
1

Predictable, Low-power Arithmetic Logic Unit
for the 8051 Microcontroller using Asynchronous

Logic
D. Mc Carthy, N. Zeinolabedini, J. Chen, E. Popovici

Abstract—Modern embedded systems require all their
components, including their microcontroller, to be opti-
mised with respect to the power budget. Two properties
are desirable. The first is low power usage and the sec-
ond is predicable power usage, for improved estimation
of firmware performance.

In this paper we present all the arithmetic circuits
for an ALU of an 8051 microcontroller implemented in
Asynchronous Charge Sharing Logic (ACSL). This im-
plementation seeks to give these two desirable proper-
ties for a processor for embedded systems. The first,
low power usage, obtained through charge sharing. The
second, predictable power usage, is sought by ensuring
that the power required to complete an operation is in-
dependent of its inputs.

The experimental techniques used in designing ACSL
were also improved in the execution of this work, allow-
ing the ACSL circuits to be entered using Verilog for fast
initial testing and then translated to SPICE for detailed
simulation.

Through implementation and simulation, it was deter-
mined that the use of ACSL can offer power predictabil-
ity.

I. Introduction

Modern embedded systems require all their compo-
nents, including their micro- controller, to be optimised
with respect to the power budget. Two properties are
desirable. The first is low power usage as the battery
life of embedded devices is a bottleneck in the field. The
second is easily predicable power usage [1], [2].

In this paper we present a full set of arithmetic com-
ponents for the ALU of an 8051 micro-controller [3]
implemented in Asynchronous Charge Sharing Logic
(ACSL) [4]. This implementation seeks to give these
two desirable properties for a processor for embedded
systems. The first, low power usage, is sought through
asynchronous charge sharing. The second, predictable
power usage, is sought by ensuring that the power re-
quired to complete an operation does not depend on
the inputs. If this property can be provided, average-
case power analysis is very straightforward in the de-
sign which could be significant in battery-life estima-
tion. Only the types of operation (addition, multiplica-
tion, division, logic) would have to be considered during
power analysis rather than the input patterns.

All authors are with the Centre for Efficiency Oriented Lan-
guages (CEOL) and the Department of Electrical and Elec-
tronic Engineering, University College Cork, Ireland. E-mail:
davidmc@ue.ucc.ie

Fig. 1. Block diagram of an 8051 microcontroller.

The 8051 is an 8-bit microcontroller designed by In-
tel in 1980. A block diagram is shown in Figure 1.
This microcontroller was chosen for this work because
it is a very common microcontroller. 8051 compatible
parts are available from a wide variety of sources. More
background of the 8051 will be discussed in section II.
In areas where ultra-low power operation is desirable,
such as wireless sensor networks, the 8051 is particu-
larly popular since variants are available with an on-die
radio.

Asynchronous Charge Sharing Logic (ACSL) [4] is a
asynchronous logic [5] family that uses charge sharing
techniques to reduce power consumption. ACSL uses
adiabatic gate designs but does not generate the power-
clock in an adiabatic fashion (usually involving resonant
circuits) and is thus is not itself an adiabatic logic fam-
ily. Instead ACSL recovers energy from each stage using
charge sharing. The variability due to charge sharing
operation is compensated by using asynchronous design
principles. This has several advantages, such as not re-
quiring a multi-phase AC supply [6] to function and al-
lowing asynchronous operation. While ACSL does not
have the theoretical power saving potential of adiabatic
logic, in practice it achieves similar savings [4]. An-
other advantage of ACSL resides in the fact that the
drawbacks of variability associated with charge shar-
ing logic are compensated by the properties of asyn-
chronous logic. Compared with other dual-rail asyn-
chronous logic families, ACSL does not require complex
completion detectors which not only improves power ef-
ficiency but also decreases the area required.



2

II. The Microcontroller

The 8051 is a Complex Instruction Set Computer
(CISC) design, with an instruction set optimised for
manually developed assembly code. It contains sin-
gle instructions for each of the 4 arithmetic operations:
add, subtract, multiply, divide. Because of two’s com-
plement, the add and subtract instructions are suitable
for both signed and unsigned operation. The multiply
and divide instructions are unsigned. Either a one or
(add, subtract) or two (multiply and divide) byte re-
sults is produced. Three flags are also set based on
arithmetic functions: carry, auxiliary carry and over-
flow.

Logic and shift operations are also available. Logi-
cal AND, OR, XOR and NOT are provided. Five Shift
operations are supported. Four are rotations (cyclical),
allowing shifting left or right of either the 8-bit accumu-
lator register by itsself or through both the accumulator
and the carry-bit. The 5th shift is a nybble-swap, ex-
changing the top and bottom 4 bits of the accumulator.

Additionally a ’decimal adjust’ instruction is pro-
vided to allow for BCD operations. This assumes a
packed BCD format with one BCD digit in each nyb-
ble of a byte. This is achieved by a regular addition
followed by the decimal adjust instruction, which se-
lectively increases the accumulator to make the con-
tents valid BCD. Finally 16-bit plus 8-bit additions are
needed for address calculations, this is provided for by
the ALU in this work.

The arithmetic operations resulting from this work
are designed to resemble the ALU of the opencores.org
8051 [7], an open-source soft-core 8051. In this ALU,
there are 3 input bytes and 2 output bytes to the ALU,
as well as input and output flags.

III. Asynchronous Charge Sharing Logic

Asynchronous Charge Sharing Logic (ACSL) is based
on the PFAL [8], [6] adiabatic logic family. It uses the
same gate structure, consisting of both true and comple-
mentary NMOS pull-up networks and a cross coupled
inverter pair. Figure 2(b) shows a PFAL/ ACSL AND
gate (output F). When idle, the power-clock is zero. To
evaluate the gate, the power-clock is raised, first with
shared charge for the previous stage and then with fresh
charge from the power supply. The NMOS pull-up tree
provides an initial pull to set one output of the gate,
and the output levels are fully restored by feedback in
the inverter pair. A latch is placed on each gate output.
A 4-transistor dynamic latch is used, functioning like a
NOR-type SR latch. This serves to provide clear logic
levels from one stage to the next even while the power
clock charge is being shared between them.

Both adiabatic logic and ACSL save power from ca-
pacitive losses through re-use of charge from the power-
clock. In adiabatic logic, power saving is obtained

(a)

BA

A

B

Cross-Coupled Inverters

F

Vpc

F

True
NMOS
Pull-Up Inverse

NMOS
Pull-Up

Power Clock

(b)

(c)

Fig. 2. ACSL architecture (a), transistor-level design of an AND
gate (b) and 4-transistor latch (c)

through recovery of the charge into the AC supply.
ACSL instead saves power through charge sharing. The
charge in the capacitances in the previous stage of stage
of gates is allowed to distribute into the current stage
before fresh charge is drawn from the power supply.

The operation of ACSL is determined by an asyn-
chronous handshake, which triggers the operation of
each stage. The handshake is defined in terms ofthe
stage power-clock vpc[n] and 3 additional signals,
ctrl[n], complete[n] and shared[n]. The handshake
is detailed in algorithm 1. This handshake is imple-
mented using a mix of static and (traditional) dynamic
gates, with the dynamic gates being used for storing
state. Charging of the power-clock is done with a wide-
dimension PMOS pull-up, sharing with a wide NMOS
pass transistor and charge-dump using a wide NMOS
pull-down.



3

ctrl[n− 1] causes shared[n] = 0;
complete[n− 1] causes ctrl[n] = 1;
ctrl[n] · ¬shared[n] causes sharing vpc[n− 1] between
vpc[n];
vpc[n] ≥ 0.5vdd causes shared[n] = 1;
ctrl[n] · shared[n] causes charging of vpc[n];
vpc[n] = vdd causes complete[n] = 1;
ctrl[n+ 1] causes ctrl[n] = 0;
complete[n+ 1] causes complete[n] = 0, discharging of
vpc[n];

Algorithm 1: Basic ACSL handshake

IV. Arithmetic Circuit Design

The arithmetic circuits resulting from this work de-
signed with reference to the ALU of the opencores.org
8051 [7], an open-source soft-core 8051.

Addition and subtraction are implemented using a
ripple carry adder, with XOR gates before and after to
perform the one’s complement and adjust the input and
output flags. To facilitate the 16-bit plus 8-bit adds, the
top 8-bits are incremented and a multiplexer is used to
select between the incremented and the original based
on the carry out signal of the full adder in the bottom
8 bits. All additions and subtractions are performed in
10 stages of asynchronous logic, 1 for setup, 8 for the
main computation and 1 for producing the flags and
high byte of a 16-bit result.

An array multiplier [9] is used for the multiplication
operation. A 7-bit by 8 layer array rectangular array
is used. The AND gates for partial product genera-
tion is interleaved with the array to equalise per-stage
load. The final adder is implemented using a static rip-
ple carry adder. This multiplier uses 9 stages of asyn-
chronous logic. One generates initial partial products,
and 8 constitute the main multiplication array

Division is achieved using a non-restoring array di-
vider [10]. This divider is similar to the standard
repeated-subtraction algorithm, but avoids using mul-
tiplexers at each stage for restoration by selecting addi-
tion for the following stage instead of subtraction when
overflow occurs. Ripple carry adders plus XOR gates
are used internally. The main divider array consists
of 9 by 8-bit add/subtract units, 8 producing 1 bit
each of the 8 quotient bits and 1 to correct the remain-
der. A stage of ACSL multiplexers is then used to se-
lect between the corrected and uncorrected remainder.
However the basic non-restoring divider array performs
signed division. To give the unsigned division required
for an 8051, an additional side logic path is provided
to handle divisors with the most significant bit set. A
single subtraction and restore is performed. A final
multiplexer is used to select between the main result
and the big divisor result.

Each adder/subtractor is implemented in 9 stages,

consisting of a diagonal arrangement of XOR gates and
full adders. The whole circuit consists of 94 stages of
asynchronous logic. The logic for handling large stages
consists of 11 stages: 1 stage of buffer, 1 stage of multi-
plexer and 9 stages for a subtractor. The main division
array consists of 72 stages, and the correction adder and
multiplexer totals 10 stages. The final multiplexer for
selecting between the big divisor and regular result is
the 94th stage.
Using Kogge-Stone adders [11] was also considered

to decrease the stage count but this was in fact slower,
larger and more power-hungry, due to the increased gate
count (in spite of the reduced stage count). Also, charge
sharing was not as effective between the different types
of stages involved in such an adder as between the ho-
mogeneous stages of ripple carry divider.
Logic operations are implemented using a single stage

of the relevant ACSL gates in parallel. Shift operations
are implemented using a single stage of buffers, wired
appropriately.
The final operation to be implemented is the deci-

mal adjust. 1 3-bit adder is used to correct the bottom
nybble, of which the bottom bit remains unchanged.
Having corrected the bottom nybble, 2 4-bit adders are
used to generate possible corrections for the top nyb-
ble. Multiplexers are used to choose the correct output
based on the flags input and carry-out signals of the
adders.

V. Experimental methods

The circuit capture techniques used in designing
ACSL were also improved in the execution of this work.
Previous work on ACSL has been done using either ana-
log IC schematic capture tools or worked directly using
SPICE netlists. In this work, the Verilog hardware de-
scription language was used to design most of the ACSL
circuits.
A structural style of Verilog was used, with the cir-

cuit described entirely using module instances. For
the dynamic gates implementing the ACSL handshake,
behavioural models were coded. For the ACSL gates
themselves, each type of gate is described in a module.
Standard Verilog Boolean expressions are given for the
true and false pull-up networks of the gate, and given
as inputs to a generic gate behavioural module.
The first advantage of this is that Verilog is a high

level hardware description language. It has a much
more readable syntax, in particular having buses rather
than single wires greatly reduces repetition in the code.
Module connections by port name also help greatly.
Secondly Verilog can be simulated at a high level very
quickly, allowing for easy logical verification of the cir-
cuit. Thirdly Verilog has detailed warnings, making
mistakes in schematic capture, such as disconnected
wires much more obvious.
However, Verilog cannot model the power usage of



4

TABLE I

Simulation Results

Operation AND Add,Sub Multiply Divide
Power (µW) 13.45 11.71 14.45 111.72
Variation 3.8% 3.4% 9.8% 1.5%
Delay (ns) 0.47 1.38 3.16 21.60
Variation 1.7% 1.0% 33.5% 0.4%
Transistors 204 1308 3041 8954

ACSL. To measure power, the circuitry is translated to
a SPICE netlist to be simulated in a conventional man-
ner. This is achieved using a mix of Synopsys V2S
and a custom translator for gate descriptions. Syn-
opsys V2S is a generic Verilog-to-Spice translated in-
cluded in the Synopsys HSIM package. However V2S
will attempt to translate ACSL gate descriptions into
a set of static gates plus an instance of generic gate
behavioural model. Thus a custom translator was writ-
ten, which finds the gate definitions and writes SPICE
netlists, with a generic gate core (cross-coupled invert-
ers) and NMOS pull-up networks corresponding to the
given logic functions. The gate definitions are written
into their own Verilog file, the gate translator is used
to produce a Spice netlist for the gates. Then the V2S
utility is used on the rest of the Verilog sources with the
Spice file of gates used as a library. Finaly, this SPICE
netlist can be simulated using HSPICE.

VI. Results

Power measurements were taken of the ACSL cir-
cuits using HSPICE for transistor level simulation. A
TSMC 45nm process was used operating at 1.0V. Each
circuit was evaluated with an operation every 30 ns
(33.3MHz). The first few operations for each circuit
were discarded to ignore startup effects, then 10 input
patterns were recorded. Inputs were randomly selected.
Both delay and power were measured for each input.
Given in Table I are the average power and delay, and
also how far as a percentage the furtheset outlier was
away from the average.

For comparison, a divider was implemented in static
logic, also at transistor level in the same process on
HSPICE. The average power of the divider was found
to be 23.00µW, with deviations of 43.0%. The average
delay was 0.377 ns with a maximum of 0.85 ns. This
circuit contained 3450 transistors.

VII. Conclusions

Very good power predictablity was observed in 3
of the 4 circuits tested (AND, Add-Subtract, Divide)
with slightly higher power variations oveserved on the
multiplier. Delay was also almost constsant for the

AND, Add-subtract and Divide circuits but varied more
widely for the Multiplier. All of the power variation
figures were significantly better than the variation as-
sociated with the static divider.
Absolute power savings were not observed in this

work. The ACSL divider consumed an average of
111.72 µW compared to 23.00 for the static divider, thus
ACSL is 4.86 times higher. Possible explainations for
this include the dual-rail versus single rail nature of
ACSL, the overhead of the handshake, and reevaluating
gates that would not have to change in static operation.
Delay for ACSL is also much worse, being 25.5 times

worse in worst case and 57.3 times worse in the average
case, almost two orders of magnitude. However, ACSL
is still sufficiently fast that it could lead to instruction
times in the tens of Megahertz range that typical 8051
microcontrollers are used at.
Future work will focus on different multiplier archi-

tectures or a more fully asyncrhonous version of the
current architecture to minimise variation. Other oper-
ations will be optimised to reduce power usage.

Acknowledgements

This work was funded by the Science Foundation
Ireland under Grant number 07/IN.1/I977 and by
the Seventh Framework Programme of the European
Union, under Grant Agreement number 309129 (i-RISC
project).

References

[1] F. Najm, “A survey of power estimation techniques in vlsi
circuits,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 2, no. 4, pp. 446–455, 1994.

[2] S. Sultan and S. Masud, “Rapid software power estima-
tion of embedded pipelined processor through instruction
level power model,” in Performance Evaluation of Computer
Telecommunication Systems, 2009. SPECTS 2009. Interna-
tional Symposium on, vol. 41, 2009, pp. 27–34.

[3] MCS-51 8-bit Control-Oriented Microcomputers, Intel Cor-
poration, 1988.

[4] J. Chen, E. Popovici, D. Vasudevan, and M. Schellekens,
“Ultra low power booth multiplier using asynchronous
logic,” in Asynchronous Circuits and Systems (ASYNC),
2012 18th IEEE International Symposium on, 2012, pp. 81–
88.

[5] A. Martin and M. Nystrom, “Asynchronous techniques for
system-on-chip design,” Proceedings of the IEEE, vol. 94,
no. 6, pp. 1089–1120, 2006.

[6] P. Teichmann, Adiabatic Logic: Future Trend and System
Level Perspective, 1st ed. New York, NY, USA: Springer,
2012.

[7] J. Simsic and S. Teran. (2013, Sep.) 8051 core. [Online].
Available: http://opencores.org/project,8051

[8] A. Vetuli, S. Pascoli, and L. Reyneri, “Positive feedback
in adiabatic logic,” Electronics Letters, vol. 32, no. 20, pp.
1867–1869, 1996.

[9] B. Parhami, Computer Arithmetic: Algorithms and Hard-
ware Designs. New York: Oxford University Press, 2010.

[10] J. J. F. Cavanagh, Digital Computer Arithmetic: Design
and Implementation. McGraw-Hill Book Company, 1984,
ch. 4.

[11] P. M. Kogge and H. S. Stone, “A parallel algorithm for the
efficient solution of a general class of recurrence equations,”
Computers, IEEE Transactions on, vol. C-22, no. 8, pp.
786–793, 1973.


