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Abstract— In this paper we propose a uniformly reweighted
a posteriori probability (APP) decoder. It is derived as an
algorithm of approximate Bayesian inference on the LDPC
code graph, and a correction parameter is introduced and
numerically optimized to overcome the suboptimaly of the
decoder and improve performance compared to the original
APP decoder. In addition, we propose a memory efficient
implementation of the algorithm that requires memory that
is linear only in the codeword length.

I. I NTRODUCTION

Belief propagation (BP) is an iterative message-passing
algorithm for decoding low density parity check (LDPC)
codes, widely used in many systems. Despite its good error
correction performances and capability of approaching the
Shannon limit, BP suffers from large memory requirements
for message processing and storage, proportional to the
number of edges in the Tanner graph of the code. Such large
memory requirements, coupled with additional hardware
resources needed for the message updating, make the BP
less attractive in applications with stringing constraints.

A posteriori probability (APP) decoder [1] is a suboptimal
alternative to BP, in which the variable node processing
is simplified by allowing variables to send messages in an
intrinsic manner, and a message from a variable node cor-
responds to a posteriori value used to estimate that variable,
This property admits a memory efficient implementation.

The APP decoder can be seen as an iterative Bayesian
procedure which computes the a posteriori bit probabilities
conditioned on the previously estimated probabilities andthe
set of check node constraints. Its suboptimality comes from
the approximation by which only the closest check constraint
neighborhood of a variable node is taken into account during
the iterative Bayesian procedure.

In this paper we propose a parameterized version of
the APP decoder called uniformly reweighted APP decoder
(URAPP), which can be seen as a suboptimal variant of the
tree reweighted belief propagation [2], [3]. The algorithmis
derived in the Bayesian framework and the source of the
suboptimalily is recognized and treated using a reweighted
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parameter which, in general, depends on the iteration and
node considered. As the simplest case, we consider the
uniformly reweighted APP decoder, where a constant value
is used for the correction parameter and optimized through
simulations. The experiments on binary symmetric channel
show that the optimal parameter value does not depend
on the cross-over probability value and that URAPP has
significantly better performance than the original versionof
the APP introduced in [1].

Although the APP decoders can be implementes in a mem-
ory efficient way, this advantage has not been recognized
in the original paper [1]. On the other hand, the existing
memory-aware hardware architectures of APP decoders [4],
[5] suffer from the performance degradation caused by
further approximations of variable node processing function,
introduced to reduce complexity. As the second contribution
of the paper, we propose a memory-efficient realization
of the reweighted APP decoder, which requires memory
proportional to the number of nodes in the Tanner graph
of the LDPC code, rather than to the number of edges, as
proposed in [1], which is a significant saving.

The paper is organized as follows. In Section II we
introduce the notation and give deffinitions. The URAPP
decoder is derived in the Section III, while its memory
efficient implementation is considered in the Section IV. The
simulation results are presented in the Section V.

II. PRELIMINARIES

An regular LDPC code is a linear block code defined by
a sparse parity-check matrixH. We denote bypM,Nq the
size ofH. A codeword is a vectorx “ px1, x2, . . . , xN q P
t0, 1uN that satisfiesHx

T “ 0, where x
T denotes the

transposed (column) vector. The Tanner graph [6] of an
LDPC code is a bipartite graph whose adjacency matrix is
the parity-check matrix of the codeH. It contains two types
of nodes: a set of variable-nodesN “ tv1, v2, . . . , vNu,
corresponding to theN columns ofH, and a set of check-
nodesM “ tc1, c2, . . . , cMu, corresponding to theM rows
of H. A variable-nodevn and a check-nodecm are connected
by an edge if and only if the corresponding entry ofH is
non-zero.

The set of indices of check-nodes connected to the
variable-nodevn is denoted withMpnq and the set of indices
of variable-nodes connected to the check-nodecm is denoted
with N pmq. The direct neighborhood of a nodevn is defined
with M̄pnq “

Ť

mPMpnq

Ť

iPN pmqzn vi.
We consider the binary symmetric channel (BSC), where

a binary codewordx is transmitted, and we denote byy “



py1, y2, . . . , yN q the received sequence. The BSC is defined
by the probabilistic model

ppy|xq “
N
ź

n“1

Prpyn|xnq
M
ź

m“1

1p
ÿ

nPN pmq

xnq

where Prpx|yq is a channel likelihood,1 is the indicator
function and

ř

nPN pmq xn are modulo2 sums determined
by the parity check matrix. The probabilityPe ” Prpx ‰ yq
is called cross-over probability.

III. R EWEIGHTED APP DECODER

The goal of the decoding is to compute the a posteriori
probability

Prpxn|y, Cq (1)

whereC “
 
ř

kPN pmq xk “ 0
(

mPM
is the set of constraints

defined by the parity check matrix . According to the channel
model the a posteriori probability can be expressed by the
usage of the Bayesian formula

Prpxn|y, Cq 9 Prpyn|xnq ˆ Pr
´

C|xn,yzn

¯

, (2)

where we denoteyzn “ py1, . . . , yn´1, yn`1, . . . , yN q.
Belief propagation (BP) has been introduced to approxi-

mately compute the a posteriori probability (1) by iterative
computation of the check likelihoods Pr

´

C|xn,yzn

¯

. Us-
ing the computed check likelihoods, BP in each iteration
successively produces estimated a posteriori probabilities
tp̂nun“1...N , for the codeword symbolsxn, which are used
for decision making on bit values.

The computation procedure is exact if the Tanner graph
corresponding to the code is a tree, while it achieves very
good accuracy for sparse codes. Its computational complexity
is low, but it requires a memory storage growing with the
number of edges in the graph, which is often seen as a limita-
tion for practical applications. In this section we consider its
suboptimal variant called the a posteriori probability (APP)
decoder, and propose an uniformly reweighted APP decoder,
which do not have this drawback.

Let a set of the constraints which corresponds to the
neighborhood of the nodevn be denoted withCn “
 
ř

kPN pmq xk “ 0
(

mPMpnq
. Suppose that we have already

given the set of estimated probabilitiestq̂kukPM̄pnq for the
bits in the neighborhood of a nodevn called a priori
probabilities . The APP decoder [1] makes simplification of
a posteriori probabilities (1) and computes the probabilities
Pr

`

xn|y, Cn, tq̂kukPM̄pnq

˘

instead of Prpxn|y, Cq. Accord-
ing to the Bayes formula we have

Prpxn|y, Cq « Pr
`

xn|y, Cn, tq̂kukPM̄pnq

˘

9

p pyn|xnq ˆ Pr
´

Cn |xn,yzn, tq̂kukPM̄pnq

¯

. (3)

In the similar way as in the BP, the check node likelihoods
are computed in an iterative process. First, according to [7],
the check likelihoods can be computed as

Pr
´

Cn |xn,yzn, tq̂kukPM̄pnq

¯

“
ź

mPMpnq

p̂mnpxnq, (4)

where

p̂mnpxnq “

$

’

’

’

&

’

’

’

%

1

2
´

1

2

ź

kPN pmqzn

p1 ´ 2q̂kpxnqq; for xn “ 1

1

2
`

1

2

ź

kPN pmqzn

p1 ´ 2q̂kpxnqq; for xn “ 0

(5)
Once we have computed the a posteriori values

tp̂nun“1...N using the expression (3), they are are assign
to the a priori probabilitiestp̂nun“1...N and new iteration
starts. As an initial prior probabilities the channel likelihoods
Prpyn|xnq are taken. Note that the check node likelihoods
depend onyzn only in the first iteration.

Recall that in APP decoders two types approximations for
the check likelihood computation are done:

‚ Only the local constraints (i.e. in the direct neighbor-
hood) are directly taken into account, and

‚ The check likelihoods are computed using the a priori
probabilities which are obtained through the iterative
process.

In the following paragraphs we propose the parameterized
version of the APP decoder called uniformly reweighted APP
decoder (URAPP). The drawbacks of the APP decoder are
handled using a reweighting parameterα for improving the
correctness of a check node likelihood computation. The
URAPP is derived from the equations (3) and (4), in a way
that the probabilityp̂mnpxnq, given by (5), is replaced with
its α escort distribution [8]:

p̂mnpxnq Ð p̂pαq
mnpxnq “

p̂αmnpxnq
ř

xn

p̂αmnpxnq
; α P r0, 1s. (6)

Accordingly, the URAPP decoder runs as follows.

1) For all nodesvn initialize a priori values tôqnpxnq “
Prpxn | ynq;

2) For all nodesvn compute a posteriori probabilities:

p̂npxnq 9 pnpxnq ˆ
ź

mPM̄pnq

p̂mnpxnqα, (7)

wherep̂mnpxnq is computed according to (5);
3) For all nodesvn set q̂n Ð p̂n and go to 2 until a

convergence criterion has been reached.

In the limit cases,α “ 0 and α “ 1, the escort
distribution reduces to the uniform and to the original one,
respectively. Accordingly, as theα becomes smaller, the
escort distribution becomes closer to the uniform distribution.
Put differently, in the case of smallα the check likelihood
will be smoothed and the equation (7) will be determined
by the channel likelihood. Oppositely, in the case ofα “ 1

the URAPP reduces to APP decoder. The optimal value for
α is between0 and1. If properly optimized, the parameter
α can significantly improve the accuracy of the a posteriori
probability estimation. In Section V we present the experi-
mental results for the URAPP when theα is determined by
a brute force optimization.



IV. M EMORY EFFICIENT IMPLEMENTATION OFURAPP
DECODER

For the implementation purposes, in order to avoid the
computation of the normalization coefficient in the equation
(7) and to reduce the number of multiplications, the APP
decoders are commonly represented in log-ratio domain
message passing version [1]. The message passing version
can be directly derived from the previously defined steps 1-3,
if we set

γ̂n “ log
p̂np1q

p̂np0q
and µmÑn “ log

p̂mnp1q

p̂mnp0q

as follows.
Initialization: Variable-nodes are initialized toa priori

valuespγ1, γ2, . . . , γnq, which are in the case of BI-AWGN
channel equal to the received sequencepy1, y2, . . . , yN q,
prior to the first iteration of the APP decoder:

γ̃p0q
n “ γn “

ppxn “ 0|ynq

P pxn “ 1|ynq
. (8)

Iterative processing:
1) Check-node processing: consists in computing the

check-to-variable messagesµpkq
mÑn, for all check-nodes

m and their neighbor variable-nodesvn;

µpkq
mÑn “

ð

kPN pmqzn

γ̃
pk´1q
k , (9)

where
Ð

iPN pmqzn

stands for the summation over the set

N pmqzn induced by the box-sum operation defined as

x ‘ y “ log
1 ` exey

ex ` ey
(10)

2) A posteriori information update: consists in computing
the a posteriori messageŝγpkq

n , for all variable-nodes
vn,

γ̃pkq
n “ γn ` α

ÿ

mPMpnq

µpkq
mÑn. (11)

3) Hard decision: Estimated (binary) values of sent bits,
x̂ “ px̂1, x̂2, . . . , x̂N q, according to the rule:̃γpkq

n ą 0

thenxpkq
n “ 0, otherwisexpkq

n “ 1. The decoder stops
when eitherx̂ is a codeword or a maximum number
of decoding iterations is reached.

Check to variable messages requires the computation of
all partial sums

Ð

kPN pmqzn γ̃
pk´1q
k , which can efficiently be

computed using the inverse operation for‘ called minus-box
operator:

x a y “ log
1 ´ exey

ex ´ ey
(12)

It is easy to check thatx‘yay “ x. Using thea operator,
the sum

Ψk
m “

ð

kPN pmqzn

γ̃
pk´1q
k (13)

can be computed once per iteration and node, and all the
messages can be computed for alln P N pmq as

µpkq
mÑn “ Ψpkq

m ´ γ̂pkq
n . (14)

Algorithm 1: SEMI-PARALLEL URAPPDECODER

Input: y “ py1, . . . , yN q P YN Ź received word
Output: x̂ “ px̂1, . . . , x̂N q P t0, 1uN Ź estimated

codeword

Initialization:

for each tvnun“1,...,N do γn “ log
Prpxn “ 0|ynq

Prpxn “ 1|ynq
;

for each tvnun“1,...,N do γ̂0

n “ γn;

Iteration loop: k ą 0

Total check-sum computation
for each tcmum“1,...,M do Ψk´1

m “
Ð

nPN pmq

γ̂k´1

n

partial a posteriori update
for each tcmum“1,...,M do

for each vn P Hpcmq do

µ “ Ψk´1

m a γ̂k´1

n

γ̂k
n “ γ̂k

n ` αµ

a posteriori update
for each tvnun“1,...,N do γ̂k´1

n “ γ̂k
n

hard decision
for each tvnun“1,...,N do x̂n “ p1 ´ signpγ̃nqq{2

if x̂ is codewordthen exit the iteration loop

End iteration loop

In a common, parallel message passing implementation of
the APP decoder, all the variable nodes take the message
at same time, the a posteriori values are computed, which
completes one iteration. Although this version provides high
throughput, it suffers from the high memory requirements,
proportional to the number of edges in the Tanner graph,
since an iteration requires the storing of all check to variable
messages for one iteration.

In the Algorithm 1 we present semi-parallel, memory
efficient implementation of the URAPP decoder, based on
the ideas proposed in [9] for the BP algorithm. Instead of
the messages, we store only the valuesΨk´1

m “
Ð

nPN pmq

γ̂k´1

n

which are used for the computation of the posterior values
γ̂k
n, and at one iteration, all variable nodes can be partially

updated during the computations in all variable nodes. Both
implementations provide exactly the same output after each
iteration and have the same computational requirements.
Although the former one has the smaller throughput, since
two check nodes might try to access the same variable node
to update its a posteriori value, it needs the storing only the
values in variable nodes. As a result it have the complexity
proportional to the number of nodes, which is a significant
saving.
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Fig. 1: BER as a function of the reweighting factor for
different values of crossover probability for Tannerp3, 5q
code, with the maximal numer of iteration set to5.
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Fig. 2: BER as a function of the reweighting factor for
different values of crossover probability for Tannerp3, 5q
code, with the maximal numer of iteration set to10.
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Fig. 3: BER as a function of the reweighting factor for
different values of crossover probability for Tannerp3, 5q
code, with the maximal numer of iteration set to20.
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Fig. 4: BER as a function of crossover probability.
APP decoders are marked with empty markers, URAPP
decoders are marked with the black markers.

V. REWEIGHTING FACTOR OPTIMIZATION AND

SIMULATION RESULTS

In this section we present simulation results for the
URAPP. We consider Tannerp3, 5q code [6]. Decoders
with small number of iterations and suitable for high-

throughput systems [5]. Optimal reweighted parameter is
obtained through simulations. The results of the optimization
procedure, for the maximal number of iterations are set
to 5, 10 and 20, are shown in Figures 1, 2 and 3. They
show that the optimum value of reweighted factor does



not depend on the cross-over probability, but only on the
maximal number of iterations. As discussed in Section III,
the reweighted factor slows down the convergence. This
agrees with the simulation results, which show that the
value of the factor is inversely proportional to the maximum
number of iterations. Fig. 4 shows the bit error rate (BER)
performances of standard and uniformly reweighted APP
decoders, with reweighting parameters obtained from the
optimization procedure, for the maximal number of iterations
K “ 5, K “ 10 andK “ 20. For K “ 5, optimal value of
the reweighting factorα is 0.7 and there is not a significant
BER improvement over the unweighted APP decoder. As the
K becomes larger the effect onα is larger, specially in the
error floor region, since the reweighting factor emphasizes
puts a higher importance on the channel likelihoods.

VI. CONCLUSION

In this paper we proposed memory efficient uniformly
reweighted APP decoder (URAPP) for decoding of LDPC
codes, with the memory complexity proportional to the
number of nodes in the Tanner graph of the code. The
algorithm can be seen as an suboptimal variant of the
tree reweighted belief propagation [2], [3] and operates as
a parameterized Bayesian inference algorithm, improving
the performances of previously propose APP decoder [1].
Subotpimallity of the APP decoder comes from the fact
that in each iteration and for each variable node only the
neighboring check constraints are taken into account. We
introduced the reweighting parameter which deals with this
source of suboptimallity and empirically showed the sig-
nificant performance improvements even in the case when
the a constant value is used for the correction parameter.
Taking into account the graph structure and dynamics of the
URAPP decoder for the parameter estimation seem like a
promising direction, which is the part of our future work
on the parameter adaptive version of the reweighted APP
decoder. The simulation results on binary simetric channel
for Tannerp3, 5q code [6] show that the reweighting factor
does not depend on the cross-over probability, but only on the
maximal number of iterations taken in to decoder. Currently,
we are exploring its dependence on LDPC code parameters.
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