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Abstract – This paper gives a brief survey of information 

theoretic results on fault-tolerant memory systems. The main 

focus is on Taylor-Kuznetsov memory architecture which has 

been shown to achieve nonzero computational capacity. A new 

approach for analyzing fault-tolerant memories that takes into 

account gate failure correlation is also presented. The analysis 

was done by modelling gate failures by Markov chain.         
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I. INTRODUCTION 

It is widely recognized that decreasing transistor size can 

produce many advantages in terms of computation efficiency. 

More the transistors placed on the chip, the larger the 

computational power. Also, new nano-scale technologies 

reduce the interconnect delays, enabling faster computation.  

However, using small transistors poses numerous 

technological challenges. First, the energy dissipation 

increases which can be critical issue in mobile devices. For 

reducing the energy leakage the dynamic voltage and 

frequency scaling (DVFS) is widely used [1]. The 

effectiveness of DVFS is studied in [2] where the aggressive 

voltage scaling is proposed. Increased noise sensitivity is a 

second drawback as the reliability of a digital circuit decreases 

with transistors size. Thus, fault tolerance is recognized as one 

of the top challenges in semiconductor technology [3].1234 

 Physical reasons for semiconductor devices failures vary 

with used technology but can be broadly divided into three 

main categories: permanent, intermittent and transient [4]. 

Permanent faults are irreversible faults caused by 

manufacturing defects, device wear-out, or heavy ion 

radiation [5]. Intermittent faults occur because of unstable 

hardware. Often intermittent faults precede the occurrence of 

permanent faults. Transient faults (TFs), also referred to as 

soft errors, are mainly due to single or multiple event upsets 

or timing errors [6]. These errors have probabilistic behaviour 

and can be described statistically. TFs were of great concern 

in memories rather than logic circuits due to so called 

masking factors, but using sub-threshold voltages it is possible 
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that digital circuit will be affected by multiple errors that may 

exhibit correlation [7]. Timing errors occur when a system 

operates at a very high data rate, and are caused by timing 

jitter. Because of the sampling clock fluctuations or signal 

propagation delays, the output signal of a gate may be 

sampled or used in the next stage before it reaches a steady 

value, leading to an incorrect output. Such errors are 

dependent on gate history, i.e. data values processed by the 

gate in previous bit intervals. 

The fault-tolerant systems, from the information theory 

point of view, have been investigated over past decades. First 

contribution to this research field was made by Von Neumann 

who examined performance of circuits with faulty gates [8]. 

One variant of the Von Neumann’s fault-tolerant architecture 

called triple modular redundancy was widely studied [9]-[12]. 

Also, large number of fault-tolerant nano-structures, proposed 

in the literature, are based on Von Neumann’s work [13]-[16]. 

The fault-tolerant memories were also examined by Taylor 

[17], [18] who proposed use of low-density parity-check 

(LDPC) codes as restoration organs in faulty memories. His 

work was continued and refined by Kuznetsov [19]. Recently, 

as understanding of LDPC codes increases, research in this 

direction continues [20]-[24].   

In this paper, we focus on the design of memory circuits 

built from unreliable components. We advocate usage of error 

correcting codes, especially LDPC codes for enabling fault-

tolerance and some of our initial results are presented in this 

paper. We adapted the approach in which the memory 

elements and correcting logic circuits are considered 

unreliable, which is different from the state-of-the-art system 

in which only memory elements are faulty, while the 

operation of error correction circuitry is assumed to be 

reliable.  

Fault-tolerant system analysis, presented in this paper, is 

done assuming Markovian types of errors. This error model 

corresponds to timing errors, which are dominant in extremely 

high-speed digital circuitry. Interestingly, this type of errors 

has not been studied much in the fault-tolerant literature. 

The rest of the paper is organized as follows. In Section II 

the previous work related to this topic is presented which 

includes the theoretical foundation of the fault-tolerance 

problem and pioneering work done by Taylor and Kuznetsov. 

In Section III we give a brief description of novel approach 

we are taking for better understanding and improving the 

fault-tolerant systems. Section IV is dedicated to error 

modelling, and numerical results are presented in Section V. 

Finally, some concluding remarks are given in Section VI.               
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II. PRIOR WORK 

A. Theoretical foundation – a coding theory perspective 

The conventional approach to deal with faulty gates is 

multiplexing. The multiplexing technique originates from von 

Neumann’s theory of computation by circuits with faulty 

gates [8]. Von Neumann showed that, under certain 

conditions, the error at the output of multiplexing scheme can 

be arbitrary small, for a fixed probability of a component gate 

failure. The system he proposed was organized in such a 

manner, that failure of whole system cannot be caused by the 

failure of a single component, or a small number of 

components. His fault-tolerant circuit was comprised of the 

so-called computational organ consisting of many replicas of 

faulty gates and a restoration organ that performs a majority 

vote, as it is shown in Fig 1. Although multiplexing has the 

advantage of simplicity, it leads to extremely large hardware 

redundancy when gate reliability is small. 

The computing systems proposed by von Neumann achieve 

arbitrarily small error probability only in the asymptotic limit 

of infinite redundancy (the redundancy is defined as the ratio 

between the number of components of the redundant noisy 

systems and the number of components of the original fault-

free system). The analysis of fault-tolerant hardware can be 

done from perspective of error correcting coding. It is obvious 

that Von Neumann architecture corresponds to a repetition 

coding technique, for which is known to achieve small 

probability of error at the price of decreasing the coding rate 

down to zero. From the results obtained by Shannon 

concerning the reliability of noisy communication system it is 

also known that error probability can be reduced to an 

arbitrary low level using finite redundancy [25]. In view of 

this fact, we can conclude that use of better error correcting 

codes (ECCs), than repetition coding scheme, can improve 

performance of fault-tolerant systems. 

The first attempt to achieve reliable communication with 

non-zero coding rates techniques was done by Elias [26]. 

Although he failed to design systems with finite redundancy, 

he showed that finite redundancy can be achieved only if the 

coder and decoder complexities grow at most linearly with the 

code length. The described characteristic was observed at 

convolutional encoders and sequential decoders. Also, this 

property was discovered in a LDPC family of ECCs, 

introduced by Gallager [27], which are largely used in 

nowadays communication systems. 

 Usage of LDPC codes in fault-tolerant systems reduces the 

restoration organ complexity. Taylor, in [18] proved that a 

Boolean function computed by a system of k reliable 

components can also be computed by a system of O(klog(k)) 

unreliable components. If a LDPC decoder is used for the 

restoration organ, the log(k) factor comes as a consequence of 

asymptotical number of decoding iterations [18]. In practical 

LDPC decoder realizations, however, only the computing 

components corresponding to a single iteration need to be 

actually implemented in hardware, which reduces the space 

complexity of the fault-tolerant system.  
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Fig. 1. Von Neumann fault-tolerant system architecture. 

Moreover, a practical system may use only a finite number of 

decoding iterations, while preserving very high reliability. 
 

B. Taylor-Kuznetsov approach to fault-tolerant memories 

Taylor [18] was the first to investigate the capacity and 

fault-tolerant architectures of storage systems built entirely 

from unreliable components. His results were refined by 

Kuznetsov. Taylor and Kuznetsov tried to derive results 

analogous to the ones obtained by Shannon on the capacity of 

communication systems. Taylor proved that a memory built 

from unreliable components can achieve storage capacity C 

for all memory redundancies greater that 1/C. In the Taylor-

Kuznetsov (TK) model, the information is stored in a coded 

form, i.e., the stored vector is a codeword of some (n, k) block 

ECC. The memory in which the bits are stored is also 

assumed to be unreliable. It is connected to a correcting circuit 

(a restoration organ in von Neumann’s terminology), which 

periodically updates the values in the memory according to 

some decoding scheme.  

Taylor and Kuznetsov showed that the redundancy 

necessary to ensure the reliability of a memory grows 

asymptotically linearly with the memory size. Taylor also 

described the importance of LDPC codes arguing that no 

decoding scheme other than iterative LDPC decoding can 

achieve non-zero storage capacity. He also derived bounds on 

memory failure probability under assumption of uncorrelated 

memory failures. In the TK scheme, a memory failure is said 

to occur if the error pattern in the memory is uncorrectable by 

a noiseless decoder in predefined number of iterations. 

We next describe the TK scheme in a similar fashion as it 

was previously done in [20], [21] and [24].    

Initial assumption is that the information to be stored is first 

encoded by a regular binary LDPC code of length n and 

dimension k. Parity check matrix H of a (J,K)-regular LDPC 

code is of size  m×n and has J 1’s in every column and K 1’s 

in every row. The stored codeword, denoted as x=(x1,x2,...,xn), 

consist of n variable bits xi, (i=1,...,n) which are involved in 

exactly J parity-check equations. What parity checks are 

satisfied can be determined by multiplying codeword x and 

the transpose of a parity check matrix (HT), i. e. xHT=c. The 

vector c=(c1,c2,...,cm) is called a syndrome and its size is equal 

to m, the number of rows in parity check matrix H. Each value 

cj (j=1,...,m) corresponds to the value of j-th parity-check sum. 

Parity check cj is said to be satisfied if cj=0 and unsatisfied if 

cj=1.  



 
 

Fig. 2. A block diagram of the Taylor-Kuznetsov memory 

architecture. 

After encoding, the J copies of every coded bit xi 

 (1) (2) ( ), ,..., J

i i ix x x and stored in J registers. Fig. 2, shows the 

steps for updating ( )J

ix , the J-th copy of the bit xi. All bit-

copies initially have the same values. Registers are made from 

memory cells that are considered to be unreliable. New 

estimates of each of these copies are obtained by using one 

combination of J-1 checks. The estimates are obtained as 

follows. 

1. Evaluate parity checks for each bit-copy (exclude one 

distinct parity check from the original set of check for 

each bit-copy). 

2. Flip the value of a particular bit-copy if half or more of 

the parity checks are unsatisfied. 

3. Iterate (1) and (2). 

There are a total of J-1 parity checks for each bit copy. The 

decision element in this case is a majority logic gate whose 

output is 1 if half or more of the parity checks are nonzero. 

The correction is accomplished by XOR gate and the previous 

value of bit-copy. In this iterative decoding scheme, each 

parity check requires K-1 input bits (other than the bit-copy 

we are trying to estimate). Since each of these input bits has J 

different copies, there are J copies for each particular bit that 

can be used for estimating ( ) ,j

ix  j-th copy of bit xi. When 

estimating a copy ( ) ,j

ix  of the bit xi using an estimate of bit xl, 

we use the bit-copy ( )s

lx in whose evaluation the parity check 

involving xi is omitted. 

The equivalence between TK scheme and Gallager-B 

decoding algorithm (described in [27] and [28]), is now well 

established [20]. We next briefly present the modification of 

TK scheme that allows us to examine TK scheme in the 

context of iterative decoding of LDPC codes. The 

modification was originally proposed in [24]. 

Parity checks computation in TK scheme gives assessment 

regarding satisfaction of observed parity check equations. If 

we exclude a bit-copy that has been estimated from parity 

check equations, we can evaluate the bit-copy rather than the 

parity. All evaluated bit-copies then can be compared using 

majority vote. Thus, each bit-copy ( ) ,j

ix  (j=1,...,J) of variable 

bit xi can be represented by edges of the Tanner graph incident 

on xi. 

This modified TK scheme uses less computation operation 

compared to original TK scheme and enable us to design the 

memories that can be examined using graphs and large 

knowledge about iterative decoding of LDPC codes [20]. In 

[24] another modification was proposed which implied that 

after every iteration of a Gallager-B decoding algorithm 

syndrome was computed. If all parity checks were satisfied 

the correct codeword was stored in memory registers. It was 

shown that this modification significantly increase memory 

reliability.  

Also, fault-tolerant memory architecture based on expander 

graphs of LDPC codes was presented in [21]. The correcting 

circuit were organized according to parallel bit flipping 

algorithm, described in [29]. Theoretical boundary concerning 

the fraction of errors that can be tolerated by this memory 

architecture was also derived.       

III. FAULT-TOLERANT MEMORY ANALYSIS 

In this section we present a novel approach for analysis and 

construction of reliable memories built from unreliable 

components.     

Traditional models of memory error correcting coding 

systems assume perfect and deterministic operation of an error 

correcting decoder, and localize the errors only in the memory 

elements (as illustrated in Fig. 3. (a)). If the reliability of logic 

gates used in the coder and correcting circuit (decoder) is 

many orders of magnitude higher than the reliability of 

memory cells, the errors in the memory have dominant effect 

on system performance. However, if digital logic in the coder 

and decoder is built of faulty components, then the errors and 

noise do affect operations performed in coder/decoder, and 

reduce the reliability of the whole system (Fig. 3. (b)). We 

assume that devices have finite reliability, and analyze an 

error correction system with low-hardware overhead based on 

LDPC codes.  

The LDPC codes were intensively investigated during the 

past decade, but until know, only memory architectures based 

on Gallager-B and bit flipping algorithms were examined.      

 
(a) 

 
(b) 

Fig. 3. Block diagram of a memory system (a) classical - the noise 

affects only memory, but the operation of the coder/decoder is 

fault-free, (b) under consideration - all components including logic 

gates in the coder/decoder are unreliable. 



 Performance achievable by e.g., Min-Sum or FAID 

algorithms in fault-tolerant memories, as described in [30] and 

[31], are not yet known. 

Also, a choice of LDPC code which code words are used 

for storing information in the memory registers can 

significantly influence the memory fault-tolerance. Our 

investigation is aimed at analysis of quasi-cyclic LDPC codes 

based on circulants. This type of LDPC codes are designed to 

have low error floors on the binary symmetric channel, by 

ensuring that their Tanner graphs are free of certain small 

trapping sets [32].         

IV. THE CORRELATED FAILURE MODEL 

Both Von Neumann and Taylor-Kuznetsov models assume 

that faults of memory elements and logic gates are transient, 

i.e. faults occur at a particular time instants but do not 

necessary persist for later times. It is also assumed that gates 

fail independently of each other and that defects are not 

permanent, i.e. faulty gate may produce a correct output at 

some point in time. Such failure mechanism is referred to as 

von Neumann type of errors. In this paper we consider a more 

general failure model in which failures of a given logic gate 

are data-dependent and correlated in time.  

Our model can be used for analyzing physical phenomena 

such as logic hazard [33], or noise influence to chips with sub-

threshold voltages. We formed a model of faulty gates 

through its first order statistics (probability of erroneous 

circuit output) as a function of logic gates inputs or outputs. 

For that purpose we used Markov chains.  

As it can be seen in Fig. 2, the TK scheme is composed of 

(J-1)-input majority logic gates, K-input XOR gates and 2-

input XOR gates. Because all multi-input gates in hardware 

are implemented as circuits composed of 2-input Boolean 

logic gates, our analysis is done at the 2-input Boolean 

function level. The correct binary output value of a given 

Boolean function, Oc(k) at discrete time k, (k>0), depends on 

I1(k) and I2(k), the logic gate binary input values. This is 

illustrated in Fig. 4. The errors are inserted into logic gate by 

performing XOR operation between correct gate output 

sequence {Oc(k)}k>0, and the error sequence {e(k)}k>0, 

producing the actual output sequence {Oe(k)}k>0, (Fig. 4). The 

error sequence {e(k)}k>0, represents the binary time series 

which describes the statistics of errors. If the k-th value of 

error pattern is ‘1’, i.e. e(k)=1 (k>0), the output of Boolean 

logic gate at time k will be faulty, i.e., the k-th actual output 

value will not correspond to correct one (Oe(k)≠ Oc(k)). The 

error sequence is modelled as a finite Markov chain. The error 

pattern statistics depends on gate inputs and outputs, and in 

principle there are two ways to define such dependence. In the 

first approach the e(k) at discrete time k taking some value 

depends on the current gate output Oc(k) as well as M, M>0,  

previous gate outputs Oc(k-1), … Oc(k-M). In the second 

approach, the probability of error pattern depends on gate 

inputs I1(k), I2(k), I1(k-1), I2(k-1)... I1(k-M), I2(k-M)). In this 

paper, our focus was on output dependence model because its 

complexity is half of that of the second model, while still 

capturing the essential characteristics of data dependence. 

Boolean function

+

e(k)

I1(k)

I2(k)
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Fig. 4. Error insertion into a 2-input Boolean function. 

Let S be a Markov source generating the error sequence 

composed of 2M+1 states si, 1≤i≤2M+1, i.e.  11 2 2
, ,..., .MS s s s   

Every state corresponds to one possible logic gate output 

sequence of length M+1 and captures the different data-

dependent failures, expressed through different error 

probabilities p(si)=Pr{e(k)=1|si}, 1≤i≤2M+1, k>0, where Pr{.} 

denotes probability. According to current binary output value 

Oc(k), k>0, from each state si only transition to two next states 

sj and sm are possible, which happens with probabilities pij and 

pim, respectively. The transition probabilities pij, depend on 

statistic of sequence {Oc(k)}k>0, and must satisfy pij+pim=1, 

1≤a≤2M+1, aϵ{i,j,m}. Although large value of M can give us 

possibility to describe data-dependence in more details, 

complexity of model increases exponentially. Also, long 

correlation is not expected in faulty logic gates. Thus, we use 

the simplest model with M=1, presented in Fig. 5, which can 

adequately illustrate data-dependent failures. We next analyze 

AND, OR and XOR faulty logic gates. 

At the output of AND logic gate correct value ‘1’ appears 

only if both inputs are equal to ‘1’. Thus, if due to increased 

noise level one input changes its value, the gate output will be 

faulty. We can conclude that gate output ‘1’ is more prone to 

errors. Consequently, the error probability in the state s4=‘11’ 

is the highest and in the s1=’00’ state is the lowest. The last 

conclusion can be formulated as follows 

    4( ) Pr 1| Pr 1| ,   1 4,AND i i ip s e s A e s i       (1) 

where pAND(si) denotes the error probability at the output of 

AND logic gate in state si, 1≤i≤4, and Ai represent the scaling 

coefficients, dependent of state si. From the discussion 

presented above, it is clear that must hold 

  1 0 4 0 2 31,   , .A A A A A A     (2) 

Similar analysis can be performed for the OR logic gate. 

The correct output value ‘0’ can be changed to incorrect value 

‘1’ even if only one input is faulty. Thus, in this case the state 

‘00’ is the most sensitive and we can write the following 

expression 

    1( ) Pr 1| Pr 1| ,   1 4,OR i i ip s e s B e s i        (3) 

 

where pOR(si) denotes the error probability at the output of OR 

logic gate in state si, 1≤i≤4, and Bi represent the scaling 

coefficients, dependent of state si. It can be noted that 

following condition must be satisfied 

  4 0 1 0 2 31,   , .B B B B B B      (4) 
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Fig. 5. Output dependence finite state error model.  

Every change of input values of XOR logic gate will 

produce an error. Thus, probabilities of output error will be 

the same regardless of current state, pXOR(si)=pXOR, 1≤i≤4, i.e. 

XOR error pattern can be modelled as Binary Symmetric 

Channel (BSC).  

As previously described, using AND, OR and XOR logic 

gates every multiple-input logic gate in TK scheme can be 

implemented. For example, faulty 3-input majority logic gate 

can be presented as a digital circuit composed of three faulty 

AND gates and two faulty OR gates (Fig. 6).  

The results of majority logic gates analysis are graphically 

presented in Fig. 7 and Fig. 8, for several values of Ai and Bi 

coefficients and inputs statistics. The input statistics are 

described by probability that input values Ii (i=1,2,3) are equal 

to ‘1’, denoted as P1. The failure model coefficients are given 

in normalized form as follows 

 

1 4

2 3 2 3

2

4 1

1,

1 ,

1 .

B A

B B A A p

B A p

 

   

 

  (5) 

In this way all coefficients are described by a single parameter 

(p). It should be noted that this coefficient relations are purely 

theoretical and they have not been validated by real 

measurements. 

The output error probability of 3-input majority logic gate 

dependence of average component failures is presented in Fig 

7, for several values of parameter p(=1,2,3) and two input 

probabilities P1=0.5 and P1=0.9. It can be noticed that input 

statistics have the most influence on logic gate performance. 

A majority logic gate output is equal to ‘1’, if half or more 

inputs are equal to ‘1’. Thus, when ones and zeros appear at 

the gate inputs with equal probabilities (P1=0.5) more gate 

output values will be faulty, compared to case when almost all 

inputs are ‘1’ (P1=0.9). When P1=0.5, parameter p, which 

describes presented Markov model, does not have any impact 

on logic gate performance. So, for that case the presented 

model is excessive and can be replaced by uncorrelated error 

model. 

 
Fig. 6. Digital circuit scheme of faulty 3-input majority logic gate. 

When P1=0.9 differences caused by error correlation exist, but 

logic gate failures can be well approximated by uncorrelated 

errors.   

Furthermore, as the output error probability is a linear 

function of average component error, a faulty majority logic 

gate can be modelled as correct one at which output the error 

pattern is inserted. Thus, if probabilities of input values are 

known, a simpler model can be used, which is characterized 

only by output error probability, as it is presented in Fig. 9.  

It should be noted that simplification, presented in Fig. 9, is 

accurate only if autocorrelation function of error pattern is 

unchanged. It is well known that, using autoregressive (AR) 

models, random process with arbitrary autocorrelation 

function can be generated [34]. But, in this case, as simulation 

analysis has shown, presented Markov chain produced the 

output error pattern which greatly resembles the uncorrelated 

one. Thus, it is sufficient to determine first order statistics of 

the error pattern.  

It should be also emphasized that we did not take into 

account asymmetry of digital circuit scheme. As can be seen 

in Fig. 6, the input combination (I1,I3) will be affected with 

only two error patterns (e3 and e5), while on paths of other two 

input combinations, three error sequences exist. What effect 

the circuit asymmetry has on faulty logic gate performance 

will be determined in our future work.  

The performance comparison of majority logic gates with 

different number of inputs is presented in Fig. 8, when p=2. 

The number of inputs of majority logic gate used in TK 

scheme depends of column weight of used LDPC code parity 

check matrix. Thus, the comparison of different majority logic 

gates can give us an insight what LDPC code will produce 

less errors in the decoding phase. Also, code correcting 

capabilities have a significant influence in choosing the right 

code for TK scheme. It can be noted that 2-input majority 

logic gate (which is actually a simple OR logic gate) has the 

lowest output error probability when P1=0.5. But, when 

P1=0.9, the simulation has shown that the gate with largest 

number of inputs (4-input gate) outperforms other logic gates. 

The gates with more inputs are less sensitive to errors when 

input value ‘1’ is more frequent then value ‘0’.   

We can conclude that input values statistics have a key role 

in majority logic gate analysis. If we can determine the 

probabilities of input values we can easily generate a simpler 

model of faulty majority logic gate and choose the LDPC 

code, which will be more resistant to hardware failures.  



 
Fig. 7. Probability of error in 3-input majority logic gate.  

 
Fig. 8. Comparison of majority logic gates with different number of 

inputs for p=2.  

However, determining the logic gate input statistics in the 

TK scheme is not a simple task due to strong dependence 

among logic gates, and it will be focus of our future work.  

The faulty multi-input XOR gates are also an integral part 

of the TK scheme and, as already mentioned, can be 

represented as 2-input faulty XOR gates. In Fig. 10 the 3-

input XOR gate model is presented.  

The number of inputs of XOR logic gate is defined by the 

row weight of chosen LDPC code parity check matrix. Thus, 

it is interesting to compare XOR gates with different number 

of inputs.  
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Fig. 9. Equivalent scheme of faulty 3-input XOR logic gate.  

 

 
Fig. 10. A scheme of a faulty 3-input XOR logic gate.  

 
Fig. 11. Comparison of XOR logic gates with different number of 

inputs (output dependence model).  

Performance of XOR gates with 3, 4 and 5 inputs are 

presented in Fig 11. It can be noted that increasing the number 

of inputs causes higher output error probability. In multi-input 

XOR gate every odd number of 2-input XOR gate failures 

will produce output errors. In XOR logic gates with more 

inputs more 2-input XOR gate failure combination can 

generate an output error.  

Because errors in 2-input XOR gates are uncorrelated, the 

number of inputs is only parameter that affects multi-input 

XOR gate performance. The input values statistics and circuit 

asymmetry do not have any impact on output error probability 

in our XOR gate failure model. 

V. NUMERICAL RESULTS  

 
In this section we present the simulation results for TK 

memory architecture with codeword length equal to 15 bits. 

We used LDPC code constructed by Euclidean geometry 

principle, EG(15,7). The parity check matrix of this code has 

four 1’s in every row and column. The length of the shortest 

cycle of the Tanner graph representation is equal to 6. 

We assumed that memory failures are independent and they 

can happen with probability Pm. The failures of correcting 

circuit are modelled by using Markov model described in the 

Section IV. Thus, the probability that output of Boolean 

function is incorrect in the worst state Pb, 

Pb=pAND(s4)=pOR(s1)=pXOR, and value of parameter p from Eq. 

5 completely defines the failure model. 



We assumed that the memory contents pass through a BSC 

after a time period T and then are updated by the message 

passing Gallager-B decoder. Initially, all-zero code word is 

stored in memory registers. The message passing can be run 

for any number of iterations. It is also assumed that the time 

for update is smaller compared to T and that memory contents 

do not change while the update is in progress.  

The bit error rate (BER) curves for described memory 

architecture when Pm=10-3 and p=2, are presented in Fig 12, 

for several values of Pb. The update process is terminated after 

four iteration of Gallager-B algorithm. It can be noted that 

when correcting circuits faults are of the same order of 

magnitude as memory elements faults, the reliable memory 

cannot be achieved. If logic gate error probability has lower 

values (Pb=10-4, Pb=10-5) BER does not increase rapidly and 

stays below memory error probability for several time steps T.    

 
Fig. 12. Performance of TK scheme with EG(15,7) LDPC code in a 

correlated error model (p=2).  

VI. SUMMARY 

Due to nano-scale technologies development, assurance of 

the fault-tolerance became a critical issue. Using LDPC codes, 

as it is done in TK scheme, can significantly increase the 

memory reliability.   

In this paper we have examined the transient faults 

influence to performance of multi-input digital gates used in 

TK memory architecture. The error correlation model, based 

on Markov chain has been introduced and performance of 

majority logic gates and multi-input XOR gates have been 

obtained. 

   It has been observed that input statistics have dominant 

affect on faulty majority logic gate performance, compared to 

error correlation modelled by Markov chain. Thus, 

simplification of faulty majority gate model has been 

presented. The error probability at the output of multi-input 

XOR logic gate has been determined by number of gate 

inputs.   
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