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Abstract – In this paper we evaluate the performance of 
Gallager-B algorithm, used for decoding low-density parity-
check (LDPC) codes, under unreliable message computation. 
Our analysis is restricted to LDPC codes constructed from 
circular matrices (QC-LDPC codes). Using Monte Carlo 
simulation we investigate effects of different code parameters 
to coding system performance, under binary symmetric 
communication channel and independent transient faults 
model.   
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I. INTRODUCTION 

OW-density parity-check (LDPC) codes are powerful 
error correction codes that achieve performance near 

the Shannon limit [1]. They have received significant 
practical interest and have been adopted in many 
telecommunications standards. The LDPC codes can be 
efficiently decoded by massage passing iterative decoders, 
which realization complexity increases linearly with code 
length [2]. 

According to new design paradigm for VLSI (Very 
Large Scale Integration) technologies, fully reliable 
operations are not guaranteed [3]. New nano-scale 
technologies are more sensitive to noise, which appears as 
a consequence of radiation or electromagnetic 
interference. Thus, analysis of different decoding 
algorithms under unreliable hardware is meaningful. A 
hardware component is assumed to be unreliable if it is 
subject to so-called transient faults, i.e. faults that manifest 
themselves at particular time instants but do not 
necessarily persist for later times [4]. These faults have 
probabilistic behavior and can be described statistically 
through erroneous component output probability. 

Recently, different noisy LDPC decoders were analyzed 
by using simulation, density evolution or EXIT chart  
tools. The performance of LDPC codes under faulty 
Gallager-A and belief propagation decoding were 
determined in [5], using density evolution method. Similar 
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analysis using EXIT function is provided in [6], for 
Gallager-B algorithm. Also, probabilistic analysis of 
Gallager-B decoding algorithm was presented in [7]. More 
general finite-alphabet decoders were investigated in [8], 
while noisy min-sum decoder realization was considered 
in [9]. 

In this paper, we present our first results in empirical 
evaluation of the performance of LDPC codes constructed 
from circular matrices (quasi-cyclic LDPC codes) decoded 
using Gallager-B decoder, built from unreliable 
components. We examine the influence of different code 
parameters, decoder structures and fault model parameters 
to overall system performance in order to gain insight in 
relative importance of failures in different logic gates as 
their relation with parameters such as code length and 
number of iterations. . 

The rest of the paper is organized as follows. In 
Section II, the construction method for QC-LDPC codes is 
described. In Section III we give a description of faulty 
Gallager-B decoder. Section IV presents the numerical 
results. Finally, some concluding remarks and future 
research directions are given in Section V.  

II. CONSTRUCTION OF QC-LDPC CODES 

In general, the LDPC codes can be constructed by 
pseudorandom or algebraic methods [10]-[11]. Algebraic 
constructions of LDPC codes can be performed based on 
finite geometries, which is described in [12] and [13], or 
circulant permutation matrices [14]. By using the second 
approach, so-called quasi-cyclic (QC) LDPC codes are 
constructed. In this section, we explain the construction 
principle of parity check matrix of QC-LDPC codes.      

The principal property of QC-LDPC codes is that their 
parity check matrix consists of circulant submatrices, 
which could be either based on the identity matrix [15] or 
a smaller random matrix [16]. The main advantage of this 
construction principle compared to randomly constructed 
codes is that QC-LDPC encoding procedure is easier to 
implement [17]. The encoder of QC-LDPC codes can be 
implemented by using a series of shift registers, which 
allows its complexity to be proportional to code length 
[18]. We next present one method for construction of 
regular QC-LDPC codes, originally presented in [14]. 

The parity check matrix H of a QC-LDPC code is 
constructed by a concatenation of circulant submatrices, as 
shown in the following 
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where  represent an identity matrix which rows are 
cyclically shifted to the left by positions x, and parameters 
a and b are two nonzero elements with multiplicative 
orders o(a) = dc and o(b) = dv, respectively, where dc and 
dv denote the weight of each row and column  of matrix H, 
respectively. The parameters a and b should be chosen 
from Galois field GF(m), where m is a prime number. In 
simulation analysis presented in this paper we consider 
two QC-LDPC codes. First code is constructed by 
choosing m=31, a=2, b=5, which produces regular code 
with parameters dc=5 and dv=3, and parity check matrix 
dimensions 93×155 (code length is equal to n=155 bits). It 
is so-called Tanner code (155,64). The second code is 
based on m=61, a=2, b=5 and has row weight dc=5, 
column weight dv=3, and parity check matrix dimensions 
183×305 (code length is equal to n=305 bits).   

III. DESCRIPTION OF FAULTY GALLAGER-B DECODER  

A) Noise free Gallager-B decoder 

 Decoding procedures of LDPC codes are usually 
described by Tanner graph representation. The Tanner 
graph is bipartite graph constructed from two sets of nodes 
– variable (bit) nodes and check nodes. Nodes, from a 
different set, connected to a single node, are referred to as 
its neighbors. The degree of a node is the number of his 
neighbors. In a (dv,dc) regular LDPC code, each variable 
node has degree dv and every check node degree is dc.  

The Gallager-B algorithm represents iterative decoding 
procedure operating in a binary field. During the every 
decoding iteration, binary messages are sent along the 
edges of Tanner graph. Let E(x) represent a set of edges 
incident on a node x (x can be either variable or check 
node). Let ( )im e  and ( )im e  denote the messages sent on 

edge e from variable node to check node and check node 
to variable node at iteration i, respectively. If we denote 
the initial value of a bit at variable node v as r(v), the 
Gallager-B algorithm can be summarized as follows [19].  

Initialization (i=1): For each variable node v, and each 
set E(v), messages sent to check nodes are computed as 
follows 
 1 ( ) ( ).m e r v  (2) 

 Step (i) (check-node update): For each parity check 
node c and each set E(c), update rule for i-th iteration,        
i > 1, is defined as follows 
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Step (ii) (variable-node update): For each variable node 
v and each set E(v), update rule for i-th iteration, i > 1, is 
defined as follows 
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where bi represent threshold dependent on iteration i. In 
our analysis we considered constant threshold 

value ,
2

v
i

d
b

    
 i > 1.  

Step (iv) (decision): After predefined number of 
iterations the final decision of transmitted bit v


is made on 

the basis of majority of its estimates ( ),  ( ).im e e E v         

  

 
 

Fig.1. Schematic diagram of an information system that 
processes unreliable signals with unreliable circuits. 

 

B) Faulty Gallager-B decoder 

 
We study the performance of a faulty Gallager-B 

decoder in the presence of transient faults. As illustrated in 
Fig 1, originally presented in [5], besides of noise that 
exists in communication channel, errors are inserted by the 
LDPC decoder itself. We assume independent transient 
faults model in which errors occur at Tanner graph level of 
implementation. In other words, every edge in Tanner 
graph behaves as binary symmetric channel (BSC) with 
some crossover probability. The probability that message 
originating from variable node is incorrect is denoted as p, 
while crossover probability in BSC that corresponds to 
check node message transition is equal to q, as can be seen 
in Fig. 2. Assigning different crossover probabilities 
enable us to determine the influence of faults in different 
nodes to overall decoder performance.         
 

 
 
 
 
 
 
 
 
 

 
 
 

Fig. 2. Bipartite graph with faulty decoder. 
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IV. NUMERICAL RESULTS 

In this section we present performance analysis of 
faulty Gallager-B decoder, described in the previous 
section. The two QC-LDPC codes have been examined 
and their performance are compared for several 
implementations of faulty Gallager-B decoders. All 
numerical results presented in this section are obtained by 
Monte Carlo simulations. 

The sequence of all-zero codewords is transmitted 
through BSC with a predefined crossover probability and 
then decoded by a faulty iterative decoder. As described 
earlier, messages that are passed between nodes can be 
faulty. The message ( )im e  passes through the noise 

channel with error probability p, thus, a bit estimate can be 
erroneous as a consequence of a majority of unsatisfied 
parity checks or the faults in variable node implementation 
or both. Similarly, due to BSC crossover probability q, 
message ( )im e  may incorrectly inform variable node is 

the parity check equation satisfied or not.  
First, we evaluate the performance of Tanner code 

(with n=155, dv=3 and dc=5) decoded by a faulty Gallager-
B decoder. The code frame error rate (FER) performance 
are given as a function of communication channel 
crossover probability. FER curves for several values of 
decoder failures probabilities p and q, when 5 decoding 
iterations are performed, are presented in Fig. 3. It can be 
observed that decoder failures greatly degrade frame error 
rate, but failures in variable and check nodes have 
different influence on the code performance. The 
simulation has shown that the decoder is more sensitive to 
errors that occur in variable nodes. The mean reason for 
this behavior is related to variable node ability to 
compensate the parity check failures. The majority voting 
conducted in variable nodes can correct a fraction of parity 
check failures. However, if a variable node output is 
erroneous correction ability of a decoder is decreased. 
Finally, the presented results indicate that the decoder 
performance can be significantly improved by better 
protection of variable nodes (e.g. by making the majority 
voting gates that perform the operation in (4) more 
reliable).  
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Fig. 3. Performance of Tanner code (155,64) decoded by a 
faulty Gallager-B decoder, five iterations. 
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Fig. 4. Performance comparison of two QC-LDPC codes 

with different lengths (n=155 and n=305) with dc=5, dv=3, 
decoded by a faulty Gallager-B decoder in five iterations. 

 
We also evaluate performance of two QC-LDPC codes 

with code lengths n1=155 and n2=305, with the same 
parameters dv=3 and dc=5. Performance comparison is 
illustrated in Fig. 4. Although the code with longer 
codewords has better correcting capabilities, it is also 
more prone to processing errors. The simulation has 
shown, that when the errors inserted into decoder are 
frequent (p=10-2 or q=10-2), longer code length may have 
negative impact to overall performance. Thus, code with 
length n1=155 achieves lower FER, compared to code with 
length n2=305 even for the case p=10q=10-3. However, the 
longer code achieves lower FER when hardware faults are 
rare and variable nodes are more reliable (q=10p=10-3).  

The performance of the Gallager-B algorithm depends 
on the number of iterations [10], thus assessing  the effect 
of number of iterations of faulty decoder is meaningful. 
The performance of a faulty decoder, when a different 
numbers of decoding iterations are used, are presented in 
Fig. 5. It is obvious that increasing the number of 
decoding iteration leads to lower error rates. However, it 
can be noticed that the improvement depends on the 
structure of the errors that exist in decoder. 
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Fig. 5. Influence of number of decoding iteration to faulty 
Gallager-B decoder performance, Tanner code (155,64). 
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Fig. 6. Performance comparison of two QC-LDPC codes 

of codeword length n=155 with dc=5 and different column 
weight (dv=3 and dv=4), faulty decoding in five iterations. 

 
If the faults in variable nodes are dominant (p=10-2,    

q=10-3), performances can be improved significantly by 
increasing the number of iterations. In contrast, the FER 
levels are much lower if the check nodes faults have 
dominant effect and cannot be improved significantly by 
increasing the number of iterations. For example, when the 
Tanner code is decoded by a faulty Gallager-B decoder 
with parameters p=10-3 and q=10-2 only 10 decoding 
cycles is sufficient and the error rate does not further 
improve. 

Finally, we investigate the influence of code rate on 
decoder performance. We compare the error rates of two 
QC-LDPC codes with the same length (n=155) and check 
node degree (dc=5), but different variable node degrees 
(dv=3 or dv=4). The obtained results are presented in Fig. 
6. The code with higher variable nodes degree (lower code 
rate) can correct more errors that appear in communication 
channel, but the decoder is also more complex and more 
prone to errors. It is interesting to notice that performance 
of code with lower code rate are less degraded by decoder 
failures.                                                          

 

V. CONCLUSION 

In this paper, we evaluated the performance of QC-
LDPC codes decoded by a faulty Gallager B decoder. The 
influence of code length, code rate and number of 
decoding iteration on coding system performance is 
analyzed. Particularly important is analysis of influence of 
failures in different parts of a decoder. It enables us to 
determine the most sensitive structures in a decoder and 
make them more reliable. 

Our future work will be directed to analysis of faulty 
Gallager-B decoders in the presence of correlated data-
dependent faults. Also, we will investigate the memory 
architectures that use LDPC codes and one-step majority 
decoders.  
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