of one campaign.

(2) The second method moves the computation
required for random number generation and probability
calculation from the Verilog code to the TCL script code,
so it brings an additional overhead to the commands
executed by the simulator.

A part of the TCL script developed for this method is
presented on the right side of fig. 1. The random_int
procedure is used to generate a random number between 1
and the upper_limit parameter. PTF represents the
probability to failure parameter. The beginning of a new
step, which comprises the generation of new random
numbers, is triggered by the presence of a new vector at
the inputs of the adder. This condition is verified by the
instruction: when {sim:/RCA_6bits_tb/adder1/x }.

 The second phase of the SFI methodology consists in
the actual simulation of the circuit under test and the
results analysis, which is performed immediately after
each run. A Verilog testbench module controls the actual
simulation and the results interpretation: it establishes the
total number of runs, it applies the input vectors for each
run and it compares the faulty trace obtained at the outputs
of the circuit with the golden trace obtained for a fault-free
run. The equations for the dependability parameters are
also implemented in the testbench module.

IV. SIMULATION RESULTS

We have performed multiple simulation campaigns for

several types of adders, described in Verilog HDL at gate-
level, using only NAND gates. The results of these
campaigns are included in tables I and II. The simulations
have been carried out using Modelsim 10.05 SE
commercial simulator on desktop computer with Intel
Core i5 at 3.2 GHz and 4 GB of main memory with
Windows 8.1 OS. We have applied a number of 16000

TABLE II.
SIMULATION RESULTS FOR 6-BIT CSEA

Vdd
[V]

Delay
[ns]

Gate
failure

probability
[%]

Result bits failure probabilities [%] Circuit
failure
prob.
[%]

Circuit
failure
prob.

obtained
in [7]
[%]

Run-
time
[s]

6 5 4 3 2 1 0

0.35
1.5

0.2827 3.7437 6.8438 5.2687 4.0938 3.6938 1.6563 1.2375 12.2063 12.1687 3
0.30 1.9460 20.9875 38.1000 30.5125 22.0562 19.8813 10.6563 9.7188 65.0250 55.5938 14
0.25 10.1300 72.5750 81.0750 68.6000 43.7625 43.9937 37.0250 35.1625 93.3875 91.0875 63
Correct circuit 0 0 0 0 0 0 0 0 0 0 0.5

TABLE I.
SIMULATION RESULTS FOR 6-BIT RCA

Vdd
[V]

Delay
[ns]

Gate
failure

probability
[%]

Result bits failure probabilities [%] Circuit
failure
prob.
[%]

Circuit
failure
prob.

obtained
in [7]
[%]

Run-
time
[s]

6 5 4 3 2 1 0

0.35
1.5

0.2827 3.0187 5.3125 4.9875 4.3438 3.6938 1.6563 1.2375 11.5813 10.1625 3
0.30 1.9460 17.9750 29.7813 28.3562 23.1563 19.8813 10.6563 9.7188 62.0187 50.0875 15
0.25 10.1300 21.6375 14.1938 28.0375 49.1938 43.9937 37.0250 35.1625 90.7062 90.1625 70
Correct circuit 0 0 0 0 0 0 0 0 0 0 0.5

test vectors (16 input vectors * 1000 runs) at the inputs of
each adder, in order to maintain the compatibility with the
simulation settings applied in [7]. For easily validating the
proposed methodology by confronting it with the solution
presented in [7], we have analyzed two dependability
parameters: the probability of failure for each bit of the
result and the probability of failure of the whole output
vector representing the result. Moreover, the simulation
time required by each campaign was measured.

The proposed methodology has been applied for 6-bit
ripple carry adders (RCA) and carry select adders (CSeA).
We have kept the same 6-bit configuration as the one
described in [7], in order to perform the results
comparison between the two methods on the same
circuits.

The first simulation campaign has been carried out for a
6-bit ripple carry adder (RCA) configuration with the
same delay of 1.5 ns for each gate of the design. The
supply voltage was also considered the same for each gate
of the design, taking the following values: 0.25, 0.30 and
0.35 V respectively. The results are depicted in Table I.

Regarding the results obtained for the 6-bit RCA, we
can observe that the bit-independent failure probabilities
and the overall probability of failure of the result are
approximately the same, only slightly higher than the ones
obtained in [7] for the Gate Output Switching (GOS)
model. The differences in the probabilities are justified by
the fact that the GOS model injects a fault for a gate
output, with a given probability, only when the gate
performed a switch (from logic 0 to logic 1 or vice-versa).
Our new methodology injects more faults in the
considered time window because it employs the same
probabilities but it doesn’t account for gate switching.

The second simulation campaign has been carried out
for a 6-bit carry select adder (CSeA) configuration with
the same delay of 1.5 ns for each NAND gate. The results
for the CSeA are presented in Table II.

The simulation of the correct RCA and CSeA adders
both require 0.5 s. According to tables I and II, a
simulation campaign of 1000 runs, based on simulator
commands and scripts requires between 3 and 70 seconds,
depending on the number of faults that must be injected in
the design. For usual gate probabilities of failure, found in
practice, the simulation overhead is 6x – 30x with respect
to the gold circuit. The authors in [9] expect that the
techniques based on simulator commands will provide the
lowest temporal cost associated with the simulation.
However, our measurements suggest that the temporal
cost of this method is higher with respect to the one
required by the mutant-based method, but it still
represents an affordable value for simulations running on
modern computers.

V. CONCLUSIONS

This paper addresses the reliability issues of sub-
threshold CMOS circuits and proposes a novel approach
for the reliability assessment of small and medium digital
systems. The proposed methodology consists in simulated
fault injection techniques based on simulator commands
and scripts. The methodology is validated by confronting

the results with a similar technique, based on code
alteration, which was developed in [7].

The main advantages of the proposed technique are the
easiness in the simulation set-up process and the
flexibility. The technique was implemented by two
different means and the one based entirely on simulator
commands has the supplementary advantage of producing
no overhead for the Verilog code of the CUT. The
methodology has been applied for several types of adders
in order to prove that the simulation time is reasonable
for small and medium gate-level netlists and the obtained
probabilities of failure are similar to the results obtained
in [7].

ACKNOWLEDGMENT
This work has been supported by the Seventh Framework
Programme of European Union under Grant Agreement
309129, project i-RISC – “Innovative Reliable Chip
Design from Low Power Unreliable Components”.

REFERENCES

[1] B. H. Calhoun, A. Wang, N. Verma and A. Chandrakasan, “Sub-
threshold design: the challenges of minimizing circuit energy,”
Proceedings of the International Symposium on Low Power
Electronics and Design (ISLPED), Germany, 2006.

[2] Alice Wang, Anantha Chandrakasan, “A 180-mV subthreshold
FFT processor using a minimum energy design methodology,”
IEEE Journal of Solid State Circuits, vol. 40, no. 1, 2005.

[3] U. R. Karpuzcu, K. B. Kolluru, N. S. Kim, J. Torrellas,
„VARIUS-NTV: A microarchitectural model to capture the
increased sensitivity of manycores to process variations at near-
threshold voltages,” 42nd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 2012.

[4] J. Gracia, J. C. Baraza, D. Gil, P.J. Gil, “Comparison and
application of different VHDL-based fault injection techniques,”
Proceedings of the IEEE International Symposium on Defect and
Fault Tolerance in VLSI Systems (DFT), 2001.

[5] M. M. Ibrahim, K. Asami, M. Cho, “Evaluation of SRAM based
FPGA performance by simulating SEU through fault injection,”
6th International Conference on Recent Advances on Space
Technologies (RAST), 2013.

[6] Oana Boncalo, Mihai Udrescu, Lucian Prodan, Mircea Vladutiu,
Alexandru Amaricai, “Simulated fault injection for quantum
circuits based on simulator commands,” 4th International
Symposium on Applied Computational Intelligence and
Informatics (SACI), 2007.

[7] Alexandru Amaricai, Sergiu Nimara, Oana Boncalo, Jiaoyan
Chen, Emanuel Popovici, “Probabilistic gate level fault modeling
for near and sub-threshold CMOS circuits,” Proceedings of the
17th Euromicro Conference on Digital System Design, August
2014.

[8] Jiaoyan Chen, Christian Spagnol, Satish Grandhi, Emanuel
Popovici, Sorin Cotofana, Alexandru Amaricai, “Linear
compositional delay model for the timing analysis of sub-powered
combinational circuits,” Proc. International Symposium on VLSI
(ISVLSI), 2014.

[9] J. C. Baraza, J. Gracia, D. Gil, P.J. Gil, “Improvement of fault
injection techniques based on VHDL code modification,” Tenth
IEEE International High-Level Design Validation and Test
Workshop, 2005

[10] Mentor Graphics ModelSim User’s Manual, available at:
http://www.microsemi.com/document-portal/doc_view/131619-
modelsim-user

[11] G. S. Choi, R. K. Iyer, V. A. Carreno, “Simulated fault injection:
A methodology to evaluate fault tolerant microprocessor
architectures,” IEEE Transactions on Reliability, vol. 39, no. 4,
1990

	I. Introduction
	II. Reliability Issues in Sub-Threshold CMOS Circuits
	III. Gate Level Simulated Fault Injection Based on Simulator Commands
	IV. Simulation Results
	V. Conclusions
	
	
	
	Acknowledgment
	References

	_Ref392110740
	_Ref410581468
	_Ref410581470
	_Ref410581600
	_Ref410581689
	_Ref410581766
	_Ref410581777
	_Ref410581824
	_Ref410581826
	_Ref410591449
	_Ref410593316
	_Ref415662482
	_Ref415681306
	_Ref415681720
	_Ref415681801

