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Abstract—This paper addresses the problem of constructing
reliable memories from unreliable components. We consider the
memory construction proposed by Taylor in which a codeword
stored in a faulty memory is regularly updated by an LDPC
decoder to overcome the memory degradation. We assume that
the LDPC decoder used in the system is a faulty one-step majority
logic decoder. Compared to [1], [2] which analyze only the faulty
one-step majority logic decoder, we analyze here the reliability
of the whole memory construction. We introduce a sequence
of output errors probabilities at successive time instants and
determine the properties and the fixed points of the sequence.
From the fixed-point analysis, we define a threshold that predicts
the noise level which can be tolerated for the memory to stay
reliable. We finally represent the reliability regions of the Taylor-
Kuznetsov memory with respect to the decoder noise parameters
and validate the theoretical results with Monte-Carlo simulations.

I. INTRODUCTION

Over the past few years, important electronic chip size
reductions coupled with huge increase in integration factors
have made electronic devices much more sensitive to noise.
The hardware noise may introduce errors during elementary
computation operations and may also affect the memory units.
As a consequence, there is a need to address the issue of
constructing reliable memories running on faulty hardware.

Taylor [3] and Kuznetsov [4] were the first to address the
issue of constructing reliable memories built from unreliable
components. In the memory architecture proposed in [3], [4],
the information is stored as a codeword obtained from a Low
Density Parity Check (LDPC) code. The codeword is regularly
passed through an LDPC decoder in order to correct the errors
introduced by the faulty hardware. As the LDPC decoders runs
on the same faulty hardware as the memory, it is assumed
faulty as well.

More recently, Chilappagari et al. [1], [2] and Brkic et al. [5]
considered the use of a faulty One-Step Majority Logic (OS-
MAJ) LDPC decoder in the memory architecture proposed by
Taylor and Kuznetsov. The authors of [1], [2], [5] analyzed the
Bit Error Rate (BER) performance of the OS-MAJ decoder
alone, but they did not evaluate the reliability of the whole
memory architecture. Vasić and Chilappagari [6] identified
an equivalence between a faulty Gallager B decoder and the
memory architecture proposed by Taylor and Kuznetsov. How-
ever, they evaluated the reliability of the memory only through
finite-length simulations. Chilappagari et al. [7] evaluated the
reliability of the memory architecture by providing an analytic

expression of the maximum fraction of errors that can be
corrected by the faulty LDPC decoder at successive time
instants. The result in [7] was aimed at providing rigorous
conditions for memory reliability, based on graph expansion
arguments. However, computing expansion of large graphs is
a hard problem and as a consequence, the results of [7] are not
convenient for the design of a reliable memory architecture.

In this paper, we consider the memory architecture of [1],
[5] with a faulty OS-MAJ decoder. In this memory archi-
tecture, discrete time instants t = 0, . . . , T , are considered,
and a codeword obtained from an LDPC code is stored in
memory at initial time instant t = 0. Between two time instants
t and t + 1, the faulty hardware induces a degradation in
the memory, which is represented by a memory degradation
parameter α. In order to overcome the memory degradation,
the codeword stored in the memory is also passed through a
OS-MAJ LDPC decoder between t and t + 1. As the LDPC
decoder runs on the same hardware as the memory, the faulty
hardware introduces some noise inside the decoder. At time
instant T , the information is extracted from the memory. The
codeword stored in the memory at time instant T is passed
through a Gallager B LDPC decoder in order to recover the
information that was initially stored at time instant t = 0. The
performance of the memory architecture can be evaluated in
terms of redundancy and reliability.

The redundancy was defined in [3] as the number of noisy
elements required to construct the memory architecture divided
by the memory capability, that is the number of information
bits stored by the memory. It is required that the redundancy
does not depend on k, which induces that the complexity of
the memory architecture is linear witk k, so that the memory
architecture can be constructed even for large values of k. The
memory is said reliable if at time instant T , the Gallager B
decoder can perfectly recover the information that was stored
at time instant t = 0.

In this paper, we propose an analytical method to analyze
the reliability of the memory architecture as a function of
the memory degradation level α. We first express the error
probabilities in the memory at successive time instants. Then
we analyse the convergence properties of the sequence of
error probabilities and introduce a threshold definition that
indicates the maximum degradation level that the memory can
tolerate to stay reliable. This definition enables us to represent
reliability regions as a set of degradation levels and decoder
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Fig. 1. Information stored in the memory at successive time instants

noise parameters for which a reliable storage of information
is possible. We also provide finite-length simulation results
which validate the theoretical analysis.

The outline of the paper is as follows. Section II presents
the memory architecture and the faulty OS-MAJ decoder used
in the architecture. Section III derives the sequence of error
probabilities in the memory and analyzes the growing and
convergence properties of the sequence. Section IV introduces
the reliability definition and the memory threshold definition.
Section IV also provides the reliability regions. Section V
presents the finite-length simulation results.

II. FAULT-TOLERANT MEMORIES

In this section, we present the memory architecture and the
error model describing the memory degradation induced by the
faulty hardware. The memory architecture and the error model
were originally introduced in [3], [4] and latter considered
in [1], [2], [5]–[7]. We explain how, as initially proposed
by [3], LDPC codes can be used to overcome the memory
degradation induced by the faulty hardware. We then describe
the faulty OS-MAJ LDPC decoder used as a correction circuit.

A. Memory Degradation

Consider a memory with a storage capability of k bits, and
consider the discrete time instants t = 0, . . . , T . Denote by
x(0) the binary information vector of length k initially stored
in memory at time instant t = 0, and denote by x(t) the binary
information vector of length k that is in the memory at time
instant t. Let x(t)v be the v-th component of the vector x(t).
The memory degradation between two successive time instants
t and t+1 is modeled by a Binary Symmetric Channel (BSC)
of parameter α, which is denoted BSC(α). The BSC gives
a symmetric and memoryless error model. Although such a
model may not take into account all the errors induced by the
faulty hardware in a realistic memory, we consider it here as
a first step for the analysis.

Unfortunately, because of the memory degradation, the
number of errors in x(t) with respect to x(0) increases with
t. For large enough t, x(t) will contain too many errors, and
it will not be possible to recover the initial x(0) from x(t)

anymore. In order to overcome this effect, the information
vector is encoded by an LDPC code, as described in the
following.

B. Taylor-Kuznetzov Memory Architecture

Le x(0) be a codeword obtained from an LDPC code of
dimension k defined by a parity check matrix H of size m×n,
with k ≤ m− n. The vector x(0) is stored in the memory at

time instant t = 0, and the memory has a storage capability of
k information bits. The Tanner graph of the code is composed
of n Variable Nodes (VN) v ∈ {1, . . . , n} and m Check Nodes
(CN) c ∈ {1, . . . ,m}. The degree of the VN v is denoted as
dv and the degree of the CN c is denoted as dc. Here, the
code is assumed to be regular, i.e, dv does not depend on v,
and dc does not depend on c. Denote by N (v) the set of CNs
connected to the VN v, and denote by N (c) the set of VNs
connected to the CN c.

Between two successive time instants t and t + 1, the
vector x(t) stored in the memory undergoes two operations,
as depicted in Figure 1. First, x(t) is passed through BSC(α),
which gives the degraded vector y(t). Second, y(t) is passed
through an LDPC decoder called the refresh decoder. The
refresh decoder reads the memory content y(t) at time t and
outputs the vector x(t+1) which is written back in the memory
and stored in memory at instant t+1. The refresh decoder has
to correct most of the errors introduced by the BSC between
two time instant t and t+ 1, so that x(t) is never too far away
from x(0). Here, the refresh decoder is a OS-MAJ decoder. We
choose a very low complexity OS-MAJ decoder in order to
limit the redundancy of the memory architecture. In addition,
as the refresh decoder runs on the same faulty hardware as the
memory, it will be assumed faulty as well.

Finally, when the information has to be extracted from the
memory at time instant T , we allow the use of a second LDPC
decoder called the final decoder. The final decoder has to
reconstruct almost perfectly x(0) from x(T ). Here, the final
decoder is a noiseless Gallager B decoder. Indeed, as the final
decoder is used only once at the end of the storage, we allow
it to be both noiseless and more complex compared to the
refresh decoder.

C. Refresh Decoder: Faulty OS-MAJ Decoder

We first describe the noiseless version of the OS-MAJ
decoder. At time instant t, the refresh decoder receives the
degraded vector y(t). As a first step of the decoding, each
CN c computes a message γc→v for all the VNs v ∈ N (c)
connected to it. Let A = {a1, . . . , ad} be a multiset of d binary
digits and define the function realizing the XOR sum of the d
terms of A as

f⊕(A) = a1 ⊕ · · · ⊕ ad. (1)

The CN messages are calculated from the function f⊕ as ∀c ∈
{1, . . . ,m}, ∀v ∈ N (c),

γc→v = f⊕

(
{y(t)v′ }v′∈N (c)\v

)
. (2)

From the CN messages it receives, each VN v ∈ {1, . . . , n}
computes a decision value ηv . Let B = {b1, . . . , bd} be a
binary multiset of size d, and let a be a binary digit. We
define the majority voting function as

fmaj(B, a) =

 1 if |supp(B)| > dv
2

0 if |supp(B̄)| > dv
2

a otherwise
(3)



where supp(B) is the support of B, B̄ is the complement of
B, and |.| is the cardinality of a set. The decision values are
calculated from the function fmaj as ∀v ∈ {1, . . . , n},

ηv = fmaj

(
{γc→v}c∈N (v), y

(t)
v

)
. (4)

At the end of the decoding, each VN is set as x(t+1)
v = ηv .

The resulting vector x(t+1) corresponds to the vector stored
in memory at time instant t+ 1.

We now describe the faulty version of the OS-MAJ decoder.
Denote by γ̃c→v the noisy versions of the CN messages γc→v
in (2), and by η̃v the noisy versions of the decision values ηv .
In order to obtain a faulty version of the OS-MAJ decoder
from the above noiseless description, we replace the noiseless
functions f⊕ in (1) and fmaj in (3) by their noisy versions f̃⊕
and f̃maj. in (4).

The noisy XOR sum function f̃⊕ is defined as

f̃⊕(A) = f⊕(a1, . . . , ad)⊕ e⊕ (5)

where e⊕ is a random variable distributed according to the
Bernoulli distribution with parameter p⊕. The parameter p⊕
represents the error probability of the function. As for the
memory degradation effect, the error model for the XOR sum
function is assumed memoryless and symmetric, as a first step
of the analysis. With the definition of the function f̃⊕ in (5),
we assume that the noise applies only at the end of the whole
XOR sum computation. Another model would be to assume
that the CN computation is realized from (d − 1) 2-inputs
faulty XOR gates, each with error probability pxor,2. However,
the two models are equivalent as we have the relation p⊕ =
P (f̃⊕(a1, . . . , ad) 6= f⊕(a1, . . . , ad)) = 1

2−
1
2 (1−pxor,2)(d−1).

It thus suffices to calculate the parameter p⊕ from pxor,2 to
obtain the error model defined by the functionf̃⊕ in (5).

The noisy majority voting function f̃maj is defined as

f̃maj(B, a) = fmaj(b1, . . . , bd, a)⊕ emaj, (6)

where emaj is a random variable distributed according to the
Bernoulli distribution with parameter pmaj. The parameter pmaj
represents the error probability of the majority voting function.
As for the XOR sum computation, the noise is assumed to be
only at the end of function computation. While this model may
not capture all the noise effects that could appear inside the
majority voting function, it does not require knowledge of a
particular hardware implementation of the function. However,
it appears sufficient for the first step of the analysis and more
accurate models will be considered in future works. Note that
in the faulty OS-MAJ decoder considered in [1], [2], [5] the
majority voting functions are noiseless and only the XOR gates
are assumed faulty.

At the end, because of the refresh decoder, the memory
constructed from faulty components requires more components
than the memory built from reliable units. In order to evaluate
the amount of induced additional complexity, the redundancy
of the memory architecture can be evaluated as follows.

D. Redundancy of the Memory Architecture

The redundancy of the memory is defined in [3] as the
number of noisy components used in the memory architecture
divided by the memory capability k. For the memory architec-
ture considered in the paper, the redundancy of the memory
is expressed as [7]

Red =
1 +D + dv(dc − 2)

1− dv
dc

. (7)

where D is the complexity of the majority voting unit and D
depends only on dv . In (7), the final decoder is no taken into
account as it is used only once at the end of the storage. The
redundancy depends only on the code parameters dv, dc, but
does not depend on the memory capability k. As a result, the
complexity of the memory architecture built from unreliable
components is only linear with the memory capability.

Now, we would like to determine whether and for which
parameters α, p⊕, pmaj, the considered memory architecture is
reliable. Thus for a fixed code and a given redundancy, we now
analyze the reliability of the considered memory architecture
with respect to the memory degradation parameter α and to
the decoder noise parameters p⊕, pmaj.

III. ERROR PROBABILITY EVALUATION

In this section, we analyze the reliability of the memory by
expressing the bit error probabilities in the successive vectors
x(t) stored in the memory at time instants t = 0, . . . , T . We
first express analytically the error probability of the faulty OS-
MAJ refresh decoder. We then use this probability to derive
the successive error probabilities in the x(t).

A. Error Probability of the Faulty OS-MAJ Decoder

Here, we find the error probability of the OS-MAJ decoder
as a function of the memory degradation level at the input
of the decoder. The error probability of the faulty OS-MAJ
decoder was given in [2], [5] for different decoder noise error
models. We restate it here for the error model we consider in
the paper. For now, assume that the input degradation level is
α, which corresponds to the degradation level in the first time
interval between t = 0 and t = 1.

The BSC representing the memory degradation and the
faulty functions f̃⊕ and f̃maj used in the decoder are symmetric
in the sense of [8]. Thus, from [8], we can assume that
the all-zero codeword was initially stored in memory, which
greatly simplifies the analysis. From the all-zero codeword
assumption, we obtain the error probability of the Majority
Logic decoder by expressing the probabilities of the messages
exchanged during the decoding.

Denote by p̃γ = P (γ̃c→v = 1) the probability of a noisy CN
message γ̃c→v . Denote by pη = P (ηv = 1) the probability of
a noiseless decision value ηv , and denote by p̃η = P (ηv = 1)
the probability of its noisy version. The probability p̃γ of the
noisy CN message γ̃c→v can be written as

p̃γ =
1

2
− 1

2
(1− 2p⊕)(1− α)(dc−1). (8)



It corresponds to the probability of an occurence of odd
number of ones among the (dc − 1) inputs of the CN, or
of an error in the XOR sum computation. The probability pη
of the noiseless decision value ηv is calculated depending on
the parity of the VN degree dv . If dv is odd, pη can be written
as

pη =

dv∑
j=d dv

2 e

(
dv
j

)
p̃jγ(1− p̃γ)(dv−j) (9)

If dv is even, we get

pη =

dv∑
j= dv

2

(
dv
j

)
p̃jγ(1− p̃γ)(dv−j)

− (1− α)

(
dv
dv
2

)
p̃
( dv

2 )
γ (1− p̃γ)(

dv
2 ). (10)

In both cases, pη corresponds to the probability of a majority
of 1 digits at the input of the noiseless majority voting unit.

We now express the error probability of the decoder. Denote
ν = (p⊕, pmaj) the decoder noise parameter pairs. The error
probability Pe,ν(α) = P (x

(1)
v = 1|x(0)v = 0) of the faulty

OS-MAJ decoder can be calculated from pη as

Pe,ν (α) = pη(1− pmaj) + (1− pη)pmaj. (11)

The error probability Pe,ν (α) of the decoder is equal to the
probability p̃η = P (ηv = 1) of the noisy decision value ηv .
The error probability Pe,ν (α) depends on the input noise level
α, and on the decoder noise parameters p⊕, pmaj.

The expression of the error probability Pe,ν (α) in (11) can
now be used to evaluate the successive error probabilities in
the memory.

B. Successive Error Probabilities in the Memory

In this section, we want to derive the expressions of the
error probabilities in the x(t) at successive time instants
t = 0, . . . , T . In order to do this, we also give the expressions
of the degradation levels in the y(t) at successive time instants
t = 0, . . . , T . As before, from the symmetry of the functions
and error models considered in the memory architecture, we
can assume that the all-zero codeword was initially stored
in memory. According to the memory architecture defined in
Section II, the successive degradation levels in the y(t) and
the successive error probabilities in the x(t) are given in the
following proposition.

Proposition 1: Denote β(t)
ν (α) the degradation level in y(t)

with respect to x(0), i.e., β(t)
ν (α) = P (y

(t)
v = 1|x(t)v = 0).

The successive degradation levels β(t)
ν (α) can be expressed

recursively as
β(1)
ν (α) = α, (12)

and ∀t > 1,

β(t)
ν (α) = (1− α)Pe,ν

(
β(t−1)
ν (α)

)
+ α

(
1− Pe,ν

(
β(t−1)
ν (α)

))
.

(13)

The error probabilities in the successive x(t) are given by
δ
(t)
ν (α) = P (x

(t)
v = 1|x(0)v = 0), and

δ(t)ν (α) = Pe,ν

(
β(t)
ν (α)

)
, ∀t ≥ 1. (14)

The initial β(1)
ν (α) is given by the fact that y(1) is the output

of BSC(α). At time instant (t − 1), the stored vector x(t−1)

has error probability Pe,ν
(
β
(t−1)
ν (α)

)
and is passed through

BSC(α). The resulting y(t−1) can be seen as the output of the
concatenation of BSC(α) and of BSC

(
Pe,ν

(
β
(t−1)
ν (α)

))
,

respectively, which gives the expression of β(t)
ν (α) in (13).

The faulty decoder then produces x(t) from its input y(t), and
as a result, the error probabilities in the successive x(t) are
given by the δ(t)ν (α) in (14).

Proposition 1 gives the recursive expression of the se-
quences {β(t)

ν (α)}+∞t=1 and {δ(t)ν (α)}+∞t=1 of error probabilities
in the memory. In the following, we analyze the sequence of
{β(t)

ν (α)}+∞t=1 instead of the sequence of {δ(t)ν (α)}+∞t=1 . Indeed,
we are more interested in the degradation levels that the
memory can tolerate than in the successive error probabilities.
This is in compliance with the conventional analysis of LDPC
decoders in which we define a threshold on the channel
parameter.

The memory will be reliable if the successive degradation
levels are small enough so that at any time instant, we can
guarantee that x(t) is in a close proximity of x(0) and can
be recovered by a perfect Gallager B decoder. In order to be
able to check this condition for various values of α, p⊕, pmaj,
and for different choices of LDPC codes, we first analyze
the increasing and convergence properties of the sequence
{β(t)

ν (α)}+∞t=1 .

C. Sequence Properties
In this section, we first analyze the increasing properties

of the sequence {β(t)
ν (α)}+∞t=1 . The properties of the sequence

{β(t)
ν (α)}+∞t=1 are stated in the following Proposition.
Proposition 2: Consider the sequence {β(t)

ν (α)}+∞t=1 given
in Proposition 1.

1) Fix p⊕ and pmaj. If the function α → Pe,ν (α) is
increasing with α, then

∀α < 1/2, β(t)
ν (α) ≤ β(t+1)

ν (α). (15)

2) Fix p⊕ and pmaj. If the function α → Pe,ν (α) is
increasing with α, then

∀t > 0, α1 ≤ α2 ⇒ β(t)
ν (α1) ≤ β(t)

ν (α2). (16)

3) Fix α, pmaj, and denote ν1 = (pxor,1, pmaj), ν2 =
(pxor,2, pmaj). If the function p⊕ → Pe,ν (α) is increasing
with p⊕, then

∀t > 0, pxor,1 ≤ pxor,2 ⇒ β(t)
ν1 (α) ≤ β(t)

ν2 (α). (17)

4) Fix α, p⊕, and denote ν1 = (p⊕, pmaj,1), ν2 =
(p⊕, pmaj,2). If the function pmaj → Pe,ν (α) is increasing
with pmaj, then

∀t > 0, pmaj,1 ≤ pmaj,2 ⇒ β(t)
ν1 (α) ≤ β(t)

ν2 (α). (18)



Proof:
1) The proof is made recursively.
First compute β(2)

ν (α) = α(1− 2Pe,ν (α)) + Pe,ν (α) ≥ α.
The inequality come from (1− 2Pe,ν (α)) > 0. As β(1)

ν (α) =

α, we get β(2)
ν (α) ≥ β(1)

ν (α).
Then assume that β(t)

ν (α) ≥ β(t−1)
ν (α) and compute

β(t+1)
ν (α)− β(t)

ν (α)

= (1− 2α)
(
Pe,ν

(
β(t)
ν (α)

)
− Pe,ν

(
β(t−1)
ν (α)

))
≥ 0.

The inequality come from the above assumption. At the end,
we get β(t+1)

ν (α) ≥ β(t)
ν (α), which proves (15).

2) Compute

β(t+1)
ν (α2)− β(t+1)

ν (α1)

= (1− 2α1)Pe,ν

(
β(t)
ν (α1)

)
+ (1− 2α2)Pe,ν

(
β(t)
ν (α2)

)
+ (α1 − α2)

≥ 0,

which proves (16)
3) The proof is made recursively. We first show that

Pe,ν

(
β
(1)
ν1 (α)

)
≤ Pe,ν

(
β
(1)
ν2 (α)

)
and that β

(2)
ν1 (α2) ≤

β
(2)
ν2 (α). We then assume that at step t, Pe,ν

(
β
(t)
ν1 (α)

)
≤

Pe,ν

(
β
(t)
ν2 (α)

)
and β

(t)
ν1 (α2) ≤ β

(t)
ν2 (α), and we show that

this is also true at step t+ 1.
The proof for 4) is the same as the proof for 3).

Proposition 2 assumes that the function Pe,ν (α) is increas-
ing with α and with the decoder noise parameters. Although
it is reasonable to assume that the error probability of the
faulty decoder increases with the BSC parameter and with
the decoder noise parameters,the results of [9], [10] show that
the second assumption is not always true. For example, for
the discrete Min-Sum decoder with 7 quantization levels for
the messages, the authors of [9] observe that the noise in
the decoder can sometimes improve the decoder performance
compared to the noiseless case. The same effect is observed
for the Probabilistic Gradient Descent Bit-Flipping decoders
introduced in [10]. As a consequence, Proposition 2 does not
hold for such decoders. On the other hand, for the faulty
OS-MAJ decoder, we can show that the function Pe,ν (α) is
increasing with α and with the decoder noise parameters. As
a consequence, for the memory architecture we consider in
the paper, higher values of α, p⊕, pmaj, will lead to increased
degradation levels β(t)

ν (α).
Proposition 2 also shows that the successive degradation

levels β(t)
ν (α) are increasing with t. As a result, even with

the refresh decoder, the faulty memory keeps degrading the
stored information. However, we hope that the sequence of
degradation levels {β(t)

ν (α)}+∞t=1 converges to a fixed point
which is no too high, so that the initial x(0) can always
be recovered from x(t), even for large values of t. In order

to verify this condition, we now analyze the convergence
behavior of {β(t)

ν (α)}+∞t=1 .

D. Fixed-point analysis

Here, we analyze the asymptotic behavior of {β(t)
ν (α)}+∞t=1

by determining the fixed points of the sequence {β(t)
ν (α)}+∞t=1 .

The fixed points of the sequence {β(t)
ν (α)}+∞t=1 are the values

β satisfying β = (1 − α)Pe,ν (β) + α(1 − Pe,ν (β)), or
equivalently if α 6= 1/2,

Pe,ν (β) =
β − α
1− 2α

. (19)

From the condition (19), the fixed points of the sequence
of {β(t)

ν (α)}+∞t=1 correspond to the intersection of the curve
representing Pe,ν (β) and the straight line y = β−α

1−2α . This
gives a very simple condition to determine the fixed points
of {β(t)

ν (α)}+∞t=1 . Note that if Pe,ν (1/2) = 1/2 (which is
always satisfied), then β = 1/2 is always a fixed point of
{β(t)

ν (α)}+∞t=1 , whatever the value of α is.
The fixed points correspond to the possible limits of the

sequence {β(t)
ν (α)}+∞t=1 . We know that β = 1/2 is always a

fixed point, but it is a bad one for which we cannot recover
the original x(0) from x(t). Thus, we hope that the sequence
{β(t)

ν (α)}+∞t=1 has other fixed points which correspond to
degradation levels that can be handled by the final decoder.
In the following, we propose a definition of the memory
reliability that accounts for this condition.

IV. RELIABILITY CONDITIONS

In this section, we give a definition of the reliability of
the memory. The reliability definition relies on the above
asymptotic analysis on the sequence of degradation levels
{β(t)

ν (α)}+∞t=1 . From the reliability conditions, we propose a
threshold definition that determines the set of degradation
parameters α that lead to a reliable storage of information.

A. Reliability Conditions

The reliability conditions we give here are based on the
reliability conditions originally introduced in [3, Section 2.2].
The following definition adapts the reliability conditions of [3]
to our analysis of the convergence properties of the sequence
{β(t)

ν (α)}+∞t=1 .
Definition 1: Consider the memory architecture of Sec-

tion II and fix the parameters α, p⊕, pmaj. Consider the
sequence {β(t)

ν (α)}+∞t=1 given in Proposition 1. Denote B the
set of fixed-points of {β(t)

ν (α)}+∞t=1 excluding 1/2, and denote
by β? the threshold of the noiseless Gallager B decoder.

A memory is said to be reliable for the parameters α, p⊕,
pmaj, if the following three conditions are verified

1) Bounded redundancy: The redundancy Red of the memory
does not depend on the memory capability k,

2) Stability: The set B is nonempty,
3) Admissibility: The set B is such that maxB ≤ β?.

The condition 1 requires bounded redundancy. From (7), The
condition 1 is always fulfilled. The conditions 2 and 3 are



related to the asymptotic analysis of the successive degradation
levels in the memory. The condition 2 requires that the
sequence {β(t)

ν (α)}+∞t=1 has fixed points other than β = 1/2.
It guarantees that the memory is stable in the sense that the
degradation levels converge to a fixed point. The condition 3
ensures that the fixed point corresponds to a degradation level
that can be handled by the final decoder.

The validity of Conditions 2 and 3 depend on the value
of the memory degradation parameter α, and on the decoder
noise parameters p⊕ and pmaj. In order to identify the set of
parameters α, p⊕, pmaj, that lead to a reliable memory, we
introduce a threshold definition as follows.

B. Threshold Definition

The following threshold definitions were introduced for
LDPC codes in channel coding. The noiseless threshold in [11]
was defined as the maximum channel parameter α such
that Pe,ν (α) = 0. This condition cannot be applied here
because of the noise introduced by the faulty hardware, which
prevents the decoder from reaching an error probability 0.
This is why several other threshold definitions were introduced
for noisy decoders: the useful threshold [8], the target-BER
threshold [8], [12], and the functional threshold [13]. However,
these threshold definitions cannot be used in our context,
because they characterize the behavior of the faulty decoder
alone. Here, we introduce a new threshold definition that takes
into account the dynamic of the whole memory architecture.

Definition 2: Consider the memory architecture of Sec-
tion II and fix the decoder noise parameters p⊕, pmaj. The
degradation threshold is defined as

α = argmax
α
{The memory is reliable in the sense of Definition 1}.

(20)
The degradation threshold is defined as the maximum pa-
rameter α for which the memory is reliable. In the above
definition, the decoder noise parameters p⊕ and pmaj are fixed,
and the threshold is only on α. Indeed, α is the parameter
of the memory, while p⊕ and pmaj are the parameters of the
correction circuit, and we want to express the threshold in
terms of reliability of the memory elements.

At the end, the degradation threshold enables to characterize
the set of parameters α, p⊕, pmaj, that lead to a reliable
memory. These parameters can be represented in the form of
reliability regions, as described in the following.

C. Reliability Regions

In this section, we provide reliability regions as the set of
parameters α, p⊕, pmaj, that lead to a reliable memory. We
consider regular LDPC codes of VN degree dv = 3 and CN
degrees dc = 4, dc = 5, dc = 6, respectively. For the faulty
OS-MAJ decoder, we set p⊕ = 10−3, and pmaj = 10−3.
In order to verify the reliability of the memory for given
parameters α, p⊕, pmaj, we need the expression Pe,ν (α) of
the error probability of the faulty OS-MAJ decoder. Thus we
first discuss the curves representing Pe,ν (α) as a function of
α.
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Fig. 2. Error probabilities w.r.t. α, for p⊕ = 10−3, pmaj = 10−3 and Codes
with dv = 3
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Fig. 3. Reliability regions w.r.t p⊕, for pmaj = 10−3

The error probabilities Pe,ν (α) are calculated from (11).
Figure 2 shows Pe,ν (α) as a function of α for the codes of
VN degree dv = 3. We see that the error probability increases
with α but does it very slowly for small α. However, there is
no distinguishable threshold value on α that would separate
the low and the high error probability regions. However,
from the analysis carried in the paper, we can identify a
memory threshold by analyzing the properties of the sequence
{β(t)

ν (α)}+∞t=1 , as illustrated in the following.
For the codes with dv = 3, Figure 3 represents the threshold

values ᾱ obtained from Definition 2 with respect to p⊕
Figure 3 thus gives the reliability regions with respect to p⊕.
As expected, the reliability regions shrink with the code rate
increase. The reliability regions are convex, even for large
values of p⊕. When the decoder noise parameter p⊕ becomes
too large, the threshold value ᾱ becomes 0, which means that
the decoder noise is too high to enable the memory to be
reliable . Figure 4 represents the reliability regions with respect
to pmaj. We get the same conclusions as before.

We conclude this section by a remark that the analysis of
the paper and the threshold definition enable characterization
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Fig. 4. Reliability regions w.r.t pmaj, for p⊕ = 10−3
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Fig. 5. BER w.r.t. α of the faulty OS-MAJ Decoder with p⊕ = 10−3 and
pmaj = 10−3

of the set of parameters α, p⊕, pmaj, for which the memory
is reliable. To verify the accuracy of the characterization, we
now give finite-length simulation results.

V. FINITE-LENGTH SIMULATIONS

In this section, we evaluate at finite length the reliability of
the memory architecture we consider in the paper. We consider
regular LDPC codes of dimension k = 400 with VN degree
dv = 3 and CN degrees dc = 4, dc = 5, dc = 6, respectively.

Figure 5 represents the BER of the Faulty OS-MAJ Decoder
for the three considered codes with p⊕ = 10−3 and pmaj =
10−3. The curves are very similar to the curves of Figure 2
that represent the error probabilities with respect to α.

Figure 6 represents the BER for the whole memory archi-
tecture after T = 200 time instants for the three codes with
p⊕ = 10−3 and pmaj = 10−3. As expected, when the rate of
the code increases, the BER increases. We see that when α
becomes too large, the BER after T = 200 is too high and
the memory is not reliable anymore. This effect comes for
values of α that are smaller than the threshold value. As for
the analysis of LDPC codes, the analysis carried in the paper
is an asymptotic analysis, which explains the difference.
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Fig. 6. BER w.r.t. α of the memory architecture with p⊕ = 10−3 and
pmaj = 10−3 and T = 200
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Fig. 7. BER w.r.t. α of the memory architecture with p⊕ = 10−3 and
pmaj = 10−3 and T = 200

Figure 7 represents the BER for the whole memory archi-
tecture after T = 200 time instants for the code with dc = 6,
for several values of p⊕ and pmaj. As expected, the memory is
less reliable when the decoder noise increases. In particular,
for p⊕ = pmaj = 10−2, the memory is not reliable, whatever
the value of α.

VI. CONCLUSION

In this paper, we provided an analysis of the reliability
of the memory architecture proposed by Taylor [3] and
Kuznetsov [4]. We expressed the successive error probabilities
in the memory and we introduced a threshold definition to
characterize the set of memory degradation parameters and
decoder noise parameters that lead to a reliable memory. The
results of the paper can be extended to irregular codes and to
other refresh decoders, such as faulty Gallager A or B decoders
with a small number of iterations.
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