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Abstract—Two error correction schemes are proposed for word-
oriented binary memories that can be affected by erasures, i.e. 
errors with known location but unknown value. The erasures 
considered here are due to the drifting of the electrical parameter 
used to encode information outside the normal ranges associated 
to a logic 0 or a logic 1 value. For example, a dielectric break-
down in a magnetic memory cell may reduce its electrical re-
sistance sensibly below the levels which correspond to logic 0 and 
logic 1 values stored in healthy memory cells. Such deviations can 
be sensed during memory read operations and the acquired 
information can be used to boost the correction capability of an 
error-correcting code (ECC). The proposed schemes enable the 
correction of double-bit errors based on the combination of 
erasure information with single-bit error correction and double-
bit error detection (SEC-DED) codes or shortened (SEC) codes. 
The correction of single-bit errors is always guaranteed. Ways to 
increase the number of double-bit and triple-bit errors that can 
be detected by shortened SEC and SEC-DED codes are 
considered in order to augment the error correction capability of 
the proposed solutions. 

Keywords−−−−resistance-switching memory; word-oriented binary 
memory; MRAM; MTJ; dielectric breakdown; ECC; shortened 
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I. INTRODUCTION 

The robustness of memory subsystems can be effectively 
increased with the help of ECCs [3][4][11][19]. Unfortunately, 
the ECCs are expensive in terms of latency and storage over-
head and this cost may rise quickly with the number of 
correctable errors. For example, a conventional single-bit error 
correction (SEC) code requires m+1 check-bits for 2m data-bits, 
while a conventional double-bit error correction (DEC) code 
needs 2(m+1) check-bits for the same number of data-bits [2]. 

Here, we consider word-oriented binary memories which 
enable the identification of bits with a reduced level of confi-
dence, called erasures. Such bits are not necessarily erroneous, 
but they have a higher probability to be affected by errors. 
Erroneous bits which involve erasures are easier to correct 
since their positions are known [2]. We assume that the 
identification of erasures does not require supplementary 
memory operations. For example, this may be the case of mag-
netic memory (MRAM) cells where the information is encoded 
by the electrical resistance of a magnetic tunnel junction 

(MTJ). An MTJ may be affected by soft or hard dielectric 
breakdown which can cause the drifting of its electrical re-
sistance outside the characteristic range of healthy MTJs 
[5][14][16]. 

Erasures may also occur in aggressively scaled memories if 
distinct logic values are encoded by overlapping distributions 
of some relevant electrical parameter. For example, the electri-
cal charge stored on the floating gates of E2PROM/flash 
memory cells may be distributed over slightly overlapping 
ranges [21]. Any read-out value that falls into the overlapping 
region may be considered as an erasure. 

Different approaches to extract and use erasure information 
are available. When the memory latency and endurance are not 
an issue, the double-complement algorithm, can be used to 
detect erasures induced by permanent faults [2]. Soft-decision 
decoding, usually applied to LDPC codes, offers a natural 
support to exploit erasure information [6][18][21]. An 
algebraic decoding method able to handle erasures has also 
been proposed for BCH codes [7]. Unfortunately, such com-
plex decoding methods are more suitable for block-oriented 
low-latency storage devices and rather inappropriate for word-
oriented fast memories.  

Here, we propose two error correction schemes which rely 
on erasure information in order to boost the number of errors 
that can be corrected with SEC-DED codes. Erasure infor-
mation is only exploited in the presence of detectable multi-bit 
errors so that single-bit errors are always corrected. Double-bit 
errors become correctable in the presence of at least one true 
positive, i.e. an erroneous bit indicated as erasure. Successful 
decoding in the presence of false positives, i.e. correct bits 
indicated as erasures, requires that both erroneous bits are 
identified as erasures. It is shown that virtually all double-bit 
errors become correctable if the probability that erroneous bits 
are indicated as erasures is larger than 90%.  

These schemes have also been analyzed in combination 
with shortened SEC codes. Here, an ECC is called shortened if 
the number of data-bits per code word is below the maximal 
limit allowed by the available check-bit number. The use of 
shortened ECCs is imposed by the use of memory word sizes 
equal to a power of 2. In such cases, important fractions of 
double-bit and triple-bit errors can be detected with shortened 
SEC and SEC-DED codes, respectively.  
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In order to increase the error correction capability of the 
proposed schemes, ways to construct shortened SEC codes 
with a high number of detectable double-bit errors and short-
ened SEC-DED codes with improved triple-bit error detection 
(TED) are presented as well. 

Two sources of memory erasures are discussed in Section 
II. Section III presents two error correction schemes that are 
based on SEC-DED codes and can take advantage of erasure 
information in order to enable DEC capability. The error 
correction capability of these schemes is evaluated in Section 
IV. Methods to increase the number of double-bit and triple-bit 
errors detected with shortened SEC and SEC-DED codes are 
presented Section V and Section VI, respectively. Such codes 
can be used in conjunction with the error correction schemes 
presented in Section III in order to mask all detectable multi-bit 
errors which involve erasures. Quantitative evaluations of the 
impact on storage, latency and logic are reported in Section 
VII. The paper achievements are summarized in Section VIII. 

II. SOURCES OF ERASURES IN MEMORIES 

In certain resistance-switching memories, erasures can be 
induced by dielectric breakdown. For example, in MRAM 
cells, the information is encoded by the electrical resistance of 
an MTJ which consists of two ferromagnetic layers separated 
by a thin insulating layer [20]. The insulating layer can be sub-
ject to soft or hard dielectric breakdown which represents a pri-
mary reliability concern in aggressively scaled magnetic 
memories [5][14][16]. The electrical resistance of an MTJ with 
hard dielectric breakdown is sensibly lower than the electrical 
resistance of healthy MTJs storing either a logic 1 or a logic 0 
[5][16]. This may also be the case of MTJs that have experi-
enced at least two soft dielectric breakdowns [14]. 

In an MRAM, the dispersion of the MTJ electrical re-
sistance can be approximated by a Gaussian distribution [20] 
which, in the presence of dielectric breakdown, can be 
sketched as in Figure 1. MTJs with antiparallel magnetization 
(AM) of the ferromagnetic layers have the largest electrical 
resistance while those with parallel magnetization (PM) have a 
lower electrical resistance [20]. These two magnetization states 
are used to encode binary values. MTJs with dielectric break-
down have the lowest electrical resistance. 

As illustrated in Figure 1, such erasures can be detected if 
the values measured during a memory read operation are 
compared against one additional reference value. As long as 
the electrical resistances of storage cells with dielectric break 
down fall into a range which is disjoint from the ranges 
corresponding to AM and PM states, an erasure has equal 
probabilities to hide a logic 0 or a logic 1 

In binary memories that are aggressively scaled to the detri-
ment of storage cell reliability, the electrical parameter used to 
encode information may be distributed as illustrated in Figure 2 
[21]. For example, such an electrical parameter can be the 
electrical resistance of MRAM cells [20] or the electrical 
charge stored on the floating gate of E2PROM/flash memory 
cells [21]. As shown in Figure 2, erasures can be detected if the 
values measured during a memory read operation are compared 
against two reference values instead of one reference value. 

Enriched erasure information can be obtained if the meas-
ured values are compared against three reference values as 
indicated in Figure 3. The reference value in the middle allows 
making a first guess of the stored logic value. The other two 
reference values define a range which corresponds to logic 
values that are measured with a low level of trust. For this 
shape of the probability density function, the probability that a 
bit with a low level of trust has indeed a wrong value is less 
than 50%. 

Erasures can be detected with limited impact on memory 
latency if the electrical signals sensed during a memory read 
operation are compared concurrently against the reference 
values illustrated in Figure 1 to Figure 3. A possible approach 
is to derive these values from a unique reference via mirror and 
division transistors with appropriately selected gate width 
ratios [20]. 
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Fig. 1.  Distribution of the MTJ electrical resistance, expressed in an arbitary 

unit [a.u.] in MRAMs with erasures. 
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Fig. 2.  Distribution of the information encoding parameter, expressed in an 

arbitary unit [a.u.] in agressively scaled memories [21]. 
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Fig. 3.  Extraction of enriched erasure information with the help of three 

reference values in agressively scaled memories [21]. 



III.  DEC SCHEMES BASED ON SEC-DED CODES AND 

ERASURE INFORMATION 

Two error correction schemes are proposed in which the 
erasure information and SEC-DED codes are used to enable 
DEC capability. Besides the stored code word, both schemes 
receive an additional word where each bit indicates if the bit 
with the same index in the code word has been identified as an 
erasure during a memory read operation. 

A first solution that uses two conventional decoders is pre-
sented in Figure 4. During a memory read operation, the first 
decoder receives bit values which are read-out from the storage 
cells using conventional reference values such as, for example, 
the reference value used to discriminate between the AM states 
and the PM states in Figure 1 or Figure 3. The second decoder 
gets a modified word in which the bits indicated as erasures are 
flipped.  

The first decoder can be a conventional SEC-DED decoder. 
The second decoder can be a conventional SEC decoder which 
receives the same number of bits except for one check-bit as 
compared to the SEC-DED decoder. In the case of a linear 
block SEC-DED code, any check-bit can be neglected and, 
assuming that each parity-check matrix line is used for the 
calculation of a syndrome bit, the SEC parity-check matrix can 
be derived from the SEC-DED parity-check matrix if: 

• the SEC-DED parity-check matrix is transformed via 
linear combinations among its lines such that the new 
parity-check matrix defines the same SEC-DED code 
and contains only one line which involves the check-bit 
to be neglected i.e. only one syndrome bit depends now 
on this check-bit, 

• the parity-check matrix line which involves the check-
bit to be neglected is eliminated i.e. the only syndrome 
bit which depended on this check-bit is not considered 
by the SEC decoder, 

• the resulting SEC parity-check matrix is transformed via 
linear combinations among its lines such that the new 
parity-check matrix defines the same SEC code and 
reaches a minimal density i.e. a minimal number of 
logic 1 values. 

The first step above can be avoided if the selected check-bit 
is taken into account by only one SEC-DED parity-check 
matrix line. In this case, the third step above is not necessary if 
the density of the SEC-DED parity-check matrix is minimal. A 
second criterion is to neglect the check-bit which will cause the 
elimination of the matrix line with the largest density. 

In Figure 4, a multiplexer is used to select among the cor-
rected data words delivered by the two conventional decoders. 
The output of the second decoder is selected only if the first 
decoder encounters an uncorrectable error. If the probability 
that erroneous bits are true positives is high, the second de-
coder receives a fully or partially corrected code word such that 
it will deliver an error-free data word with a high probability. 

Any triple-bit error that generates a syndrome different 
from the syndrome of any single-bit error can be detected by 
the first decoder and can also be corrected by the second de-

coder if at least two of the affected bits are indicated as eras-
ures. Since the minimum Hamming distance of a SEC-DED 
code is equal to 4, all triple-bit errors could be detected and 
corrected in the presence of an advantageous mix of true and 
false positives [2][7]. This feature is not considered here as it 
could prevent the correction of single-bit errors. For example, 
this could happen in the presence of three false positives that 
indicate a triple-bit error which generates the same syndrome 
as the actual single-bit error which is not indicated as erasure. 

Figure 5 illustrates an error correction scheme that uses two 
conventional SEC-DED decoders in order to signal uncorrecta-
ble errors at system level. Such a symmetrical structure in 
which both decoders are identical and only the inputs are 
different is similar to the solution proposed in [23] which is 
applied to extended Golay codes. 

An unconventional error correction scheme that uses a 
SEC-DED code and erasure information to enable DEC 
capability is sketched in Figure 6. A syndrome different from 
the all-zero syndrome and not reserved for single-bit error 
correction is used in a special module to select among the 
double-bit errors which could generate it. A double-bit error is 
selected only if at least one of the bits affected by this error is 
indicated as erasure. Another special module is used to count 
the total number of erasures. If this number is larger than 1, a 
double-bit error is selected only if both bits affected by this 
error are indicated as erasures. Syndrome generation and 
single-bit error correction are performed in a conventional way. 
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Fig. 4.  DEC scheme based on a SEC-DED code, erasure information and 

conventional SEC and SEC-DED decoders. 
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Fig. 5.  DEC scheme with uncorrectable error indication based on a SEC-

DED code, erasure information and conventional SEC-DED decod-
ers. 
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Fig. 6.  DEC scheme based on a SEC-DED code, erasure information and 

unconventional error-correcting logic. 



In Figure 6, an error vector is provided by the error 
selection modules in order to indicate the bit positions affected 
by the selected single-bit or double-bit error. By construction, 
at most one error selection module can deliver a non-zero error 
vector at a time. 

The schemes proposed here do not rely on special distances 
between the code words which were introduced to take into 
account the erasure information i.e. the analog weight [1] or 
the generalized distance [8]. For example, in the presence of a 
false and a true positive, the schemes proposed here cannot 
correct double-bit errors. This situation can be handled with the 
special distances defined in [1][8] in the special cases when 
there is no double-bit error which (a) could affect the correct 
bit indicated as erasure and (b) generates the same syndrome as 
the real error. This situation may only occur when shortened 
linear block SEC-DED codes are used since only sub-sets of 
the code word bits can be affected by the double-bit errors 
which correspond to certain syndromes. This is due to the fact 
that in a linear block SEC-DED code, a bit cannot be affected 
by two double-bit errors that generate the same syndrome. For 
example, if the SEC-DED code words have an odd number of 
bits, there is always at least one bit that cannot be affected by 
any double-bit that corresponds to a certain syndrome. 

IV.  PROBABILISTIC ESTIMATION OF THE DOUBLE-BIT 

ERROR CORRECTION CAPABILITY  

In this section, we estimate the probability to correct a 
double-bit error with the schemes proposed in Section III, un-
der the assumptions that:  

• an n-bit SEC-DED word with k data-bits and r=n-k 
check-bits is accessed during each memory read 
operation,  

• the bits of the accessed words are affected by independ-
ent and identically distributed random errors, 

• correct and erroneous bits are indicated as erasures with 
the probabilities Pcorr and Perr, respectively. 

The probability Πconv that a double-bit error is corrected 
with the schemes sketched in Figure 4 and Figure 5 can be ex-
pressed as below: 

( )[ ]( ) ( ) ( )[ ]3n
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where the first term gives the error correction probability in the 
absence of false positives and the second term covers the case 
when there is only one false positive. In the former case, there 
should be at least one true positive while, in the latter case, 
there should be two true positives. 

Double-bit errors cannot be corrected with the schemes 
presented in Figure 4 and Figure 5 in the presence of more than 
one false positive. Consequently, these schemes cannot handle 
double-bit errors if the encoded data words contain more than 
three erasures. 

The probability Πunconv to correct a double-bit error with the 
scheme in Figure 6 can be expressed as follows given av, the 
average number of double-bit errors that generate the same 
syndrome in a SEC-DED code: 

( )( ) ( ) 1av2
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where the first term involves only one true positive and the 
second takes into account two true positives. The first term 
requires the absence of false positives while the second term 
tolerates the presence of one false positive in any competing 
double-bit error that generates the same syndrome as the actual 
double-bit error. 

For SEC-DED codes with fixed parity [12][13], the 
parameter av can be approximated as below: 
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where the numerator represents the number of double-bit errors 
and the denominator is the number of syndromes used for 
double-bit error detection. 

The probabilities Πconv and Πunconv are illustrated in Figure 7 
and Figure 8, respectively, as functions of Perr for several 
values of Pcorr and a SEC-DED code with 32 data-bits and 7 
check-bits. As one could expect, Pcorr and Perr have opposite 
impacts on the probabilities Πconv and Πunconv. Therefore, the 
effectiveness of the proposed solution depends on the ability to 
obtain a high Perr while maintaining the Pcorr as low as possible. 

Πunconv is larger than Πconv due to the fact that the scheme in 
Figure 6 can simultaneously handle several false positives. 
This property enables the correction of a large fraction of the 
double-bit errors in memories where erasure mechanisms are 
responsible for more than 90% of the total number of erroneous 
bits. 

It comes out that for Pcorr below 0.1% the proposed 
schemes have similar error correction capabilities. In this re-
gion, Pcorr has very little impact on the probability to correct 
double-bit errors and Perr can be improved, by changing the 
reference values illustrated in Fig.1, Fig. 2 and Fig. 3, as long 
as Pcorr is kept below 0.1%. 

The occurrence probability of an erasure, Pcorr+Perr, can be 
estimated from Figure 1 to Figure 3 by integrating the probabil-
ity density functions over the domains associated with erasures. 
This gives a hint about the upper limit of Pcorr, which is ex-
pected to be small in memories with reasonable storage cell 
reliability. 

Given the values of the probabilities Πconv and Πunconv, the 
memory MTTF improvement can be calculated as proposed in 
[10]. 
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Fig. 7.  Probability Πconv as a function of Perr for several values of Pcorr and a SEC-DED code with 32 data-bits and 7 check-bits. 
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Fig. 8.  Probability Πunconv as a function of Perr for several values of Pcorr and a SEC-DED code with 32 data-bits and 7 check-bits.

V. SHORTENED LINEAR BLOCK SEC CODES WITH 

INCREASED DED CAPABILITY  

The error correction schemes in Figure 4 to Figure 6 can be 
generalized to ECCs that can correct up to m-bit errors and 
detect completely or partially (m+1)-bit errors [23] in order to 
enable the correction of the detectable errors. 

This section is devoted to the generation of shortened linear 
block SEC codes with the goal to increase the number of 
double-bit errors that can be detected and finally corrected with 
the help of slightly modified versions of the error correction 
schemes proposed in Section III. For example, in Figure 9 is 
sketched a version of the error correction scheme in Figure 4 
which was adapted to a shortened SEC code. The DEC scheme 
in Figure 6 can also be adapted to a shortened SEC code just by 
restricting the number of syndromes available for double-bit 
error detection. 
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Fig. 9.  Partial DEC scheme based on a shortened SEC code, erasure 

information, a conventional SEC decoder and a SEC-partialDED 
decoder. 

Table I reports the numbers and ratios of detectable double-
bit errors in shortened linear block SEC codes constructed with 
the approach proposed in Annex I. These numbers remain 
relatively close to the upper limit whose calculation is ex-
plained in Annex I. The probability to correct double-bit errors 
with the error correction scheme in Figure 9 and in Figure 6 

(based on shortened SEC codes) can be calculated as in Section 
IV if the number of detectable double-bit errors and the 
parameter av are appropriately updated. 

TABLE I.  NUMBERS AND RATIOS OF DETECTABLE DOUBLE-BIT ERRORS 
IN THE GENERATED SHORTENED LINEAR BLOCK SEC CODES 

SEC 
 code 

Data
-bits 

Number of 
syndromes avail-

able for DED 

Detectable double-bit errors 

Obtained number  Upper limit 

(12, 8) 8 3 18   (27%)    18   (27%) 

(21, 16) 16 10 90   (43%) 100   (48%) 

(38, 32) 32 25 415   (59%) 475   (68%) 

(71, 64) 64 56 1813   (73%) 1960   (79%) 

VI.  SHORTENED LINEAR BLOCK SEC-DED CODES WITH 

INCREASED TED CAPABILITY  

Shortened linear block SEC-DED codes with a number of 
data-bits per code word equal to a power of 2 enable the detec-
tion of large fractions of triple-bit errors. If SEC-DED decoders 
with partial TED capability are used in Figure 4 and Figure 5, 
then all detectable triple-bit errors become correctable with an 
advantageous mix of true and false positive. An augmented 
version of the scheme in Figure 4 which enables partial triple-
bit error correction (TEC) is illustrated in Figure 10. 

With the error correction scheme in Figure 10, each triple-
bit error that can be detected with the shortened SEC-DED 
code is corrected if one of the following combinations of true 
and false positives occurs: 

• 3 true positives and 0 false positives, 

• 3 true positives and 1 false positive which will be han-
dled by the SEC decoder, 



• 2 true positives and 0 false positives since the silent 
erroneous bit will be masked by the SEC decoder. 
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Fig. 10.  Partial TEC scheme based on a shortened SEC-DED code, erasure 

information, a conventional SEC decoder and a SEC-DED-
partialTED decoder. 

Here, we are especially interested in SEC-DED codes with 
fixed parity which enable an efficient implementation of 
double-bit error detection. Approaches have been proposed to 
construct parity-check matrices with odd-weight columns for 
shortened SEC-DED codes with fixed parity [9][13] and large 
numbers of detectable triple-bit errors [17]. These approaches 
require manipulations of the triple-bit errors and their syn-
dromes [17]. 

We generated SEC-DED parity-check matrices with in-
creased triple-bit error detection with an alternative approach 
which is only looking at the double-bit errors and their syn-
dromes. According to the demonstration presented in Annex II, 
a maximal number of triple-bit errors can be detected if the 
double-bit errors are distributed uniformly over the syndromes 
responsible for their detection. Dealing with double-bit errors 
instead of triple-bit errors reduces the search space and enables 
faster search algorithms. In this way, more SEC-DED parity-
check matrices can be generated in order to provide more 
alternatives for the selection of an efficient hardware 
implementation.    

VII.  QUANTITATIVE EVALUATIONS  

The interest of the error correction schemes presented here 
can be understood by looking at the information (storage) over-
head of several conventional linear block SEC, SEC-DED and 
DEC codes reported in Table II. With respect to the DEC 
codes, the check-bit number of the SEC and SEC-DED codes 
is reduced by 50% and roughly 40%, respectively. 

Latency and logic costs of the proposed error correction 
schemes are reported in Table III and Table IV. These costs are 
calculated with respect to the latency and logic size of hard-
wired dictionary-based decoders of linear bloc DEC codes. The 
costs of conventional SEC and SEC-DED decoders [12][13] 
are also reported. The logic synthesis was performed with 
Synopsys Design Compiler and the primary goal was the la-
tency minimization since, for large memories, the relative size 
of the error correction logic is expected to be negligible. 

The scheme in Figure 4 is always faster and smaller than a 
conventional DEC decoder. The scheme in Figure 9 has similar 
properties but remains slower than the scheme in Figure 4. This 
is due to the fact that double-bit error detection is faster in a 
SEC-DED code with fixed parity [13] than partial double-bit 
error detection in a shortened SEC code with the same number 
of data-bits. 

The scheme in Figure 4 is also faster than the scheme in 
Figure 6. Excepting the case when SEC codes with 8 data-bits 
are used, the scheme in Figure 9 is also faster than the scheme 
in Figure 6. The schemes in Figure 4 and Figure 9 have also a 
lower logic size than the scheme in Figure 6. 

With respect to a conventional DEC decoder, the latency 
overhead of the scheme in Figure 6 does not exceed 11% while 
its logic overhead stays below 40%. 

Table V compares the latency and size of the fastest logic 
implementations of the schemes in Figure 10 and Figure 4. The 
impact on latency of partial TED increases with the number of 
data bits while its influence on the logic size remains limited. 
The numbers of triple-bit errors that can be detected and, 
potentially, corrected with the scheme in Figure 10 are identi-
cal to the numbers of triple-bit errors that can be detected with 
the odd-weight column SEC-DED codes generated in [17].  

TABLE II.  MINIMAL INFORMATION OVERHEAD OF CONVENTIONAL 
LINEAR BLOCK SEC, SEC-DED AND DEC CODES 

Data-bits SEC code SEC-DED code DEC code 

8 50% 63% 100% 

16 31% 38% 63% 

32 19% 22% 38% 

64 11% 13% 22% 

TABLE III.  LATENCY RATIO W.R.T. CONVENTIONAL DEC DECODERS 

Data- 
bits 

SEC code SEC-DED code 

Conventional Figure 9 Figure 6 Conventional Figure 4 Figure 6 

8 79% 100% 96% 82% 99% 110% 

16 80% 101% 104% 79% 98% 111% 

32 77% 95% 106% 76% 90% 107% 

64 74% 96% 107% 73% 87% 109% 

TABLE IV.  LOGIC RATIO W.R.T. CONVENTIONAL DEC DECODERS 

Data- 
bits 

SEC code SEC-DED code 

Conventional Figure 9  Figure 6  Conventional Figure 4 Figure 6  

8 23% 51% 57% 25% 53% 126% 

16 19% 38% 67% 20% 43% 115% 

32 11% 26% 57% 13% 35% 126% 

64 8% 17% 62% 9% 19% 138% 

TABLE V.  BENEFIT AND COST OF THE SCHEME IN FIGURE 10 W.R.T. THE 
FASTEST IMPLEMENTATION OF THE SCHEME IN FIGURE  4 

Data-
bits 

Achieved number (ratio) of 
detectable triple-bit errors  

(that could become correctable)  

Latency 
augmentation  

Logic size 
augmentation  

8 66 (23%) 0% 0% 

16 540 (35%) 1% 6% 

32 3,799 (42%) 4% 0% 

64 26,968 (45%) 13% 3% 

VIII.  CONCLUSIONS 

Two error correction schemes were proposed for binary 
memories that can be affected by erasures. Double-bit error 
correction was enabled with the help of erasure information 
and SEC-DED codes. The probabilities that double-bit errors 



are corrected were expressed and evaluated as functions of the 
probabilities that correct and erroneous bits are indicated as 
erasures. It was shown that virtually all double-bit errors be-
come correctable in memories protected by SEC-DED codes 
where at least 90% of the erroneous bits are identified as eras-
ures. Approaches to construct shortened linear block SEC and 
SEC-DED codes were presented in order to increase the 
number of detectable double-bit errors and triple-bit errors, 
respectively. These errors can be corrected with the proposed 
schemes if half or the majority of the erroneous bits are indi-
cated as erasures. Latency and logic costs of the proposed error 
correction schemes were estimated with respect to conven-
tional SEC, SEC-DED and DEC decoders. 
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ANNEX I 

A linear block SEC code can be defined with the help of a 
binary matrix, called parity-check matrix or H-matrix, such that 
a binary column vector V is a code word if and only if it fulfils 
the relation below [15]: 

0=VH ⋅  

Each H-matrix column corresponds to a particular bit posi-
tion in the code words. The number of H-matrix rows is equal 
to the check-bit number. During the decoding process of a 
vector V, a syndrome S is calculated with the expression below: 

VHS ⋅=                  (1) 

If S is an all-zero syndrome, the binary vector V is assumed 
to be an error-free code word. A single-bit error generates a 
syndrome identical to the H-matrix column that corresponds to 
the corrupted bit position while a double-bit error produces a 
syndrome equal to the bitwise modulo-2 sum of the H-matrix 
columns that correspond to the erroneous bit positions. SEC 
capability can be ensured if the columns of the H-matrix are 
different from each other and from the all-zero column. The 
maximum number of bits n in a SEC code word is 2r-1 if r is 
the check-bit number. 

Usually, the number of data-bits accessed in a memory read 
or write operation is a power of 2. As a result, shortened SEC 
codes are used in which the H-matrix columns do not exploit 
all possible combinations of r-bit vectors. In such a case, r-bit 
vectors which are different from the H-matrix columns and the 
all-zero vector can be used as syndromes for double-bit error 
detection (DED) [17].  

In a linear block SEC code, all bit positions corrupted by 
two different double-bit errors that generate the same syndrome 
are necessarily different. Consequently, the maximum number 
of double-bit errors that can generate the same syndrome is 
given by the floor function n/2. The product between this 
number and the number of syndromes available for DED, 
(2r-1-n), can be used as an upper limit for the number of 



double-bit errors that can be detected with a shortened SEC 
code. 

Each syndrome Si available for DED can be used to define 
a linear function FSi on the syndrome space {0,1}r as below: 

{ } { } ( ) XSXF,1,01,0:F iSi

rr

Si ⊕=→  

where the symbol ‘⊕’ stands for the bitwise modulo-2 sum. 

Maximum DED capability implies that FSi maps a maxi-
mum number of syndromes X used for SEC among each other. 
Since FSi is a bijection, it will also map a maximum number of 
syndromes available for DED among each other. The latter 
syndromes can be grouped in zero-sum triples (Si, Sj, Sl) that 
contain the Si syndrome as follows:  

( ) 0SSSSSF ljiljSi =⊕⊕⇔=  

A maximum DED capability requires a maximum number 
of such triplets. Moreover, this property should be imposed to 
any linear function FSj defined as above with the help of each 
syndrome Sj available for DED. Consequently, a maximum 
number of zero-sum triples should be formed by all the syn-
dromes available for DED. 

We use a greedy algorithm to find 2r-1-n r-bit vectors 
which are different from the all-zero syndrome and define as 
many zero-sum triplets as possible. The remaining non-zero 
r-bit vectors are used to fill the H-matrix columns for an n-bit 
SEC code. Subsequently, the H-matrix density can be reduced 
by performing linear operations on the H-matrix lines such that 
the resulting H-matrix defines the same SEC code [10]. 

ANNEX II 

Consider a shortened linear block SEC-DED code with k 
data-bits and r check-bits (n=k+r) per code word. Consider 
also that all code words have the same parity [9][12][13]. 
During the decoding process, r-bit vectors, called syndromes, 
are calculated as shown in (1). One can identify the following 
sets of syndromes: 

1. a set composed of the all-zero syndrome used to 
identify error-free code words, 

2. a SEC-set which contains all syndromes used for 
single-bit error correction, 

3. a DED-set which contains all syndromes used for 
double-bit error detection i.e. which is disjoint from the 
first two sets,  

4. a TED-set which contains all syndromes that can be 
used for triple-bit error detection i.e. which is disjoint 
from the first two sets. 

Due to the fixed parity of the SEC-DED code, the DED and 
TED sets are also disjoint. 

With respect to each syndrome Sj in the DED-set, the SEC-
set can be partitioned into two sub-sets.  

• a sub-set of syndromes Si that correspond to single-bit 
errors which affect bit positions that can also be affected 
by a double-bit error identified by the syndrome Sj, 

• a sub-set of syndromes Sl that correspond to single-bit 
errors which affect bit positions that cannot be affected 
by any of the double-bit errors identified by the syn-
drome Sj. 

By definition, the bitwise modulo-2 sum between the syn-
dromes Sl and Sj is distinct from any syndrome that corre-
sponds to a single-bit error. It is also different from the all-zero 
syndrome and any syndrome that corresponds to a double-bit 
error due to the code word fixed parity. Consequently, this sum 
corresponds to the syndrome of a detectable triple-bit error. 
Given xj, the number of double-bit errors that can be detected 
by the syndrome Sj, there are n-2xj single-bit errors which 
affect bit positions that cannot be affected by a double-bit error 
identified by the syndrome Sj. Hence, there are xj(n-2xj) triple-
bit errors that can be detected by a syndrome equal to a 
combination of Sl and Sj syndromes. 

The total number of detectable triple-bit errors can be 
expressed as below: 

( ) ( )
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where the sum over xj’s is replaced by n(n-1)/2 and the divisor 
3 is introduced to account for the fact that a triple-bit error can 
be generated by three different combinations of a double-bit 
error and a single-bit error. 

Relation (2) shows that the number of detectable triple-bit 
errors can be maximized if the square sum is minimized. Since 
the sum over xj is constant, the square sum can be minimized 
by (a) increasing the number of syndromes in the DED-set and 
(b) balancing the xj values. 

In the case of linear block SEC-DED codes with fixed 
parity, the first possibility is not an option as the DED-set 
cardinality is 2r-1-1. Hence, the upper limit of (2) can be 
calculated by replacing the xj’s with integer values which are as 
balanced as possible. The obtained upper limits, which are the 
complementary of the lower limits illustrated in Table VI, are 
similar to the limits reported in [17].  

Expression (2) can also be applied to linear block SEC-
DED codes without fixed parity. In such a case, the DED and 
TED sets are not necessarily disjoint and the cardinality of the 
cardinality of the DED-set can be increased in order to improve 
the upper limit of (2). Explorations of such an enlarged search 
space have been performed in [17] and are beyond the scope of 
the present study. 

TABLE VI.  LIMITS FOR THE MINIMAL NUMBERS OF UNDETECTABLE 
(MISSCORRECTED) TRIPLE-BIT ERRORS IN SHORTENED SEC-
DED CODES WITH FIXED PARITY  

Data-bits According to (2) According to [17] 

8 220 (77%)                   - 

16 999 (65%) 1,000 (65%) 

32 5,324 (58%) 5,324 (58%) 

64 32,600 (54%) 32,600 (55%) 

128 220,728 (53%) 220,728 (53%) 

 


