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Abstract—With the advent of deep submicron CMOS 

technology, process parameter statistical variations are 
increasing resulting in unpredictable device behaviour. The issue 

is even aggravated by low power requirements which are 
stretching transistor operation into near/sub threshold regime. 

Consequently, traditional delay models fail to accurately capture 

the circuit behaviour. In view of this we introduce an Inverse 
Gaussian Distribution (IGD) based delay model, which 

accurately captures the delay distribution under process 
variations at ultra low, near or below threshold, power supply 
values. We demonstrate that the IGD model captures the 

transistor delay distribution with a greater accuracy than the 
traditional Gaussian one. Moreover it exhibits linear 

compositionality such that the key model parameters can be 
straightforward propagated form device/gate level to circuit level. 
Our simulations indicate that, when compared with Monte Carlo 

SPICE simulation results, it provides high accuracy, e.g., an 
average error less than 0.8%, 1.2%, and 1.7% for Majority Voter, 

XOR gate, and 16-bit Ripple Carry Adder, respectively, while 
providing orders of magnitude simulation time reductions.    

Keywords—Timing Analysis; Near/Sub Threshold Operation; 
CMOS Process Variations; Delay Model, Statistical Modelling; 

I.      INTRODUCTION  

      Accurate timing analysis is a crucial step in the evaluation 

of digital Integrated Circuits (ICs) behavior and in reducing 

post fabrication functional errors. However, process variations 

and voltage scaling associated with deep submicron CMOS 

fabrication technology are increasing the complexity of such 
analysis. As transistor sizes reach tens of nanometers, local 

variations [1], i.e., intra-die variations, have a higher impact 

on their behavior, resulting in unpredictable delay properties 

[2]. Moreover, to reduce energy consumption, circuits are 

powered by a supply voltage near or below the MOSFET 

threshold voltage, which results in the further intensification 

of the process variation impact on the circuit delay [3]. 

Consequently, accurate circuit delay estimation is becoming   

more and more complex [4] as parameters like threshold 

voltage Vth, channel length ‘L’, and oxide thickness Tox, make 

the timing analysis more difficult [5]. 
      For synchronous designs, corner analysis is a popular 

approach of dealing with delay variation. In corner analysis 

multiple Process, Voltage, and Temperature (PVT) corners are 

simulated through Static Timing Analysis, however this 

approach is mostly overly pessimistic or optimistic [6]. 

Additionally, due to the PVT variations high sensitivity of 

deep sub-micron devices, more accurate delay-calculation 

methods are needed. SPICE simulators can provide high 

accuracy but are exceedingly time consuming for large circuits. 

Therefore, a simple yet accurate mathematical model to 

evaluate the propagation delay through nanometer CMOS 
circuits is highly desirable. 

      Statistical Static Timing Analysis (SSTA) has been 

recently proposed to quickly compute propagation delays and 

signal timing violation on circuit critical paths [7]. However, 

SSTA lacks accuracy as it disregards the circuit delay 

dependency on input values, and requires irksome efforts to 

automate the methodology. To address these obstacles, Monte 

Carlo Static Timing Analysis (MCSTA) [7] and Dynamic 

Timing Analysis (DTA) [8] have been proposed. MCSTA 

requires the one-off generation of Variation Cell Library for 

standard cells; the library is utilized to perform static timing 
analysis to create thousands of randomized gate-level net-lists. 

MCSTA can be regarded as a trade-off between the time-

consuming Monte Carlo SPICE simulation and relatively 

inaccurate SSTA. A statistical DTA approach that employs the 

normal Gaussian approximation to model the propagation 

delay on the basis of distinguishable input patterns was 

presented in [9]. While accurate, the approach can be costly in 

terms of processing time, as its accuracy directly depends on 

the number of considered input vectors.   

       This paper proposes a novel delay approximation model, 

based on the Inverse Gaussian Distribution (IDG). Moreover, 

a method to obtain the key IDG parameters (u, λ) for generic 
circuits is presented. Our approach is significantly faster and 

more accurate than the one proposed in [9] and its link with 

the underlying physical phenomena is better understood. The 

main idea behind our proposal is to first gather the basic gate 

key parameters by means of Monte Carlo simulations and then 

linearly extrapolate (propagate) them through the logic 

network at the circuit level. This approach is significantly 

faster than the state-of-the-art since only the basic cells have 

to be fully simulated (with process and voltage supply 

variations) in order to obtain the key model parameters and the 

delay model for complex circuits. Unlike other techniques or 
tools, which demand large look-up tables or complicated 

calculations, the proposed approach is remarkably 

straightforward.  



      To verify the practicability of our statistical approach, 

comparisons between the delay estimation based on our model 

and Monte Carlo simulations for several circuits are carried 

out. Our simulations justify that the linear compositionality of 

the key parameters is sufficient to obtain output delay 

estimations for complex circuits. Moreover, our method is 
highly accurate, e.g., average error is less than 0.8%, 1.2%, 

and 1.7% for Majority Voter, XOR gate, and 16-bit Ripple 

Carry Adder, respectively, while providing orders of 

magnitude simulation time reductions. 

      This paper is organized as follows. In Section II, the 

proposed delay model is introduced and compared with related 

work. Next, the scalability of our model is discussed and 

demonstrated in Section III. In Section IV sample circuits, i.e., 

3-input Majority voter, 3-input XOR gate, and a 16-bit Ripple 

Carry Adder (RCA), are analyzed. Finally, conclusions and 

future work are discussed in Section V. 

II.      INVERSE GAUSSIAN DELAY MODEL 

      This section introduces the proposed delay model and 
explains why Inverse Gaussian Distribution (IGD) is better 
suited than Gaussian Distribution (GD) in capturing nanometer 
CMOS gate time behavior. We also illustrate how reduced 
power supply values along with other variations may re-shape 
the propagation delay distribution.  

      We note that GD was introduced for CMOS circuits delay 
estimation in [9], where a close match was found between the 
measured propagation delay profile and the Gaussian 
Probability Density Function (PDF). Based on their model, the 
authors also presented a propagation delay estimation 
algorithm. However, the choice of approximating the delay 
PDF with a normal distribution was based on the fitting of only 
two Monte Carlo simulations. Being just a fitting procedure, no 
theoretical explanation was provided to support the conclusions. 

A. Inverse Gaussian Approximation 

Several GD characteristics hint to its inadequacy to capture 
delay data distribution. First, by definition, GD is represented 
by a function with the field of real numbers as its support, 
which means that it assumes non-zero value also for negative 
time values. This is a clear mismatch with the real situation 
since no signal propagation delay can be negative. Furthermore, 
the normal distribution is symmetric around its mean value. 
Simulations presented in this subsection demonstrate that this 
is not a correct assumption for the cases of interest.  

      A probability distribution that can overcome both shortfalls 
is the Inverse Gaussian Distribution, IGD (u, λ). The PDF for 
an IGD is expressed in Eq. (1), where µ is the mean and λ the 
shape parameter. The distribution support is [0, ∞] and it can 
be symmetric or asymmetric around µ. 

   

      Moreover, there is an intuitive reason why IGD fits with 
CMOS delay propagation data under various PVT variations.  

 

Fig. 1. IGD vs GD approximation for 2-input AND gate @0.9V Vdd.  

 

Fig. 2. IGD vs GD approximation for 2-input AND gate @0.3V Vdd.  

The carrier particles in an electronic circuit in steady state can 
be assumed to perform random movements modeled by 
Brownian motion, the also called Wiener process [10]. For 
particles under Brownian motion GD captures the motion 
distribution of all particles at a given moment in time, while 
IGD reflects the particle motion when a drift is applied. 

   In particular IGD provides the number of particles, in random 
motion with a positive drift, that reach a fixed level in a certain 
time.  In electronic devices, the drift can be seen as a voltage 
difference between device terminals producing an electric field, 
thus inducing carrier movements. We note that the IDG shape 
can change significantly depending on its two parameters. It is 
also possible to obtain normal distribution shapes.  

      In [9] a 2-input AND gate was evaluated by means of 
SPICE simulation while the threshold voltage variation, as the 
most dominant element of all process variations, was GD based 
modeled. 32nm Predictive Transistor Models (PTM) under the 
nominal supply voltage of 0.9V was considered for the Monte 
Carlo simulations. To validate the advantage of our IGD model, 
the experiment in [9], a 2-input AND gate with inputs 
switching from 00 to 11, has been reproduced. The threshold 
voltage (Vth) variation is generated following the GD, where 
the mean value is the nominal Vth, Vthn=0.322V for nFETs and 
Vthp=-0.302V for pFETs, and the standard deviation is set to 
50mV, which is sufficient to reflect the threshold voltage 
variation in real circuits. In this case, both GD and IGD are 
used to fit the propagation delay data profile. The results 
depicted in Fig. 1 indicate that they both have similar shape 
and fit the data well. 

      This similarity in fitting capability does not hold true 
however for gates operated in the near threshold regime. To 
demonstrate this we have repeated the same experiment for the 
same Vth distribution and a Vdd of 0.3V. Fig. 2 presents the 
delay histogram and the GD and IGD fittings. It can be 
observed that the IGD almost perfectly fits the delay histogram 
and that its shape is not symmetric, with a steep slope towards 
the left side and a long tail towards infinity.  On the other hand,  



 

Fig. 3. IGD vs GD approximation for AND gates with Gaussian distribution 

on Vdd and Vth @0.9V Vdd. 

 

Fig. 4. IGD approximation for five cascaded inverters with uniform 

distribution on Vdd and Vth @0.9V Vdd. 

the GD fitting is not acceptable, as the delay shape is not 
balanced, even despite of the fact that the Vth variation follows 
the normal distribution. From the above one can infer that IGD 
PDF based fitting is more appropriate and allows for greater 
flexibility in capturing different types of variations distribution 
and accuracy due to its asymmetric shape. 

To further demonstrate the IGD fitting accuracy, a chain of 
5 AND gates (except for the first AND gate, each gate are fed 
by the output of the previous gate), with primary inputs 
switching from 11 to 00 has been simulated for the above 
mentioned Vth variations and a Vdd variation with a standard 
deviation of 50mV at 0.9V Vdd, which reflects real circuits 
power supply voltage fluctuations. In Fig. 3, the PDFs and their 
corresponding fittings of the 3

rd
 and 5

th
 AND gates are depicted 

(the other stages are omitted for clarity). Also in these cases it 
is evident that IGD better fits the experimental data than 
normal GD. To further prove our approach capability to 
accommodate other distribution types, we simulate a 5-inverter 
chain operating at 0.3V Vdd and assume that Vth variations 
follow a uniform distribution, which has constant probability 
across a fixed range of 50mV around the nominal (center) Vth 

value. Five delay sets are depicted in Fig. 4 capturing the 
switching occurrence at each inverter output.  

Based on our simulations we can conclude that IGD 
accurately capture gates and circuits propagation delays under 
various types of Vth and Vdd values and distribution types. 
Given this, in the next section, we introduce a method to 
compute/propagate the key IGD parameters for generic circuits.  

III.      MODEL SCALABILITY 

The proposed delay model is straightforward in terms of 
calculation and has the potential to be easily scaled. More 
specifically, key parameters (µ, λ) of an entire circuit have a 
linear relationship with the parameters of the basic cells 
involved.  We first consider how the proposed model can 
represent a chain of identical components. Scalability is one of 

the IDG properties [11] and implies that for any t >0, the 
following holds true: 

                   ~  ,  ~  ( ,  )X IGD µ tX IGD tµ t            (2) 

Eq. (2) states that the IGD fitting the output of a chain of 
identical gates have parameters that are multiples of µ and λ of 
the single gate IDG. Similarly, the delay PDF at the output of a 
circuit composed of identical sub-circuits can be represented as 
a scaled version of the delay PDFs of each of the components 
of the sub-circuit.  

      The aim of this section is to investigate how real 
measurements fit with PDF whose parameters have been 
computed by scaling. To this end we investigate a number of 
example circuits composed by identical components. It is 
worth mentioning that CMOS gates may have different values 
of µ and λ corresponding to different output switching cases 
(i.e., 10, 01). 

A. 7 Inverter Chain 

A 7-inverter chain is simulated in HSPICE utilizing the 
Monte Carlo method, in the presence of both Vdd and process 
variations modeled by normal distributions as follows: (i) Vdd - 
mean value 0.3V and deviation 50mV; (ii) Vth - mean value 
0.322V for nFETs and -0.302V for pFETs, and standard 
deviation 50mV; (iii) 10% TOX deviation for both nMOS and 
pMOS transistors. 

In a 7-inverter chain 4 of them are switching from 01 
(charging) and 3 from 10 (discharging). Given that the 
charging and discharging events IDG key parameters are 
slightly different, to avail of the scalability property, we 
compute the average between the various events. 

Fig. 5 depicts the per-stage IGD fitted PDFs (the delay 
histograms are omitted to improve readability) while Table I 
summarizes the corresponding µ and λ. It should be noted that 
the IGD approximations match well the Monte Carlo 
simulation results. In Fig. 6, the µ and λ growth trend over the 
7 adjacent elements is presented. The data listed in Table I are 
based on the primary input changes from 1 to 0, which means 
the first inverter (INV1) output is charging and the second one 
(INV2) is discharging and so on.  

From Fig. 6, it is clear that the µ increment is linear (blue 
solid line), which clearly reflects the IGD delay model 
scalability, while λ presents a stair-wise shape evolution (green 
dashed line) that can be related to the different nMOS and 
pMOS  

 

Fig. 5. IGD approximation for seven cascaded inverters. 



 

Fig. 6. 7-Inverter chain µ and λ trend. 

characteristic, discharging and charging, respectively. 

However, when considering charging and discharging 
events separately, the model scalability is still preserved. In 
fact, of the charging event Δµ is only slightly higher than that 
of the discharging event, while the Δλ difference is more 
significant (Δλ is around 0.2E-9 for discharging event and 
0.1E-10 - about one order of magnitude smaller - for charging 
event). The delay parameters dependence on event nature, i.e., 
charging or discharging, reflects the importance of data-
dependent analysis. 

B. 5 AND Gate Chain 

      A Monte Carlo simulation with the parameter variation 

distributions in Section III-A has been performed on 5 

cascaded AND gates connected as described in Section II. 

While the inverter could experience two input switching 

events only, i.e., 01 and 10, the AND gate has six possible 

input sequences, which should result in output changes, i.e., 

0011, 1011, 0111, 1101, 1110, 1100. Through extensive 

simulation we found that 1110 and 1101 (leading to 10 

output switching) and 0111 and 1011 (leading to 01 output 

switching) are equivalent. Moreover, the probability that both 

inputs change at the exact same time (0011, 1100) is quite 

low as it is statically unlikely that unrelated path delays are 

sufficiently close to infer such events, even though the results 

are similar. Under these assumptions, only 1011 and 1101 

are considered and utilized in our estimations.       

TABLE I.  7-INTERTER CHAIN µ AND Λ 

 Input Switch µ (e
-10

) Δμ(e
-10

) λ (e
-10

) Δλ(e
-10

) 

INV1 1-0(charging) 0.65 - 0.37 - 

INV2 0-1(discharging) 1.3 0.65 2.6 2.23 

INV3 1-0(charging) 2.3 1 2.4 -0.2 

INV4 0-1(discharging) 3.0 0.7 4.5 2.1 

INV5 1-0(charging) 4.0 1.0 4.8 0.3 

INV6 0-1(discharging) 4.7 0.7 6.4 1.6 

INV7 1-0(charging) 5.5 0.8 6.6 0.2 

Average (charging) - 0.9 - 0.1 

Average (discharging) - 0.7 - 2.0 

 

 

Fig. 7. IGD approximation for five cascaded AND gates. 

 
(a) 1011 

 
(b) 1101 

Fig. 8. 5-AND gate chain µ and λ trend. 

TABLE II.  5-AND GATE CHAIN µ AND Λ 

 10-11 (e
-10

) 11-01 (e
-10

) 

 µ Δμ λ Δλ µ Δμ λ Δλ 

AND1 2.3 - 3.4 - 1.9 - 3.4 - 
AND2 4.4 2.1 5.9 2.5 4.4 2.5 5.3 1.9 
AND3 6.5 2.1 8.4 2.5 6.3 1.9 8.2 2.9 
AND4 8.7 2.2 10.8 2.4 8.4 2.2 10.6 2.4 
AND5 10.6 1.9 13.3 2.5 10.6 2.2 12.9 2.3 
Average - 2.1 - 2.5 - 2.2 - 2.4 

 

      In Fig. 7, the AND gate delay IGD fitted PDFs (input 

0111) are presented (for readability the delay histograms are 

omitted). In Fig. 8, the corresponding µ and λ after each 

adjacent element are presented. Again, the distinct linear 

increment echoes the IGD model scalability. Table II 

summarizes the corresponding µ and λ for 1011 and 1101 

input transitions and consistency in terms of Δµ and Δλ can be 

observed. The biggest variation in terms of µ and λ occurs 
between AND2 and AND3, even though it does not affect the 

average value of Δµ and Δλ. 

C. Ripple Carry Adder (RCA) 

      RCAs are widely used in low cost and narrow operand 
arithmetic units and can be considered as a good test case to 
validate the efficiency of the proposed IGD model.  

      The basic RCA building block is the Full-Adder (FA), 
which is relatively more complex than basic Boolean gates. To 
obtain the FA Δµ and Δλ values a 5-bit RCA is simulated in 
HSPICE using Monte Carlo method under the aforementioned  
Vdd and process variations. We are interested in the longest 



propagation path (worst case scenario) for STA purpose. As the 
FA delay from Cin to Sum is longer than that from Cin to Cout 
in a 5-bit RCA the longest delay occurs when the inputs A, B, 
Cin switch from all 0s to A=01111, B=00000, and Cin=1, 
resulting in a 10000 output. The IGD fitted PDFs of the delays 
after propagating through each FA are presented in Fig. 9. In 
Fig.10, the µ and λ growth trend over 5 adjacent elements is 
presented. Once again, the scalability can be obviously 
observed in Fig. 10. The corresponding key parameters, µ and 
λ, along with their increments are summarized in Table III. The 
FA Δµ and Δλ are 5.8E-10 and 5.7E-10, respectively.  

 

 

Fig. 9. 5-bit RCA IGD approximation. 

 

Fig. 10. 5-bit RCA µ and λ trend. 

TABLE III.  5-BIT RCA µ AND Λ  

(e-10) Carry Switch Sum Switch µ  Δμ λ  Δλ 

FA1 01 00 5.3 / 5.1 / 

FA2 01 00 11.1 5.8 10.6 5.5 

FA3 01 00 16.9 5.8 16.3 5.7 

FA4 01 00 22.8 5.9 21.9 5.6 

FA5 00 01 28.5 5.7 27.7 5.8 

Average - 5.8 - 5.7 

 

             

     (a) Majority                        (b) XOR  

Fig. 11. Majority voter and XOR gate AIGs.  

IV.      MODEL VALIDATION FOR COMBINATIONAL CIRCUITS 

In the previous two sections, a delay model is proposed and 
investigated. Based on the collected data, Δµ and Δλ scalability 
for different events and circuits has been demonstrated. This 
property is of interest if the evaluation of complex circuits is 
targeted. To investigate the feasibility/correctness of the 
proposed method on complex circuits, processor-design and 
communications relevant circuits, i.e., 3-input Majority and 
XOR gates, and 16-bit RCA, are considered. The former two 
circuits are described by means of And-Inverter Graphs (AIGs), 
which are often utilized for logic synthesis [12].  

      The propagation delay estimations obtained with our 

model are compared with Monte Carlo SPICE simulation 

results. The Cumulative Distribution Functions (CDF), which 
is the PDF integral, is utilized to more clearly quantify the 

differences. When talking about delay distributions, CDF 

gives the probability of the switch to have happened at a 

chosen time, while PDF gives the probability of the switching 

happening at that instant.  Given that, the probability of the 

switch to have happened is the one determining the clock 

speed, the difference between the measured and the computed 

CDF is a better metric to evaluate our model correctness. 

Moreover CDF is less sensitive to errors due to limited Monte 

Carlo runs since the sum of each error made for each bean 

should tend to zero. 

A. Majority Voter and XOR Gate Based on AIG 

      In Fig. 11, the 3-bit Majority and XOR gate AIGs are 
presented, where a circle represents an AND gate, a dotted line 
an inverter, and a solid line a wire. The XOR gate longest path 
includes 4 AND gates and 4 inverters while the Majority gate 
longest path spans over 3 AND gates and 2 inverters. A 10,000 
samples Monte Carlo SPICE simulation has been carried out 
assuming the parameter variation models and ranges in Section 
III. As already mentioned, only the worst-case scenario is of 
interest. 

      The worst-case scenario happens, when the inputs change 
from 001 to 101, and from 011 to 001 for the Majority and 
XOR gate, respectively. In Fig. 12, the CDFs of the two gates 
are plotted for a delay range between 0ns and 7ns in steps of 
100ps. It is clear that the estimated CDFs match with the results 
obtained by means of highly time-consuming Monte Carlo 
simulations. GD fitting is also reported, the inadequacy of such 
choice is obvious. Table IV presents the error percentage 
corresponding to different sampling instants and indicates that, 
on average, our method provide estimates within 0.8% and 
1.2% away from Monte Carlo results, for Majority and XOR 
gates, respectively. 

 

(a) Majority  



    

(b) XOR Gate 

Fig. 12. Majority and XOR gate CDFs. 

TABLE IV.  MAJORITY AND XOR GATE CDF DEVIATIONS 

Deviation 1ns 3ns 5ns 7ns Average (0-10ns) 

Majority Voter 3% 1% 0.3% 0.1% 0.8% 

XOR 0.2% 2% 1.4% 0.7% 1.2% 

 

 

Fig. 13. 16-bit RCA CDFs. 

TABLE V.  16-BIT RCA CDF DEVIATIONS  

Deviation 15ns 30ns 45ns 60ns Average (0-60ns) 

16-bit RCA 1.9% 0.6% 0.7% 0.9% 1.7% 

B. 16-bit Ripple Carry Adder 

      Given the FA key parameters derived in Section III-C, the 

corresponding µ and λ for a 16-bit RCA can be easily 

calculated. The same type of input vector mentioned in 

Section III-C is applied to generate the longest propagation 

delay and 10,000 Monte Carlo simulations are executed.  In 

Fig. 13, the 16-bit RCA CDFs derived by Monte Carlo 
simulations and IGD based estimation as well as GD fitting 

are presented for a delay range between 0ns and 60ns (600ps 

step size). The matching between two curves, Monte Carlo 

and IGD, is very close with an average mismatch of 1.7% 

while the mismatch from GD fitting is visibly worst. CDF 

deviations for the 15ns to 60ns range with a 15ns step are 

summarized in Table V, case in which the highest deviation is 

1.9% at 15ns while all the others are below 1%. 

V.      CONCLUSIONS 

      In this paper, an accurate with negligible execution time 
delay approximation model was proposed and compared with 
the state of the art. Our model is highly accurate (provides a 
less than 2% average error when compared with Monte Carlo 

simulations), but also exhibits significant flexibility across 
various Vdd and different types of PVT variation values. We 
demonstrate that it exhibits linear compositionality such that 
the key model parameters can be straightforward propagated 
form device/gate level to circuit level. Our simulations 
indicated that, when compared with Monte Carlo simulation 
results, it provides high accuracy, e.g., an average error less 
than 0.8%, 1.2%, and 1.7% for Majority Voter, XOR gate, and 
16-bit Ripple Carry Adder, respectively, while providing 
orders of magnitude simulation time reductions. Given that the 
proposed approximation and propagation procedure 
demonstrated remarkable simplicity and accuracy. Future work 
includes investigation on the practicability of our model on 
sequential elements, fan-out effects, wire delay and higher 
complexity circuits. 
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