
Performance enhancement of serial based FPGA
probabilistic fault emulation techniques

Ioana Mot, Oana Boncalo, Alexandru Amaricai
Computer Engineering Department
University Politehnica Timisoara

Timisoara, Romania
{oana.boncalo, alexandru.amaricai}@cs.upt.ro

Abstract—Serial based FPGA fault emulation schemes for
probabilistic errors rely on a random number generator – which
is used for generation of fault bits - and a shift register - used for
placing the fault bits to their corresponding fault location. It has
two advantages with respect to parallel solutions: lower cost and
better accuracy. The main disadvantage is represented by the
high emulation overhead: for each emulation clock cycle, a
number of clock cycles equal to the number of fault locations is
required to load the shift register. This paper presents a
technique for FPGA probabilistic fault emulation which reduces
the emulation overhead, at the expense of accuracy. It is based on
pseudo-random permutations within the shift register, while
maintaining the number of active fault bits. We obtain a
performance improve of one order of magnitude, while we have a
cost increase of 27% and lower fault modeling accuracy.

Keywords—FPGA; fault emulation; probabilistic faults; sub-
powered circuits;

I. INTRODUCTION
Very low supply voltages, to near and sub threshold

regions, are used in order to tackle the ever-increasing energy
constraints for todays’ semiconductor devices [1]. However,
this aggressive scaling of supply voltage, coupled to the
process variations associated to the deep nanometer devices,
lead to a low reliability of these circuits. A common fault
model associated to sub and near threshold CMOS circuits is
represented by the probabilistic fault model: a gate performs its
logic operation with a probability less than 1 [2]. Therefore,
reliability analysis becomes critical in the design phases of for
these devices.

Reliability evaluation may be performed using analytical
methods, simulation and FPGA emulations, and prototype
based assessment. Regarding the simulation methods, these
present a good trade-off between the fault modeling capability
and the analysis overhead; furthermore, it comes in the early
design phases with respect to prototype based evaluation.
Regarding the probabilistic circuits reliability analysis,
simulation methods present good observability; however, they
have very high computational overhead, as a high number of
simulations are required [4][5][12]. FPGA emulation may be
used to address this short-coming.

Several FPGA emulation schemes have been developed for
analyzing probabilistic faults, such as [4][5][12]. These
approaches used the random number generator (RNG), either
true (TRNG) or pseudo (PRNG), in order to generate the fault
bits. The [4][5] approach uses a linear shift feedback register
(LFSR) for each fault location. This type of approach has two
disadvantages: very high cost overhead for a high number of
fault locations and partially correlated faults, due to the use of
LFSR. In [12], a serial emulation scheme has used a TRNG for
fault bit generation and shift register for inserting the fault bits
to their corresponding fault locations. The length of the shift-
register is equal to the number of fault locations. In order to
have uncorellated errors, a fault insertion phase is executed
before each emulation clock cycle is performed. The fault
insertion phase consists of the insertion of the entire shift
register with the generated fault bits. Therefore, for each clock
cycle of emulation, a number of clock cycles equal to the size
of the shift register (or number of fault locations) is required to
for fault insertion. Speed-up can be obtained by using multiple
TRNG – shift-register modules for fault generation and
insertion. However, even in this case, the emulation overhead
is high, as a number of clock cycles equal to the length of the
largest shift-register is required for fault insertion.

This paper proposes an FPGA fault emulation technique
which improves the performance of the serial emulation
scheme. It is based on pseudo-randomly permuting the fault
bits within the shift register. It uses TRNG for fault bits
generation and a modified shift-register for fault insertion and
permutation. As in [12], a fault insertion phase is performed. It
requires a number of clock cycles equal to the size of the shift
register. However, after the fault insertion phase, multiple
emulation clock cycles are performed, instead of 1. During
these emulation cycles, the fault bits inserted during the
insertion phase, are pseudo-randomly permutated within parts
of the shift-registers. This way, increased performance is
obtained, on the expense of fault modeling accuracy – during
an emulation cycle the faults are not uncorellated - and higher
cost – extra logic within the shift-register for permutations is
required.

 The paper is organized as follows: Section II presents the
related work; Section III is an overview of the serial based
FPGA probabilistic fault emulation framework; Section IV is
dedicated to the proposed performance enhancement; while
cost and performance are discussed in Section IV.

mailto:@cs.upt.ro

II. FPGA EMULATED FAULT INJECTION
The considerable size and performance offered by newer

FPGA devices has led to increase utilization for emulated fault
injection purposes [3][6][7][8][9]. An emulated fault injection
scheme consists of the following modules: the design under
test (DUT), the fault injection scheme, and the result analyzer
and observation module. Regarding result analysis and
observation, an important issue is represented by the
communication with the host PC. Some approaches prepare the
entire fault injection campaign on the PC, as well as the result
analysis is performed there [7][9]. Other approaches minimize
the role of the PC in the reliability analysis; both the campaign
preparation and most of the result analysis is done on the
FPGA [3][8]. Another important feature is the fault generation
and insertion. This feature is heavily dependent on the fault
model and have a major influence in the cost overhead of the
fault emulation scheme. Usually, simple fault models, such as
stuck-at, lead to a small cost overhead of the emulation
scheme.

This paper uses the probabilistic independent fault model.
Works addressing FPGA fault emulation for these types of
faults have been presented in [4][5][12]. The approach in [4]
use a RNG for each fault location. The RNG is implemented
using LFSR; therefore, the fault generation is based on a
PRNG. Although it provides very good performance, its main
disadvantages are the high cost and correlation in time between
errors due to pseudo-randomness fault generators. Furthermore,
the cost problem is aggravated by seed initialization for the
LFSRs – using the same seed for all LFSRs will result in the
same error pattern in all fault locations. In [5], a serialization of
the fault generation is performed by the addition of a serial
binomial generation. The discussed time analysis indicates that
one probabilistic fault is generated for every simulation
experiment. Furthermore, the proposed approach requires two
clock domains are used, which further increase the cost
overhead.

This paper proposes a performance enhancement of the
[12] approach. It uses pseudo-random permutations in the shift-
register where the fault bits are inserted in order to avoid the
loading of all the shift-register before each emulation cycle.
The serial based FPGA emulation scheme is discussed in the
next section, while the proposed enhancement is presented in
Section IV.

Figure 1 – FPGA Emulated Fault Injection Architecture Used

in [12]

III. EMULATED FAULT INJECTION FRAMEWORK
We have developed the framework proposed in [12] in

order to increase the performance of the analysis. It consists of
the three main components – Fig. 1:

1. Fault Generator and Control – this module is responsible
with the generation of the fault bits and their insertion in
the corresponding fault locations;

2. Autonomous testbench – this module provides the
appropriate test vectors, the error-free outputs and the
result processing

3. Observation logic – the role of this module is to allow
reliability metrics monitoring, as well as parameter
changes for several fault injection campaigns.

The autonomous testbench is implemented using memory
modules (internal BRAM or external memory) for storing the
input vectors, as well as the golden outputs. The outputs of the
fault injected module are compared with the correct outputs
stored in the memory; based on this comparison, reliability
metrics are derived.

Regarding the observation logic, our solution uses Xilinx
Chipscope Pro logic analyzer [10]. It is based on the following
dedicated cores: ILA – Integrated Logic Analyzer – which
allows signal observation and triggers; ICON – Integrated
CONtroller – which provides the communication between
JTAG interface and the ILA core; and VIO – Virtual
Input/Output – which provides the interface to monitor and to
drive signal from the testbench. Our solution is based on Xilinx
Chipscope because it provides the appropriate cores for
monitoring, triggering and driving signals, which are optimal in
terms of cost and performance for Xilinx FPGA devices.

Fault bits generation is achieved using a TRNG developed
by Xilinx (Fig 2) [11]. It consists of a XOR based ring
oscillator and a Linear Hybrid Cellular Automata. Regarding
the randomness of numbers generated, this design is reported to
have passed most of the DieHard tests used for cryptographic
applications. The generated random number is compared with a
probability constant (which value is dependent on the
probability of fault); the appropriate fault bit is thus generated.

Figure 2 – XOR based TRNG [11]

Figure 3 – Serial Scheme for Emulated Fault Injection

(CFL – combinational fault location; FF – flip-flop)[12]

The insertion of the fault bit is performed using a shift-
register. The length of the shift register is equal to the number
of fault locations. A XOR gate is used for fault emulation – a
logic XOR is performed between the fault bit stored in the
shift-register and the output of the injected module. In order to
have uncorrelated faulty pattern, the shift-register is loaded
before each emulation cycle. Thus, a number of clock cycles
equal to the number of fault locations are required before each
emulation clock cycle. The fault generation and insertion is
depicted in Fig. 3.

The main advantages of this approach with respect to [4][5]
are lower cost and a better fault modeling accuracy (as the
faults are uncorellated both in time and location). The main
disadvantage is represented by the low emulation performance,
due to the fault insertion phase. In order to reduce the fault
insertion time, k TRNG – shift registers may be used. Thus, the
size of the shift-registers is reduced by a factor of k, which
significantly reduces the overall loading time.

IV. PERFORMANCE ENHANCEMENT OF EMULATED FAULT
INJECTION FRAMEWORK

The main performance penalty in the serial based fault
emulation scheme is represented by the fault insertion phase
required before each fault emulation clock cycle. We improve
the performance by eliminating several fault insertion phases.
This is achieved by applying pseudo-random permutations on
the shift-register used for fault insertion. The proposed fault
emulation is performed as follows:

Figure 4 – Modified Serial Scheme for Emulated Fault

Injection

1. Fault insertion – the shift-register is loaded with the
TRNG generated fault bits; this phase is identical to the
one used in the serial based emulation scheme

2. Emulation phase – n emulation clock cycles are
performed; the fault bits within the shift register are
pseudo-randomly permutated each clock cycle.

Using this approach, a performance improvement of up to n
times is obtained with respect to the approach in [12].Modified
shift-registers which perform the pseudo-random permutations
are used. In order to preserve the probabilities obtained for the
fault bits, after each random permutation the number of 1’s
within the shift register remains the same (e.g. a “100000”
vector will permute in “000010” or “010000” or “000001” or
“001000” or “000100”). The new fault emulation scheme is
presented in Fig. 4.

The increase in performance is achieved at the cost of
higher cost (due to extra logic required to perform the
permutations) and loss in the fault modeling accuracy. The
latter is due to the fact that, except the emulation clock cycle
after the fault insertion phase, correlations between faults do
exist. In order to reduce the cost of the modified shift-register,
pseudo-random permutations are performed on groups of 6-
bits. Thus, the initial shift-register is replaced with a module
consisting of 6-bit modified shift-registers (Fig.4). One reason
to use blocks of 6 bits is represented by the modern FPGA
structure, for which each logic element is composed of 6-input
LUT and a D flip-flop. Each 6-bit block within the fault
insertion module performs different types of permutations
(e.g.one block performs the permutation from “001100” to
“101000” while other block perform the permutation from
“001100” to “010010”).

V. RESULTS & DISCUSSION
We have performed emulated fault injection on a 7-level 96

bits pipelined barrel shifter. This circuit is used for routing
messages in LDPC decoders. The reliability analysis of this
module is important in the context of developing reliable
LDPC decoders using unreliable components [13]. The
considered fault locations are the inputs for the pipelined
registers. Therefore, the number of fault locations is equal to
672. For each level within the barrel shifter we have used one
TRNG – shift-register module for fault injection.

The fault emulation schemes have been implemented on a
Xilinx Virtex-5 VLX-50T, speed grade -2, device. Xilinx ISE
14.7 has been used for synthesis and implementation.

TABLE I – IMPLEMENTATION RESULTS FOR BARREL SHIFTER
 Cost Overhead

Modified Serial 3260 LUT-FF pairs
4 BRAM 470%

Base Serial [12] 2560 LUT-FF pairs
4 BRAM 370%

Barrel shifter 690 LUT-FF pairs 0%

Table I shows the cost of the fault emulation schemes applied
to these circuits. We observed that the proposed one has a cost
increase of 27% with respect to the serial based fault emulation
scheme proposed in [12]. The overhead is around 370% for the
approach in [12] and 470% for the proposed approach.

Regarding performance, Fig 5 depicts the difference
between the serial based fault emulation scheme proposed in
[12] (a) and the proposed one (b) for 10 fault locations. For the
analyzed barrel shifter, the serial based fault emulation scheme
requires 96 clock cycles for fault insertion before one
emulation clock cycles. The proposed solution uses 20 clock
cycles of emulation before a new fault insertion phase
(consisting of 96 clock cycles) is performed. Therefore, 18
times less clock cycles are required for our approach with
respect to the [12] solution.

The faults are uncorrelated only in the first clock cycle of
the emulation phase. In the following clock cycles of the
emulation phase, the faults become correlated. This is due to
the pseudo-random permutations within the shift registers.
Therefore, the fault modeling capability is reduced with respect
to [12].

The full parallel approach in [4] using LFSR as RNG report
an overhead of around 1000% for the ISCAS 89 s1196
benchmark circuit, for 18 fault locations, and around 8000%
for flip-flops and 1000% for combinational LUT for the b14
benchmark circuit, for 220 fault locations.

VI. CONCLUSIONS
This paper presents a performance enhancement approach

of the serial based FPGA probabilistic fault injection. It
overcomes the low performance of the [12] approach by
removing the vast majority of the fault insertion phases. This is
achieved by applying pseudo-random permutations within the
fault bits shift register during the emulation clock cycles. This
way, at least one order of magnitude less clock cycles are
required for fault emulation. In order to reduce the cost, we
have applied pseudo random permutations for 6-bits blocks.
The modified shift register is composed of these 6-bit
permutation blocks. The main disadvantages of the proposed
fault emulation scheme is represented by higher cost with
respect to the serial based approach of 27%, as well as lower
probabilistic fault modeling capability.

ACKNOWLEDGMENT
This work has been supported by the Seventh Framework
Program of European Union under Grant Agreement 309129,
project i-Risc. We would like to thank Xilinx for the software
tools provided through the Xilinx University Program.

REFERENCES
[1] H. Khaul, M. Anders, S. Hsu, A. Agarwal, R. Krishnamurthy, S. Bokhar

“Near Threshold Voltage Design: Opportunities and Challenges” Proc.
Design Automation Conference (DAC), 2012, pp. 1153-1158

[2] A. Bhanu, M.S.K. Lau, K.V. Ling, V.J. Mooney, A. Singh " A More
Precise Model of Noise Based PCMOS Errors" Proceedings 5th Int.
Symp. On Electronic Design, Test and Application (DELTA), pp 99-
102, 2010

[3] C. López-Ongil, M. García-Valderas, M. Portela-García, L. Entrena,
“Autonomous Fault Emulation: A New FPGA-Based Acceleration
System for Hardness Evaluation,” IEEE Trans. On Nuclear Science,
Vol. 54, No. 1, pp. 252-261, Feb. 2007

[4] D. May, W. Stechele, “An FPGA-based Probability-aware Fault
Simulator”, International Conference on Embedded Computer Systems
(SAMOS), 2012.

[5] D. May, W. Stechele, “A resource-efficient probabilistic fault simulator,
“ 23rd International Conference on Field Programmable Logic and
Applications (FPL), September, 2013.

[6] A. Ejlali, S. G. Miremadi, “Eror propagation analysis using FPGA-based
SEU-fault injection,” Microelectronics Reliability, vol. 48 pp. 319–328,
June 2008.

[7] P. Civera, L. Macchiarulo, M. Rebaudengo, M. S. Reorda, and M.
Violante, “An FPGA-Based Approach for Speeding-Up Fault Injection
Campaigns on Safety-Critical Circuits,” Journal of Electronic Testing:
Theory and Applications 18, Kluwer Academic Publishers, pp. 261–
271, 2002.

[8] M. S. Shirazi, B. Morris, H. Selvaraj, “Fast FPGA-Based Fault Injection
Tool for Embedded Processors,” 14th Int'l Symposium on Quality
Electronic Design, 2013.

[9] M. Sauer, V. Tomashevich, J. M¨uller, M. Lewis, A. Spilla, I. Polian, B.
Becker, and W. Burgard, “An FPGA-Based Framework for Run-time
Injection and Analysis of Soft Errors in Microprocessors,” IEEE 17th
International On-Line Testing Symposium, July, 2011.

[10] http://www.xilinx.com/tools/cspro.htm. Xilinx ChipScope.
[11] C. Baetoniu "Method and Apparatus for True Random Number

Generation" US Patent 7389316, 2008
[12] O. Boncalo, A. Amaricai, C. Spagnol, E. Popovici “Cost effective FPGA

probabilistic fault emulation” Norchip Conference, Oct, 2014
[13] C.L.K. Ngassa, V. Savin, D. Declercq “Min-Sum-based decoders

running on noisy hardware” IEEE Global Communication Conference,
2013

a)

b)

Figure 5 – Insertion and emulation phase for the serial FPGA fault emulation scheme (a) and modified serial FPGA fault
emulation scheme (b)

http://www.xilinx.com/tools/cspro.htm.

