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Abstract—This paper deals with Low-Density Parity-Check
decoders running on noisy hardware. This represents an un-
conventional paradigm in communication theory, since it is
traditionally assumed that the error correction decoder operates
on error-free devices and the randomness (in the form of noise
and/or errors) exists only in the transmission channel. However,
with the advent of nanoelectronics, it starts to be widely accepted
that the future generations of circuits and systems will need to
reliability compute and solve statistical inferences, by making use
of unreliable “noisy” components. It is then critical to properly
evaluate the robustness of the existing decoders in the presence
of an additional source of noise at the circuit level. To this end,
we first introduce a new error model approach and carry out
the “noisy” density evolution analysis of the fixed-point Min-Sum
decoding. Then, for different parameters of the noisy components
of the decoder, we determine the range of the signal-to-noise
ratio values for which the decoder is able to achieve a target
bit error rate performance. Finally, we evaluate the finite-length
performance of the Min-Sum and two other Min-Sum-based
decoders running on noisy hardware.

I. INTRODUCTION

In traditional models of communication systems with error

correction coding, it is assumed that the operations of an

error correction encoder and decoder are deterministic and

that the randomness exists only in the transmission channel.

However, with the advent of nanoelectronics, the reliability

of the forthcoming circuits and computation devices is be-

coming questionable. Indeed, due to huge increases in density

integration, lower supply voltages, and variations in the tech-

nological process, MOS and emerging nanoelectronic devices

will be inherently unreliable. Besides, a significant challenge

to current CMOS design is to lower the energy consumption

by several factors of magnitude, with the obvious goal of

energy preservation. Diminishing the energy consumption can

be addressed by aggressive supply voltage scaling, with the

drawback that bringing the signal level closer to the noise level

reduces noise immunity and leads to unreliable computing. It

is then becoming crucial to design and analyze error correcting

decoders able to provide reliable error correction even if they

are made of unreliable components.

Except the pioneered works by Taylor and Kuznetsov on

reliable memories [1]–[3], later generalized in [4], [5] to

the case of hard-decision decoders, this new paradigm of

noisy decoders has merely not been addressed until recently

in the coding literature. However, over the last years, the

study of error correcting decoders, especially Low-Density

Parity-Check (LDPC) decoders, running on noisy hardware

attracted more and more interest in the coding community.

In [6] and [7] hardware redundancy is used to develop fault-

compensation techniques, able to protect the decoder against

the errors induced by the noisy components of the circuit. In

[8], a class of modified Turbo and LDPC decoders has been

proposed, able to deal with the noise induced by the failures of

a low-power buffering memory that stores the input soft bits

of the decoder. Very recently, the characterization of the effect

of noisy logic components (faulty gates) on standard iterative

LDPC decoders has been proposed. In [9], the concentration

and convergence properties were proved for the asymptotic

performance of noisy message-passing decoders, and density

evolution equations were derived for the noisy Gallager-A

and Belief-Propagation decoders. In [10]–[12], the authors

investigated the asymptotic behavior the noisy Gallager-B de-

coder defined over binary and non-binary alphabets. However,

all these papers deal with very simple error models, which

emulate the noisy implementation of the decoder, by passing

each of the exchanged messages through a noisy channel.

In this paper we focus on the Min-Sum and Min-Sum-based

decoders, which are widely implemented in real communica-

tion systems. In order to emulate the noisy implementation

of the decoder, probabilistic error models are proposed for

its arithmetic components (adders and comparators). The pro-

posed probabilistic components are used to build the noisy

fixed-point decoders. We further analyze the asymptotic per-

formance of the noisy Min-Sum decoder, and provide useful

regions and target-BER-thresholds [9] for a wide range of pa-

rameters of the proposed error models. Finally, we investigate

the finite length performance of the noisy Min-Sum, Offset-

Min-Sum, and Self-Corrected Min-Sum decoders.

II. LDPC CODES AND MIN-SUM ALGORITHM

A. LDPC Codes

LDPC codes [13] are linear block codes defined by sparse

parity-check matrices. They can be advantageously represented

by bipartite (Tanner) graphs [14] and decoded by message-

passing iterative algorithms. The Belief-Propagation (BP) de-

coding – also referred to as Sum-Product (SP) – is known to

be optimal on cycle-free graphs, but can also be successfully

applied to decode linear codes defined by graphs with cycles,

which is actually the case of all practical codes. However, in

practical applications the BP algorithm is disadvantaged by



its computational complexity and the fact that it requires the

perfect knowledge of the channel parameter (e.g. SNR), which

may be imprecisely estimated in practical situations.

The Min-Sum (MS) algorithm is aimed at reducing the

computational complexity of the BP, by using max-log approx-

imations of the parity-check to coded-bit messages. The only

computations required by the MS decoding are additions and

comparisons, which solves the computational complexity and

numerical instability problems. For most of the usual channel

models, the performance of the MS decoding is also known

to be independent of the knowledge of the channel parameter.

B. Notations

We consider an LDPC code defined by a bipartite (Tanner)

graph H, with N variable-nodes and M check-nodes [14].

Variable-nodes and check-node are denoted, respectively, by

n ∈ {1, 2, ..., N} and m ∈ {1, 2, ...,M}. H(n) and H(m)
denote the set of neighbor nodes of the variable-node n and

of the check-node m, respectively.

We further consider a codeword (x1, . . . , xN ) that is sent

over a memoryless noisy channel, and denote by (y1, . . . , yN )
the received word. The following notation will be used

throughout the paper, with respect to message passing de-

coders:

• γn is the log-likelihood ratio (LLR) value of xn according

to the received yn value; it is also referred to as the a

priori information of the decoder concerning the variable-

node n;

• γ̃n is the a posteriori information (LLR value) of the

decoder concerning the variable-node n;

• αm,n is the variable-to-check message sent from variable-

node n to check-node m;

• βm,n is the check-to-variable message sent from check-

node m to variable-node n.

C. Min-Sum Decoding

The MS decoding works as follows. First variable to-check-

messages are initialized according to the corresponding a

priori LLR values. Then each decoding iteration consists of

three steps, namely the check-node (CN) processing step, the

a posteriori (AP) information update, and the variable-node

(VN) processing step.

Initialization

• γn = log

(
Pr(xn = 0|yn)

Pr(xn = 1|yn)

)
, ∀ n ∈ {1, . . . , N};

• αm,n = γn, ∀ n ∈ {1, . . . , N} and m ∈ H(n);

Iterations

• CN-processing: ∀ m ∈ {1, . . . ,M} and n ∈ H(m)

βm,n = (
∏

n′∈H(m)\n

sgn(αm,n′)) min
n′∈H(m)\n

(|αm,n′ |)

• AP-update: for ∀ n ∈ {1, . . . , N}

γ̃n = γn +
∑

m∈H(n)

βm,n

• VN-processing: for ∀ n ∈ {1, . . . , N} and m ∈ H(n)

αm,n = γ̃n − βm,n

III. NOISY MIN-SUM DECODER

In order to emulate the noisy implementation of the Min-

Sum decoders, we propose realistic error models for adders

and the comparators, which are the only two arithmetic

components of the decoder. We shall not consider here the

case of errors that may occur due to the temporary storage of

the exchanged messages in possibly noisy memories (in order

not to depend on a specific decoder architecture). However,

we note that the effect of noisy memories on the exchanged

messages can be integrated into the probabilistic models of

the arithmetic components, in the sens that adding noise in

memories would modify the parameters of the probabilistic

arithmetic components.

As our goal is to investigate a Min-sum decoder imple-

mented on noisy hardware, we have to consider a fixed-point

(quantized) Min-sum decoder. The number of quantization bits

used for the a priori / a posteri information and exchanged

messages will also determine the number of bits of its fixed-

point arithmetic components.

A. Fixed-Point Min-Sum decoder

We consider a fixed-point Min-Sum decoder, in which the

a priori information (γn) and the exchanged messages (αm,n

and βm,n) are quantized on q bits. The a posteriori information

γ̃n is quantized on q̃ bits with q̃ > q (usually q̃ = q + 1, or

q̃ = q + 2). We further denote:

• M = {−Q, . . . ,−1, 0,+1, . . . ,+Q}, where Q = 2q−1 − 1,

the alphabet of the a priori information and of the

exchanged messages;

• M̃ = {−Q̃, . . . ,−1, 0,+1, . . . ,+Q̃}, where Q = 2q̃−1 − 1,

the alphabet of the a posteriori information;

• q : R → M, a fixed q-bit quantization map

• sM : Z → M, the q-bit saturation map defined by:

sM(z) =





−Q, if z < −Q
z, if z ∈ M

+Q, if z > +Q

• s
M̃

: Z → M̃, the q̃-bit saturation map defined in a

similar manner as the previous one

The quantization map q determines the q-bit quantization of

the a priori LLR values, while saturation maps sM and s
M̃

define the fixed-point saturation of the exchanged messages

and a posteriori LLR values.

B. Model for the Noisy Adder

Adders are used in the decoder to compute the a posteriori

information γ̃n (quantized on q̃ bits) and messages αm,n

(quantized on q bits). Given that q̃ > q, we only consider q̃-bits

adders (which also corresponds to practical implementations,

since the value of αm,n is derived from that of γ̃n).

The noisy (probabilistic) adder is defined by the following

parameters:

• pa is the probability that the adder’s output is in error;

• qe is the number of bits of the adder output, starting from

the least significant bit (LSB), that can be affected by

errors. Hence, qe ≤ q̃, and it is referred as the depth of

the probabilistic model.



Table I
EXAMPLE OF AN ERROR INJECTION IN THE OUTPUT OF THE NOISY ADDER

integer 2’s complement bit representation

exact output −11 1 0 1 0 1

error pattern 6 0 1 1 0

erroneous output −13 1 0 0 1 1

bit position q̃ = 5 qe = 4 3 2 1

The probabilistic model is further specified as follows. Let

d be an integer, referred to as error-pattern, for which the

positions of 1’s (within its binary representation) indicate the

locations of the erroneous bits in the adder’s output. The output

of the adder is error-free if and only if d = 0. The error-pattern

d belongs to an alphabet D, which is defined as follows.

• When qe < q̃ the error-pattern d is an unsigned integer

represented on qe-bits, hence D = {0, 1, . . . , Qe}, with

Qe = 2qe − 1.

• When qe = q̃ the sign of the output may also be in error,

hence d is a signed integer represented on qe = q̃ bits

and D = {−Q̃, . . . ,−1, 0, 1, . . . , Q̃}

The output of the noisy adder is obtained by performing a

bit-wise xor operation between the output of the noiseless

adder and d. Furthermore, we consider that all non-zero error

patterns have equal probability. Since pa =
∑

d 6=0 Pr(d),
it follows that for any d 6= 0, Pr(d) = pa

|D|−1 , while

p(0) = 1− pa.

Finally, the probabilistic adder is defined by:

apr(x, y) = s
M̃
(x+ y) ∧ d, ∀(x, y) ∈ M̃2,

where d is drawn randomly from D according to the above

probabilities, and ∧ symbol denotes the bitwise xor operation.

Table I gives an example of an erroneous adder output, for

q̃ = 5 and qe = 4. In this case, since qe < q̃, the sign bit of

the output cannot be affected by errors. However, it worth

noting that in case of an “addition chain”, as for instance

(x+ y)+ z, the sign of the noiseless fixed-point output, given

by s
M̃
(s

M̃
(x+ y)+ z), may be different from the sign of the

noisy output, given by apr(apr(x, y), z).
Finally, we note that the depth parameter qe is used to

investigate the decoder behavior when errors may occur on

increasing significantly bits. It can be used as a guideline for

the hardware architecture of adders made from noisy compo-

nents (logic gates). In order to ensure a target performance

of the decoder, adders should be specifically designed, such

that to be compliant with the maximum admissible qe value

(e.g. by using classical fault-tolerant solutions for the MSBs,

as modular redundancy).

C. Model for Noisy Comparator

The probabilistic error model of the noisy comparator is

simpler, and it is specified only by a single error probability

parameter, denoted by pc. We consider q-bit comparators that

are used at the CN-processing step, and for any x, y ∈ M the

probabilistic minimum of x and y, denoted by mpr(x, y) is

defined by:

mpr(x, y) =

{
min(x, y), with probability 1− pc
max(x, y), with probability pc

D. Quantized Noisy Min-Sum Decoding

Using the previous notation, the noisy fixed-point Min-Sum

decoder can be described as follows (probabilistic components

appear in red):

Initialization

• γn = q

[
ln

(
Pr(xn = 0 | yn)

Pr(xn = 1 | yn)

)]
, ∀ n ∈ {1, . . . , N};

• α
(0)
m,n = γn, ∀ n ∈ {1, . . . , N} and m ∈ H(n);

Iterations: for ℓ ≥ 1

• CN-processing: ∀ m ∈ {1, . . . ,M} and n ∈ H(m)

β
(ℓ)
m,n =

∏

i=1,...,dc−1

sgn
(
α(ℓ−1)
m,ni

)
·

mpr

(
mpr

(
|α

(ℓ−1)
m,n1

|, |α
(ℓ−1)
m,n2

|
)
· · · , |α

(ℓ−1)
m,ndc−1

|
)

• AP-update: for ∀ n ∈ {1, . . . , N}

γ̃(ℓ)
n = apr

(
apr

(
γn, β

(ℓ)
m1,n

)
· · · , β(ℓ)

mdv
,n

)

• VN-processing: for ∀ n ∈ {1, . . . , N} and m ∈ H(n)

α(ℓ)
m,n = apr

(
γ̃(ℓ)
n ,−β(ℓ)

m,n

)

We note that the CN processing step may induce errors on

the absolute value of check-to-variable messages, but the sign

computation is performed in a reliable (deterministic) way.

The reason is that errors occurring the sign of exchanged

messages drastically degrade the decoder performance. Since

the circuitry to compute the sign of check-to-variable messages

is very simple, we can reasonably assume that the sign is

reliably computed, for instance by using modular redundancy,

or multi-voltage design techniques that increase the supply

voltage of the sign circuit.

IV. DENSITY EVOLUTION EQUATIONS FOR NOISY

MIN-SUM DECODING

In this section we derive density evolution equations for the

noisy fixed-point MS decoding for a regular (dv, dc) LDPC

code. The study can be easily generalized to irregular LDPC

codes, simply by averaging according to the edge perspective

degree distribution polynomials.

The objective of the density evolution technique is to recur-

sively compute the probability mass functions of exchanged

messages, through the iterative decoding process. This is done

under the independence assumption of exchanged messages,

holding in the asymptotic limit of the code length, in which

case the decoding performance converges to the cycle-free case

[9]. Due to the symmetry of the decoder, the analysis can be

further simplified by assuming that the all-zero codeword is

transmitted through the channel. We note that our analysis

applies to any memoryless symmetric channel. The following

notation will be used throughout this section.

• C(z) = Pr(γ = z), ∀z ∈ M

• C̃(ℓ)(z̃) = Pr(γ̃(ℓ) = z̃), ∀z̃ ∈ M̃
• A(ℓ)(z) = Pr

(
α(ℓ) = z

)
, ∀z ∈ M

• B(ℓ)(z) = Pr
(
β(ℓ) = z

)
, ∀z ∈ M



The decoder’s error probability at iteration ℓ, is defined by:

P (ℓ)
e =

0∑

z̃=−Q̃

C̃(ℓ)(z̃)

In order to be able to recursively compute A(ℓ)(z), B(ℓ)(z),
and C̃(ℓ), for ℓ > 0, the VN-processing step must be further

modified as follows:

• VN-processing: for ∀ n ∈ {1, . . . , N} and m ∈ H(n)

α
(ℓ)
m,n = apr

(
apr

(
γn + β

(ℓ)
m1,n

)
· · ·+ β

(ℓ)
mdv−1,n

)

α
(ℓ)
m,n = sM

(
α
(ℓ)
m,n

)

This modification is needed in order to avoid computing

α
(ℓ)
m,n = apr

(
γ̃
(ℓ)
n ,−β

(ℓ)
m,n

)
, since it involves two correlated

variables, namely γ̃
(ℓ)
n and β

(ℓ)
m,n. For floating-point noiseless

decoders, the two ways of computing the variable-to-check

messages are completely equivalent. However, this equivalence

does not hold any more for noisy decoders (it does not actually

hold even for noiseless, but fixed-point, decoders!).

A. Expression of B(ℓ) as a function of A(ℓ−1)

In the sequel, we make the convention that Pr(sgn(0) = 1) =
Pr(sgn(0) = −1) = 1/2. The followng notation will be used:

• A[x,y] =

y∑

z=x

A(z), for x ≤ y ∈ M

• A[0+,y] =
1

2
A(0) +

y∑

z=1

A(z), for y ∈ M, y > 0

• A[x,0−] =
1

2
A(0) +

−1∑

z=x

A(z), for x ∈ M, x < 0

For the sake of simplicity, we drop the iteration index, thus

B := B(ℓ) and A := A(ℓ−1). We proceed by recursion on

i = 2, . . . , dc − 1, where dc denotes the check-node degree.

Let β1 := α1, and for i = 2, . . . , dc − 1 define:

βi = sgn(βi−1)sgn(αi)mpr(|βi−1|, |αi|)

Let Bi−1 and Bi be the probability mass functions of βi−1

and βi, respectively (hence, B1 = A). We have:

For z = 0,

Bi(0) = Pr(βi = 0) = A(0)Bi−1(0)+
[Bi−1(0)(1−A(0)) +A(0)(1−Bi−1(0))] (1− pc)

For z > 0,
Fi(z)

def
= Pr(βi ≥ z)

=
[
Bi−1[0+,z−1]A[z,Q] +A[0+,z−1]Bi−1[z,Q]

]
pc+[

Bi−1[1−z,0−]A[−Q,−z] +A[1−z,0−]Bi−1[−Q,−z]

]
pc

+Bi−1[z,Q]A[z,Q] +Bi−1[−Q,−z]A[−Q,−z]

Bi(z) = Pr(βi = z) = Fi(z)− Fi(z + 1)

For z < 0,
Gi(z)

def

= Pr(βi ≤ z)

=
[
Bi−1[0+,−z−1]A[−Q,z] +A[0+,−z−1]Bi−1[−Q,z]

]
pc

+
[
Bi−1[−z,Q]A[z+1,0−] +A[−z,Q]Bi−1[z+1,0−]

]
pc

+Bi−1[−z,Q]A[−Q,z] +A[−z,Q]Bi−1[−Q,z]

Bi(z) = Pr(βi = z) = Gi(z)−Gi(z − 1)

Finally, we have that B = Bdc−1.

B. Expression of A(ℓ) as a function of B(ℓ) and C

We also derive in same time the expression of C̃(ℓ) as

a function of B(ℓ) and C. We drop the iteration index for

simplicity (so A := A(ℓ), B := B(ℓ), and C̃ = C̃(ℓ)) and we

proceed by recursion on i = 0, 1, . . . , dv , where dv denotes the

variable-node degree. We denote by ∧ the bitwise xor operator,

and further define:

• Ω0 = γ ∈ M ⊆ M̃, C0(z̃) = Pr(Ω0 = z̃)

• for i = 1, . . . , dv − 1, w ∈ Z, w̃ ∈ M̃ and z̃ ∈ M̃



ωi = Ωi−1 + βmi,n ∈ Z, ci(w) = Pr(ωi = w)

ω̃i = s
M̃
(ωi) ∈ M̃, c̃i(w̃) = Pr(ω̃i = w̃)

Ωi = ω̃i ∧ d ∈ M̃, C̃i(z̃) = Pr(Ωi = z̃)

It follows that:

• C̃0(z̃) =

{
C(z̃), if z̃ ∈ M

0, if z̃ ∈ M̃ \M
• for i = 1, . . . , dv ,




ci(w) =
∑

u C̃i−1(u)B(w − u)
c̃i = s

M̃
(ci)

C̃i(z̃) =
∑

d Pr(d)c̃i(z̃ ∧ d)

• A = sM

(
C̃dv−1

)

• C̃ = C̃dv

In the above equations, applying the saturation operator (s
M̃

or sM) on a probability mass function means that all the non-

zero probabilities corresponding to values outside the alphabet

(M̃ or M) must be accumulated to the probability of the

corresponding boundary value of the alphabet.

The decoder’s error probability at the current (ℓ) iteration

is given by Pe =
∑0

z̃=−Q̃
C̃(z̃). Finally, we note that the

density evolution equations for the fixed-point noiseless Min-

Sum decoder can be obtained by setting pa = 0 and pc = 0.

V. NUMERICAL RESULTS

A. Decoding thresholds for the noisy Min-Sum Decoder

Density evolution equations for noisy fixed-point MS de-

coder were run on MATLAB for a regular (3, 6) LDPC

code over the Binary-Input AWGN channel, with exchanged

messages and a priori information quantized on q = 4 bits,

and the a posteriori information quantized on q̃ = 5 bits.

Since the input error probability can actually be increased

when the decoder is run on noisy hardware, the first step is to

evaluate the channel and hardware parameters yielding a final

probability of error (after decoding) less than the channel error

probability. Following [9], decoder is said to be useful if the

limℓ→∞ P
(ℓ)
e exists and:

lim
ℓ→∞

P (ℓ)
e ≤ p0

where P
(ℓ)
e is the error probability at iteration ℓ, and p0 is the

error probability of a hard decision on the received sequence.

The ensemble of the parameters that satisfy this condition

constitutes the useful region of the decoder.



For noiseless-decoders traditionally considered in classical

coding theory, the decoding threshold is defined as the maxi-

mum channel noise, such that the error probability converges

to zero as the number of decoding iterations goes to infinity.

However, for noisy decoders this error probability does not

converge to zero, and an alternative definition of the decoding

threshold has been introduced in [9]. Accordingly, for a target

bit-error rate η, the η-threshold is defined by:

σ∗(η) = sup{σ : lim
ℓ→∞

P (ℓ)
e < η}

where σ is the standard deviation of the Gaussian noise.

Fig. 1 plots the useful regions for pc = 0.001 and pc = 0.01,

and for depth qe = 4 and qe = 5. The blue and green

regions are parts of the useful region for which BER ≤ 10−2

and BER ≤ 10−3, respectively. For more visibility, threshold

values are displayed as Eb/N0 values in decibels. The values

considered for pa and pc are rather high with respect to the rate

at which soft errors occur in current technologies. However,

our goal is to investigate the possible behavior of the decoder

for advanced technologies, or in case that aggressive voltage

scaling is used as a technique to lower the energy consumption

of the circuit (Section I).

From Fig. 1, one can see that the noise from the comparator

has only a limited impact on the MS decoder performance,

as the useful regions are almost the same when the error

probability pc is multiplied by 10. For qe = 4, the maximum

value of pa that allows useful decoding is pa = 0.179 for

pc = 0.001, and pa = 0.164 for pc = 0.01. For qe = 5, the

maximum pa is 0.009 for both pc = 0.001 and pc = 0.01.

Note that the useful region decreases severely when the

depth increases from qe = 4 to qe = 5. This confirms the

vulnerability of the MS decoder to the noise on the MSB

bit of the adder. Fig. 1 indicates that in order to achieve a

BER ≤ 10−3 we should have pa ≤ 0.03 for qe = 4, and

pa ≤ 0.0012 for qe = 5. Theses results are consistent with the

finite length simulation results that will be discussed in the

next section.
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Figure 1. Useful Region for pc = 0.001 and pc = 0.01

B. Finite Length Performance of Min-Sum based decoders

In this section we evaluate the finite-length performance of

three noisy Min-Sum based decoders: the Min-Sum (MS), the

Offset Min-Sum (OMS) [15] and the Self-Corrected Min-Sum

(SCMS) [16]. The objective is to determine if a correction

circuit “plugged into” the noisy MS decoder can improve the

robustness of the decoder to hardware noise. The characteristic

of the SCMS decoder is to erase (i.e. set to zero) any variable-

to-check message that changed its sign with respect to the

previous iteration. However, the same message cannot be

erased during two consecutive iterations. Therefore, binary

values Em,n ∈ {0, 1} are used to record whether or not the

corresponding variable-to-check message has been erased at

the previous iteration. These values are all initialized to zero

(meaning: “message not erased at previous iteration”). The

noisy SCMS decoder performs the same computations as the

noisy MS (Section III-D), except that the VN processing step

further includes a correction step, as follows:

• VN-processing: for ∀ n ∈ {1, . . . , N} and m ∈ H(n)

α
(ℓ)
m,n = apr

(
γ̃
(ℓ)
n ,−β

(ℓ)
m,n

)
;

if Em,n = 0 and sgn
(
α
(ℓ)
m,n

)
6= sgn

(
α
(ℓ−1)
m,n

)

α
(ℓ)
m,n = 0 ; Em,n = 1 ; // message erased

else Em,n = 0 ; // message not erased

end

The body enclosed between the if condition and the matching

end is referred to as correction step. In practical imple-

mentation, only the sign of previous variable-to-check mes-

sages needs to be stored. Note that the correction step is

implemented with reliable circuitry, which can be reasonably

assumed, since the required circuitry is very simple (see

also the discussion concerning the sign of check-to-variable

messages in Section III-D). Alternatively, one can think of the

correction circuit as a noiseless patch applied to the noisy MS

decoder, in order to improve its robustness to hardware noise.

Simulation results presented below were obtained for the

(N = 1008,K = 504), (dv = 3, dc = 6)-regular LDPC

code, available online at [17]. Fig. 2 shows the bit error rate

performance of the three decoders. The colors blue, green and

red are used respectively for MS, OMS, and SCMS decoders.
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Figure 3. Eb/N0 required for a BER=10−5.

The solid lines are used for the performance of the noisy

decoders, while the dotted lines are used to represent the

noiseless decoder performance. Noisy decoders have proba-

bilistic components with parameters qe = 4, pa = 0.01, and

pc = 0.01. It is worth noting that the probability of hardware-

induced errors on the sign of the a posteriori information is

less than 10−6, which explains the absence of an error floor

above this value.

Although the OMS decoder usually outperforms the MS

decoder, it is not the case here for noiseless decoders. Because

check-node messages are quantized on only q = 4 bits, the

smallest offset factor δ = 1 is still too high to improve the

performance of the MS decoder. However for noisy hardware,

the OMS decoder is more robust and provides better perfor-

mance than the MS decoder. The most impressive performance

is that of the noisy SCMS decoder, which exhibits almost the

same performance as the noiseless SCMS. The explanation

is to be sought in the intrinsic property of the SCMS to

detect unreliable messages and discard them from the decoding

process.

With the objective of having a better understanding of the

impact of hardware noise on the three decoders, additional

simulations have been carried out with various noise param-

eters. Fig. 3 shows the Eb/N0 values in dB corresponding

to a target BER = 10−5 for qe = 4 and various (pa, pc)
parameters. The results show that the MS decoder is very

sensitive to hardware noise as the value of Eb/N0 increases

drastically with pa and pc. At low level of noise (pa ≤ 0.001)

the OMS decoder needs higher EbN0 to provide the same

error probability than the MS decoder, but it outperforms the

MS decoder as the hardware noise increases. However, none of

these decoders can achieve a target BER = 10−5 for pa = 0.05
(this is illustrated in the figure by an infinite EbN0 value).

Fig. 3 also confirms the excellence performance of the SCMS

on noisy hardware, since it exhibits performance similar to the

noiseless SCMS decoder when pa ≤ 0.01. It can also achieve

the target BER value when pa = 0.05, with a performance

penalty of 0.8 dB.

VI. CONCLUSION

In this paper we investigated the performance of MS-based

decoders on noisy hardware. We derived density evolution

equations for the noisy MS decoder, and analyzed the decoder

in terms of useful regions and target-BER thresholds. We

further evaluated the finite length performance of several

MS-based decoders, for various parameters of the hardware

noise models. We highlighted the excellent performance of

the SCMS decoder, which is due to its intrinsic ability to

detect and discard unreliable messages during the iterative

decoding process. Finally, the results of our work may serve

as guidelines for the design of noisy arithmetic components

for Min-Sum-based decoders.
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