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Abstract 

The outstanding success of Low Density Parity Check (LDPC) codes in providing practical constructions that 

closely approach the theoretical Shannon limit is rooted in the way they are decoded. They feature iterative 

message-passing decoders able to convey information between coded bits, so that to progressively improve the 

estimation of the sent codeword. This tutorial provides first an overall survey of LDPC decoders, and then a more 

detailed insight into some of the most widely used decoders. We also discuss the asymptotic analysis of these 

decoders and explain how this analysis made possible the optimization of LDPC codes operating very close to the 

Shannon limit. 
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1 Introduction 

It is widely recognized that one of the most significant contributions to coding theory is the invention 

of Low-Density Parity-Check (LDPC) codes by Gallager in the early 60's [1]. Yet, rather than a family of 

codes, Gallager invented a new method of decoding linear codes, by using iterative message-passing 

(MP) algorithms. Such a decoding algorithm consists of an exchange of messages between coded bits 

and parity checks they participate in. Each message provides an estimation of either the sender or the 

recipient coded bit, and the exchange of messages takes place in several rounds, or iterations. At each 

iteration, new messages are computed in an extrinsic manner, meaning that the message received by a 

coded bit from a parity-check (or vice versa) does not depend on the message just sent the other way 

around. Consequently, coded bits collect more and more information with each new decoding iteration, 

which gradually improves the estimation of the sent codeword. 

Even if LDPC codes came equipped with a class of MP decoding algorithms, a substantial effort had 

to be made in order to advance our knowledge on iterative decoding techniques. Most of the research 

on decoding algorithms focused on connections with closely-related areas and the design of practical 

MP decoders [2]. It worth mentioning here one of the most celebrated works, namely the work of Tanner 

[3], who described LDPC codes in terms of sparse bipartite graphs and proposed a more general 



construction of graph-based linear codes. He also generalized the decoding algorithms proposed by 

Gallager to this new class of graph-based codes, and gave a unified treatment of decoding algorithms 

for LDPC and product codes. 

The capability of MP decoding algorithms to deal with long block lengths opened the way to Shannon 

limit. They led to the development of graph-based codes and belief-propagation decoding, closely 

related to the probabilistic approach to coding devised by Shannon. A detailed survey that traces the 

evolution of channel coding from Hamming codes to capacity-approaching codes can be found in [4]. It 

is worth noting that unlike the classical coding approach, in which codes are considered and optimized 

on an individual basis, in the context of probabilistic coding the goal is to find a family of codes that 

optimizes the average performance under a given MP decoding algorithm. A decisive contribution was 

made by Richardson and Urbanke [5], who derived a general method for determining the correction 

capacity of LDPC codes under MP decoding algorithms. They introduced new ensembles of LDPC 

codes and showed that in the asymptotic limit of the block length, almost all codes (in the same 

ensemble) behave alike and exhibit a threshold phenomenon, separating the region where reliable 

transmission is possible from that where it is not. This made possible the design of irregular LDPC 

codes that perform very close to the Shannon limit [6]. Nowadays, LDPC codes are known to be 

capacity approaching codes for a wide range of channel models, which motivated the increased interest 

of the scientific community over the last 15 years and supported the rapid transfer of this technology to 

the industrial sector. 
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Coding for noisy channels: Shannon’s theory 

         Noisy channel: 
 

 Add redundancy to X to allow correcting transmission errors 

 Redundancy decreases the information rate: fraction between number    
of source (information) symbols and number of transmitted symbols  

 Shannon’s theorem (1948) 

Tightest upper bound on the rate of information that can be reliably 
transmitted over the channel, known as channel capacity, is given by: 

C = maxp
X
 I(X, Y) 

 Practical constructions that closely approach the Shannon limit  

 LDPC codes & MP decoders (Gallager 1962)  

 Analysis & optimization (Richardson et. al 2001) 

X 
Channel 
p(y | x) 

Y 

MP decoders 
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Coding for noisy channels: Shannon’s theory 

         Noisy channel: 

 The information is transmitted in the form of codewords, 
belonging to a codebook (the code) known by both TX and RX 

 Error detection: received word does not belong to the codebook 

 Error correction: find the codeword closest to the received word 
 

X 
Channel 
p(y | x) 

Y 
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Linear Codes 

 Codewords: binary vectors satisfying a system 
of linear equations 

1 1 0 1 0 0 1 0 0 0 

1 0 1 0 1 0 0 1 0 0 

0 1 1 0 0 1 0 0 1 0 

0 0 0 1 1 1 0 0 0 1 

0 0 0 0 0 0 1 1 1 1 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 

 X = (x1, x2, …, x10) such that H.XT = 0  
 x1 + x2 + x4 + x7 = 0 

     …. 

 x7 + x8 + x9 + x10 = 0 
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Linear Codes 

1 1 0 1 0 0 1 0 0 0 

1 0 1 0 1 0 0 1 0 0 

0 1 1 0 0 1 0 0 1 0 

0 0 0 1 1 1 0 0 0 1 

0 0 0 0 0 0 1 1 1 1 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 0 1 1 0 0 1 1 1 0 1 

 Error Detection: 

 X = (x1, x2, …, x10) such that H.XT = 0  
 x1 + x2 + x4 + x7 = 0 

     …. 

 x7 + x8 + x9 + x10 = 0 

from channel 
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0 1 1 0 0 1 1 1 0 1 

Linear Codes 

1 1 0 1 0 0 1 0 0 0 

1 0 1 0 1 0 0 1 0 0 

0 1 1 0 0 1 0 0 1 0 

0 0 0 1 1 1 0 0 0 1 

0 0 0 0 0 0 1 1 1 1 

 Error Detection: 

 X = (x1, x2, …, x10) such that H.XT = 0  
 x1 + x2 + x4 + x7 = 0 

     …. 

 x7 + x8 + x9 + x10 = 0 

from channel 

= 0  check#1 satisfied 

0 1 1 0 0 1 1 1 0 1 
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0 1 1 0 0 1 1 1 0 1 0 1 1 0 0 1 1 1 0 1 

Linear Codes 

1 1 0 1 0 0 1 0 0 0 

1 0 1 0 1 0 0 1 0 0 

0 1 1 0 0 1 0 0 1 0 

0 0 0 1 1 1 0 0 0 1 

0 0 0 0 0 0 1 1 1 1 

 Error Detection: 

 X = (x1, x2, …, x10) such that H.XT = 0  
 x1 + x2 + x4 + x7 = 0 

     …. 

 x7 + x8 + x9 + x10 = 0 

from channel 

= 0 

= 0  check#1 satisfied 

 check#2 satisfied 
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0 1 1 0 0 1 1 1 0 1 0 1 1 0 0 1 1 1 0 1 

Linear Codes 

1 1 0 1 0 0 1 0 0 0 

1 0 1 0 1 0 0 1 0 0 

0 1 1 0 0 1 0 0 1 0 

0 0 0 1 1 1 0 0 0 1 

0 0 0 0 0 0 1 1 1 1 

 Error Detection: 

 X = (x1, x2, …, x10) such that H.XT = 0  
 x1 + x2 + x4 + x7 = 0 

     …. 

 x7 + x8 + x9 + x10 = 0 

from channel 

= 1 

= 0 

= 0  check#1 satisfied 

 check#2 satisfied 

 check#3 violated 

    not a codeword 
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0 1 1 0 0 1 1 1 0 1 

Linear Codes 

1 1 0 1 0 0 1 0 0 0 

1 0 1 0 1 0 0 1 0 0 

0 1 1 0 0 1 0 0 1 0 

0 0 0 1 1 1 0 0 0 1 

0 0 0 0 0 0 1 1 1 1 

 Error Correction: 
 Find the closest codeword 

 How to do it in general? 

 Large codes (thousands  of bits) 

 Many errors 

1 
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0 1 1 0 0 1 1 1 0 1 1 

 How to do it in general? 

 Large codes (thousands  of bits) 

 Many errors 

Linear Codes 

1 1 0 1 0 0 1 0 0 0 

1 0 1 0 1 0 0 1 0 0 

0 1 1 0 0 1 0 0 1 0 

0 0 0 1 1 1 0 0 0 1 

0 0 0 0 0 0 1 1 1 1 

 Error Correction: 
 Find the closest codeword 

 Gallager (1962) 

 Iterative exchange of information between 
coded-bits and parity-check equations 
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0 1 1 0 0 1 1 1 0 1 1 

 How to do it in general? 

 Large codes (thousands  of bits) 

 Many errors 

Bipartite Graph Representation 

1 1 0 1 0 0 1 0 0 0 

1 0 1 0 1 0 0 1 0 0 

0 1 1 0 0 1 0 0 1 0 

0 0 0 1 1 1 0 0 0 1 

0 0 0 0 0 0 1 1 1 1 

 Error Correction: 
 Find the closest codeword 

 Gallager (1962) 

 Iterative exchange of information between 
coded-bits and parity-check equations 

 Tanner (1981): bipartite graph representation 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 

c1: 

c2: 

c3: 

c4: 

c5: 
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Bipartite Graph Representation 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

1 1 1 1 

1 1 1 1 

1 1 1 1 

1 1 1 1 

1 1 1 1 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 

c1: 

c2: 

c3: 

c4: 

c5: 

x1 

x10 

x9 

x8 

x7 

x6 

x5 

x4 

x3 

x2 

c5 

c4 

c3 

c2 

c1 

b
it

 n
o

d
es

 

ch
eck n

o
d

es 

 Error Correction: 
 Find the closest codeword 

 Gallager (1962) 

 Iterative exchange of information between 
coded-bits and parity-check equations 

 Tanner (1981): bipartite graph representation 
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Bipartite Graph Representation 

1 1 0 1 0 0 1 0 0 0 

1 0 1 0 1 0 0 1 0 0 

0 1 1 0 0 1 0 0 1 0 

0 0 0 1 1 1 0 0 0 1 

0 0 0 0 0 0 1 1 1 1 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 

c1: 

c2: 

c3: 

c4: 

c5: 

b
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 n
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 Error Correction: 
 Find the closest codeword 

 Gallager (1962) 

 Iterative exchange of information between 
coded-bits and parity-check equations 

 Tanner (1981): bipartite graph representation 

x1 

x10 

x9 

x8 

x7 

x6 

x5 

x4 

x3 

x2 

c5 

c4 

c3 

c2 

c1 
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Bipartite Graph Representation 
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 Gallager (1962) 

 Iterative exchange of information between 
coded-bits and parity-check equations 

 Tanner (1981): bipartite graph representation 
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x9 

x8 
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x3 

x2 
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Bipartite Graph Representation 

1 1 0 1 0 0 1 0 0 0 

1 0 1 0 1 0 0 1 0 0 

0 1 1 0 0 1 0 0 1 0 

0 0 0 1 1 1 0 0 0 1 

0 0 0 0 0 0 1 1 1 1 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 

c1: 

c2: 

c3: 

c4: 

c5: 

 Error Correction: 
 Find the closest codeword 

 Gallager (1962) 

 Iterative exchange of information between 
coded-bits and parity-check equations 

 Tanner (1981): bipartite graph representation 

x1 

x10 

x9 

x8 

x7 

x6 

x5 

x4 

x3 

x2 

c5 

c4 

c3 

c2 

c1 

b
it

 n
o

d
es

 

ch
eck n

o
d

es 

N 

1 

M 

1 

2 

n 

n-1 

N-1 

M-1 

m 

I 
N 
T 
E 
R 
L 
E 
A 
V 
I 
N 
G 

x1 x2 xn xN-1 xN 

c1: 

cm: 

cM: 

1 1 0 1 

1 0 1 0 

0 1 1 0 

0 1 1 0 

0 0 0 1 

1 0 0 0 

0 0 1 0 

1 0 0 1 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 1 

parity-check matrix 
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Outline 

 Coding for noisy channels: from Shannon to Shannon 

 Linear codes and Shannon’s Theorem 

 Iterative message passing decoders and LDPC codes 

 Approaching the Shannon limit 

 Coding for noisy channels with noisy devices 

 Noisy message-passing decoders 

 Impact of the “computation noise” on the error          
correction performance 
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Message Passing Decoders 

The principle 
 Exchange of messages between bit and check nodes 

 Each message provides an estimation of either the 
sender or the recipient bit-node 

 Exchange of messages takes place in several rounds, 
or iterations 

 Bit-nodes collect more and more information with   
each new iteration, which gradually improves the 
estimation of the sent codeword 

x1 

x10 

x9 

x8 

x7 

x6 

x5 

x4 

x3 

x2 

c5 

c4 

c3 

c2 

c1 

N 

1 

M 

1 

2 

n 

n-1 

N-1 

M-1 

m 

I 
N 
T 
E 
R 
L 
E 
A 
V 
I 
N 
G 
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1 

M 

1 

2 

n 

n-1 

N-1 

M-1 

m 

I 
N 
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R 
L 
E 
A 
V 
I 
N 
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Majority Voting Decoding 

y1 

yn 

yN 

 Decoder is fed with the sequence of bit values     
(yn) received from the channel  
 hard decision must be taken for soft-output channels  

 suboptimal   

Initialization 

 Iterative exchange is initialized by bit-nodes:  
 each bit-node sends its received value to the neighbor       

check-nodes 

Iterations 

 Check-to-bit node messages 
 outgoing message = XOR of incoming messages received          

on the other edges 
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Majority Voting Decoding 

 Decoder is fed with the sequence of bit values     
(yn) received from the channel  
 hard decision must be taken for soft-output channels  

 suboptimal   

Initialization 

 Iterative exchange is initialized by bit-nodes:  
 each bit-node sends its received value to the neighbor       

check-nodes 

Iterations 

 Check-to-bit node messages 
 outgoing message = XOR of incoming messages received          

on the other edges 

 Bit-to-check node messages 
 outgoing message = majority value among channel output     

and incoming messages on the other edges  

 (NB: different messages may be sent on different edges!)  

y1 

yn 

yN 
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on the other edges 

 Bit-to-check node messages 
 outgoing message = majority value among channel output     

and incoming messages on the other edges  

 (NB: different messages may be sent on different edges!)  

y1 

yn 

yN 
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Belief-Propagation Decoding 

 Decoder is fed with LLR values 
 𝜸𝒏 = LLR 𝑥𝑛  𝑦𝑛   

 Exchanged messages (𝜶, 𝜷) are also LLR values 

Initialization 

 Iterative exchange is initialized by bit-nodes:  
 

Iterations 

 Check-to-bit node messages 
 

 

 

 Bit-to-check node messages 
 

n 

𝜶 𝜷 

𝜶𝒎,𝒏 = 𝜸𝒏 

𝜷𝒎,𝒏 = LLR 𝑥𝑛  𝜶𝒎,𝒏′ ∶ 𝑛
′ ∈ 𝐻(𝑚)\𝑛   

𝜶𝒎,𝒏 = LLR 𝑥𝑛  𝜸𝒏 and 𝜷𝒎′,𝒏 ∶ 𝑚
′ ∈ 𝐻(𝑛)\𝑚  
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Belief-Propagation Decoding  

 Decoder is fed with LLR values 
 𝜸𝒏 = LLR 𝑥𝑛  𝑦𝑛   

 Exchanged messages (𝜶, 𝜷) are also LLR values 

Initialization 

 Iterative exchange is initialized by bit-nodes:  
 

Iterations 

 Check-to-bit node messages 
 

 

 

 Bit-to-check node messages 
 

n 

𝜶 𝜷 

𝜷𝒎,𝒏 =  sgn 𝜶𝒎,𝒏′

𝑛′∈𝐻 𝑚 \𝑛

𝜙  𝜙 |𝜶𝒎,𝒏′|

𝑛′∈𝐻(𝑚)\𝑛

 

𝜶𝒎,𝒏 = 𝜸𝒏 +  𝜷𝒎′,𝒏
𝑚′∈𝐻 𝑛 \𝑚

 

𝜶𝒎,𝒏 = 𝜸𝒏 

where 𝜙 𝑥 = log
𝑒𝑥+1

𝑒𝑥−1
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𝜷𝒎,𝒏 =  sgn 𝜶𝒎,𝒏′

𝑛′∈𝐻 𝑚 \𝑛

min
𝑛′∈𝐻(𝑚)\n

|𝜶𝒎,𝒏′|  
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Min-Sum Decoding  

 Decoder is fed with LLR values 
 𝜸𝒏 = LLR 𝑥𝑛  𝑦𝑛   

 Exchanged messages (𝜶, 𝜷) are also LLR values 

Initialization 

 Iterative exchange is initialized by bit-nodes:  
 

Iterations 

 Check-to-bit node messages 
 

 

 

 Bit-to-check node messages 
 

n 

𝜶 𝜷 

𝜶𝒎,𝒏 = 𝜸𝒏 +  𝜷𝒎′,𝒏
𝑚′∈𝐻 𝑛 \𝑚

 

𝜶𝒎,𝒏 = 𝜸𝒏 
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Message Passing Decoders  

 Majority Voting decoding  
 A particular case of the Gallager B decoding (1962) 

 

 Belief-Propagation (Sum-Product) decoding 
 Gallager’s probabilistic decoding (1962) 

 Belief-Propagation: MP algorithm proposed by J. Pearl (1982) 
to perform Bayesian inference on trees, but also successfully 
used on general graphical models 

 “Optimal” for codes defined by cycle-free bipartite graphs, in 
the sense that it outputs the MAP estimates of the coded bits 

 

 Min-Sum decoding 
 An approximate version of the Belief-Propagation 

 Generalization of the Viterbi algorithm, from trellises to more 
general graphical models  

 For codes defined by cycle-free bipartite graphs,  MS decoding 
outputs the ML estimate of the sent codeword 
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Message Passing Decoders  

 Min-Sum-based decoders 
 improved versions of the MS algorithm, with only a very 

limited (usually negligible) increase in complexity 

 “correction” methods to mitigate the performance penalty    
of MS with respect to BP 

 Normalized MS, Offset MS, Self-Corrected MS 

 

 Stochastic decoding 
 Stochastic implementation of the BP 

 

 Erasure decoding 

 BP  MS  Peeling decoding 
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Effectiveness of MP decoders 

 Codes defined by cycle-free graphs 

 BP = MAP  optimal in terms of “bit error rate” 

 MS = ML    optimal in terms of “word error rate” 
 

 But practical codes are defined by graphs with cycles 
 Cycles may lead to “self-confirmations” in the decoding process 

 Self-confirmations should only occur after the exchanged messages      
have been sufficiently strengthened by the iterative process 

 Avoid short cycles  
graph must be sparse  parity-check matrix is low density 

 Low Density Parity Check (LDPC) codes 

 LDPC: necessary condition, but not sufficient 
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A Revolutionary Approach to Coding 

 Rather than a family of codes, Gallager invented a new method 
of decoding linear codes, by using iterative MP algorithms 
 LDPC : necessary condition for a linear code to be effectively decoded by 

MP algorithms 

 Completely new and revolutionary approach to coding in the early 60’s 

 the classical approach was to construct first a family of codes, and then find a 
practical decoding algorithm capable to correct any number of errors up to 
the designed correction capacity (half the minimum distance) 

 no need to invent a decoding algorithm for LDPC codes: they came equipped 
with iterative MP algorithms. 

 MP algorithms: 

 linear complexity (due to the sparsity of the matrix)  

 allow the use of long codes: indispensable condition to approach the channel 
capacity 
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Outline 

 Coding for noisy channels: from Shannon to Shannon 

 Linear codes and Shannon’s Theorem 

 Iterative message passing decoders and LDPC codes 

 Approaching the Shannon limit 

 Coding for noisy channels with noisy devices 

 Noisy message-passing decoders 

 Impact of the “computation noise” on the error          
correction performance 
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Error Correction Capacity of MP Decoders 

 Richardson et al. (2001) 

 Density Evolution  asymptotic performance 

 Asymptotically, the error correction capacity 
depends only on the “irregularity profile”  

 

 

 
 𝜆𝑑 = fraction of edges incident to deg-d bit-nodes 

 𝜌𝑑 = fraction of edges incident to deg-d check-nodes 
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deg = 2 

deg = 3 

deg = 4 

deg = 4 

deg = 5 

𝜆 𝑥 =  𝜆𝑑𝑥
𝑑−1

𝑑  ,   𝜌 𝑥 =  𝜌𝑑𝑥
𝑑−1

𝑑  

irregularity profile 

 Threshold phenomenon 

 Threshold value separating the region where 
reliable decoding is possible from where it is not 

 p < pTH  successful decoding 

 p > pTH  unsuccessful decoding 

 Optimization: find (𝜆, 𝜌) s.t pTH is close to capacity 
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Asymptotic analysis of MP decoders 

Density evolution  

 Recursive relation between the distribution of messages exchanged at 
iteration ℓ and the distribution at iteration ℓ+1 

 Easy case: binary-alphabet decoders (e.g. MV) – messages’ distribution is 
defined by only one probability value 

 Difficult case: continuous-alphabet decoders (BP, MS)  

 In between: finite-alphabet decoders (e.g. quantized decoders) – messages’ 
distribution is a probability mass function on a finite number of values 

 This recursion allows computing the error probability 𝒑ℓ at iteration ℓ  

 Taking the limit as ℓ → ∞, one can determine whether the decoding is 
successful (𝒑ℓ → 0) or not  

Assumption 

 independent messages  cycle-free graph  code length (N) goes to 
infinity 
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Density evolution for MV decoding over BSC 

 C(dv, dc) – ensemble of (dv, dc)-regular LDPC codes 

 pℓ = error probability at the ℓth iteration of the MV decoding (probability that a 
bit-to-check message at iteration ℓ is in error) 

 p0 = crossover probability of the BSC channel 

 

 

 

 

 

 

 

 Threshold value: pTH = sup { p0 | limℓ pℓ = 0 } 

 Worst channel condition that allows successful decoding  

 (assuming that both code length and number of iterations go to infinity) 

dv-1 

k = b 

 
1 – (1 – 2pℓ-1)dc-1 

2 

dv-1 

k 

1 + (1 – 2pℓ-1)dc-1 

2 

k dv-1- k 

        (1 – p0)  

dv-1 

k = b 

 
1 + (1 – 2pℓ-1)dc-1 

2 

dv-1 

k 

1 – (1 – 2pℓ-1)dc-1 

2 

k dv-1- k 

  pℓ    =    p0 –  p0  + 

b = 
dv+1 

2 
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Density evolution for MV decoding over BSC 

     dv dc Rate 

3 

4 

5 

6 

8 

10 

0.5 

0.5 

0.5 

pTH – MV pTH – BP capacity 

0.040 

0.051 

0.041 

0.084 

0.076 

0.068 

0.11 

0.11 

0.11 

Regular (3, 6) LDPC code, MV decoding Regular (3, 6) LDPC code, BP decoding 
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 Recursive relation: PDFl+1 = f(PDFl), where PDF = probability density function 
of bit-to-check node messages 

 Iteration number:  l  =   

 

 

 

 

 

 

 

 

 

 

 

 Gaussian approximation: PDFl  N(ml, 2ml)  ml+1 = f(ml) 

Density evolution for BP over the BI-AWGN 
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 = 0.8  

[Eb/N0 = 1.94 dB] 

(N.B: TH = 0.88) 
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Density evolution for BP over the BI-AWGN 

dv dc Rate
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Asymptotic optimization of LDPC codes 

 The density evolution technique can be applied to irregular codes 

 It allows determining a threshold value that depends only on the 
degree distribution polynomials (, ) 

Optimization 

 Find (, ) that maximize pTH(, )  
 Hopefully, pTH(, ) is close to the channel capacity  

 Linear optimization, genetic algorithms  

 Irregular LDPC code over the BI-AWGN (rate = 1/2) 
 (X) = 0.17120 X + 0.21053 X2 + 0.00273 X3 + 0.00009 X6 + 0.15269 X7 + 

             0.09227 X8 + 0.02802 X9 + 0.01206 X14 + 0.07212 X29 + 0.25830 X49  

 (X) = 0.33620 X8 + 0.08883 X9 + 0.57497 X10 

th = 0.98   Eb/N0th = 0.26 dB       (gap to capacity  = 0.08 dB!) 
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Asymptotic optimization of LDPC codes 

Irregular LDPC codes over AWGN channel 

(3,6)–regular:  

irregular:  

th = 0.88    [pth = 0.128] 

th = 0.97    [pth = 0.151] 

capacity:  Sh = 0.98    [pSh = 0.153] 

Simulated codes are of length N = 106 

(X) = 0.17120X + 0.21053X2 + 0.00273X3 + 0.00009X6 + 0.15269X7 + 0.09227X8 + 0.02802X9 + 0.01206X14 + 0.07212X29 + 0.25830X49  

(X) = 0.33620X8 + 0.08883X9 + 0.57497X10 

  

 p 
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Conclusion (from Shannon to Shannon) 
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Outline 

 Coding for noisy channels: from Shannon to Shannon 

 Redundancy, linear codes and Shannon’s Theorem 

 LDPC codes and iterative message-passing decoders 

 Approaching the Shannon limit 

 Coding for noisy channels with noisy devices 

 Noisy message-passing decoders 

 Impact of the “computation noise” on the error          
correction performance 
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Motivation 

 Decoders running on noisy (faulty) devices? 

1. Low-power / high-throughput decoders 

 Tradeoff between power consumption, latency, and reliability                       
(e.g. aggressive voltage scaling – near/sub-threshold) 

 

2. Emerging technologies  

 Unreliability is of the most critical challenges for the next-generation 
electronic circuit design 

 

3. Alternative fault-tolerance solutions 

 Reliable computing with unreliable components 

 Modular redundancy  more powerful error correcting codes 
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Noisy Message Passing Decoders 

 Can MP decoders provide reliable error-protection if they are 
implemented in unreliable HW? 

 Unreliable HW  new source of errors that occur during the decoding 
process 

 

 Intuition 1: Yes they can! 
 Decoders deal with errors anyway; they should also be able to cope with 

HW-induced errors!  

 

 Intuition 2: No, they can’t! 
 Unreliable HW generates “computation errors”, not “transmission errors”, 

which can propagate in a catastrophic way through the iterative decoding 
process! 
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Noisy Min-Sum Decoder 

Noiseless Min-Sum Decoder Noisy Min-Sum Decoder 

pc 

pa 

px 

 Generalize the DE analysis to the case of noisy MS 
 Predict the behavior and the performance of the decoder without relying 

on extensive Monte Carlo simulations 

 Recursive DE equations  

determine error probability at each iteration ℓ:   𝑃𝑒
(ℓ)
𝑝0, 𝑝𝑎 , 𝑝𝑐, 𝑝𝑥  
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Analytical Results 

 HW noise  error probability is bounded above zero; However: 
 We can derive lower bound: tight for small pc, px, pa values 

 Threshold phenomenon similar to the noiseless case 

 

 

 

 

 

 

 

 

 

 “Stable” decoder: error probability close to lower bound can be 
maintained for infinitely mainly iterations  
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Analytical Results 

 HW noise can sometimes improve the error correction capability 

 

 

 

 

 

 

 

 
 HW noise helps the MS decoder to escape from  fixed point attractors 
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Simulation Results 

 solid curves: noiseless MS 

 dashed curves: noisy MS 

Noisy decoder 

outperforms 

noiseless one 

similar 

performance 
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Simulation Results 

 Black curve: noiseless MS 

 Other curves: noisy MS with different noise parameters 
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Outline 

 Coding for noisy channels: from Shannon to Shannon 

 Redundancy, linear codes and Shannon’s Theorem 

 LDPC codes and iterative message-passing decoders 

 Approaching the Shannon limit 

 Coding for noisy channels with noisy devices 

 Noisy message-passing decoders 

 Impact of the “computation noise” on the error          
correction performance 

 Conclusion 
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Conclusion (second part) 

 Unreliable devices: new paradigm in coding theory 
 

 Analytical proof that iterative MP decoders can still operate   
with faulty hardware 
 we can predict the level of noise that can be tolerated 

 

 Noisy threshold phenomenon 
 The functional threshold 

 

 Corroboration of the asymptotic analysis through finite-length 
simulations 
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Thank you! 


