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and Collective Error Correction
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Abstract—A new class of bit flipping algorithms for low-
density parity-check codes over the binary symmetric channel is
proposed. Compared to the regular (parallel or serial) bit flipping
algorithms, the proposed algorithms employ one additional bit
at a variable node to represent its “strength.” The introduction
of this additional bit allows an increase in the guaranteed error
correction capability. An additional bit is also employed at a
check node to capture information which is beneficial to decoding.
A framework for failure analysis and selection of two-bit bit
flipping algorithms is provided. The main component of this
framework is the (re)definition of trapping sets, which are the
most “compact” Tanner graphs that cause decoding failures of
an algorithm. A recursive procedure to enumerate trapping sets
is described. This procedure is the basis for selecting a collection
of algorithms that work well together. It is demonstrated that
decoders which employ a properly selected group of the proposed
algorithms operating in parallel can offer high speed and low
error floor decoding.

I. INTRODUCTION

With the introduction of high speed applications such as
flash memory comes the need for fast and low-complexity
error control coding. Message passing algorithms for decoding
low-density parity-check (LDPC) codes [1] such as the sum-
product algorithm (SPA) offer very attractive error perfor-
mance, especially for codes with variable degree dv ≤ 4.
However, the complexity of these algorithms is high or the de-
coding speed is limited. For 3-left-regular LDPC codes, which
allow lower complexity implementation, message passing al-
gorithms (as well as other classes of decoding algorithms)
usually suffer from a high error floor [2]. A high error floor is
also observed for high-rate 4-left-regular codes [3], [4], which
are of practical importance. This weakness of message passing
algorithms in 3- and 4-left-regular codes justifies the search for
alternatives which offer better trade-offs between complexity,
decoding speed and error performance.
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Among existing decoding algorithms for LDPC codes on
the binary symmetric channel (BSC), bit flipping algorithms
are the fastest and least complex. The check node operations of
these algorithms are modulo-two additions while the variable
node operations are simple comparisons. Most importantly,
their decoding speed does not depend on the left- and right-
degree of a code. The simplicity of bit flipping algorithms
also makes them amenable to analysis. Many important results
on the error correction capability of bit flipping algorithms
have been derived. The parallel bit flipping algorithm was
shown by Zyablov and Pinsker to be capable of asymptotically
correcting a linear number of errors (in the code length) for
almost all codes in the regular ensemble with left degree
dv ≥ 5 [5]. In a later work, Sipser and Spielman used expander
graph arguments to show that this algorithm and the serial bit
flipping algorithm can correct a linear number of errors if the
underlying Tanner graph is a good expander [6]. Recently, it
was shown by Burshtein that regular codes with left degree
dv = 4 are also capable of correcting a linear number of errors
under the parallel bit flipping algorithm [7].

Despite being theoretically valuable, the aforementioned
capability to correct a linear number of errors does not
translate to good error correcting performance on finite-length
codes. This is because the fraction of correctable errors is
extremely small, which means that a large code length is
required to guarantee the correction of a small number of
errors. Moreover, the fraction of errors guaranteed to be
correctable stays the same when the code length increases.
In fact, the error performance of bit flipping algorithms is
typically inferior compared to hard-decoding message passing
algorithms such as the Gallager A/B algorithm. The weakness
of bit flipping decoding is especially visible for 3-left-regular
codes for which the guaranteed error correction capability is
upper-bounded by dg/4e−1, where g is the girth of the Tanner
graph representation of a code [8]. The fact that a code with
g = 6 or g = 8 cannot correct certain weight-two error patterns
indeed makes the bit flipping algorithms impractical regardless
of their low complexity.

In recent years, numerous bit-flipping-oriented decoding al-
gorithms have been proposed [9]–[13]. However, almost all of
these algorithms require some soft information from a channel.
This means that the channels assumed in these work have
larger capacity than that of the BSC. A few exceptions include
the probabilistic bit flipping algorithm (PBFA) proposed by
Miladinovic and Fossorier [14]. In that algorithm, whenever
the number of unsatisfied check nodes suggests that a variable
(bit) node should be flipped, it is flipped with some probability
p < 1 rather than being flipped automatically. This random
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nature of the algorithm slows down the decoding, which was
demonstrated to be helpful in practical codes whose Tanner
graphs contain cycles. The idea of slowing down the decoding
can also be found in a bit flipping algorithm proposed by Chan
and Kschischang [15]. This algorithm, which is used on the
additive white Gaussian noise channel (AWGNC), requires a
certain number of decoding iterations between two possible
flips of a variable node.

In this paper, we propose a new class of bit flipping
algorithms for LDPC codes on the BSC. These algorithms
are designed in the same spirit as the class of finite-alphabet
iterative decoders (FAID) [16]. In the proposed algorithms,
an additional bit is introduced to represent the strength of a
variable node. Given a combination of satisfied and unsatisfied
check nodes, an algorithm may reduce the strength of a
variable node before flipping it. An additional bit is also
introduced at a check node to indicate its reliability. Similar to
the aforementioned PBFA, our algorithms also slow down the
decoding. However they only do so when necessary and in a
deterministic manner. We call the proposed algorithms two-bit
bit flipping (TBF) algorithms

For the newly proposed algorithms, we provide a com-
plete decoding failure analysis. More importantly, we give
a rigorous procedure to select a collection of algorithms
based on their complementariness in correcting different error
patterns. Algorithms selected by this procedure have provably
good error performance as they can correct a wide range of
diverse error configurations. By the nature of bit flipping,
these algorithms operate at high speed. Consequently, TBF
algorithms can finally be considered practical and suitable for
high speed applications.

As one can expect, a TBF algorithm (like other sub-optimal
graph-decoding algorithms) fails to correct some low-weight
error patterns due to the presence of certain small subgraphs
in the Tanner graph. In this paper, we characterize a special
class of these subgraphs and refer to them with the common
term “trapping sets.” Our definition of a trapping set for
a given algorithm readily gives a sufficient condition for
successful decoding. The set of all possible trapping sets
of a given decoding algorithm constitutes the algorithm’s
trapping set profile. A unique property of trapping sets of TBF
algorithms is that a trapping set profile may be obtained by a
recursive procedure. The diversity among trapping set profiles
of different algorithms allows us to select groups of algorithms
such that they can collectively correct error patterns that are
uncorrectable by individual algorithms.

The rest of the paper is organized as follows. Section II
gives the necessary background. Section III introduces the
class of TBF algorithms. In Section IV, we define trapping
sets, trapping set profiles and describe the recursive procedure
for constructing a trapping set profile. Section V discusses the
selection of algorithms. Section VI gives numerical results and
Section VII concludes the paper.

II. PRELIMINARIES

Let C denote an (n, k) binary LDPC code. C is defined
by the null space of H , an m × n parity-check matrix

of C. H is the bi-adjacency matrix of G, a Tanner graph
representation of C. G is a bipartite graph with two sets
of nodes and a set of edges. The two sets of nodes are:
n variable (bit) nodes V (G) = {1, 2, . . . , n} and m check
nodes C(G) = {1, 2, . . . ,m}. E(G) denotes the set of edges.
A vector r = (r1, r2, . . . , rn) is a codeword iff rHT = 0,
where HT is the transpose of H . The support of r, denoted
as supp(r), is defined as the set of all variable nodes (bits)
v ∈ V such that rv 6= 0. A dv-left-regular (dc-right-regular)
LDPC code has a Tanner graph G in which all variable nodes
(check nodes) have degree dv (dc). A (dv, dc)-regular LDPC
code is dv-left-regular and dc-right-regular. In this paper, we
only consider (dv, dc)-regular LDPC codes. The length of the
shortest cycle in the Tanner graph G is called the girth g of
G. A subgraph of a bipartite graph G is a bipartite graph U
such that V (U) ⊆ V (G), C(U) ⊆ C(G) and E(U) ⊆ E(G).
G is said to contain U . Furthermore, if Y is a graph which
is isomorphic to U then G is also said to contain Y . In a
bipartite graph G, the induced subgraph on a set of variable
nodes Vs ⊆ V (G), is a bipartite graph U with V (U) = Vs,
C(U) = {c ∈ C(G) : ∃v ∈ Vs such that (v, c) ∈ E(G)} and
E(U) = {(v, c) ∈ E(G) : v ∈ Vs}.

Denote by x the transmitted codeword. Consider an iterative
decoder and let x̂l = (x̂l1, x̂

l
2, . . . , x̂

l
n) be the decision vector

after the lth iteration, where l is a positive integer. At the end
of the lth iteration, a variable node v is said to be corrupt if
x̂lv 6= xv , otherwise it is correct. A variable node v is said to
be eventually correct if there exists a positive integer lc such
that for all l with l ≥ lc, x̂lv = xv .

Assume the transmission of the all-zero codeword over the
BSC. Since xv = 0 ∀v, at the end of the lth iteration, a
variable node is corrupt if x̂lv = 1 and is correct if x̂lv = 0. Let
y = (y1, y2, . . . , yn) be the channel output vector. A variable
node is said to be initially corrupt if yv = 1, otherwise it is
initially correct. Furthermore, the support supp(y) is simply
the set of variable nodes that are initially corrupt. For the
sake of convenience, we let x̂0 = y. Let sl = (sl1, s

l
2, . . . , s

l
m)

denote the syndrome vector of the decision vector after the lth
iteration, i.e., sl = x̂lHT. Also let s0 = yHT be the syndrome
vector of the channel output vector y. A check node c is said
to be satisfied at the beginning of the lth iteration if sl−1c = 0,
otherwise it is unsatisfied.

For any variable node v in a Tanner graph G, let χl
s(v)

and χl
u(v) denote, respectively, the number of satisfied check

nodes and unsatisfied check nodes that are connected to v
at the beginning of the lth iteration. A simple hard decision
decoding algorithm for LDPC codes on the BSC, known as the
parallel bit flipping algorithm [5], [6] is described as follows:
The algorithm iterates until a valid codeword is found or until a
maximum number of lmP iterations is reached. In each iteration,
the algorithm “flips” in parallel the variable nodes that are
connected to more unsatisfied than satisfied check nodes, i.e.,
flip v if χl

u(v) > dv

2 .

III. THE CLASS OF TBF ALGORITHMS

The class of TBF algorithms is described in this section. We
start with two motivating examples to illustrate the advantages
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(a) (b) (c)

Fig. 1. Weight-two error configurations uncorrectable by the parallel bit
flipping algorithm.

of having more bits to represent variable node and check node
states.

A. Motivating Examples: Two-Bit Variable Nodes and Two-Bit
Check Nodes

In the first example, # and  denote a correct and a corrupt
variable node at the end of the (l−1)th iteration, respectively,
while � and � denote a satisfied and an unsatisfied check
node at the beginning of the lth iteration, respectively. Let C
be 3-left-regular LDPC code with g = 8. Assume that the
variable nodes v1, v2, v3 and v4 form an eight-cycle as shown
in Fig. 1. Consider decoding with the parallel bit flipping
algorithm when only v1 and v3 are initially corrupt. Fig. 1(a)
and (b) illustrate the decoding in the first and second iteration,
respectively. It can be seen that the set of corrupt variable
nodes after a decoding iteration alternates between {v1, v3}
and {v2, v4}, and thus decoding fails. Decoding fails in the
above scenario because the parallel bit flipping algorithm flips
variable nodes with either χl

u(v) = 3 or χl
u(v) = 2. The

algorithm is too “aggressive” when flipping a variable node
v with χl

u(v) = 2. From this observation, let us consider a
modified algorithm which only flips a variable node v with
χl
u(v) = 3. Under this modified algorithm, decoding succeeds

in the above scenario. However, if only v1 and v2 are initially
corrupt, as demonstrated in Fig. 1(c), then decoding again
fails because no variable node would be flipped. The modified
algorithm is now too “cautious” to flip a variable node v with
χl
u(v) = 2.
Both decisions (to flip and not to flip a variable node v with

χl
u(v) = 2) can lead to decoding failure. However, we must

pick one or the other due the assumption that the state of
a variable node v at the end of the lth iteration can either
be correct (if x̂lv = 0) or corrupt (if x̂lv = 1). Relaxing
this assumption is therefore required for a better bit flipping
algorithm.

Let us now assign a variable node to one out of four states.
Specifically, in addition to the hard decision, a variable node
v is also either a strong variable node or a weak variable
node. We use 0s, 1s, 0w and 1w to denote the state of a
strong zero, strong one, weak zero and weak one variable node,
respectively. The set of possible states of a variable node is
denoted by Av. Let wl = (wl

1, w
l
2, . . . , w

l
n) be a vector in

Av
n such that wl

v gives the state of variable node v at the
end of the lth iteration. The decision vector x̂l is determined
upon wl as follows: x̂lv = 1 if wl

v = 1s or wl
v = 1w, and

x̂lv = 0 if wl
v = 0s or wl

v = 0w ∀v ∈ V . The state w0
v of a

variable node v is initialized to ∆0
v if yv = 0 and to ∆1

v if
yv = 1, where (∆0

v,∆
1
v) ∈ {(0s, 1s), (0w, 1w)}. Since dv = 3,
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Fig. 2. The decoding of TBFA1 on a weight-four error configuration. (a)
Before iteration 1. (b) Before iteration 2. (c) Before iteration 3.

let f1 : Av×{0, 1, 2, 3} → Av be the function defined in Table
I. Consider the bit flipping algorithm which we call the TBF
Algorithm 1 (TBFA1). This algorithm iterates for a maximum
of lmF1

> 3 iterations and has (∆0
v,∆

1
v) = (0s, 1s).

Algorithm 1 TBFA1
∀v : w0

v ← ∆yv
v , l← 1

while sl 6= 0 and l < lmF1
do

∀v : wl
v ← f1(wl−1

v , χl
u(v)); l← l + 1;

end while

Compared to the parallel bit flipping algorithm and its
modified version discussed above, TBFA1 possesses a gentler
treatment for a variable node v with χl

u(v) = 2. It tries to re-
duce the “strength” of v before flipping it. One can verify that
TBFA1 is capable of correcting the error configurations shown
in Fig. 1. Moreover, TBFA1 is also capable of correcting any
error pattern with weight up to 3 in a girth g = 8, 3-left-regular
LDPC code as stated in the following proposition.

Proposition 1: TBFA1 is capable of correcting any weight-
three error pattern in a girth g = 8, 3-left-regular LDPC code
with minimum distance dmin > 6.

Proof: By enumerating trapping set profiles (to be dis-
cussed in Section IV-B).

Remarks: It has been shown that for girth g = 8, 3-left-
regular LDPC codes, the Gallager A/B algorithm can only
guarantee to correct up to two errors [17]. This means that the
guaranteed error correction capability of TBFA1 is better for
girth g = 8, 3-left-regular LDPC codes.

Now we explore the possibility of using two bits to represent
the states of a check node.

In the second example, we use #, #◦ ,  and #• to denote
a 0s variable node, a 0w variable node, a 1s variable node
and a 1w variable node at the end of the (l − 1)th iteration,
respectively. The symbols � and � still represent a satisfied
and an unsatisfied check node at the beginning of the lth
iteration.

Assume a decoder that uses TBFA1. Fig. 2 illustrates the
first, second and third decoding iteration of TBFA1 on an
error configuration with four initially corrupt variable nodes
v1, v3, v4 and v6. We assume that all variable nodes which
are not in this subgraph remain correct during decoding and
will not be considered in this analysis. All variable nodes are
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TABLE I
f1 : Av × {0, 1, 2, 3} → Av

wl
v

χl
u(v)

wl
v

χl
u(v)

wl
v

χl
u(v)

wl
v

χl
u(v)

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0s 0s 0s 0w 1s 1w 1s 0w 0s 0s 0w 0s 1w 1s 1s 1s 1s 1s 1w 0s

initialized as strong variable nodes. At the beginning of the
third iteration, every variable node is connected to two satisfied
check nodes and one unsatisfied check node. The algorithm
does not change the state of any variable node and hence
decoding fails.

In the above error configuration, a setting of two unsatisfied
and one satisfied check nodes is considered unreliable. Thus
TBFA1 reduces the strength of v1, v2, v5, v6 and v7 in the
first iteration before it flips them in the second iteration.
However, decoding with TBFA1 fails because the states of
v3 and v4 never change. One can realize that if a setting of
two unsatisfied and one satisfied check nodes is considered
unreliable, then a setting of one unsatisfied and two satisfied
check nodes should also be considered unreliable because such
a check node setting prevents the corrupt variable nodes v3
and v4 from being corrected. Unfortunately, TBFA1 cannot
reduce the strength, and then flip variable nodes with less
than dv/2 unsatisfied check nodes since many other correct
variable nodes in the Tanner graph would also be flipped.
TBFA1 is incapable of evaluating the reliability of check node
settings in which the number of unsatisfied check nodes is
close to bdv/2c. We now demonstrate that such reliability
can be evaluated with a new concept of check node reliability
introduced below.

Definition 1: A satisfied check node is called previously
satisfied (previously unsatisfied) if it was satisfied (unsatisfied)
in the previous decoding iteration, otherwise it is called newly
satisfied (newly unsatisfied).

We use 0p, 0n, 1p and 1n to denote the states of a
previously satisfied, a newly satisfied, a previously unsatisfied
and a newly unsatisfied check node, respectively. The set
of possible states of a check node is denoted by Ac. Let
zl = (zl1, z

l
2, . . . , z

l
m) be a vector in Ac

m such that zlc gives
the state of check node c at the beginning of the lth iteration.
Recall that slc is the syndrome value associated with check
node c. Equivalently, z(l+1)

c = Φ(sl−1c , slc), where the check
node update function Φ : {0, 1}2 → Ac is defined as follows:
Φ(0, 0) = 0p,Φ(0, 1) = 1n,Φ(1, 0) = 0n and Φ(1, 1) = 1p.
The state z1c of a check node c is initialized to ∆0

c if s0c = 0
and to ∆1

c otherwise, where (∆0
c ,∆

1
c) ∈ {(0p, 1p), (0n, 1n)}.

Let χl
0p(v), χl

0n(v), χl
1p(v) and χl

1n(v) be the number
of previously satisfied, newly satisfied, previously unsatis-
fied and newly unsatisfied check nodes that are connected
to a variable node v at the beginning of the lth iteration,
respectively. Let Ξdv

denote the set of all ordered 4-tuples
(ξ1, ξ2, ξ3, ξ4) such that ξi ∈ N and

∑
i ξi = dv. Clearly,

Ξdv ∈ {(χl
0p(v), χl

0n(v), χl
1p(v), χl

1n(v))}. Let f2 : Av ×
Ξ3 → Av be a function defined in (1) :

Consider the bit flipping algorithm, which we call the TBF
Algorithm 2 (TBFA2). This algorithm iterates for a maximum

of lmF2
iterations and has (∆0

v,∆
1
v) = (0s, 1s) and (∆0

c ,∆
1
c) =

(0p, 1p).

Algorithm 2 TBFA2

∀v : w0
v ← ∆yv

v , ∀c : z1c ← ∆
s0c
c , l← 1

while sl 6= 0 and l < lmF2
do

∀v : wl
v ← f2(wl−1

v , χl
0p(v), χl

0n(v), χl
1p(v), χl

1n(v));
∀c : zl+1

c ← Φ(sl−1c , slc); l← l + 1;
end while

The TBFA2 considers a setting of one newly unsatisfied,
one newly satisfied and one previously satisfied check node to
be less reliable than a setting of one previously unsatisfied and
two previously satisfied check nodes. Therefore, it will reduce
the strength of v3 and v4 in the third iteration. Consequently,
the error configuration shown in Fig. 2 can now be corrected
after 9 iterations, as illustrated in Fig. 3. In Fig. 3, we use
�,�3,� and ����� to represent a previously satisfied check node,
a newly satisfied check node, a previously unsatisfied check
node and a newly unsatisfied check node at the beginning of
the lth iteration, respectively.

Remarks: Proposition 1 also holds for the TBFA2.

B. TBF Algorithms
Definition 2: The class F of TBF algorithms is given in

Algorithm 2, where zl, wl, Av, Ac, ∆v = (∆0
v,∆

1
v), ∆c =

(∆0
c ,∆

1
c), χl

0p(v), χl
0n(v), χl

1p(v) and χl
1n(v) were defined in

the above motivating examples, and f2 = f is treated as a
general function defining the transition of a variable node from
one state to another. A TBF algorithm F = (f, lmF ,∆v,∆c)
iteratively updates zl and wl until all check nodes are satisfied
or until a maximum number of iteration lmF is reached. The
check node update function Φ : {0, 1}2 → Ac is defined
as follows: Φ(0, 0) = 0p,Φ(0, 1) = 1n,Φ(1, 0) = 0n and
Φ(1, 1) = 1p. The variable node update is specified by a
function f : Av × Ξdv → Av, where Ξdv is the set of
all ordered 4-tuples ξ = (ξ1, ξ2, ξ3, ξ4) such that ξi ∈ N
and

∑
i ξi = dv. The function f must satisfy the following

conditions: (1) Symmetry: f must be symmetric with respect
to 0 and 1 in the sense that if ξ = (ξ1, ξ2, ξ3, ξ4) ∈ Ξ, and
(wl

v1 , w
l
v2) ∈ {(0s, 1s), (0w, 1w)}, then the following are true:

(a) f(wl
v1 , ξ) = 0s ⇔ f(wl

v2 , ξ) = 1s, (b) f(wl
v1 , ξ) = 0w ⇔

f(wl
v2 , ξ) = 1w, (c) f(wl

v1 , ξ) = 1s ⇔ f(wl
v2 , ξ) = 0s, and

(d) f(wl
v1 , ξ) = 1w ⇔ f(wl

v2 , ξ) = 0w; (2) Irreducibility:
Every state of a variable node must be reachable from every
other state in a finite number of iterations.

IV. A FRAMEWORK FOR FAILURE ANALYSIS

To select a good algorithm or a good collection of algo-
rithms, it is necessary to establish a framework to analyze
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different choices of the variable node update functions f .
The framework for the failure analysis of TBF algorithms
is presented in this section. The main components of this
framework are: 1) the notion of trapping sets and trapping
set profiles, and 2) the construction of a trapping set profile.

A. Trapping Sets and Trapping Set Profiles of TBF Algorithms

Although the term trapping set was originally defined as a
set of variable nodes that are not eventually correctable by
an iterative decoding algorithm [18], in the literature it has
been used more frequently to refer to a combinatorially defined
subgraph that may be harmful to decoding. The justification
for this less rigorous use of terminology is that the variable
node set of a so-called trapping set (a subgraph) would be
an actual set of non-eventually-correctable variable nodes if
the parallel bit flipping algorithm were used. Examples of
such trapping sets are fixed sets [2], [8], [19] and absorbing
sets [3]. We note that absorbing sets form a subclass of fixed
sets. For the sake of completeness, we give the definition and
combinatorial characterization of fixed sets as follows.

Definition 3 ([2]): For the channel output vector y, let
F(y) denote the set of variable nodes that are not eventually
correct. For transmission over the BSC, y′ is a fixed point of
the decoding algorithm if and only if there exists a positive
integer lf such that supp(y′) = supp(x̂l) for all l ≥ lf . If
F(y) 6= ∅ and y′ is a fixed point, then F(y) = supp(y′) is
called a fixed set.

Theorem 1 ([8]): Let C be an LDPC code with dv-left-
regular Tanner graph G. Let T be a set consisting of variable
nodes with induced subgraph J . Let the check nodes in J
be partitioned into two disjoint subsets; Codd(J) consisting
of check nodes with odd-degree and Ceven(J) consisting of
check nodes with even-degree. Then T is a fixed set for the bit
flipping algorithms (serial or parallel) iff : (a) Every variable
node in V (J) has at least ddv

2 e neighbors in Ceven(J) and (b)
No collection of bdv

2 c + 1 check nodes of Codd(J) share a
neighbor outside J .

By definition, fixed sets are responsible for all the decoding
failure events in which the set of corrupt variable nodes remain
unchanged after a certain number of decoding iterations. Note
that the number of initially corrupt variable nodes in such a
decoding failure event can be less than the number of variable

nodes in the fixed set. Besides, fixed sets (subgraphs that
satisfies particular conditions) are also responsible for some
decoding failure events in which the set of corrupt variable
nodes oscillates between two different (but not necessary
disjoint) sets of variable nodes, as seen previously in Section
III-A. Decoding failures caused by fixed sets are the most
frequent failures of the parallel bit flipping algorithm, but they
are not the sole cause of error floor. In fact, it is easy to find
decoding failure events caused by harmful subgraphs that are
not fixed sets, such as the ones shown in Fig. 2. However, when
additional bits are used in TBF algorithms, not all fixed sets
cause decoding failures. Because TBF algorithms in general
have a stronger error correction capability than the parallel
bit flipping algorithm, it is necessary to include all potentially
harmful subgraphs into the analysis and eliminate the ones that
are not. To achieve this goal, we therefore (re)define the notion
of a trapping set for a TBF algorithm, as we now explain. We
first introduce the following definition of failures of a TBF
algorithm.

Definition 4: Consider a Tanner graph G and a TBF algo-
rithm F = (f, lmF ,∆v,∆c). Let Ve denote the set of variable
nodes that are initially corrupt and let J denote the induced
subgraph on Ve. If under the algorithm F , decoding fails after
lmF iterations, then we say that F fails because of the subgraph
J of G.

Example 1: Consider a 3-left-regular code C with bipartite
graph G and assume that the induced subgraph on VS =
{v1, v2, . . . , v7} ∈ V (C) is depicted in Fig. 2(a). Further
assume that no two check nodes in {c1, c2, . . . , c11} share
a neighboring variable node v /∈ VS . Let Ve = supp(y) =
{v1, v3, v4, v6} and let J denote the induced subgraph on Ve.
Then, the TBFA1 fails because of the subgraph J of G.

Let us now assume that during the transmission of the
codeword x, the BSC makes exactly t errors. Denote by I the
set of all dv-left-regular Tanner graphs with t variable nodes. It
is clear that the induced subgraph on the set of initially corrupt
variable nodes is isomorphic to a graph in I. Let I be a Tanner
graph in I and let EI(F) denote the set of Tanner graphs
containing a subgraph J isomorphic to I such that F because
of J . The following facts follow: (1) If C is represented
by G ∈ ⋃I∈I EI(F), then there exist some weight-t error
patterns for which algorithm F fails to correct. (2) If, on the
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Fig. 3. The decoding of the TBFA2 on a weight-four error configuration. All variable nodes are correct at the end of the 9th iteration. (a)–(i) Iteration 1–9.
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other hand, G /∈ ⋃I∈I EI(F), then algorithm F is capable of
correcting any weight-t error patterns. Although these facts are
simple, they are important elements in our analysis. However,
the set of Tanner graphs EI(F) is undeniably too general to
be useful. Hence, we will focus on a subset E r

I (F) of EI(F)
formulated as follows.

Definition 5: Consider a Tanner graph S1 ∈ EI(F) such
that F fails because of the subgraph J1 of S1. Then, E r

I (F)
consists of all S1 for which there does not exist S2 ∈ EI(F)
such that: (1) F fails because of some subgraph J2 of S2, and
(2) there is an isomorphism between S2 and a proper subgraph
of S1 under which the variable node set V (J2) is mapped into
the variable node set V (J1).

Example 2: To elucidate the formulation of E r
I (F), let us

once again revisit the TBFA1. For the sake of convenience,
let F denote the TBFA1. Let S1 be the Tanner graph shown
in Fig. 4(a) and denote by J1 the induced subgraph on the
variable node set V (J1) = {v1, v3, v4, v6}. It is easy to check
that F fails because of the subgraph J1 of S1 as the set
of corrupt variable nodes oscillates between {v1, v3, v4, v6}
and {v2, v3, v4, v5} every two decoding iterations. Let I be
the Tanner graph which is depicted in Fig. 4(c). Since J1 is
isomorphic to I , it is clear that S1 ∈ EI(F).

Consider all non-isomorphic subgraphs of S1 which have
five variable nodes and contain I . There are two such sub-
graphs, which are depicted in Fig. 4(d) and (e). One can check
easily that these subgraphs are not elements of EI(F). Conse-
quently, there cannot exist a Tanner graph S2 ∈ EI(F) which
satisfies condition 2 of Definition 5. Therefore, S1 ∈ E r

I (F).
Now, let S3 denote a Tanner graph which is identical to the
Tanner graph shown in Fig. 2(a). As we have discussed before,
the TBFA1 fails because of the subgraph J3 of S3, where
V (J3) = {v1, v3, v4, v6}. Hence, S3 ∈ EI(F). Note that if
we delete v7 and c12 from S3, then S1 is obtained. From the
above discussion, it is clear that the Tanner graph S1 ∈ EI(F)
satisfies the two conditions of Definition 5: 1) F fails because
of the subgraph J1 of S1, and 2) there is an isomorphism
between S1 and a proper subgraph of S3 under which the
variable node set V (J1) is mapped into the variable node
set V (J3). Therefore, at this stage, we cannot conclude that
S3 ∈ E r

I (F).
On the other hand, we also cannot conclude at this stage

that S3 /∈ E r
I (F). This is due to the possibility that F also

fails because of a different induced subgraph J ′3 of S3 that is
isomorphic to I . In such a case, if there does not exist a Tanner
graph in EI(F) that satisfies the two conditions of Definition
5, then S3 ∈ E r

I (F). Before concluding the example, let us
also explore this scenario.

By simple inspections, it can be seen that there are 14
subsets of V (S3) on which the induced subgraphs are iso-
morphic to I . However, due to isomorphism, there are only
four distinct cases which correspond to the following subsets:
V (J3) = {v1, v3, v4, v6}, V (J ′3) = {v1, v2, v3, v6}, V (J ′′3 ) =
{v1, v3, v4, v7} and V (J ′′′3 ) = {v1, v3, v6, v7}. It is easy to
verify that F does not fail on the subgraphs J ′3, J

′′
3 and J ′′′3

of S3. Consequently, we can now conclude that S3 /∈ E r
I (F).

Example 2 not only elucidates the formulation of E r
I (F),

it also illustrates a critical simplification in our analysis.

In particular, one can see that the Tanner graph set E r
I (F)

contains S1 but not S3. In other words, while S1 is a Tanner
graph of interest and is used to evaluate the performance of
F , S3 is omitted from the analysis. The justification for this
simplification is as follows. The decodings of the algorithm
F on S1 and S3 are almost identical. The only difference is
that in the decoding on S3 one more variable node, namely
v7, is potentially corrupted. However, whether or not v7 is
corrupted does not affect the decoding outcome. Therefore, to
understand the mechanism of decoding failure on S1 and S3, it
is sufficient to only consider S1. Most importantly, eliminating
S3, as well as many other graphs in EI(F) that contain S1,
makes the analysis manageable as we show in this section.

Remarks: The above simplification does not affect the
validity and usefulness of the analysis. For example, if the
outcomes of the analysis are used in code construction, then
it can be seen that the elimination of S1 in a Tanner graph
also leads to the elimination of S3 as well as all subgraphs
that contain S1. If the outcomes of the analysis are used
for designing better algorithms, then it can be seen that an
algorithm must be designed to correct S1 first before it can
be designed to correct S3. Due to the importance of graphs in
E r
I (F), we call them trapping sets of the TBF algorithm F ,

as we now formally define.
Definition 6: If S ∈ E r

I (F) then S is a trapping set of F .
I is called an inducing set of S. E r

I (F) is called the trapping
set profile with inducing set I of F .

An important property of a trapping set, which enables the
construction of a trapping set profile, is stated in the following
proposition.

Proposition 2: Let S ∈ E r
I (F) be a trapping set of F

with inducing set I . Then, there exists at least one induced
subgraph J of S which satisfies the following properties: (1)
J is isomorphic to I , and (2) F fails because of J of S, and
(3) Consider the decoding of F on S with V (J) being the
set of initially corrupt variable nodes. Then, for any variable
node v ∈ V (S), there exist an integer l such that 0 ≤ l ≤ lmF
and wl

v ∈ {1s, 1w}.
Proof: Let S be a trapping set of F with inducing set

I . Then, S ∈ E r
I (F) ⊆ EI(F). Since S ∈ EI(F), F

fails because of some induced subgraphs J1, J2, . . . , Jq of S
which is isomorphic to I . All the subgraphs J1, J2, . . . , Jq
satisfy conditions 1 and 2 of Proposition 2. Consider the
decoding of F on S with V (Ji) being the set of initially
corrupt variable nodes. Let n = |V (S)| and without loss of
generality, assume that ∀ 0 ≤ l ≤ lmF : wl

vn ∈ {0s, 0w}.
Obviously, there exists a subgraph S′ of S such that S′ is
obtained by deleting vn from S and S′ satisfies conditions 1
and 2 of Definition 5. Consequently, if none of the subgraphs
J1, J2, . . . , Jq satisfies condition 3 of Proposition 2, then there
always exists a subgraph S′ that satisfies conditions 1 and 2
of Definition 5. Hence, S ∈ E r

I (F), which is a contradiction.

From Proposition 2, one can see that the trapping set profile
E r
I (F) of F contains the graphs that are most “compact.”

We consider these graphs most compact because for at least
one J isomorphic to I , the decoding of F on such a graph
with V (J) being the set of initially corrupt variable nodes
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could be made successful by removing any variable node
of the graph. This special property of trapping sets is the
basis for an explicit recursive procedure to obtain all trapping
sets up to a certain size, which compensates for the lack
of a fully combinatorial characterization of trapping sets.
We remark that for certain reasonably good algorithms, the
necessary condition for a Tanner graph to be a trapping set can
be easily derived. Before describing the recursive procedure
for constructing trapping set profiles in the next subsection,
we state the following proposition, which gives a sufficient
condition for the convergence of an algorithm F on a Tanner
graph G.

Proposition 3: Consider decoding with an algorithm F on
a Tanner graph G. Let Ve be the set of initially corrupt variable
nodes and I be the induced subgraph on Ve. Then, algorithm
F will converge (to a codeword) after at most lmF decoding
iterations if there is no subset Vs of V (G) such that Vs ⊃ Ve
and the induced subgraph on Vs is isomorphic to a graph in
E r
I (F).

Proof: Follows from the definition of E r
I (F).

Remark: Proposition 3 only gives a sufficient condition
because the existence of Vs ⊆ V (G) which satisfies the
above-mentioned conditions does not necessarily indicate that
G ∈ EI(F).

B. The Construction of a Trapping Set Profile

The recursive procedure for constructing a trapping set
profile E r

I (F) relies on Proposition 2. In particular, consider a
trapping set S with an inducing set I , Proposition 2 states that
for at least one induced subgraph J of S which is isomorphic
to I , in the decoding F on S with V (J) being the set of
initially corrupt variable nodes, every variable node in V (S)
is corrupt at the end of some iteration. As a result, given the
knowledge of J , it is possible to generate S by simultaneously
performing decoding and adding variable nodes to J in one
specific manner. Consequently, if we simultaneously perform
decoding and add variable nodes to I in all possible ways,
then all trapping sets with inducing set I can be generated.
We now describe this procedure.

Let us assume that we are only interested in trapping sets
with at most nmax variable nodes. Consider the decoding of
F on a Tanner graph I with V (I) being the set of initially
corrupt variable nodes. Let nI = |V (I)|. If F fails because
of I then E r

I (F) = {I} and we have found the trapping set
profile. If F does not fail because of I , then we expand I by
recursively adding variable nodes to I until a trapping set is
found. During this process, we only add variable nodes that
become corrupt at the end of a certain iteration.

Consider all possible bipartite graphs obtained by adding
one variable node, namely vnI+1, to the graph I such that
when the decoding is performed on these graphs with V (I)
being the set of initially corrupt variable nodes, the newly
added variable node is a corrupt variable node at the end of
the first iteration, i.e., w1

vnI+1
∈ {1w, 1s}. Let OI denote the

set of such graphs. Take one graph in OI and denote it by
U . Then, there can be two different scenarios in this step: (1)
F does not fail on the subgraph I of U . In this case, U is

certainly not a trapping set and we put U in a set of Tanner
graphs denoted by E1

I . (2) F fails because of the subgraph
I of U . In this case, U is a potential trapping set and a test
is carried out to determine if U is indeed one. If U is not a
trapping set then it is discarded1. We complete the formation
of E1

I by repeating the above step for all other graphs in OI .
Let us now consider a graph U ∈ E1

I . Again, we denote
by OU the set of Tanner graphs obtained by adding one
variable node, namely vnI+2, to the graph U such that when
the decoding is performed on these graphs with V (I) being
the set of initially corrupt variable nodes, the newly added
variable node is a corrupt variable node at the end of the first
iteration, i.e., w1

vnI+2
∈ {1w, 1s}. It is important to note that

the addition of variable node vnI+2, which is initially correct,
cannot change the fact that variable node vnI+1 is also corrupt
at the end of the first iteration. This is because the addition of
correct variable nodes to a graph does not change the states
of the existing check nodes and the decoding dynamic until
the moment the newly added variable nodes get corrupted.
Similar to what has been discussed before, we now take a
graph in OU and determine if it is a trapping set, or it is to
be discarded, or it is a member of the set of Tanner graph
E2

I . By repeating this step for all other graphs in E1
I , all

graphs in E2
I can be enumerated. In a similar fashion, we

obtain E3
I ,E

4
I , . . . ,E

(nmax−nI)
I . For the sake of convenience,

we also let E0
I = {I}.

At this stage, we have considered one decoding iteration
on I . It can be seen that if S is a trapping set with at most
nmax variable nodes then either S has been found, or S must
contain a graph in

⋃(nmax−nI−1)
i=0 Ei

I . Therefore, we proceed
by expanding graphs in EI =

⋃(nmax−nI−1)
i=0 Ei

I .
Let K denote a Tanner graph in EI =

⋃(nmax−nI−1)
i=0 Ei

I .
We now repeat the above graph expanding process starting
from K. Specifically, we first obtain OK , which is defined as
the set of all Tanner graphs obtained by adding one variable
node vnK+1 to the graph K such that when the decoding is
performed on these graphs with V (I) being the set of initially
corrupt variable nodes, the newly added variable node is a
corrupt variable node at the end of the second iteration, but
not a corrupt variable node at the end of the first iteration, i.e.,
w1

vnK+1
∈ {0w, 0s} and w2

vnK+1
∈ {1w, 1s}. The graphs in

OK that are not trapping sets are either discarded or form the
set E1

K . By iteratively adding variable nodes, we enumerate
all graphs in E2

K ,E
3
K , . . . ,E

nmax−nI

K .
One can see that there are two different recursive algo-

rithms. The first algorithm enumerates graphs in EK =⋃(nmax−nI)
i=0 Ei

K for a given graph K by recursively adding
variable nodes. The second algorithm recursively calls the first
algorithm to enumerate graphs in EK =

⋃(nmax−nI)
i=0 Ei

K for
each graph K in EI =

⋃(nmax−nI−1)
i=0 Ei

I . Each recursion of
the second algorithm corresponds to a decoding algorithm.
As a result, the trapping set profile is obtained after lmF
recursions of the second algorithm. The pseudocodes of the
two algorithms, which we call RA1 and RA2 can be found
in [20]. The interested readers are referred to [20] for an

1More details are to be provided later in this paper.
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Fig. 4. Figures used in Example 2 and in Example 3.

example which demonstrates the operations of these recursive
algorithms.

Example 3: In this example, we demonstrate that the trap-
ping sets with fewest number of variable nodes need not
be absorbing sets or fixed sets, thereby again justifying the
necessity of our analysis. Consider the Tanner graph I that is
depicted in Fig. 4(b). There are 7 trapping sets of the TBFA2
with inducing set I and 9 variable nodes. These are trapping
sets with fewest number of variable nodes. None of these
trapping sets is an absorbing set or a fixed set. One such
trapping set is depicted in Fig. 4(f).

In the enumeration of trapping sets using the RA1 and RA2,
it is necessary that F fails because of the subgraph I of K
for K to be a trapping set. We remark that this condition,
however, is not sufficient for K to be a trapping set. Since the
condition that F fails because of the subgraph I of K is not a
sufficient condition, the given graph K, which can potentially
be a trapping set, must be verified whether it is a trapping set
or not. Although we have included the verification step in the
RA1 for the purpose of clearly illustrating the algorithms, it
is in practice easier to perform the verification after all graphs
that potentially can be trapping sets are enumerated. Under
such a scenario, in order to determine if K is a trapping
set, one can check, among the set of enumerated graphs, for
the existence of one which contains less variable nodes than

K and which satisfies condition 2) of Definition 5. This can
be done by deleting certain variable nodes of K to obtain
a smaller graph K ′, and then checking for the existence of
an isomorphism between K ′ and an enumerated graph under
which V (I) is mapped into V (I). Let nmin be the smallest
number of variable nodes of a Tanner graph in E r

I (F). One
can see that if nmax−nmin is relatively small, then the check
to determine whether K is a trapping set is fairly simple.
Moreover, note that if we set nmax = nmin, then the checking
step for a trapping set can be completely eliminated. This
is because graphs with nmin variable nodes cannot contain
a smaller trapping set.

V. APPLICATION OF THE FAILURE ANALYSIS IN THE
SELECTION OF TBF ALGORITHMS

The failure analysis presented in the previous section en-
ables the enumeration of all relevant uncorrectable error pat-
terns for a given TBF algorithm. Consequently, the selection
of one good TBF algorithm becomes simple. Nevertheless,
even if the best TBF algorithm can now be found, its error
performance might not be attractive enough for certain appli-
cations. In such a scenario, because of the simplicity and high
throughput of bit flipping decoding, it is natural to consider
the use of multiple TBFAs operating in a complimentary
manner. In the following discussion, we introduce the concept
of collective error correction and emphasize on the ease of
selecting complimentary TBF algorithms.

Let us consider a collection A of (general) iterative de-
coding algorithms for LDPC codes. Assume for a moment
that the set of all uncorrectable error patterns for each and
every algorithm in A is known. More precisely, in the context
of LDPC codes, we assume that all the induced subgraphs
on such error patterns can be enumerated for each decoding
algorithm. This naturally suggests the use of a decoder D
which employs multiple algorithms drawn from A . The basis
for this use of multiple algorithms is rather simple: If different
algorithms are capable of correcting different error patterns,
then a decoder employing a set of properly selected algorithms
can achieve provably better error performance than any single-
algorithm decoder. Although the above assumption is not valid
for most iterative algorithms, it is valid for the TBF algorithms
defined in this paper. This is because the notion of trapping
set of a TBF algorithm help determine whether or not an
arbitrary error pattern is correctable. The concept and explicit
construction of trapping set profiles allow rigorous selections
of multiple algorithms which can collectively correct a fixed
number of errors with high probability. In particular, a decoder
employing algorithms with diverse trapping set profiles is
capable of correcting a wide range of error configurations,
hence possesses desirable error correction capability. Although
the selection of algorithms can be code independent, any
knowledge on the Tanner graph can be utilized to refine the
selection.

The inputs to the process of selecting a group of TBF
algorithms are: (1) A large collection A of TBF algorithms.
A can be the set of all possible algorithms or it can be a
subset of algorithms that satisfies certain constraints. (2) A
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set of Tanner graphs with a small number of variable nodes.
These are all possible subgraphs induced on the set of initially
corrupt variable nodes. (3) Optional knowledge on the Tanner
graph on which the decoder operates.

The main element of the selection process is the enumera-
tion of trapping sets for all input algorithms to generate their
trapping set profiles. Once the trapping set profiles of all input
algorithms are generated, they will be used as inputs to the
algorithm selector. The algorithm selector outputs a set of
algorithms drawn from A with diverse trapping set profiles. By
cycling though these algorithms, or operating them in parallel,
it is possible to overcome the most commonly-occurring error
configurations, thereby improving the error performance.

A. Selecting One TBF Algorithm

We first discuss an important criterion to select one algo-
rithm among all possible algorithms. Let nmin

I,F be the smallest
number of variable nodes of Tanner graphs in E r

I (F). Then,
one should select an algorithm F such that nmin

I,F is maximized.
To justify this selection criterion, we rely on results in extremal
graph theory. In particular, we are interested in the probability
that a bipartite graph G has S as its subgraph, where G
is drawn randomly from the (dv, dc)-regular graph ensemble
and S is a dv-left-regular Tanner graph. Characterizing the
probability that a graph has another graph as its subgraph is
a heavily studied problem. A nice survey of results on this
problem is given in [21].

Let nG, nS denote the number of variable nodes in G and
S, respectively. Similarly, let mG,mS denote the number of
check nodes. Since S is only left-regular, we denote by ρ =
(ρ1, ρ2, . . . , ρmS

) the degree sequence of check nodes of S
and let ρmax be the maximum value in ρ. The probability
that G has S as its subgraph, denoted by P(S � G), can be
evaluated using [21, Theorem 2.2] as follows.

P(S � G) =

(dv!)nS [(n− nS)dv]!
mS∏
i=1

h(ρi)

(ndv)!

×
[
1 +O

(
ΛnS
n

)]
, (2)

where Λ = (dv + dc)(2dv + dc + ρmax), h(ρi) = dc(dc −
1) . . . (dc − ρi + 1), and O(ΛnS/n) is an error term which
vanishes when n→∞.

It can be seen that if the parameters associated with G are
fixed, then P(S � G) only depends on nS and the check
degree sequence ρ. Notice that since S contains nSdv edges,

the product
mS∏
i=1

h(ρi) is constituted of nSdv factors that are

members of the set {(dc−ρmax+1), (dc−ρmax+2), . . . , dc}.
Consequently, dnSdv

c ≤
mS∏
i=1

h(ρi) ≤ (dc − ρmax + 1)nSdv .

Now, one can see that for sufficiently large values of n and
sufficiently small values of dv, dc, nS and ρmax, the probability
P(S � G) is mostly influenced by nS . In particular, the term
[(n− nS)dv]! is most significant. In such a case, P(S � G)
decreases when nS increases. In the context of this paper,
dv, dc are fixed. Besides, we observe from the enumeration
of trapping sets for various algorithms that nS and ρmax are

usually small. Therefore, it is safe to assume that given two
dv-left-regular Tanner graphs S1, S2 with 0 < |V (S1)| <
|V (S2)| < |V (G)|, the probability that G contains S2 is less
than the probability that G contains S1.

From the above argument, it is clear that algorithms which
fail on larger trapping sets are more desirable. One can also
deduce that the larger the number |V (S)| of a given trapping
set S is, the easier it would be (if at all possible) to construct
a Tanner graph G that does not contain S. Therefore, a larger
nmin
I,F means that the sufficient condition for the convergence

of F can be met with higher probability. If for two algorithms
F1 and F2, nmin

I,F1
= nmin

I,F2
, then it is also possible to derive

other comparison criteria based on E r
I (F1) and E r

I (F2), and/or
compare F1 and F2 with a different assumption of I . For
example, the probability of a graph G containing a trapping
set S can be also be evaluated based on ρ.

B. Selecting Multiple TBF Algorithms

We now consider the problem of selecting multiple algo-
rithms. The basis for this selection is that one should select
good individual algorithms with diverse trapping set profiles.
In this paper, we only consider a decoder D with algorithms
F1,F2, . . . ,Fp operating in parallel, i.e., the received vector
of the channel is the input vector for all algorithms. Note
that one can also use trapping set profiles to select algorithms
that operate in serial, i.e., the output from one algorithm is
the input to another. For a decoder D that employs parallel
algorithms, the concept of trapping sets and trapping set
profiles can be defined in the same manner as trapping sets
and trapping set profiles for a single TBF algorithm. One can
easily modify the recursive procedures given in Section IV-B
to generate trapping set profiles of the decoder D. Then, D can
be designed with the same criterion discussed in the previous
subsection.

Remark: Knowledge on the Tanner graph G of a code can
be used in the enumeration of trapping sets to eliminate those
that cannot be present in G. For example, one can use the
techniques of searching for fixed sets and absorbing sets in
[2], [22]–[24] to predetermine those that cannot be present in
G. Then, these searching techniques can be incorporated into
the recursive procedures given in Section IV-B to eliminate
irrelevant trapping sets.

VI. NUMERICAL RESULTS

In this section, we give examples of selecting TBF algo-
rithms and demonstrate the frame error rate (FER) perfor-
mance of decoders employing these algorithms. For simplicity,
we assume the use of 3-left-regular codes with girth g = 8.
We also let ∆v = (0s, 1s), ∆c = (0p, 1p) and lmF = 30
for all algorithms. Our algorithms are compared with the
Gallager A/B algorithm, the min-sum algorithm and the SPA.
In these comparisons, the Gallager A/B algorithm, the min-
sum algorithm and the SPA iterate for a maximum of 100
iterations. In the SPA, messages have floating-point precision.
The comparisons are made on two codes: (1) The popular
(155, 64) Tanner code [25], denoted by C1. This code has
dv = 3, dc = 5, rate R = 0.4129 and minimum distance
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dmin = 20. (2) A quasi-cyclic code of length n = 732, rate
R = 0.7527 and minimum distance dmin = 12 [2]. We denote
this code by C2. As previously mentioned, only a subset Fr of
TBF algorithms should be considered. The constraints on TBF
algorithms that define Fr are constraints on the images of the
variable node update functions f . We are considering a set of
41, 472, 000 algorithms that satisfy a specific set of constraints.
All the algorithms given in this paper and the constraints on
them can be found at [26].

By Proposition 1, it is expected that a single algorithm
can guarantee the correction of 3 errors in a girth-8 3-left-
regular LDPC code. Let I3 be the set of all Tanner graphs
with girth g ≥ 8 and three variable nodes. We generate
the trapping set profiles E r

I (F) for all F ∈ Fr and all
I ∈ I3. There is a set F 3

r of 358, 851 algorithms for which
E r
I (F) = ∅ for all I ∈ I3. Such an algorithm can guarantee

to correct all weight-three error patterns. Our next step is
to select an algorithm which is most expected to correct a
weight-four error pattern. Let I4 be the set of all Tanner
graphs with girth g ≥ 8 and four variable nodes. Then,
|I4| = 10. We generate the trapping set profiles E r

I (F)
for all F ∈ F 3

r and all I ∈ I4. The largest among the
smallest sizes of trapping sets in E r

I (F) for all F ∈ F 3
r

are (10, 8, 8, 7, 7,∞,∞,∞, 6, 4). There are six algorithms,
denoted as FA1,FA2, . . . ,FA6 for which the smallest sizes of
trapping sets in E r

I (F) are (10, 8, 8, 5, 6,∞,∞,∞, 5, 4). The
smallest sizes of trapping sets in E r

I (F) for these algorithms
overlap the most with maxi(n

min
I1

, nmin
I2

, . . . , nmin
I10

). Hence,
these algorithms have the highest probability to correct a
random error pattern of weight-four. Let D1 denote a decoder
which uses FA1. The FER performance of D1 on C1 and C2 are
shown in Fig. 5(a) and Fig.6, respectively. It can be seen that
D1, which operates with a maximum of only 30 iterations,
outperforms the Gallager A/B algorithm in both codes and
outperform the min-sum algorithm on C2, which is a higher
rate code.

Let D′1 denote a decoder which uses FA1,FA2, . . . ,FA6

in parallel. Fig. 5(b) shows the performance of D′1 in com-
parison with D1. One can observe that there is no gain
in the FER performance of D′1. Simply using in parallel a
group of good algorithms does not necessarily result in better
error correction capability. We shall now give an example
on how to properly selecting a collection of algorithms.
Assume that FA1 is already in use. We would like to select
other TBF algorithms to complement FA1. In particular, we
need to select more TBF algorithms to complement FA1

in correcting weight-four error patterns. From the set of
trapping set profiles for all algorithms in Fr, we can se-
lect three algorithms, denoted as FB1,FB2 and FB3. The
smallest sizes of trapping sets in E r

I (F) for these algorithms
are (8, 8, 7, 8, 8, 8, 9,∞, 8, 4), (9, 8, 8, 6, 6,∞, 11,∞, 9, 4) and
(4, 4, 4, 4, 4, 4, 4, 4, 4,∞), respectively. Note that these three
algorithms are not capable of correcting all weight-three
error patterns. Let D′2 denote a decoder which uses FA1

and FB1 in parallel. Let D′′2 denote a decoder which uses
FA1,FB1,FB2 in parallel. Also letD2 denote a decoder which
uses FA1,FB1,FB2,FB3 in parallel. The FER performance
of D2, D′2 and D′′2 on C1 in comparison with D1 are shown in

Fig. 5(b). The FER performance of D2 on C1 and C2 are also
shown in Fig. 5(a) and Fig. 6, respectively. One can observe
the gradual improvement in the FER performance when more
algorithms are used.

As previously mentioned, knowledge on the Tanner graph
can be useful in the selection of algorithms. By using the
method of searching for subgraphs proposed in [2], one can
conclude that the Tanner graph of C1 is free of the subgraphs
listed in Fig. 7. After deleting irrelevant trapping sets (those
that contain a Tanner graph listed in Fig. 7 as a subgraph)
from the trapping set profiles, we can select a set of four
TBF algorithms that are used by a decoder D3. The FER
performance of D3 on C1 and C2 are shown in Fig. 5(a) and
Fig. 6, respectively. D3’s performance on C1 is also shown in
Fig. 5(b) to facilitate the comparison. One can observe that D3

outperforms D2 on C1. Note that although D3 also outperforms
D2 on C2, this fact is not expected to be typical.

Finally, we construct all trapping set profiles with inducing
sets containing four, five and six variable nodes for each
algorithm in Fr. Note that there are 10 possible inducing
sets (Tanner graphs with girth g ≥ 8) containing four variable
nodes, 24 possible inducing sets containing five variable nodes
and 57 possible inducing sets containing six variable nodes.
Hence, for each algorithm, we construct a total of 92 trapping
set profiles. From the trapping set profiles of all algorithms,
we select a collection of 35 algorithms. Then, we simulate the
performance of a decoder D4 which employs these algorithms
in parallel. The maximum total number of iterations of D4

is 35 × 30 = 1050. Fig. 5(a) shows the FER performance of
D4 on C1. It can be seen that the FER performance of D4

approaches (and might surpass) that of the SPA in the error
floor region. It is also important to note that D4 can correct
any error pattern up to weight 5 on C1. Fig. 6 also shows the
FER performance of D4 on C2. It can be seen that the slope
of the FER curve of D4 in the error floor region is higher
than that of the SPA. This indicates that the FER performance
of D4 might eventually surpass that of the SPA. Finally, we
remark that the slope of the FER curve of D4 in the error floor
region is between 5 and 6, which indicates that D4 can correct
error patterns of weight 4 and 5 with high probability. This
also agrees with the fact that in our simulation, no weight-
four error pattern that leads to decoding failure of D4 was
observed.

VII. CONCLUSIONS

We proposed a novel class of bit flipping algorithms for
LDPC codes. More importantly, we gave a framework for the
analysis and selection of algorithms that can together correct
a fixed number of errors with high probability. Since in TBF
algorithms variable nodes take more than two states, it would
be interesting to consider the use of the proposed algorithms
on channels which output more than two signal levels. This is
left as our future work.
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