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Abstract—The low reliability of advanced CMOS devices has
become a critical issue that has to be considered in the digital
IC design flow. This paper introduces a design time method-
ology to address and improve the reliability of combinational
circuits. The key idea is to employ local transformation rules,
a methodology that were extensively used for area, delay, and
power optimizations and demonstrate that they can reduce the
error probability as well. We propose a set of local transformation
rules that enhance the reliability without altering the circuit
functionality. This functional rewriting capability, along with a
circuit reliability assessment methodology developed in house,
enables the integration of the reliability aware analysis and logic
optimization algorithm that iteratively transforms the design in
order to achieve higher circuit reliability. Experimental results
based on simulations performed on MCNC benchmark circuits
indicate that method can provide a reliability improvement of
up to 7.5%.

Index Terms—And-Invert Graphs (AIG), ABC Tool, Lo-
cal Transformation Rules, Optimization, Reliability, Synthesis,
Rewriting

I. INTRODUCTION

Traditional logic synthesis methodologies and tools are

centered on fulfilling timing, power, and area constraints or on

achieving acceptable tradeoffs among those [1], [2]. However,

as the CMOS technology entered the nanometer era by means

of shrinking those metrics cannot cover any longer all the

relevant aspects. Nanotechnology specific issues, e.g., vDD

reduction, higher impact of process parameter and temperature

variations, result of increased device failure rates, making

CMOS ICs less reliable [3] , [4]. As a result, reliability

is turning out to be a major design metric sharing equal

importance with the traditional ones. This paper investigates

gate level methodologies to improve circuit reliability by

employing logic synthesis techniques. Reliability driven logic

synthesis is one area that is gaining lot of importance in

the last few years. In [5], Soft Error Reliability (SER) is

improved through localized circuit restructuring taking advan-

tage of don’t care based re-synthesis and local rewriting. In

[6] , a technique to improve the circuit robustness to soft

errors based on redundancy addition and removal (RAR) by

eliminating gates with large contribution to the overall SER

is proposed. Efficient algorithms for synthesizing approximate

circuits for concurrent error masking of logical and timing

errors was employed in [7]. ATPG-based rewiring method

to generate functionally-equivalent yet structurally-different

implementations to reduce the SER were developed in [8].

All these approaches employ redundant node addition tech-

niques to improve circuit reliability. Our approach slightly

differs as we use subset of NPN-equivalent (Negation-

Permutation-Negation equivalent) logic configurations to im-

prove circuit reliability. The biggest advantage is that we do

not add any extra overhead by increasing node count. Though

reliability driven logic optimization is in its infancy when

compared to power and delay driven optimization, the method

presented here is still based on the popular and successful

concept of local transformations [9]. We introduce set of local

transformation rules for logic optimization from a reliability

perspective. We then introduce an algorithm to compute the

impact of gate errors on the circuit output(s). Due to space

limitations, only the final formulas are provided with no details

of the mathematical analysis. We then develop reliability aware

logic synthesis tool which applies the transformation rules in

a guided fashion on complex combinational circuits. We have

evaluated our tool on a set of MCNC benchmark circuits and

results show a reliability improvement upto 7.5%.

This paper is organized as follows. Section 2 briefs about

the reliability evaluation mechanism. Section 3 describes the

the local transformation rules and its analysis. Section 4

presents the reliability aware logic synthesis flow. Section 5

discusses a case study and the simulations results based on

MCNC benchmark circuits. Section 6 concludes the paper and

provides directions for future work.

II. RELIABILITY EVALUATOR

To built circuits optimized for reliability, we need a relia-

bility evaluation engine to confirm that the resultant circuit is

better than the original one. In this section, we first describe

AND Inverter Graph (AIG) and then describe the reliability

evaluation methodology.

A. AND Inverter Graph (AIG)

One of the major decisions in designing an EDA tool is the

selection of the right data structure as it determines the speed

and efficiency of the tool. Two of the most commonly used

data structures in EDA for digital circuit synthesis are And

Inverter Graph (AIG) and Binary Decision Diagrams (BDDs)

[2]. AIG is a Boolean network composed of two-input-ANDs

and inverters. Fig. 1 depicts a simple combinational circuit

and its corresponding AIG representation. The circle represent

the 2-Input AND gates and edges with a dash line indicate



negation i.e. inversion of that input. AIGs are preferred over

BDDs to represent the circuits for various advantages it has got

to offer [10], [11]. AIG unifies equivalence checking, syn-

thesis and technology mapping and offer better performance

and correlation with final area and delay once the circuit has

been mapped to a target technology [11].
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Fig. 1. Reference Circuit and its AIG representation.

B. Reliability Evaluator

Reliability analysis of logic circuits deals with the computa-

tion of the impact that the gate errors implicate on the Primary

Outputs (PO’s) of the circuit. As we represent circuits in the

AIG format, a novel algorithm based on probability principles

is developed, with the prime focus being AND and INVERT

gates. Due to space constraints, only the resultant equations

are presented here without complete mathematical analysis.

For complete details, refer to [12].
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Fig. 2. Unreliable AND Gate Model

An unreliable AND gate can be modeled as an ideal (error

free) AND gate followed by a faulty buffer that represents

the stochastic behavior of the errors. The two nodes Z* and

Z are named as internal and the external output node. The

output node can be in error due to two possible reasons:

(i) propagation of the errors onto the gate input nodes and

(ii) intrinsic errors within the gate. If no reconvergence fan

out is present, the error on the internal output node can be

represented as in ( 1).

Pǫ(Z
∗) =Pǫ(A)Pǫ(B)PA(0)PB(0)+

Pǫ(A)(1− Pǫ(B))PA(0)PB(1)+

(1− Pǫ(A))Pǫ(B)PA(1)PB(0)+

[Pǫ(A) + Pǫ(B)− Pǫ(A)Pǫ(B)]PA(1)PB(1)

(1)

The error and the static probabilites on the external output

node can be represented as in ( 2).

Pz(1) = P ∗
z (1)(1− PF ) + P ∗

Z(0)PF

Pz(0) = P ∗
z (0)(1− PF ) + P ∗

Z(1)PF

Pǫ(Z) = PF + Pǫ(Z
∗)− 2 ∗ PF ∗ Pǫ(Z

∗)

(2)

Alg. 1 presents the methodology employed within the tool

to compute the circuit reliability. Using ( 1 and 2), the error

due to the AND gate is computed both on the internal and

external output nodes. This flow has been integrated into the

open source tool ’abc’ [13] and automates the error probability

computation.

Algorithm 1 Generic Method for Reliability Evaluation

INPUT:N, total number of nodes in the AIG network, Error

Probability of Individual Gates and Switching activity PSA on

the primary input nodes (PI’s)

OUTPUT:Output error probability

for all nodes I= 1 to N do

if Input Nodes are inverted then

Account for the inverter error

end if

Compute Internal node error probability using ( 1)

Compute Output node error probability using ( 2)

end for

III. RELIABILITY AWARE REWRITING

Rewriting is a common approach to perform logic opti-

mization based on local transformations. We introduce set of

AIG based local transformation rules that can be applied on

any combinational circuit. We then study the impact of the

gate error probability on equivalent logic configurations to

determine the best realization.

A. Local Transformation Rules

We now present a set of AIG based local transformation

rules in our quest for reliability optimized implementation of

combinational logic. The method presented in this paper is

based on the successful technique of local transformations

[14]. The five rules presented here are based on exhaustive

matlab simulations performed to quantify the improvement

in reliability. Though these rules are generic, an intelligent

heuristic algorithm is employed with the constraint of improv-

ing the circuit reliability and not area/delay, the novelty lies

in its application. These rules are not part of existing ’abc’

tool and instead supplement the existing set of rules already

available.

–Rule1: The first transformation as shown in Fig. 3 is mod-

elled based on the law of distributivity. Consider reconvergent

fanout node n3 with two fan-in nodes n1 and n2. If both n1

and n2 have no other fanouts except n3 then I1 and I3 can be

swapped with necessary negations. The new node shall have

higher reliability as well as node count decreases by one.

–Rule2: This transformation as shown in Fig. 4 is based

on the law of associativity. The underlying assumption is

that reducing the length of the longest path will improve the

reliability of the circuit.

–Rule3: This rule as shown in Fig. 5 is also based on the

law of associativity. It suggests equally distributed inverters on

the both the legs of the graph will improve reliability of the

circuit. This rule specifically targets the configuration for a 2
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Fig. 3. Logic Transformation Rule1.
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Fig. 4. Logic Transformation Rule2.

input XOR gate. Its application can be seen predominantly in

circuits like priority encoders, CORDIC processors, etc.
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Fig. 5. Logic Transformation Rule3.

–Rule4: This rule as shown in Fig. 6 is derived based on

principles of associativity and insertion and defines the best

representation for 3 bit majority voter. In principle it first

applies Rule1 to reduce node count and then applies Rule3 to

distribute the inverters equally on both the legs of the output.
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Fig. 6. Logic Transformation Rule4.

O1 = (I1I2) (I2I3) (I3I1)

= I1I2 + I2I3 + I3I1

= I3I1 + I1I2 + I2I3 + I2I3

= I3I1 + I2I3I3 + I1I2 + I2I2I3

= I3(I1 + I2I3) + I2(I1 + I2I3)

= (I3 + I2)(I1 + I2I3)

= (I3 I2)(I1(I2I3))

(3)

–Rule5: The fifth transformation rule as shown in Fig. 7

is based on the commutative law. The rule indicate that the

signals with the lowest static probability of ’1’ in an AIG

tree should be closer to the output, or closer to the root

node of a sub graph. Intuitively, this rule is maximizing the

masking effect of the AND gate to minimize the effect of any

error coming from the other side of the graph. The reliability

improvement is strongly dependent on the static probability of

the input pins.
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Fig. 7. Logic Transformation Rule5.

B. Exhuastive Analysis of Rules

Each of the rewriting rules presented earlier is a transforma-

tion between two logical equivalent circuits. A mathematical

equation that describes the primary output reliability as a func-

tion of the input error probabilities input static probabilities

and the gate error probability can be associated with each of

this logical equivalent circuit by recursively applying ( 1) and

( 2) for each node of the circuits. The problem then become

chosing between:

ROrg = f1{PEI , SPI , GE}

RMod = f2{PEI , SPI , GE}
(4)

where,

• ROrg - Reliability of the original circuit

• RMod - Reliability of the modified circuit

• PEI - Error Probability of the Primary Inputs

• SPI - Static Probability of the Primary Inputs

• GE - Individual gate error

Consider a three input graph. ( 4) have seven variables: three

input error probabilities, three input static probabilities and

the gate error probability. As an example of the complexity,

apply ( 4) to Rule4. We obtain an equation of the output

error probability that is a polynomial in seven variable of

degree 20. It is hence clear that direct mathematical analysis

is not feasible to formally compare the reliability performance
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Fig. 8. Simulation results for Rule1-4.

of the circuit configurations from these equations. As an

approximate solution, a framework has been developed in

matlab to investigate the behaviour of the equivalent circuits.

We apply the most commonly used signal patterns Gaussian,

Inverse Gaussian, monotonically increasing and monotonically

decreasing distributions across the input nodes for error prob-

ability and static probability and then evaluate ( 4) varying the

gate error probability. Exhaustive analysis of these rules have

been performed for different input static probability values

and gate errors. Due to space limitation, only the results of

one case Gaussian distribution of input error probabilities and

constant values for static probability are presented here. But

the discussion and conclusions are drawn from the exhaustive

simulations done for many different patterns.

The simulation results are plotted in Fig. 8-9. Simulation

results for different input patterns confirm that rules [1-

4] improve the reliability of the circuit and hence suggest

that they are applicable in any general scenario. In contrast,

rule5 is applicable only under certain circumstances based

on the input static probability values. From the Rule1 plots,

we see that considerable reliability improvement is achieved.

While performing various set of simulations, we observed that

intelligent insertion of extra nodes can result in reliability

improvement. The question of how to insert such extra nodes

in a systematic fashion is the subject of future investigation.
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Fig. 9. Rule5 Simulation results

IV. RELIABILITY AWARE OPTIMIZATION

To validate the proposed approach and rules, a local

optimization search algorithm is presented to quantify the

reliability improvement. The aim is to find a sequence of

transformations leading to an AIG network that minimise the

cost function. We rely on a heuristic approach to find an

acceptable solution, i.e., an AIG providing reliability higher

than the original circuit. The strategy chosen is to apply

local optimization based on the transformation ruleset. Given

a combinational circuit implementing the Boolean function

f and its AIG network, we traverse through the graph to

see if any of the rules are applicable on the given node.

For every possible transformation, the new reliability of the

circuit is computed. The configuration that yields the highest

improvement in circuit reliability is chosen and the new

topology is generated. This process is continued on every node

on the graph until we reach the primary outputs where no more

transformations are applicable.

Fig. 10 describes the complete flow of the tool. The output

error probability of two netlists is computed; (i)the default cir-

cuit (the original MCNC netlist) without any optimization and

(ii)the circuit optimized by the best ’abc’ synthesis algorithm.

Since the synthesis algorithm on the abc tool focuses on area

and delay optimization it may deteriorate the reliability of the

circuit. After selecting the better circuit configuration between

the two, the internal tool developed is employed to further

improve the circuit reliability. The synthesis tool traverses

through every single node in the circuit performing Boolean

matching to see if there are any matching rewriting rules that

can be applied. If there is more than one applicable rule,

the one which provides the highest reliability improvement

is selected. This process continues until no more rules can be

applied on this node that can improve the circuit reliability.

We perform similar set of operations on all the nodes in the

circuit. This methodology will continue to benefit with further

expansion of the local transformation ruleset.

V. EXPERIMENTAL RESULTS

As a case study, the proposed reliability aware synthesis

algorithm is applied on the AIG depicted in Fig. 1. As the

circuit is simple, only two local transformations are applicable.

Rule2 is applicable on node n1. The new error probability of

the circuit after applying this rule is presented in Fig. 12.

It is clear that applying Rule2 on node n1 results in higher

reliability. No other rule is applicable on node n1. This is

the new reference topology of the circuit. Also, Rule2 can be

applied on node n2 of Fig. 11(a). After this transformation, the

reliability of the circuit reduces and hence this transformation

is not applicable. Further, Rule2 can also be applied on node

n3 of Fig. 11(c). Simulation results presented in Fig. 12 show

that such transformation also results in improvement in the
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Fig. 10. Reliability Aware Logic Synthesis Flow

reliability of the circuit. No further rules can be applied on any

of the nodes and this remain as the most optimized version

of the reference circuit. Fig. 12 shows the improvement in the

reliability numbers.
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To prove that the whole methodology is scalable, we applied

the tool on a set of MCNC benchmark circuits. Simulation

results comparing the circuit reliability of default and the

optimized configuration obtained from our tool are reported in

Tab. I. In the table, columns 1 and 2 give the name and number

of gates in the benchmark circuit. The reliability of both the

original configuration and the optimized one are computed

and tabulated in third column. The fourth column reports

the percentage improvement achieved through our synthesis

algorithm. Column 5 lists the total number of output nodes

and those reliability improvements is greater than 0.5%. The

reliability improvement is computed using ( 5).

RMetric =
n∑

i=1

ROrg −RMod

ROrg

(5)

where ’n’ is the number of nodes. The maximum improvement

in reliability is 7.5% for the benchmark circuit, x2. Complex

circuits with higher output node count include many paths

with gate count less than 10 and generally there are no local

transformation rules that are found suitable for application.

Hence, vda and pair circuits with higher gate count report

lower improvement in reliability.

VI. CONCLUSIONS AND FUTURE WORK

This paper describes a technique to study the impact of gate

failure on complex combinational circuits. We proposed a set

of AIG based local transformation rules that improves circuit

reliability. A synthesis algorithm was also presented that opti-

mizes the circuit reliability. The main focus of the paper was to

improve circuit reliability by employing traditional rewriting

techniques. Applying the synthesis algorithm on the MCNC

benchmark circuits with node count from 30 to 1500 resulted

in improving overall circuit reliability by up to 7.5%. Due to
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Fig. 11. Application of logic transformation ruleset on the AIG Representation shown in Fig. 1

Benchmark GateCount
Output Error Probability

Reliability Improvement RMetric%
Output Node Details

Original Optimized Total RMetric ≥ 0.5%

b9 99 0.16023 0.15036 6.15808 20 7

cm162a 33 0.22993 0.21427 6.81026 5 4

cm85a 35 0.20816 0.19640 5.65277 3 2

cu 45 0.13332 0.12700 4.73912 5 5

dalu 1371 0.32429 0.31516 2.81394 16 15

frg1 125 0.17372 0.17089 1.62925 3 1

pair 1500 0.20542 0.20429 0.54835 131 28

unreg 112 0.09779 0.09365 4.23406 16 16

vda 924 0.15885 0.15724 1.01155 39 18

x2 60 0.16726 0.15468 7.51923 7 6
TABLE I

MCNC BENCHMARK CIRCUITS PERFORMANCE EVALUATION FOR DIFFERENT GATE ERROR (ǫ = 0.05.)

small number of local transformation rules, the improvement

is sometimes marginal.

Going forward, we plan to extend the local transformation

rule set to encompass more possible scenarios. From a re-

liability perspective, we believe that the AIG data structure

is more appropriate to represent combinational circuits. In

particular the fact that AIG are non canonical (i.e. there exist

more graphs representing the same logic function) can be

exploited to further improve reliability. We intend to extend the

reliability evaluator to any generic circuit that would enable to

report all the generic data like area, delay and power as well.

We intend to test our tool on the more recent and complex

IWLS 2005 benchmarks.
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