
Fault-Resilient Decoders and Memories made of
Unreliable Components

Bane Vasić
Department of ECE,
University of Arizona

Email: vasic@ece.arizona.edu

Predrag Ivanis, Srdan Brkic
School of Electrical Engineering,

University of Belgrade
Emails: predrag.ivanis@etf.rs, srdjan.brkic@ic.etf.rs

Vida Ravanmehr
Department of ECE,
University of Arizona

Email: vravanmehr@ece.arizona.edu

Abstract—In this paper we present our recent results on
iterative Gallager B decoder made of unreliable logic gates.
We show evidence that probabilistic behavior of a decoder due
to unreliable components can be exploited to our advantage
and lead to an improved performance and reduced hardware
redundancy. We provide examples of such decoder behavior and
give an explanation of this phenomenon using iterative decoding
dynamics. Iterative decoding can be viewed as a recursive
procedure for Bethe free energy function minimization, and the
randomness in a message update may help the decoder to escape
from local minima. The decoder operates in a stochastic fashion,
but the random perturbations do not require any additional
hardware as they are built-in the faulty hardware itself.

I. INTRODUCTION

Due to the increase in density integration, lower supply
voltages, and variations in technological process, comple-
mentary metal-oxide-semiconductor (CMOS) and emerging
nanoelectronic devices are inherently unreliable. Moreover, the
demands for energy efficiency require that in current CMOS
design the energy consumption must be reduced by several
orders of magnitude, which can be done only by an aggressive
scaling of supply voltage. Consequently, the signal levels are
much lower and closer to the noise level, which drastically
reduces the component noise immunity and leads to unreliable
behavior. It is widely accepted that future generations of
circuits and systems must be designed to deal with such
unreliable components.

The main feature of the existing work on fault-tolerant
decoders is a focus on the analysis of the existing decoder
types and demonstrating their robustness to unreliability of
logic gates [1]–[6]. This was also an underlying idea of our
prior work [7], [8]. On the contrary, the idea of the this paper
is to allow or deliberately introduce randomness in a decoder
in order to improve convergence in the spirit of stochastic
approximation method [9], [10].

The first trace of this idea can be found in Gallager’s work
where the random flips are used to resolve ties in the majority
voting operation in the variable node, while the first iterative
decoding algorithm that explicitly relies on randomness to
correct errors is Miladinovic and Fossorier’s Probabilistic Bit
Flipping (PBF) [11]. A closely related technique of adding
noise to messages in a BP decoder on the AWGN channel is
by Leduc-Primeau et al. [12] for reducing error floor in the
context of perfect decoders. Other schemes such as stochastic

decoding also uses randomness but in a very different way
- by representing messages as random sequences [13]–[16].
Randomness in message update schedule [17], is also observed
to yield improved convergence.

Recently it was shown by Sundararajan et al. [18] that
random perturbations can be used to increase the performance
of a gradient descent bit flipping decoder (GDBF), introduced
by Wadayama et al. [19]. At the same time we observed that
the randomness coming from computational noise even more
improves the GDBF decoding performance. Based on that re-
sult we developed a probabilistic gradient-descent bit flipping
(PGDBF) algorithm [20] for the Binary Symmetric Channel
(BSC). Our decoder incorporates the idea of GDBF with
Miladinovic and Fossorier’s probabilistic approach [11], but it
contains some critical novelties which consists in modifying
the inverse function [19, Eqn. (6)]. We showed that random
perturbations applied to variable nodes lead to escaping from
a local maximum of the GDBF objective function. In addition,
the perturbations make the decoder inherently tolerant to hard-
ware unreliability. Our most recent work contains the further
improvement of the PGDBF algorithm based on multiple
decoding attempts and random re-initializations (MUDRI) of
decoders [21].

In this paper we consider the Gallager B decoder in which
operations are subjected to processing noise. We show how the
hardware unreliability can be used to increase error-correction
capability of certain quasi-cyclic low-density parity-check
(QC-LDPC) codes, in the error-floor region. Our conclusion
relies on the fact that logic gates failures can break small
trapping sets, which are the main cause of the decoder failures
in that region. Vasic and Chilappagari [22] observed that
the faulty Gallager B decoder is equivalent to the Taylor
memory architecture [23], which indicates that our results can
be directly applied to the reliability analysis of memories built
from unreliable components.

The rest of the paper is organized as follows. In Section II
we give a brief description of the faulty Gallager B decoder.
In Section III the idea of breaking trapping sets is discussed.
Section IV is dedicated to the numerical results. Finally, some
concluding remarks and future research directions are given
in Section V.

II. THE FAULTY GALLAGER B DECODER

Consider a (γ, ρ)-regular binary LDPC code, denoted by
(N,K), with code rate R = K/N ≥ 1 − γ/ρ and parity
check matrix H. The parity check matrix is the bi-adjacency
matrix of a bipartite (Tanner) graph G = (V ∪ C,E), where
V represents the set of N variable nodes, C is the set of
Nγ/ρ check nodes, and E is the set of Nγ edges. Each matrix
element Hc,v = 1 indicates that there is an edge between
nodes c ∈ C and v ∈ V , which are referred as neighbors. Let
Nv (Nc) be the set of neighbors of the variable node v (check
node c). Then, |Nv| = γ, ∀v ∈ V and |Nc| = ρ, ∀c ∈ C,
where | · | denotes cardinality.

Let x = (x1, x2, . . . , xN) denote a codeword of an LDPC
code, where xv represents the binary value associated with
the variable node v. During the transmission over a Binary
Symmetric Channel (BSC), the code bits are flipped with
probability α and received as y = (y1, y2, . . . , yN).

The Gallager B decoder works by sending binary messages
over the edges of the graph. The messages are calculated
based on the nodes update functions, following the rule that a
message sent over an edge is obtained based on all received
messages except the one arriving over that edge [24]. The
check node update function corresponds to the (ρ − 1)-input
XOR logic gate, and (γ − 1)-input majority logic (MAJ) gate
is used for the variable node update function implementation.

Due to hardware unreliability the results of the update
functions are not always correctly computed. We adopted the
“wire” model described in [1], where an edge is modeled as
a BSC with a known crossover probability. Let ν(`)v,c be the
message sent by the variable node v to its neighbor c ∈ Nv ,
at the iteration `, and let ν̂(`)v,c be the message that is actually
received by the node c. Then, we define the following relation

ν̂(`)v,c =

{
ν
(`)
v,c with probability 1− εMAJ ,

ν
(`)
v,c ⊕ 1 with probability εMAJ ,

(1)

where εMAJ represents the probability of failure of MAJ
gates. Similarly, let ν(`)c,v be the message sent by the variable
node c to its neighbor v ∈ Nc, at the iteration `, and let ν̂(`)c,v
be the message that is actually received by the node v. Then,
we have

ν̂(`)c,v =

{
ν
(`)
c,v with probability 1− ε⊕,

ν
(`)
c,v ⊕ 1 with probability ε⊕,

(2)

where ε⊕ represents the probability of failure of XOR gates.
We next summarize the faulty Gallager B decoder.

• Variable to check node update: For each variable node
v ∈ V :
At iteration ` = 0: ν(0)v,c = yv , ∀c ∈ Nv .
At iteration l > 0:

ν(`)v,c =

{
s if |{c′ ∈ Nv \ c : ν̂(`−1)c′,v = s}| > bγ/2c,
yv otherwise.

(3)

• Check to variable node update. For each check node c ∈
C and ∀v ∈ Nc, at iteration l ≥ 0:

ν(`)c,v =
⊕

v′∈Nc\{v}

ν̂
(`)
v′,c. (4)

The decoding is terminated when all parity-check equations
are satisfied or the maximum number of iterations (denoted
by L) is reached.

Note that in addition to logic gates needed to calculate
messages that are passed on the edges of the bipartite graph
the decoder also requires logic gates for the final bit estima-
tions and parity-checks calculation. If we allow these gates
to be unreliable, the performance of the decoder would be
determined by the failure probabilities of these gates, not by
the error control scheme. Thus, it is reasonable to assume that
these gates are perfect. Similar assumption was also used in
other relevant literature [22], [25], [26].

III. ELIMINATING THE TRAPPING SETS BY GATE
FAILURES

It is well known that the failures of Gallager B decoding
caused by the low-weight error patterns are mainly due to
the existence of the harmful structures in the Tanner graph
of LDPC codes called “trapping sets” [27]. A set of variable
nodes T is called an (a, b) trapping set if it contains a variable
nodes and the subgraph induced by these variable nodes has b
odd degree check nodes. In [28], the most harmful structures
of column weight 3 LDPC codes using the Gallager B decoder
over the BSC are given.

A faulty (5,3) trapping set in a column weight 3 LDPC code
of girth g = 8 is shown in Fig. 1. In this figure, the circles
denote the variable nodes and the squares denote the check
nodes. The faulty XOR gates are at the check nodes c2 and
c3 and the faulty MAJ gates are at the variable nodes v2, v4
and v5 which are shown with black arrows.

𝑣1 𝑣2

𝑣3𝑣4

𝑣5

𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

𝑐6𝑐7

𝑐8

𝑐9

Fig. 1: A faulty (5,3) trapping set.

Logic gate failures as inherent sources of randomness in the
existing literature, are usually seen as undesirable. This belief
comes from the fact that the capacity of LDPC codes cannot be
achieved under unreliable decoding operations [1], [5], [29].
However, the presence of randomness can be beneficial for
the finite length codes, as can eliminate small trapping sets.

(0,1,1,0,0,1,0,1,1,0,1,0,0,0,0) (1,0,0,1,1,0,1,0,0,1,0,1,0,0,0)

2,4,6,…

3,5,7,…
1 2

1

(a)

2,4

3,5
(1,0,0,1,1,0,1,0,0,1,0,0,0,0,0) (0,1,1,0,0,1,0,1,0,0,1,0,0,0,0) (1,0,1,1,0,0,0,0,0,1,0,1,0,0,0) (0,0,0,0,0,1,0,1,1,0,1,0,0,0,0) (0,0,0,0,1,0,1,0,0,1,0,0,0,0,0)

6

7 8 9 10

(0,1,1,0,0,1,0,1,1,0,1,0,0,0,0) (1,0,0,1,1,0,1,0,0,1,0,1,0,0,0)

1 2 3 4 5 6 7

1

(b)

(0,1,1,0,0,1,0,1,1,0,1,0,0,0,0) (1,0,0,1,1,0,0,0,0,1,0,0,0,0,0)

1

(0,0,1,0,0,1,0,1,0,0,0,0,0,1,0) (0,1,0,0,0,0,0,1,0,1,0,0,0,0,0)

42 3
2 3 4

1

(c)

Fig. 2: The state diagram of the Markov chain model on a faulty (5,3) trapping set. (a) ε⊕ = 0.001 and the decoder never converges to a codeword, (b)
ε⊕ = 0.01 and the decoder converges to the zero codeword after 10 iterations, (c) ε⊕ = 0.1 and the decoder converges to the zero codeword after 4 iterations.

To illustrate this, we study the dynamic of messages passed
from check nodes to variable nodes on a trapping set in each
iteration of the faulty Gallager B decoder. For this purpose, we
introduce a Markov chain model, which captures the dynamic
of the messages.

Let CT be the set of check nodes in the subgraph induced by
the trapping set T . Let define the Markov source S with 2|T |γ

states, where the state i, 1 ≤ i ≤ 2|T |γ , corresponds to one
possible binary sequence of length |T |γ. Clearly, a sequence
{νc,v(`)}c∈CT ,v∈T , where ν(`)c,v is the message passed from the
check node c to the variable node v at time `, maps to one
state of the source S. A transition from a state i at time `,
to state j at time `+ 1 is obtained by the variable and check
node operations, as well as the level of unreliability of logic
gates parameters ε⊕ and εMAJ .

For a perfect decoder in which εMAJ = 0 and ε⊕ = 0,
the attractor basin has a relatively small number of states. In
the state diagram of this model, the states oscillate and the
decoder never converges to a valid codeword. While in a faulty
decoder where εMAJ and/or ε⊕ are sufficiently greater than
0, the number of states is much larger than that of a perfect
decoder. That is because that in the faulty decoder, there is a
positive probability for each of the possible 2|T |γ messages to
appear as a state in the Markov chain model. Moreover, there
is a positive probability of leaving the states of the attractor
basin of a perfect decoder. These features of the faulty decoder
may cause the decoder to eventually correct the errors and
converge to the zero codeword.

To show how the faulty gates can break a trapping set
and correct the errors, we consider the (5,3) trapping set and
keep track of the messages from the check nodes to variable
nodes in each iteration of the faulty Gallager B decoder. For

simplicity, we assume that εMAJ = 0. Thus, the faulty gates
are only the XOR gates with the probability of failure ε⊕ > 0.
Therefore, the messages from check nodes {c1, c2, ..., c9} to
variable nodes {v1, v2, ..., v5} are flipped with probability ε⊕.
We know that the critical number of the (5,3) trapping set
is 3 and the 3 variable nodes that need to be in error are
those that are connected to degree-1 check nodes. Recall
that the critical number of a trapping set is the minimum
number of the erroneous variable nodes that cause failure of
decoder [30]. Thus, assume that v1, v3 and v5 are in error;
i.e. v1 = v3 = v5 = 1. Suppose the decoder stops if the
decoder finds a codeword or reaches the maximum number of
iterations. The state transitions corresponding to the messages
from check nodes to variable nodes for ε⊕ = 0.001, ε⊕ = 0.01
and ε⊕ = 0.1 are shown in Fig. 2.

As can be seen in Fig. 2(a), for ε⊕ = 0.001, the messages
oscillate between states 1 and 2. In this case, the decoder
never converges to a codeword. We note that when ε⊕ = 0,
the dynamic of messages is the same as the dynamic given in
Fig. 2(a). Fig. 2(b) shows that the decoder corrects all errors
in 10 iterations when ε⊕ = 0.01. As shown in Fig. 2(b), in
the first 5 iterations, the messages oscillate between states 1
and 2. However, after the 6th iteration, the states change from
the state 3 to 7 in which the decoder stops and corrects all
errors. Finally, in Fig. 2(c), the dynamic of messages is shown
for ε⊕ = 0.1 that depicts the convergence of the decoder to
the zero codeword in 4 iterations.

In the above discussion, we investigated the dynamic of
messages from the check nodes to variable nodes in an isolated
(5,3) trapping set. To see how the faulty Gallager B decoder
performs on a (5,3) trapping set in the (155,64) Tanner code,
we put 3 errors on the variable nodes connecting to degree-1

")
10-5 10-4 10-3 10-2 10-1

N
u

m
b

e
r

o
f

e
rr

o
rs

0

10

20

30

40

50

60

70

80

90

Fig. 3: Number of errors versus ε⊕ after running the faulty Gallager B decoder
for 100 iterations on the (155,64) Tanner code. The input of the decoder has
3 errors located on the variable nodes that are connected to degree-1 check
nodes in a (5,3) trapping set.

check nodes in a subgraph corresponding to the (5,3) trapping
set. Then, for different values of ε⊕, we ran the faulty Gallager
B decoder for at most 100 iterations and stored the number
of variable nodes that are eventually in error. The result is
shown in Fig. 3. As we expected, for sufficiently small ε⊕, the
decoder cannot correct errors located on the trapping set and
for large enough values of ε⊕, the decoder incorrectly decodes
some other variable nodes that were originally correct, to 1.
However, there are some values of ε⊕ for which the decoder
corrects all errors.

Thus, as shown both in Fig. 2 and Fig. 3, for some values of
ε⊕, the trapping sets responsible for the failure of the Gallager
B decoder are broken which in turn may lead to improve the
performance of the decoder.

IV. NUMERICAL RESULTS

In this section we further elaborate the idea that hardware
unreliability can lead to the performance improvement. We
evaluate the frame error rate (FER) and the bit error rate (BER)
of various LDPC codes, under i.i.d. failures in logic gates,
explained in Section II.

We mostly analyze quasi-cyclic (QC) codes, based on
circulant matrices [31] and Margulis codes [32], for which are
known to perform poorly in the error floors, as their bipartite
graphs contain small trapping sets [33]. We also consider
Latin square (LS) based codes that are designed to be free of
small trapping sets [34], as a reference for the improvement
obtained by breaking the trapping sets in faulty gates. We
only investigate (3,5)-regular LDPC codes, with girth g = 8,
as they allow low decoding complexity, but we expect that
similar conclusions can be derived for other regular LDPC
codes.

First, we consider how the probability of random i.i.d.
failures in XOR/MAJ gates of Gallager B decoder affects the

10
−5

10
−4

10
−3

10
−2

10
−1

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

ε
⊕

, ε
MAJ

F
ra

m
e

E
rr

or
 R

at
e,

 F
E

R

Tanner(155,64), faulty XOR, α=0.01
Tanner(155,64), faulty MAJ, α=0.01
LS(155,64), faulty XOR, α=0.01
LS(155,64), faulty MAJ, α=0.01

Fig. 4: FER as a function of probability of the gate failure, α = 0.01, L =
100.

FER of the two codes with the same construction parameters,
but different error floor behavior. In Fig. 4 the two different
scenarios are illustrated: (i) when check node processing is
reliable and only MAJ gates are faulty, and (ii) when variable
node processing is reliable and only XOR gates are faulty. The
performance of LS(155,64) code (also denoted as C1 code in
[34]), marked with red lines, are approximately constant, up to
the certain probability of logic gate failures. It can be noticed
that MAJ gates failures are more damaging, as the performance
degradation rapidly increase when εMAJ > 10−3, while, in
the case of faulty XOR gates, the similar effect is visible only
for ε⊕ > 5 × 10−3. On the other hand, the performance of
(155, 64) Tanner code, presented with blue lines, is not neces-
sarily degraded with the increase of logic gates unreliability. In
fact, there exist εMAJ > 0, and ε⊕ > 0, which results in the
highest error-correction capability. For that optimal case the
performance of the (155, 64) Tanner code approaches closely
to the performance of LS(155,64), which are a magnitude
higher when decoding is done by the perfect decoder.

This surprising effect is related to the positive impact of
hardware failures on breaking of the trapping sets, and it
is similar to the effect reported for the gradient descent bit
flipping decoder [20]. However, we noticed that the benefit
of using unreliable logic gates is related also to the mutual
relations of communication channel crossover probability α
and ε⊕ and εMAJ , respectively. When channel errors are dom-
inant, α� ε⊕, εMAJ , the influence of hardware unreliability
on the decoder performance is limited, and FER stays mostly
determined by the smallest trapping sets. On the other hand, if
the logic gate failures probabilities are much higher than the
channel crossover probability (α � ε⊕, εMAJ), gate failures
are no more useful. In such a case, errors added during the
decoding prevent the correction of channel errors.

As it can be observed from Fig. 5, the improvement caused
by XOR logic gates unreliability is notable for a wide range

10
−2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Crossover probability, α

F
ra

m
e

E
rr

or
 R

at
e,

 F
E

R

Tanner (155,64), ε
⊕

=0

LS (155,64), ε
⊕

=0

Tanner (155,64), ε
⊕

=10−2

Tanner (155,64), ε
⊕

=10−2, L
1
=10

Fig. 5: FER as a function of crossover probability, for the two (155, 64) codes

of failure probabilities, and it is mostly pronounced in the
error-floor region, when channel induced errors are rare. For
that case the (155, 64) Tanner code performs the same as
LS(155,64), when decoded by the perfectly reliable decoder.
However, a small degradation is observed for large values of
α.

This results indicates that the performance of the Tanner
code (155, 64) can be improved even when perfectly reliable
decoder is used, if the random binary sequence with Pr(1) ≈
0.01 is added in the check nodes, or the corresponding
sequence with Pr(1) ≈ 0.002 is added in variable nodes.
For this purpose, stochastic XOR/MAJ gates can be used [35].
The performance of Tanner code can be further improved if no
failures are added at the beginning of the decoding process, for
instance during the first L1 decoding iterations. In this case the
Gallager B decoder is given time to correct the error pattern,
and only if decoding fails after L1 iterations the probabilism is
used. The corresponding numerical results, presented in Fig.
5, reveals that, when L1 adequately chosen (L1 = 10), the
perfectly reliable Gallager B decoder is outperformed for all
considered crossover probabilities α. The use of probabilism
in order to improve the Gallager B decoding is included in
our future research.

We next compare the performance of the (155, 64) Tanner
code with the code from the same (3,5)-regular ensemble
and approximately same code rate, but with the codeword
length N = 305 (constructed over field GF(61)) [31]. The
FER values of these two codes are illustrated in Fig. 6 as
a function of maximal number of iterations L. The results
are presented for the crossover probability α = 0.01, with
and without failures in XOR gates. Although the longer
code have better correction capability when Belief-Propagation
decoding algorithm is applied [31], decoding by the Gallager
B algorithm results in the minor performance improvement,
when compared to the (155, 64) Tanner code. For both codes,
the decoding saturates after 15 iterations and the performance

0 200 400 600 800 1000
10

−8

10
−6

10
−4

10
−2

10
0

Maximum number of Iterations, L

F
ra

m
e

E
rr

or
 R

at
e,

 F
E

R

Tanner, ε
⊕

=0

Tanner, ε
⊕

=0.01

QC305, ε
⊕

=0

QC305, ε
⊕

=0.01

Fig. 6: FER as a function of maximum number of iterations, impact of gate
failures, α = 0.01.

is not further improved with the increase of parameter L. If
hardware failures are present, the performance continues to
improve with increase of L, up to the number of iterations
that is comparable with the codeword length. If we allow L to
be sufficiently large, FER of the code with N = 155 can be
reduced for one order of magnitude and FER of the code with
N = 305 can be reduced for the two orders of magnitude.

In Fig. 7, we illustrate XOR gate failures influence to the
performance of QC codes with N = 305 and N = 755
[31]. Similarly, as observed for the (155, 64) Tanner code,
the performance of both codes are improved, if the number of
decoding iterations is large. The code with N = 755 is of a
special interest due to its atypical behavior. It is constructed
over GF(151) and has the bad distance profile, and therefore
has an inferior performance in the error floor region, when
compared to the randomly constructed code with the same
codeword length and code rate [31]. By using the faulty
Gallager B decoder we implicitly randomize decoding process
and the performance is improved as the impact of the small
trapping sets is minimized. It should be noted that, for the code
with N = 755, the probability of converging to a codeword
different from the transmitted codeword is not negligible. We
observed that, for example, for α = 0.01 and L = 1000,
in average half of the decoder failures are the result of that
phenomenon.

The general conclusion that for the large codeword length
we need larger maximal number of iterations to obtain the
full gain of the gates unreliability, especially in the waterfall
region, is additionally strengthened by the case of Margulis
code (2640, 1320). It can be easily observed from Fig. 8
that decoding convergence continue for more than L = 1000
iterations for both analyzed values of the crossover probability
(α = 0.01 and α = 0.015). As the code has good distance
properties probability of miss-correction is negligible even for
very large values of L. It is clear that the increase of parameter

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Crossover probability, α

F
ra

m
e

 E
rr

o
r

R
a

te
,
F

E
R

 N=305, ε
⊕

=0, L=100

N=305, ε
⊕

=0.01, L=200

n=305, ε
⊕

=0.01, L=500

N=755, ε
⊕

=0, L=100

N=755, ε
⊕

=0.01, L=500

N=755, ε
⊕

=0.01, L=1000

N=305

N=755

Fig. 7: FER as a function of crossover probability, two codes with γ = 3,
ρ = 5.

0 200 400 600 800 1000

10
−6

10
−4

10
−2

10
0

Maximum number of Iterations, L

F
ra

m
e

 E
rr

o
r

R
a

te
,
F

E
R

α=0.015, ε

⊕
=0

α=0.015, ε
⊕

=0.01

α=0.01, ε
⊕

=0

α=0.01, ε
⊕

=0.01

α=0.015

α=0.01

Fig. 8: FER as a function of maximum number of iterations for the
(2640, 1320) Margulis code.

L increase the maximum latency of the decoding process and
this can be critical for certain applications.

The past work related to the faulty Gallager B decoder was
mostly dedicated to the infinite code length analysis by the
density evolution (DE) technique [3], [4]. The results obtained
using the DE tool are rather pessimistic, as they show that the
BER performance converges to a rather high value, especially
when decoder is built from faulty MAJ gates. However, in
Fig. 9 we show different behavior of finite length codes. For
example, it can be observed that the (155, 64) Tanner code,
when L = 100, outperforms the infinite length code from the
same ensemble, in the error floor region. This additionally
illustrates the significance of trapping set analysis, for the
decoders built from unreliable components.

10
−4

10
−3

10
−2

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BSC crossover probability, α

B
it

E
rr

or
 R

at
e,

 B
E

R

 QC(155,64), ε⊕ =0.01, ε
MAJ

=0.01

QC(155,64), ε⊕ =0., ε
MAJ

=0.01

QC(155,64), ε⊕ =0.01, ε
MAJ

=0

DE, ε⊕ =0.01, ε
MAJ

=0.01

DE, ε⊕ =0, ε
MAJ

=0.01

DE, ε⊕ =0.01, ε
MAJ

=0

Fig. 9: BER as a function of crossover probability, Monte Carlo simulation for
a finite length code and numerical results obtained by using density evolution
technique.

V. CONCLUSION

In this paper we showed that uncertainty of the logic
gate operations is not always undesirable in the message-
passing decoding of LDPC codes. In fact, we observed that
the faulty gates may significantly improve the Gallager B
decoder performance. Random failures of logic gates result
in correction of some error patterns in a faulty decoder that
are uncorrectable by the decoder made of reliable components.
By analyzing the dynamic of the faulty Gallager B decoder, we
found that the improvement is mostly notable with codes that
contain small trapping sets. Accordingly, their performance in
the error-floor region is highly improved.

Our next step is to try to exploit the observed effects in
order to create more powerful low-complexity hard decision
decoders. We believe that “controlled” failure injection can
lead to obtain even higher performance gain. Our future work
also focuses on design of fault-tolerant LDPC code-based
memories made from unreliable components.

ACKNOWLEDGEMENT

This work was supported by the Seventh Framework Pro-
gram of the European Union, under Grant Agreement number
309129 (i-RISC project), and in part by the NSF under Grants
CCF-0963726 and CCF-1314147. Bane Vasic acknowledges
generous support of The United States Department of State
Bureau of Educational and Cultural Affairs through the Ful-
bright Scholar Program.

REFERENCES

[1] L. Varshney, “Performance of LDPC codes under faulty iterative de-
coding,” IEEE Trans. Inf. Theory, vol. 57, no. 7, pp. 4427–4444, July
2011.

[2] C.-H. Huang and L. Dolecek, “Analysis of finite-alphabet iterative
decoders under processing errors,” in Proc. 2013 IEEE Int. Conf.
Acoustics, Speech, Sig. Proc., May 2013, pp. 5085–5089.

[3] F. Leduc-Primeau and W. Gross, “Faulty Gallager-B decoding with
optimal message repetition,” in Proc. 50th Annual Allerton Conference
on Communication, Control, and Computing, Oct 2012, pp. 549–556.

[4] S. Tabatabaei Yazdi, H. Cho, and L. Dolecek, “Gallager B decoder on
noisy hardware,” IEEE Transactions on Communications, vol. 61, no. 5,
pp. 1660–1673, May 2013.

[5] A. Balatsoukas-Stimming and A. Burg, “Density evolution for min-
sum decoding of LDPC codes under unreliable message storage,” IEEE
Communications Letters, vol. PP, no. 99, pp. 1–4, 2014.

[6] C. Ngassa, V. Savin, and D. Declercq, “Min-Sum-based decoders run-
ning on noisy hardware,” in IEEE Global Communications Conference
(GLOBECOM 2013), Dec. 2013, pp. 1879–1884.

[7] S. K. Chilappagari, M. Ivkovic, and B. Vasić, “Analysis of one-step
majority logic decoders constructed from faulty gates,” in Proceedings
of IEEE International Symposium on Information Theory (ISIT ’06),
Seattle, WA, July 2006, pp. 469–473.

[8] S. K. Chilappagari and B. Vasić, “Fault tolerant memories based on
expander graphs,” in Proc. IEEE Information Theory Workshop (ITW
’07), Lake Tahoe, CA, Sept. 2007, pp. 126–131.

[9] H. Robbins and S. Monro, “A stochastic approximation method,” The
Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400–407, 09 1951.

[10] W. Gardner, “Learning characteristics of stochastic-gradient-descent
algorithms: A general study, analysis, and critique,” Signal Processing,
vol. 6, no. 2, pp. 113 – 133, 1984.

[11] N. Miladinovic and M. Fossorier, “Improved bit-flipping decoding of
low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 51,
no. 4, pp. 1594–1606, April 2005.

[12] F. Leduc-Primeau, S. Hemati, S. Mannor, and W. Gross, “Dithered belief
propagation decoding,” IEEE Trans. on Commun., vol. 60, no. 8, pp.
2042–2047, August 2012.

[13] V. C. Gaudet and A. C. Rapley, “Iterative decoding using stochastic
computation,” IEE Electronic Letters, vol. 39, no. 3, pp. 299–301,
February 6 2003.

[14] S. Sharifi, Tehrani, W. J. Gross, and S. Mannor, “Stochastic decoding
of LDPC codes,” IEEE Commun. Letters, vol. 10, no. 10, pp. 716–718,
October 2006.

[15] S. S. Tehrani, S. Mannor, and W. Gross, “Fully parallel stochastic LDPC
decoders,” IEEE Transactions on Signal Processing, vol. 56, no. 11, pp.
5692–5703, November 2008.

[16] C. Winstead and S. Howard, “A probabilistic LDPC-coded fault com-
pensation technique for reliable nanoscale computing,” IEEE Trans. on
Circuits and Systems II: Express Briefs, vol. 56, no. 6, 2009.

[17] Y. Mao and A. Banihashemi, “Decoding low-density parity-check codes
with probabilistic scheduling,” IEEE. Commun. Letters, vol. 5, no. 10,
pp. 414–416, Oct 2001.

[18] G. Sundararajan, C. Winstead, and E. Boutillon, “Noisy gradient descent
bit-flip decoding for LDPC codes,” IEEE Trans. Commun., vol. 62,
no. 10, pp. 3385–3400, Oct. 2014.

[19] T. Wadayama, K. Nakamura, M. Yagita, Y. Funahashi, S. Usami, and
I. Takumi, “Gradient descent bit flipping algorithms for decoding LDPC
codes,” IEEE Trans. on Commun., vol. 58, no. 6, pp. 1610–1614, June
2010.

[20] O. Al Rasheed, P. Ivanis, and B. Vasic, “Fault-tolerant probabilistic
gradient-descent bit flipping decoder,” IEEE Commun. Letters, vol. 18,
no. 9, pp. 1487–1490, Sept. 2014.

[21] P. Ivanis, O. Al Rasheed, and B. Vasic, “MUDRI: A fault-tolerant
decoding algorithm,” in in IEEE Int. Conf. on Commun. (ICC 2015),
London, June. 2015, p. (paper acccepted).

[22] B. Vasic and S. K. Chilappagari, “An information theoretical framework
for analysis and design of nanoscale fault-tolerant memories based on
low-density parity-check codes,” IEEE Trans. on Circuits and Syst. I,
Reg. Papers, vol. 54, no. 11, pp. 2438–2446, Nov. 2007.

[23] M. Taylor, “Reliable information storage in memories designed from
unreliable components,” Bell System Technical Journal, vol. 47, pp.
2299–2337, 1968.

[24] R. G. Gallager, Low Density Parity Check Codes. Cambridge, MA,
USA: MIT Press, 1963.

[25] S. Brkic, P. Ivanis, and B. Vasic, “Analysis of one-step majority logic
decoding under correlated data-dependent gate failures,” in Proc. IEEE
Int. Symp. Inf. Theory (ISIT 2014), Honolulu, USA, June–July 2014, pp.
2599–2603.

[26] E. Dupraz, D. Declercq, B. Vasic, and V. Savin, “Finite alphabet
iterative decoders robust to faulty hardware: Analysis and selection,”
in Proceedings of 8th International Symposioum on Turbo Codes and

Iterative Information Processing (ISTC), Bremen, Germany, Aug. 2014,
pp. 1–10.

[27] T. J. Richardson, “Error floors of LDPC codes,” in Proc. 41st Annual
Allerton Conference on Communications, Control and Computing, Mon-
ticello, IL, USA, Sept. 2003, pp. 1426–1435.

[28] S. Chilappagari, D. Nguyen, and B. Vasić, “Trapping set ontology.”
[Online]. Available: http://www2.engr.arizona.edu/∼vasiclab/Projects/
CodingTheory/TrappingSetOntology.html

[29] S. M. Sadegh Tabatabaei Yazdi, H. Cho, and L. Dolecek, “Gallager B
decoder on noisy hardware,” IEEE Trans. Commun., vol. 61, no. 5, pp.
1660–1673, May 2013.

[30] B. Vasić, S. Chilappagari, D. Nguyen, and S. Planjery, “Trapping set
ontology,” in Proc. 47th Annual Allerton Conference on Communication,
Control, and Computing, Monticello, IL, USA, Sep. 30–Oct. 2 2009, pp.
1–7.

[31] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello,
“LDPC block and convolutional codes based on circulant matrices,”
IEEE Trans. on Inf. Theory, vol. 50, no. 12, pp. 2966–2984, Dec. 2004.

[32] G. A. Margulis, “Explicit constructions of graphs without short cycles
and low density codes,” Combinatorica, vol. 2, no. 1, pp. 71–78, 1982.

[33] D. MacKay and M. Postol, “Weaknesses of margulis and ramanujan-
margulis low-density parity-check codes,” in Proc. MFCSIT, Galway,
2002.

[34] D. V. Nguyen, S. K. Chilappagari, M. W. Marcellin, and B. Vasic, “On
the construction of structured LDPC codes free of small trapping sets,”
IEEE Trans. Inf. Theory, vol. 58, no. 4, pp. 2280–2302, Apr. 2012.

[35] K. Mansinghka, E. M. Jonas, and J. B. Tenenbaum, “Stochastic digital
circuits for probabilistic inference,” MIT Computer Science and Arti-
ficial Intelligence Laboratory, Technical Report MIT-CSAIL-TR-2008-
069, 2008.

