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Abstract—This work evaluates the robustness of Low-Density
Parity-Check decoders against errors due to imprecise arithmetic.
While the use of imprecise arithmetic is motivated by savings
in energy, delay and area, it also causes errors during the
decoding process. This is a new paradigm in coding theory, which
traditionally assumes that an error correction decoder operates
on exact hardware and errors can only be introduced by the
transmission channel. We design imprecise arithmetic operators
and investigate their use within several Min-Sum-based decoders.
We show that all decoders are able to provide error protection,
but most of them suffer a performance penalty compared to the
exact arithmetic implementation. Remarkably, the Self-Corrected
Min-Sum decoder incurs no performance penalty when imprecise
arithmetic is used.

Index Terms—Fault-tolerance, LDPC codes, Min-Sum-based
decoders, low-power decoders, imprecise arithmetic.

I. INTRODUCTION

In order to support the sustainable development of future
communication systems, energy efficiency became one of the
most important issues to be addressed. Traditionally, the power
consumption has been interpreted as the transmit power. This
is mainly due to long-range communications, which greatly
contributed to the development of information and coding
theory, for which the transmit power dominates the total power
consumed by the system. Forward error correction (FEC)
codes have been key components to design reliable communi-
cation systems, while limiting the transmit power to acceptable
low levels. Moreover, spectacular advances in the domain of
graph-based codes and iterative decoding techniques, made
possible the development of new families of error correcting
codes ensuring reliable communication at transmit powers
closer and closer to the theoretical Shannon limit [1], [2].

Nowadays, there is an increased interest in shorter range
communications, from a few meters (femto-cells, wireless
sensor networks, etc.) to a few millimeters (inter-chip and on-
chip communications). For such applications, it is commonly
accepted that the processing power (the power consumed in
processing the signals) might represent a substantial fraction
of the total power [3], [4]. In this context, power consumption
of the FEC decoder module is often a bottleneck, as it can
require an important part of the processing power, or even
more power than the receiver can supply (e.g. in case of low-
power systems).

For applications that can trade the accuracy of the circuit
for the power consumption, two main approaches are currently

investigated. The first approach, consists in using aggressive
voltage scaling as the basis for reliability and energy tradeoffs.
This brings the signal level close to the noise level, which
reduces the noise immunity of the circuit and leads to proba-
bilistic computational models [5], [6]. Such models were used
to derive low-energy computational platforms for probabilistic
algorithms of for applications from the domain of image and
video processing, which tolerate probabilistic behavior at the
circuit level [7].

The second approach consists in using imprecise (also
referred to as inexact) circuits, obtained by pruning the ex-
act circuit. This amounts to removing a certain number of
logic gates from the circuit (depending on the application’s
tolerance to errors), which may result in significant savings in
energy, delay and area [8]. Imprecise arithmetic (e.g. adders,
multipliers) proved to be particularly useful for applications
from the domain of image and video processing [9]–[11].

This paper investigates the robustness of FEC decoders
against errors due to imprecise arithmetic. This is a new
paradigm in coding theory, which traditionally assumes that
the operations of a FEC decoders are exact, and errors can
only be introduced by the channel. While the use of imprecise
arithmetic is motivated by savings in energy, delay and area,
the first question we have to answer is whether or not FEC
decoders are able to provide reliable error protection when
they operate on imprecise hardware.

We focus on Low-Density Parity-Check (LDPC) codes [12],
a class of error correcting codes that feature low complexity
message-passing (MP) iterative decoding and can be optimized
for a broad class of channels, with performance approaching
the theoretical Shannon limit [2]. We evaluate the perfor-
mance of several LDPC decoders using imprecise arithmetic
operators. While the performance penalty due to imprecise
arithmetic depends on the considered decoder, we show that
the Self-Corrected Min-Sum decoder is inherently robust, and
does not suffer any performance penalty due to imprecise
arithmetic.

The remainder of the paper is organized as follows. Related
works are discussed in Section II. Section III gives a brief
introduction to LDPC codes and iterative decoding algorithms.
Section IV is concerned with the design of imprecise Min-
Sum-based decoders and their imprecise arithmetic compo-
nents. Simulation results are provided in Section V. Section VI
discusses future works and Section VII concludes the paper.



II. RELATED WORKS

Over the last few years, there has been an increased interest
in investigating the behavior of LDPC decoders operating on
circuits built from probabilistic components. The motivation is
two-fold. On the one hand, as mentioned in the Introduction,
aggressive voltage scaling can be used to reduce the power
consumption of the circuit, leading to probabilistic computa-
tional models. On the other hand, it is now widely accepted
that emerging nano-electronic devices will be inherently unre-
liable, due to ineluctable increases in density integration and
imperative requirements of low-energy consumption. Recent
works studied the performance of Gallager A and Gallager B
decoders on faulty hardware [13]–[15]. The focus of this paper
differs from these research in several ways:

1) Our decoders are implemented on circuits built from
imprecise components. Both imprecise and probabilistic
components causes errors during the decoding process,
but imprecise behavior is deterministic and can be
“tuned” to a desired level of errors.

2) In [13]–[15], the authors investigate the asymptotic
behavior of the decoder, while we are concerned with
finite-length performance.

3) Previous works were concerned with Gallager A and
Gallager B decoders, while we are interested in Min-
Sum-based decoders, which are widely implemented in
real communication systems.

III. LDPC CODES AND ITERATIVE DECODING

Low-Density Parity-Check (LDPC) codes, have been intro-
duced by Gallager in the early 60’s [12], as a class of linear
block codes defined by sparse parity-check matrices, suitable
for decoding by message-passing (MP) iterative algorithms.
Tanner described LDPC codes in terms of sparse bipartite
graphs [16], containing two types of nodes: variable-nodes
corresponding to coded bits and check-nodes corresponding
to parity checks. Equivalently, variable and check nodes cor-
respond respectively to columns and rows of the parity check
matrix H , while edges connecting variable and check nodes
correspond to the non-zero entries of H .

The graphical representation proposed by Tanner proved to
be particularly suitable for MP decoding algorithms. Such a
decoding algorithm consists of an exchange of messages along
the edges of the bipartite graph. Each message provides an
estimation of either the sender or the recipient variable-node
(the variable-node incident to the edge), and the exchange of
messages takes place in several rounds, or iterations. At each
new iteration, new messages are computed in an extrinsic
manner, meaning that a message that is sent on an edge
does not depend on the message just received on the same
edge. Consequently, variable-nodes collect more and more
information with each new decoding iteration, which gradually
improves the estimation of the sent codeword.

The use of Tanner graphs allowed reformulating the proba-
bilistic decoding initially proposed by Gallager in terms of
Belief-Propagation (BP) – also referred to as Sum-Product

(SP) – a MP algorithm that performs Bayesian inference on
graphical models [17], [18]. The BP decoding is known to
be optimal for codes defined by cycle-free bipartite graphs,
in the sens it outputs the Maximum A Posteriori (MAP)
estimates of the coded bits. It is also known to achieve an
excellent performance on general sparse bipartite graphs, even
if it deviates from the MAP in practical cases (because bi-
partite graphs associated with practical codes contain cycles).
However, the decoding performance is not the only relevant
criterion when it comes to practical system implementation,
and the BP algorithm is disadvantaged by its complexity,
numerical instability, and the fact that it requires the perfect
knowledge of the channel parameter (e.g. SNR), which may
be imprecisely estimated in practical situations.

One way to deal with complexity and numerical insta-
bility issues is to simplify the computation of messages
exchanged within the BP decoding. The most complex step
of the BP decoding is the computation of check-to-variable
node messages, which makes use of computationally intensive
hyperbolic tangent functions. The Min-Sum (MS) algorithm
is aimed at reducing the computational complexity of the
BP, by using max-log approximations of the parity check to
coded bit messages [19], [20]. The only computations required
by the MS decoding are additions and comparisons, which
solves the complexity and numerical instability problems.
The performance of the MS decoding is also known to be
independent of the knowledge of the channel parameter, for
most of the usual channel models.

However, the max-log approximation used in the MS de-
coding leads to a performance degradation with respect to the
BP decoding. Several “correction” methods were proposed in
the literature in order to mitigate this performance degradation
[20]–[25]. These decoding algorithms are referred to as MS-
based algorithms: they are improved versions of the MS
algorithm, with only a very limited increase of complexity.

In this paper we investigate the use of imprecise arithmetic
circuits for the following decoders: MS decoder, Normalized-
MS (NMS) decoder [21], Offset-MS decoder [21], Self-
Corrected-MS (SCMS) decoder [25]. They will be described
in the following paragraphs.

A. Notation

The following notation will be used throughout the paper:
• H , Tanner graph of an LDPC code,
• N , number of variable-nodes,
• M , number of check-nodes,
• dn, degree of the variable-node n,
• dm, degree of the check-node m,
• n ∈ {1, 2, ..., N}, a variable node of H ,
• m ∈ {1, 2, ...,M}, a check node of H ,
• H(n), set of check-nodes connected to the variable-node n,
• H(m), set of variable-nodes connected to the check-node m,
• γn, a priori log-likelihood ratio (LLR) of variable-node n,
• γ̃n, a posteriori LLR of variable-node n,
• αm,n, variable-to-check message sent from n to m,
• βm,n, check-to-variable message sent from m to n.



B. Min-Sum decoding
Assume that a codeword (xn)n=1,...,N is sent over a memo-

ryless noisy channel, and let (yn)n=1,...,N denote the received
word. The MS decoding algorithm works as follows.
Initialization

• A priori LLRs

γn = log
Pr(xn = 0 | yn)
Pr(xn = 1 | yn)

• Variable-to-check messages initialization

αm,n = γn

Iterations
• Check-node processing

βm,n =

 ∏
n′∈H(m)\n

sgn(αm,n′)

 min
n′∈H(m)\n

(|αm,n′ |)

• A posteriori LLRs

γ̃n = γn +
∑

m∈H(n)

βm,n

• Variable-node processing

αm,n = γ̃n − βm,n

In the above description, γn and γ̃n are computed for each
variable-node n, while messages αm,n and βm,n are computed
for each graph edge (m,n). Finally, at each iteration, coded
bit estimates are computed by x̂n = (1 − sgn(γ̃n))/2, and
decoding stops when whether (x̂n)n=1,...,N is a codeword or
a maximum number of iterations has been reached.

C. Normalized Min-Sum decoding
As discussed in Introduction, MS decoding can be seen

as a low-complex approximate version of the BP decoding.
This approximation is known to result in an overestimation
of check-to-variable messages. The aim of the NMS decod-
ing is to compensate this overestimation, by introducing a
normalization (scaling) factor λ ∈]0, 1[ within the check-
node processing step. Hence, all the other decoding steps
remain unchanged, and only the check-node processing step
is modified as follows:

βm,n =

 ∏
n′∈H(m)\n

sgn(αm,n′)

 min
n′∈H(m)\n

(|αm,n′ |)

βm,n = λ · βm,n

D. Offset Min-Sum decoding
Similar to the the NMS decoding, the OMS attempts to com-

pensate the overestimation of the check-to-variable messages.
This time an offset factor δ > 0 is used, and the check-node
processing step is modified as follows:

βm,n =

 ∏
n′∈H(m)\n

sgn(αm,n′)

 min
n′∈H(m)\n

(|αm,n′ |)

βm,n = sgn(βm,n) ·max(|βm,n| − δ, 0)

E. Self-Corrected Min Sum decoding
The SCMS addresses the overestimation issue at the

variable-node processing side of the algorithm. The rationale
behind the SCMS is that the overestimation of check-to-
variable messages is not critical, unless any given variable-
to-check message is updated to map a different bit state. In
the log likelihood ratio domain, this corresponds to a sign
change. In the SCMS, any variable-to-check message that
would experience a sign change is erased (that is, it is set
to zero). Hence, check-node processing step is modified as
shown below, while all the the decoding steps are the same as
for MS decoding.

αtmp
m,n = γ̃n − βm,n

αm,n =

{
0, if sgn(αtmp

m,n) ̸= sgn(αm,n) and αm,n ̸= 0

αtmp
m,n, otherwise

So, the variable-to-check message is first stored in a tem-
porary value αtmp

m,n, and its sign is compared against the sign
of the variable-to-check messages from the previous iteration
(stored in αm,n). If a sign change is detected and αm,n ̸= 0,
the value of the new variable-to-check message is set to zero.
Otherwise, the value the new variable-to-check message is set
(as it would usually be) to αtmp

m,n.
It [25], the author pointed out that a variable-to-check

message changes its sign between two consecutive iterations
if and only if its computation tree [26] contains unreliable
information. As a consequence, it has been shown that the
SCMS decoding behaves as the MS decoding on a computation
tree that has been pruned of its unreliable branches. The SCMS
decoding ability to detect unreliable messages will prove to
be particularly useful when the decoder is implemented on
imprecise circuits.

IV. IMPRECISE MIN-SUM-BASED DECODERS

In order to evaluate the impact of the imprecise arith-
metic components on the performances of MS-based LDPC
decoders, all the messages in the decoders must be quantized.
Since the a posteriori LLR is computed as the sum of the
a priori LLR and the incoming check-to-variable messages,
more quantization bits have to be used to represent its value.
Hence, Q bits are used for the quantization of the a priori LLRs
(γn), as well as exchanged messages (αm,n, βm,n), while Q+1
bits are used for the quantization of the a posteriori LLRs
(γ̃n). The imprecise arithmetic components used within the
MS-based LDPC decoders are:

• Q-bit comparators, used for the implementation of the
check-node processing step.

• (Q+ 2)-bit adders used for the implementation of the a
posteriori LLRs update and the variable-node processing
step.

Note that an extra bit is used for the adder in order to detect
the overflow. At the entry of the adder, the (Q+ 1)-bit input
operands get an extra bit by repeating their most significant
(sign) bit. Throughout this paper, we shall use Q = 6.
The design of imprecise 6-bit comparator and 8-bit adder is
addressed in the following sections.



A. Kogge-Stone Adder

Consider two integers A and B, and let S denote their sum
and C the corresponding carry. The simplest type of adder
that can be used to compute S is the ripple carry adder which
computes successively the sum and the carry for each bit
starting from the least significant bit (LSB). However, this
type of adder is very slow and the Carry Lookahead adders
have been developed to reduce the computation time. In order
to compute the sum S, they introduce two binary parameters
G and P . For each bit position i, Gi is 1 if Ai and Bi are
both equal to 1. The bit position i is then said to generate a
carry. If only one of Ai or Bi is equal to 1, Pi is equal to 1
and the bit position i is said to propagate a carry.

All carry-lookahead adders (CLA) perform binary addition
in three steps: precomputation, prefix and postcomputation.
For all adder architectures, the precomputation and postcom-
putation steps are similar: Pi and Gi are computed for each
position bit in the precomputation, while the sum S is com-
puted in the postcomputation step. However, the prefix step is
different for each adder architecture and those architectures
can be classified into three categories: serial-prefix, group-
prefix and parallel-prefix. Fig. 1 represents a 4-bits parallel-
prefix CLA architecture.

Fig. 1: 4-bit parallel-prefix CLA architecture

Kogge-Stone adder is a parallel-prefix CLA architecture
[27], which generates the carry in a O(log n) time. It is one of
the fastest existing adder architectures and provides the highest
performances [8]. The Prefix Diagram of a 8-bit Kogge-Stone
adder is represented in Fig. 2. As shown in the top of the
figure, a grey cell corresponds to one OR and one AND gate,
while a black cell corresponds to one OR and two AND gates.

Kogge-Stone adders have been selected as a basis for the
implementation of imprecise adders. Imprecise comparators
are also derived from Kogee-Stone adders, but only the path
that computes the most significant (sign) bit will be used.

B. The imprecise adder

In order to design inexact arithmetic components, we sup-
press several logic gates in all the adders and in the com-
parators of the circuit. However, the objective is to control
the errors introduced by pruning the circuit, hence some
constraints might be defined according to the desired level
of errors. For example, the magnitude of the errors can be

Fig. 2: 8 bits Kogge-Stone diagram

bounded or the paths of the circuit with lower probability of
being used can be deleted [8]. In this work the main constraints
are as follows. First, we require that the changes to the exact
circuit do not impact the most significant (sign) bit. Protecting
the sign of each addition from errors reduces the impact of the
inexact circuit. Secondly, we require that for operands x and
y, such that the value of the exact addition x + y is small,
the error made by the imprecise adder when computing x+ y
must also be small (close to 0). The reason is that we do not
want to give any extra confidence to the decoder, when its
degree of confidence should be low. Note however that if the
exact value of x+ y is relatively large, the error made by the
imprecise adder when computing x+y may also be large (but
the sign is always correct).

In order to meet the above requirements, the path that
computes the sign bit is kept unchanged and logic gates are
suppressed starting from the least significant bit (LSB)to the
most significant bit (MSB). The adder is simulated to check if
all the requirements are met or not. The procedure is repeated
until all the requirements are met and the suppression of any
of the remainder logic gates will fail to comply with the
requirements. The designed imprecise adder is shown in Fig. 3,
and it has the following characteristics:

• 3 grey cells have been deleted.
• 4 black cells have been replaced by 4 grey cells.
• 288 erroneous outputs are generated out of 16129 possi-

ble additions.
• The sign bit of any output is always correct.
• For a given x, the adder always correctly computes x−x.

Some examples of imprecise additions are given in Table I.



Fig. 3: Imprecise adder

TABLE I: Example of inexact additions

A -29 -25 -21 3 7 11 -31 -27 -23 -29
B -27 -23 -19 5 9 13 7 11 15 13

Output -24 -16 -8 40 48 56 -56 -48 -40 -48

C. The imprecise comparator

Comparators are used to implement the check-node process-
ing step. The sign path of a 6-bit Kogge-Stone adder is used to
design the imprecise comparator. For any two operands x and
y, we allowed the output of the imprecise comparator to be in
error only if x and y have relatively close values. As for the
imprecise adder, logic gates are suppressed starting from the
LSB to the MSB until the suppression of any of the remainder
logic gates will fail to comply with the requirements. The
designed imprecise comparator is shown in Fig. 4b, and it has
the following characteristics:

• 1 black cell and 2 grey cells have been deleted.
• 2 black cells have been replaced by 2 grey cells.
• 96 erroneous outputs are generated out of 961 possible

comparisons.
• Errors happen only when | x− y |< 22.

Some examples of imprecise comparisons are given in Table II.
The comparator’s output is 1 iff x <imprecise y.

TABLE II: Example of inexact comparisons

A 7 -29 -21 -9 -5 -1 -5 2 3 6
B -7 -31 -23 -11 -7 -3 -6 1 2 5

Output 1 1 1 1 1 1 1 1 1 1

D. Implementation of imprecise Min-Sum-based decoders

Let q denote the Q-bit quantizer used at the decoder input,
and s denote the Q-bit saturation operation (s(x) = 1−2(Q−1)

if x < 1− 2(Q−1), s(x) = 2(Q−1) − 1 if x > 2(Q−1) − 1, and
s(x) = x otherwise). We also denote by mimp the imprecise
minimum computation, and by aimp the imprecise adder. The
Imprecise-MS decoder is implemented as follows:

(a) Ideal 6 bits comparator (b) Imprecise Comparator

Fig. 4: 6 bits comparator architecture

Initialization
• A priori LLRs

γn = q
(
log

Pr(xn = 0 | yn)
Pr(xn = 1 | yn)

)
• Variable-to-check messages initialization

αm,n = γn

Iterations
• Check-node processing

Let H(m)\{n} = {n1, . . . , ndm−1}

βm,n =

 ∏
i=1,...,dc−1

sgn(αm,ni)

 ·

mimp(· · · (mimp(|αm,n1 |, |αm,n2 |), · · · , |αm,ndm−1
|)

• A posteriori LLRs
Let H(n) = {m1, . . . ,mdn−1}

γ̃n = aimp(· · · (aimp(γn, βm1,n), · · · , βmdn−1,n)

• Variable-node processing

αm,n = s (aimp(γ̃n,−βm,n))

We note that in order to implement the check-node process-
ing step it is actually sufficient to compute the first and the
second minima of |αm,ni |, for all i = 1, . . . , dm.

For the OMS decoder (Section III-D), the offset factor δ
is subtracted from |βm,n| by using the imprecise adder aimp.
We use δ = 1, which is the optimal value for the exact OMS
decoding.

For the NMS decoder (Section III-C), we use λ = 0.75 and
the multiplication between λ and βm,n is implemented as the
sum 0.75 · βm,n = aimp(βm,n, βm,n/2), where the exact value
of βm,n/2 is obtained by a right-shift of bits of βm,n.

Finally, we note that the SCMS decoder does not use any
extra arithmetic operation compared to the MS decoder.
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Fig. 5: Frame Error Rate for the (504, 252) regular code

V. SIMULATION RESULTS

The performance of Min-Sum-based decoders has been
evaluated for two different codes.

• The first code is a short (504, 252) LDPC code, con-
structed by Mackay and available online at [28]. It is a
regular code, with all variable-nodes of degree 3 and all
check-nodes of degree 6.

• The second code is a longer (2304, 1152) and irregular
quasi-cyclic LDPC code, specified by the IEEE 802.16e
(WiMAX) standard [29].

Both codes have been simulated over the Additive White
Gaussian Noise (AWGN) channel with Quadrature Phase-Shift
Keying (QPSK) modulation. The above MS-based decoders
have been simulated for both exact and imprecise arithmetic
components, and the maximum number of decoding iterations
was fixed to 100. Imprecise arithmetic components have been
simulated through lookup tables.

A. Decoders’ performance

The Frame Error Rate (FER) performance of MacKay and
WiMAX LDPC codes are shown respectively in Fig. 5 and
Fig. 6. The FER curves of the MS, NMS, OMS and SCMS
decoders are plotted respectively in red, green, blue and
black. In addition, for each decoder, the dashed curve (empty
markers) was obtained by using exact arithmetic components,
and the solid curve (full markers) was obtained by using
imprecise arithmetic components.

1) Analysis of results for the Mackay code: At FER = 10−4

the use of the imprecise arithmetic results in a loss of about
1.3 dB for the MS decoder and 0.6 dB for the OMS. The
imprecise SCMS provides almost the same performance as the
exact SCMS, and even outperforms it in the error floor region,
while the imprecise NMS outperforms the exact NMS in the
waterfall region. Both SCMS and NMS can be considered
robust to imprecise arithmetic components.
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Fig. 6: Frame Error Rate for the IEEE 802.16e code

2) Analysis of results for the WiMAX code: At FER = 10−4

the use of the imprecise arithmetic results in a loss of about
3.3 dB for the MS algorithm, 1.8 dB for the OMS algorithm,
and only 0.8 dB for the NMS algorithm. As previously, the
performance of the imprecise SCMS is almost identical to the
exact SCMS.

The excellent performance of the SCMS decoder under
imprecise arithmetic settings is explained by its inherent ability
to detect unreliable messages during the iterative decoding
process. These results bring empirical evidence that the SCMS
decoder is able to provide efficient error protection even if it
operates on imprecise hardware, which represents the main
contribution of this paper.

B. Complexity analysis

The exact evaluation of the savings in energy, delay and
area is out the scope of this paper (but will be addressed in
future works). However, we include a complexity analysis of
the different decoders, where the complexity is expressed in
terms of the number of logic gates of the circuit.

Let Ca be the relative complexity of the imprecise adder
with respect to the exact adder, and Cc be the relative
complexity of the imprecise comparator with respect to the
exact comparator. They are defined as follows:

Ca =
number of logic gates of imprecise adder

number of logic gates of exact adder

Cc =
number of logic gates of imprecise comparator

number of logic gates of exact comparator

For the imprecise adder and comparator designed in Sec-
tion IV, we have Ca = 0.86 and Cc = 0.57.

In order to evaluate the gain in complexity when imprecise
arithmetic is used, we consider the ratio between the number
of arithmetic operations (additions and comparisons) for im-
precise and exact arithmetic. Moreover, in case of imprecise
arithmetic, the number of additions is weighted by Ca and the
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number of comparisons in weighted by Cc. Hence, we obtain:

gain =
2(Ca + Cc)dv − 3Cc(1− r)

4dv − 3(1− r)
,

where dv is the average variable-node degree and r is the cod-
ing rate. Fig. 7 shows the evolution of the gain when dv = 3
and the rate r varies. As it can be seen, the gain decreases
slowly from 0.715 to 0.71, as the rate increases from 0 to 1.

The average decoding complexity per codeword of the exact
MS, the exact SCMS, and the imprecise SCMS has also been
evaluated. This complexity is defined as the average number
of arithmetic operations (additions and comparisons) required
to decode 1 codeword. Again, in case of imprecise arithmetic,
the number of additions is weighted by Ca and the number
of comparisons in weighted by Cc. Fig. 8 and Fig. 9 plot
the relative complexities of these decoders with respect to the
exact MS (which is used as the reference). The complexity
of the exact SCMS is much lower than those of the exact
MS in the waterfall region, because SCMS needs in average a
smaller number of decoding iterations. The imprecise SCMS
exhibits the lowest complexity and the difference between its
complexity and those of the exact SCMS complexity is due to
the use of imprecise components.

VI. FUTURE WORKS

Future works will focus on two directions. The first direction
is to evaluate the savings is energy, delay and area that can
be obtained by using the imprecise arithmetic components.
The complexity analysis from the above section gives us con-
fidence on this direction, especially as the SCMS decoder is
known to present several advantages from an energy efficiency
perspective [30].

The second direction is to design Min-Sum-based decoders
able to provide reliable error correction on probabilistic de-
vices. The current work gives some hints on which parts of the
circuit must be better protected. We are currently investigating
the performance of the four Min-Sum-based decoders on
probabilistic devices and the first results are very promising.
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Fig. 8: Relative complexity for the (504,252) regular code
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Fig. 9: Relative complexity for the IEEE 802.16e code

VII. CONCLUSION

In this paper we investigated the performance of several
Min-Sum-based decoders on devices with imprecise arithmetic
circuits. Imprecise adders and comparators have been specially
design for this purpose, by pruning the exact circuits. The
pruning operation has been constrained to meet specific re-
quirements, such as to avoid a number of undesirable errors.

Simulation results have shown that MS, NMS, and OMS
decoders manage to provide error protection, but the imprecise
arithmetic circuits significantly degrade their performance.
On the contrary, the imprecise SCMS proved to be robust
to imprecise arithmetic circuits, due to its ability to detect
unreliable messages during the decoding process. Hence, this
work demonstrated that the SCMS decoder provides efficient
error protection on devices with imprecise arithmetic circuits.

In addition, the complexity of the decoders has been eval-
uated in terms of number of logic gates of the circuits. For a
code rate of 1/2 the use of imprecise arithmetic circuits yields
a complexity decrease of about 27%. Moreover, the imprecise
SCMS provides a complexity reduction between 30% and 60%
with respected to the exact MS decoder.



VIII. ACKNOWLEDGMENT

This work was supported by the Seventh Framework Pro-
gramme of the European Union, under Grant Agreement
number 309129 (i-RISC project).

REFERENCES

[1] T. Richardson and R. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Trans. on Inf.
Theory, vol. 47, no. 2, pp. 599–618, 2001.

[2] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” IEEE Trans. on
Information Theory, vol. 47, no. 2, pp. 619–637, 2001.

[3] P. Grover and A. Sahai, “Green codes: Energy-efficient short-range
communication,” in IEEE Int. Symp. on Inf. Theory (ISIT), 2008, pp.
1178–1182.

[4] A. Sahai and P. Grover, “The price of certainty: ”waterslide curves”
and the gap to capacity,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2008-1, Jan 2008. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-1.html

[5] K. Palem, “Energy aware computing through probabilistic switching: A
study of limits,” IEEE Trans. on Computers, vol. 54, no. 9, pp. 1123–
1137, 2005.

[6] L. N. B. Chakrapani, K. K. Muntimadugu, A. Lingamneni, J. George,
and K. V. Palem, “Highly energy and performance efficient embedded
computing through approximately correct arithmetic: A mathematical
foundation and preliminary experimental validation,” in Proc. of Int.
Conf. on Compilers, Architectures and Synthesis for Embedded Systems.
ACM, 2008, pp. 187–196.

[7] B. E. S. Akgul, L. N. Chakrapani, P. Korkmaz, and K. V. Palem,
“Probabilistic cmos technology: A survey and future directions,” in IFIP
Int. Conf. on Very Large Scale Integration. IEEE, 2006, pp. 1–6.

[8] A. Lingamneni, C. Enz, J. L. Nagel, K. Palem, and C. Piguet, “Energy
parsimonious circuit design through probabilistic pruning,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2011, pp. 1–6.

[9] I. Chong and A. Ortega, “Hardware testing for error tolerant multimedia
compression based on linear transforms,” in IEEE Int. Symp. on Defect
and Fault Tolerance in VLSI Systems (DFT), 2005, pp. 523–531.

[10] H. Chung and A. Ortega, “Analysis and testing for error tolerant motion
estimation,” in IEEE Int. Symp. on Defect and Fault Tolerance in VLSI
Systems (DFT), 2005, pp. 514–522.

[11] N. Zhu, W. Goh, W. Zhang, K. Yeo, and Z. Kong, “Design of low-power
high-speed truncation-error-tolerant adder and its application in digital
signal processing,” IEEE Trans. on Very Large Scale Integration (VLSI)
Systems, vol. 18, no. 8, pp. 1225–1229, 2010.

[12] R. G. Gallager, “Low density parity check codes,” MIT Press, Cam-
bridge, 1963, research Monograph series.

[13] L. Varshney, “Performance of ldpc codes under faulty iterative decod-
ing,” IEEE Trans. on Information Theory, vol. 57, no. 7, pp. 4427–4444,
2011.

[14] S. M. S. Tabatabaei, H. Cho, S. Mitra, and L. Dolecek, “Gallager B
decoder on noisy hardware,” IEEE Trans. on Communications, 2012,
accepted for publication.

[15] S. M. S. Tabatabaei, S. Huang, and L. Dolecek, “Optimal design of
a Gallager B noisy decoder for irregular LDPC codes,” IEEE Comm.
Letters, 2012, accepted for publication.

[16] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans.
on Inf. Theory, vol. 27, no. 5, pp. 533–547, 1981.

[17] J. Pearl, “Reverend Bayes on inference engines: A distributed hierar-
chical approach,” in Proc. of the 2nd National Conference on Artificial
Intelligence (AAAI-82), 1982, pp. 133–136.

[18] ——, Probabilistic reasoning in intelligent systems: networks of plau-
sible inference. Morgan Kaufmann Publishers, 1988.

[19] M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative
decoding of low-density parity check codes based on belief propagation,”
IEEE Trans. on Communications, vol. 47, no. 5, pp. 673–680, 1999.

[20] E. Eleftheriou, T. Mittelholzer, and A. Dholakia, “Reduced-complexity
decoding algorithm for low-density parity-check codes,” IET Electronics
Letters, vol. 37, no. 2, pp. 102–104, 2001.

[21] J. Chen and M. P. Fossorier, “Near optimum universal belief propagation
based decoding of low density parity check codes,” IEEE Trans. on
Communications, vol. 50, no. 3, pp. 406–414, 2002.

[22] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, and X. Hu,
“Reduced-complexity decoding of ldpc codes,” IEEE Trans. on Com-
munications, vol. 53, no. 8, pp. 1288–1299, 2005.

[23] J. Chen, R. Tanner, C. Jones, and Y. Li, “Improved min-sum decoding
algorithms for irregular LDPC codes,” in IEEE Int. Symp. on Inf. Theory
(ISIT), 2005, pp. 449–453.

[24] J. Zhang, M. Fossorier, and D. Gu, “Two-dimensional correction for
min-sum decoding of irregular LDPC codes,” IEEE Communications
Letters, vol. 10, no. 3, pp. 180–182, 2006.

[25] V. Savin, “Self-corrected min-sum decoding of LDPC codes,” in IEEE
Int. Symp. on Inf. Theory (ISIT), 2008, pp. 146–150.

[26] N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation,
Likoping University, Sweden, 1996.

[27] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient
solution of a general class of recurrence equations,” IEEE Tran. on
Computers, vol. C-22, no. 8, pp. 786–793, 1973.

[28] D. J. MacKay. Encyclopedia of sparse graph codes. [Online]. Available:
http://www.inference.phy.cam.ac.uk/mackay/codes/data.html

[29] IEEE-802.16e, “Physical and medium access control layers for com-
bined fixe and mobile operation in licensed bands,” 2005, amendment
to Air Interface for Fixed Broadband Wireless Access Systems.

[30] E. Amador, V. Rezard, and R. Pacalet, “Energy efficiency of SISO
algorithms for turbo-decoding message-passing LDPC decoders,” in 17th
IFIP Int. Conf. on Very Large Scale Integration (VLSI-SoC). IEEE,
2009, pp. 95–100.


