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Motivations

Context of error-correcting codes on faulty hardware

Channel
noisy noisy

Motivations

Until now, focus on the analysis of noisy decoders [Huang13] [Balatsoukas14] [Ngassa14]
Construction of robust LDPC decoders [Dupraz15] (noise level up to 10−2)
In this work : what about LDPC encoding ?

Goals

Analysis of the robustness of standard encoding techniques
Construction of robust encoding solutions
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The Encoding Problem

LDPC codes

E Dchannel

Decoding

H (n × k ) : parity check matrix
x : codeword (n)

HT x = 0

H sparse, optimized for good perf.

Encoding

u : information sequence (m)

x = E(u)

Systematic encoding : x = [u, p]T

Error Model for the noise in the encoder, faulty XOR gates

faulty
pxor = P(c̃ 6= a⊕ b)
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The Encoding Problem

Standard Encoding Solutions

Encoding from Generator matrix

G (n × m) s.t. HT G = [0]
Encoding : x = Gu
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Encoding error probability, for pxor = 10−3

G is not sparse : high error probability

Lower Triangular Encoding
Ht = [Q, T ]T
pj =

∑
k∈Qj

uk +
∑

i∈Tj
pi
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Error Propagation during the encoding
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Robust Encoding Solution

Codeword Prediction Encoder (CPE)

First solution : decoder at the encoder

Encoder

noisy noisy

Decoding from HT x = 0

To go further : Codeword Prediction Encoder (CPE)

Encoder

noisy

noisy

noisy

Augmented codeword xa = [x, e]T

Decoding from HT
a xa = 0

Only x is transmitted on the channel
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Robust Encoding Solution

Code Construction (Matrix Multiplication)

Objective : design H and Ha for good decoding performance from both
HT

a xa = 0 (CPE), with xa = [x, e]T

HT x = 0 (Channel transmission)

Encoding from Matrix Multiplication , with HT
a = [Pa, I]

Encoder

noisy

noisy

noisy

CPE Decoding from HT
a xa = 0 ,

and then from HT x = 0

Problems
- PT

a G has a lot of non-zero components
- Two successive decodings
- Independent construction of H and Ha
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Robust Encoding Solution

Code Construction (Split-Extension)

Objective : design H and He for good decoding performance from both
HT

e xa = 0 (CPE), with xa = [x, e]T

HT x = 0 (Channel transmission)

Split-Extended codes [Savin10]

Example
In H : x1 + x2 + x3 + x4 + x5 + x6 = 0
Compute new parity bit e1 = x1 + x2 + x3

In He : e1 + x1 + x2 + x3 = 0 and e1 + x4 + x5 + x6 = 0
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Robust Encoding Solution

Code Construction (Split-Extension)

Objective : design H and He for good decoding performance from both
HT

e xa = 0 (CPE), with xa = [x, e]T

HT x = 0 (Channel transmission)

Split-Extended codes [Savin10]

From original code H, construct extended code He
Use He at the encoder
Use H after channel transmission
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Robust Encoding Solution

Individual Gate Protection

With iterative encoding : error propagation

faulty

faulty

faulty

faulty

Critical degree CT(F) of gate F : number of outputs to which it participates

Criticality Threshold CT : protect any gate such that CT(F) > CT.
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Performance Comparison

Experimental results (1)

Random (3, 5)-code for H, Random (3, 6)-code for Ha, m = 400

Faulty Min-Sum decoder (i.i.d. errors, error probability p = 10−3)
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FIGURE: Encoding from Generator Matrix
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FIGURE: Encoding from Circuit Design
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Performance Comparison

Experimental Setup (2)

Four QC-LDPC iRisc codes
dv3-r12, dv4-r12 (m = 975, n = 1296, na = 1620)
dv3-r34, dv4-r34 (m = 650, n = 1296, na = 1944)

Three faulty decoders (i.i.d. errors, error probability p, perfect APP)
Gallager B
Min-Sum
Self-corrected Min-Sum

TABLE: Number of XOR gates

Code Generator matrix Circuit Design
dv3-r12 296734 44399
dv3-r34 170362 28182
dv4-r12 300205 45175
dv4-r34 303163 27167
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Performance Comparison

Complexity Analysis
TABLE: Critical Gate count for different codes

Code Circuit design node count CT=10 CT=20 CT=50
dv3-r12 44399 3373 1844 833
dv3-r34 28182 2288 1240 537
dv4-r12 45175 3424 1851 824
dv4-r34 27167 2112 1183 488
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FIGURE: BER with respect to pxor for dv4-r34 code with Min-Sum decoder (p = 10−3)
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Performance Comparison

Performance Comparison
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FIGURE: dv3-r34, p = 0.001, CT = 20
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FIGURE: dv3-r12, p = 0.01, CT = 50
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FIGURE: dv4-r12, p = 0.001, CT = 20
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FIGURE: dv4-r12, p = 0.001, CT = 50
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Performance Comparison

Conclusions

CPE consists of computing extra parity bits to protect the encoding

CPE with Split-Extension provides a robust encoding solution

More accurate error models to be considered

Address the issue of critical gates

Consider other encoding techniques in CPE
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