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Abstract—In this paper we present analysis of one-step major-
ity logic decoders made of unreliable components in the presence
of data-dependent gate failures. Gate failures are modeled by a
Markov chain, and based on the combinatorial representation of
the fault configurations, a closed-form expression for the average
bit error rate is derived for a regular LDPC code ensemble.
Presented analysis framework is then used for obtaining upper
bounds on decoding performance under timing errors.

I. INTRODUCTION

Increased integration factor of integrated circuits together
with stringent energy-efficiency constraints result in an in-
creased unreliability of today’s semiconductor devices, and
necessities for a new design paradigm for Very Large Scale
Integration (VLSI) technologies in which fully reliable oper-
ation of hardware components is not guaranteed [1]. Error
control coding as a method for ensuring fault-tolerance of
systems build of unreliable hardware was introduced in the
late sixties and early seventies by Taylor [2] and Kuznetsov
[3] in the context of reliable storage. The equivalence between
Gallager B decoder built from unreliable logic gates and
Taylor-Kuznetsov fault-tolerant memory architectures was first
observed by Vasic et al. in [4] and [5], and developed by Vasic
and Chilappagari [6] into a theoretical framework for analysis
and design of faulty decoders of LDPC codes.

Performance of LDPC codes under faulty iterative decoding
in the limit of code length approaching infinity was studied
by Varshney in [7], who has shown that under von Neumann
failure model density evolution is applicable to faulty decoders
which he used to examine performance of faulty Gallager A
and belief-propagation algorithms. Density evolution analysis
of a noisy Gallager B decoder was presented by Yazdi et al.
in [8]. Similar analysis of faulty Gallager B algorithm using
EXIT charts was done by Leduc-Primeau and Gross in [9].
More general finite-alphabet decoders were investigated by
Huang and Dolecek in [10], while noisy min-sum decoder
realization was considered by Ngassa et al. in [11].

One-step majority logic decoding introduced in the sixties
by Rudolf [12] is an important class of algorithms in the
context of faulty decoding and has been studied recently in
a number of papers. In contrast to iterative decoders, the bit
error rate performance of these decoders can be evaluated
analytically for finite-length codes as shown by Radhakrishnan
et al. [13]. The decoding process is terminated after only one

iteration, and the bit estimates are obtained by a majority vote
on multiple parity check decisions. The faulty version of one-
step majority logic decoders were investigated by Chilappagari
et al. in [14] where the combinatorial characterization of a
decoder correction capability in the presence of von Neumann
gate failures was presented. The analysis was limited only to
codes constructed based on projective geometries.

In the above references, a special type of so called transient
failures is assumed. Transient failures manifest themselves
at particular time instants but do not necessarily persist for
later times. These failures have probabilistic behavior and we
assume the knowledge of their statistics. The simplest such
statistics is due to von Neumann failure model [15], which
assumes that each component of a (clocked) Boolean network
fails at every clock cycle with some known probability. Addi-
tionally, the failures are not temporally nor spatially correlated.
In other words, failures of a given component are independent
of those in previous clock cycles and independent of failures
of other components.

However, the von Neumann failure model is only a rough
approximation of the physical processes leading to logic gate
failures. Actual probability of failure of logic gates is highly
dependent on a digital circuit manufacturing technology and
for high integration factors the failures are data-dependent
and/or temporally correlated. For example, timing errors are
heavily dependent on data values processed by the gate in
previous bit intervals and can not be represented accurately
by von Neumann model.

In this paper we propose more general approach to faulty
gate modeling. In order to capture the effects of data-
dependent and correlated nature of gate failures Markov chains
are used. We derive a closed form expression of the bit error
rate (BER) for an ensemble of regular LDPC codes free
of four-cycles decoded by a faulty one-step majority logic
decoding, in the presence of correlated gate failures. This
result is a generalization of the results presented in [14] where
only von Neumann errors are considered.

The rest of the paper is organized as follows. In Section II
the preliminaries about majority logic decoding are discussed.
In Section III we give a description of novel approach to error
modeling. Section IV is dedicated to theoretical analysis of
the decoder, while numerical results are presented in Section
V. Finally, some concluding remarks are given in Section VI.



II. PRELIMINARIES

A. Decoding of LDPC Codes

Let C be a (γ, ρ)-regular binary LDPC code of length n,
with parity check matrix H . The parity check matrix can be
represented with a bipartite graph called the Tanner graph.
Each column in the parity check matrix corresponds to a
variable node and each row corresponds to a check node in the
Tanner graph, and a variable node v and a check node c are
adjacent if and only if Hc,v = 1. A vector x = (x1, x2, ..., xn)
is a codeword if and only if HxT = 0 (mod 2). A codeword
x is stored in a memory, and when read from the memory
each bit xv is flipped by probability α and observed as rv .
We refer to rv as value of the variable node v. The number
of flipped bits is called the Hamming distance between the
stored codeword x and the read-back word r, and is denoted
as dH(x, r).

Let Ex represent a set of edges incident on a node x in a
Tanner graph (x can be either variable or check node), then the
one-step majority decoding may be summarized as follows.

1) Each variable node v sends rv along the edge in Ev .
2) Each check node c sends me along each edge in Ec

where
me =

∑
e′∈Ec\{e}

me′ mod 2. (1)

3) At each variable node v, an estimate of the correspond-
ing bit value of r̂v is made

r̂v =

 1 if |{e′ ∈ Ev : me′ = 1}| > bγ/2c,
0 if |{e′ ∈ Ev : me′ = 0}| > bγ/2c,
rv otherwise.

(2)

B. Transient Gate Failures

Let f : {0, 1}m → {0, 1}, m > 1, be an m-argument
Boolean function. The relation between the input arguments
y1, y2, . . . ym and the output z of a perfect gate realizing this
function is z = f(y1, y2, . . . , ym). For a faulty gate, this
input-output relation is z = f(y1, y2, . . . , ym) ⊕ e, where
⊕ is the Boolean XOR and the error e ∈ {0, 1} is a
Bernoulli random variable. Denote by y = (y1, y2, . . . , ym)
the gate input vector, i.e., a vector of arguments. Denote by
{y(k)}k≥0 a time-sequence of input vectors, and by {e(k)}k≥0
the corresponding failure sequence. In the manuscript we will
interchangeably use the terms “failure” and “error” meaning
that the failures are “additive” errors. In a classical transient
failure model the error values {e(k)}k≥0 are either independent
of input sequence {y(k)}k≥0 (von Neumann failure model) or
dependent only on gate inputs from the current bit interval.

C. Combinatorics

A composition of a positive integer i, is an integer vector
λ = (λ1, λ2, . . . , λγ) such that

∑γ
j=1 λj = i. The integers

λj ≥ 0 are called parts or summands, and γ is called
the composition length. Note that we slightly modified the
standard definition of the composition by allowing the parts
to be equal to zero. Consequently, all compositions have the

same length, which simplifies representation of error patterns,
given in Section IV.

Let [l] denote the set of first l positive integers, i.e.,
[l] = {1, 2, . . . l}. A restricted composition in which no part
size exceeds l is an [l]-composition. The number of the com-
positions of an integer i whose part sizes do not exceed a fixed
integer l is denoted by Ti,l and can be calculated based on the
methods given in [16]. Alternatively, an [l]-composition can be
rewritten using its frequency representation (1f1 , 2f2 , . . . , lfl),
where fj denotes the number of parts equal to j, 1 ≤ j ≤ l.
For example, (1, 2, 1, 1) is an [2]-composition of 5 of length
4, with frequency representation f1 = 3, f2 = 1.

Let ql be a vector corresponding to one lexicographically
ordered u-subset of the set [l] and let the vector qr contain
the remaining elements of [l]. We create a vector q by
juxtapositioning ql and qr. We can arrange all possible vectors
q into rows of an

(
l
u

)
by l array Qu,l. For example, if l = 4 and

u = 2, the rows of Q2,4 are (1, 2, 3, 4), (1, 3, 2, 4), (1, 4, 2, 3),
(2, 3, 1, 4), (2, 4, 1, 3) and (3, 4, 1, 2). The array Qu,l referred
to as the error configuration matrix will be instrumental in
book-keeping of data-dependent patterns in Section IV.

III. THE CORRELATED ERROR MODEL

Note that, similarly as in [14], we only analyze the message
passing version of one-step majority logic decoder. This de-
coder needs ρ (ρ−1)-input XOR gates at each check node and
a γ-input majority logic gate at each variable node. Each check
node makes an estimate of the value of a variable node based
on the values of other variable nodes. The value of the variable
node itself is not used in its estimation. The final decision is
made on the basis of majority of the estimates, resulting in
probability of error of an estimated bit greater than or equal
to the probability of failure of the majority logic gate. Since
the error probability of the majority logic gate lower bounds
the bit error rate (BER) performance, majority logic gates must
be made highly reliable. Otherwise, the probability of error is
determined by this final gate and not the error control scheme.
Thus, it is reasonable to make an assumption that majority
logic gates are perfect and that only XOR gates are faulty.

We analyze a system in which different codewords are
stored in an unreliable memory. While stored in the register,
each bit may be flipped, independently of other bits, with
probability α. At every cycle a different codeword is read from
the memory and decoded by an unreliable one-step majority
decoder. Equivalently, we may assume that the sequence of
codewords {x(k)}k≥0 is transmitted through the Binary Sym-
metric Channel (BSC) with crossover probability α and then
successively decoded by a single one-step majority decoder
built from perfect majority logic gates and faulty XOR gates.

In contrast to the state-of-the-art modeling of faulty gates
that considers only the failure dependence on the current input
values, our model captures more accurately the data and time
dependence of the failures. Namely, we assume that e(k), the
error at time k, is affected by the current and M−1 prior con-
secutive gate input vectors, i.e., its probability depends on the
vector sequence {y(j)}j∈[k−(M−1),k], where M is a positive



integer. Denote this probability by Pr{e|s(k)}, where the gate
state s(k) at time k is defined as s(k) = (y(j))j∈[k−(M−1),k].
Obviously, for M = 1, we have the classical failure model.
As previously stated, in our one-step majority logic decoder
only XOR gates are unreliable. The number of states grows
exponentially with M and ρ, i.e., for an (ρ − 1)-input XOR
gate used in our decoder there are 2M(ρ−1) states.

The inputs of a (perfect) majority logic gate are the outputs
of γ XOR gates in the neighboring check nodes. Thus, at
time k these gates can be associated with a state array
σ(k) = (s

(k)
1 , s

(k)
2 , . . . , s

(k)
γ ), whose elements represent states

of particular XOR gates. Based on σ(k), an error probability
vector can be formed as ε(k) = (ε

(k)
1 , ε

(k)
2 , . . . , ε

(k)
γ ), ε(k)m =

Pr{e|s(k)m }, 1 ≤ m ≤ γ. The values of error probability vector
can be obtained by measurements or by simulation of selected
semiconductor technology. Thus, in our analysis we assumed
that these values are known.

IV. ANALYSIS OF THE FAULTY DECODER

In this section we present an analytical method for perfor-
mance evaluation of an ensemble of regular LDPC codes with
girth no smaller than six decoded by a faulty one-step majority
decoder described in previous section.

In a Tanner graph of a code with girth at least six, the
variable nodes connected to the neighboring γ checks, Ev , of
a variable node v, are all distinct. Without loss of generality
we can label the check nodes as Ev = [γ], and the set of the
γ(ρ−1) variable nodes by the elements of [γ(ρ−1)]. Consider
now a weight i (i > 0) error pattern on these variable nodes,
and consider the computation tree for a variable node v. It is a
tree with the root v and the leafs in [γ(ρ− 1)], i out of which
are erroneous. The distribution of the weight i error pattern
on the leaf nodes of the computation tree can be represented
by a restricted [ρ−1]-composition of i with γ parts. Each part
λm, 1 ≤ m ≤ γ represents the number of erroneous nodes
connected to the m-th check node (XOR gate). Since each
check node in Ev is connected to ρ − 1 variables other than
v, the part size cannot exceed ρ − 1. For example, if γ = 3,
Ev = {1, 2, 3} and i = 3, λ = (2, 0, 1) corresponds to an
error pattern in which the errors are at λ1 = 2 variable nodes
connected to the check c = 1 and λ3 = 1 variable nodes
connected to the check c = 3, while no variable connected to
c = 2 is in error.

In a decoder built entirely from reliable components, every
odd number of erroneous neighboring nodes connected to the
same XOR gate will result in sending an incorrect bit estimate
to node v. The number of incorrect estimates sent to node v
in the error pattern λ can be obtained as follows

δ =

d ρ−1
2 e∑
t=1

f2t−1, (3)

where f2t−1, 1 ≤ t ≤ dρ−12 e, are defined in Section II-C.
In a perfect decoder determining the value δ is sufficient to

know if bit xv is correctly decoded, assuming the error pattern
λ. But, in the faulty decoder, due to XOR gate failures, some

of the correct estimates can become incorrect, and vice versa,
some incorrect estimates can be received as correct ones.

Let ε be the error probability vector of unreliable XOR
gates, used for decoding bit xv . Denote as εo = (εo1, ε

o
2, . . . , ε

o
δ)

a vector of error probabilities that correspond to all XOR gate
which, if operate perfectly, would send incorrect bit estimates
to node v. The remaining γ−δ elements of the error probability
vector ε form a vector εe. Then we have the following lemma
establishing the harmfulness of the error pattern corresponding
to the composition λ.

Lemma 1. The probability that node v receives p incorrect
bit estimates in an error configuration corresponding to λ is

P (p, λ, ε) =

uh∑
u=ul

Pw{u, δ}Pc{p− u, γ − δ}, (4)

where ul = max (0, p− γ + δ), uh = min (δ, p),

Pw{u, δ} =

(δu)∑
t=1

u∏
m=1
u>0

(
1− εoqt,m

) δ∏
m=u+1
u<δ

εoqt,m , (5)

Pc{p− u, γ − δ} =

(γ−δp−u)∑
t=1

p−u∏
m=1
p>u

εert,m

γ−δ∏
m=p−u+1
p−u<γ−δ

(
1− εert,m

)
,

(6)

where qt,m and rt,m denote the elements in t-th row and
m-th column of the error configuration matrices Qu,δ and
Qp−u,γ−δ , respectively.

Proof: See Appendix A.

The following lemma gives the bit miscorrection probability
under the fixed error probability vector, when the effect of
different memory failure configurations is taken into account.

Lemma 2. If memory registers fail independently with prob-
ability α, then the probability that the codeword bit xv of a
(γ, ρ)-regular LDPC code is incorrectly decoded by a faulty
one-step majority logic decoder, whose gate fail according the
error probability vector ε, is given by

Pv(α, ε) =

γ(ρ−1)∑
i=0

αi(1− α)γ(ρ−1)−i

×

 (−1)γ + 1

2
αbi,bγ/2c +

γ∑
p=bγ/2c+1

bi,p

 , (7)

where

bi,p =

Ti,ρ−1∑
j=1

P
(
p, λi,j , ε

) γ∏
m=1

(
ρ− 1

λi,jm

)
(8)

and λi,j = (λi,j1 , λi,j2 , . . . , λi,jγ ), is the j-th composition of
integer i, where 1 ≤ j ≤ Ti,ρ−1.

Proof: See Appendix B.

Let {x(k)}k≥0 be a codeword sequence stored in the
memory registers. Clearly, decoding error of x(k) depends



on M − 1 codewords previously read from a memory. Let
ym,v = {y(j)

m,v}j∈[k−(M−1),k], 1 ≤ m ≤ γ, 1 ≤ v ≤ n,
be sequence of code bits that, if stored with no errors, will
appear at inputs of m-th XOR gate connected to node v, in
the time interval [k− (M − 1), k]. Then, using the Lemmas 1
and 2 we formulate our main theorem which captures decoder
performance under correlated data-dependent gate failures.

Theorem 1. The average bit error rate (BER) of (γ, ρ)-regular
LDPC code, when codeword sequence {x(j)}j∈[k−(M−1),k] is
read from a memory and decoded by an unreliable one-step
majority logic decoder is

P̄e(x
(k)|x(k−1), . . . ,x(k−M+1)) =

1

n

n∑
v=1

2(ρ−1)γM∑
t=1

Pv

(
α, ε(t)

)
×

γ∏
m=1

αdH(s(t)m ,ym,v)(1− α)M(ρ−1)−dH(s(t)m ,ym,v).

(9)

Proof: See Appendix C.

For a special case of von Neumann errors, the probability
Pv
(
α, ε(t)

)
is independent of state arrays and above expres-

sion reduces to equation (7). In addition, for the perfectly
reliable hardware, the equation (4) simplifies to P (p, λ, ε) = 1
only when p = δ, and it is equal to zero otherwise.

V. NUMERICAL RESULTS

The analysis presented in previous section is general and
can be used for analyzing decoders built in different nano-
scale technologies. In this section we present numerical re-
sults for a special case of transient errors that are result of
timing constrains − timing errors. Due to the sampling clock
fluctuations or signal propagation delays, the output signal of
a gate may be sampled or used in the next stage before it
reaches a steady value, leading to an incorrect output. Such
errors are dependent on gate history, i.e. data values processed
by the gate in previous bit intervals. As the erroneous output
of a logic gate will appear only if output changes its values it
is usually sufficient to consider failure dependence on current
and only one previous bit interval, i.e. M = 2. Thus, two
complementary subsets of faulty XOR gate states, denoted as
S1 and S2, can be identified. The first subset S1 is constituted
by states in which gate output remains unchanged and we have
Pr{e|s(k)} = 0,∀s(k) ∈ S1. If a gate output changes its value,
failure is possible and states from the subset S2 have non-zero
error probabilities. For simplicity, we assume that all error
probabilities are the same, i.e. Pr{e|s(k)} = ε,∀s(k) ∈ S2.

The performance of the faulty decoder for two limiting
cases are presented in Fig. 1. The best case, denoted as X00

corresponds to storage and consecutive decoding of two same
codewords. The decoder will operate worst if two comple-
mentary codewords are stored, denoted as X01. Performance
of faulty decoders are upper bounded under decoding of X01

and lower bounded under X00. When decoding X00 XOR
gate failures are rare and have limited influence on decoder
performance, which results in practically the same BER values

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Memory register failure probability, α

B
it
 e

rr
o
r 

ra
te

 (
B

E
R

)

 

 

X
00

, ε=10
−3

X
00

, ε=10
−2

X
01

, ε=10
−3

X
01

, ε=10
−2

X
00

, ε=10
−3

X
00

, ε=10
−2

X
01

, ε=10
−3

X
01

, ε=10
−2

γ=3

γ=4

Fig. 1. Performance of faulty decoder under correlated gate failure (ρ = 5).
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Fig. 2. Decoders upper bounds for different (γ, ρ) classes of LDPC codes
(ε = 10−2).

for both ε values (ε = 10−3, 10−2). Gap between bounds
depends on column weight of matrix H . The upper bounds
for different (γ, ρ) classes of LDPC codes are presented in
Fig. 2, where negative influence of matrix H row weight can
be noticed.

VI. CONCLUSION

In this paper we developed an analytical method used for
performance evaluation of memory architectures based on one-
step majority gate decoders under more realistic failure condi-
tion, then previously considered in the literature. Additionally,
different ensembles of regular LDPC codes were examined and
pronounced BER dependence of codewords order of decoding
was noticed.

Our future research is directed to finding optimal mapping
strategies that minimize negative effects of date-dependence.
Another direction is to study the performance of the Taylor-



Kuznetsov architecture where the information is stored in a
coded form and the values in the memory are periodically
updated according to majority-logic decoding.

APPENDIX A (PROOF OF LEMMA 1)

Pw{u, δ} represents the probability that u, 0 ≤ u ≤ δ, of the
δ incorrect estimates remain incorrect after operations in faulty
XOR gates. Similarly, Pc{p−u, γ− δ} is the probability that
p− u initially correct estimates, become incorrect due to gate
unreliability, 0 ≤ p−u ≤ γ−δ. Summation of all its products,
under previously defined constrains for u, u ∈ [ul, uh], gives
the total probability of receiving p incorrect estimates.

APPENDIX B (PROOF OF LEMMA 2)

A composition λi,j defines only the number of erroneous
variable nodes connected to a particular check node, but errors
may occur anywhere among the ρ−1 nodes. Thus, probability
of the composition λi,j leading to p incorrect estimates is equal
to P

(
p, λi,j , ε

)∏γ
m=1

(ρ−1
λi,jm

)
. The overall probability that i

errors in memory registers cause p incorrect bit estimates,
denoted as bi,p, can be calculated, by finding all of Ti,ρ−1
compositions of integer i.

The bit xv will be incorrectly decoded if majority of
its estimates are incorrect. Thus, for odd values of γ, only
probabilities of p being greater than or equal to bγ/2c + 1
leads to miscorrection. If γ is even, then there is a possibility
of a tie (equal number of correct and incorrect estimates). For
such cases γ/2 incorrect estimates can result in miscorrection,
which happens with probability αbi,bγ/2c. We can now express
bit miscorrection probability if i of its neighboring nodes are
erroneous, as follows

Pr{r̂v 6= xv|i errors} =
(−1)γ + 1

2
αbi,bγ/2c +

γ∑
p=bγ/2c+1

bi,p,

where a binary factor ((−1)γ + 1)/2 is added as a par-
ity indicator of γ. An i error configuration occurs with
probability Pr{i errors} = αi(1 − α)γ(ρ−1)−i. The product
Pr{i errors}Pr{r̂v 6= xv|i errors} can be calculated for all
possible values of i, 0 ≤ i ≤ γ(ρ−1) and their sum gives the
total probability of the bit miscorrection.

APPENDIX C (PROOF OF THEOREM 1)

The equation (7) gives miscorrection probability for an
arbitrary chosen bit under one hardware failure scenario, i.e.
one state array σ(t).

A particular XOR state s
(t)
m , 1 ≤ m ≤ γ, will appear if

memory failures change only certain bits of code sequence
ym,v . The number of such bits is equal to the Hamming
distance between perfectly stored code sequence and the XOR
state s

(t)
m . As the inputs of XOR gates are not mutually de-

pendent, the probability of the state array σ(t) occurrence can
be derived by multiplexing individual XOR state probabilities
and we have

P
(
σ(t)

)
=

γ∏
m=1

αdH(s(t)m ,ym,v)(1− α)M(ρ−1)−dH(s(t)m ,ym,v).

The error probability of a bit x(k)v under assumption that
fixed sequence of M − 1 codewords was previously read
from the memory can be derived by summing the products
P
(
σ(t)

)
Pv(α, ε

(t)) obtained for all possible error vectors
ε(t), 1 ≤ t ≤ 2(ρ−1)γM and the BER can be derived by
performing one additional averaging over all code bits.
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