Reliable LDPC Encoding on Faulty Hardware

Elsa Dupraz¹, Satish Kumar Grandhi², Valentin Savin³, Emanuel Popovici², David Declercq¹

¹ ETIS / ENSEA - Université de Cergy-Pontoise - CNRS UMR 8051
² Department of Electrical and Electronic Engineering, University College Cork
³ CEA-LETI

Research reported in this presentation was supported by the Seventh Framework Programme of the European Union under Grant Agreement number 309129 (i-RISC project)

Motivations

Context of error-correcting codes on faulty hardware

Motivations

- Until now, focus on the analysis of noisy decoders [Huang13] [Balatsoukas14] [Ngassa14]
- Construction of robust LDPC decoders [Dupraz15] (noise level up to 10⁻²)
- In this work : what about LDPC encoding ?

Goals

- Analysis of the robustness of standard encoding techniques
- Construction of robust encoding solutions

Reliable LDPC Encoding on Faulty Hardware

E. Dupraz

01 September 2015

Outline

1 The Encoding Problem

2 Robust Encoding Solution

Outline

1 The Encoding Problem

2 Robust Encoding Solution

LDPC codes

$$\mathbf{u} \xrightarrow{\mathbf{E}} \overset{\mathbf{X}}{\longrightarrow} \overset{\mathrm{channel}}{\longrightarrow} \overset{\mathbf{y}}{\overset{\mathbf{D}}} \overset{\hat{\mathbf{u}}}{\longrightarrow}$$

Decoding

 $H(n \times k)$: parity check matrix **x** : codeword (*n*)

 $H^T \mathbf{x} = 0$

Encoding

u : information sequence (*m*)

 $\mathbf{x} = \mathcal{E}(\mathbf{u})$

Systematic encoding : $\mathbf{x} = [\mathbf{u}, \mathbf{p}]^T$

H sparse, optimized for good perf.

• Error Model for the noise in the encoder, faulty XOR gates

$$a \xrightarrow{p_{xor}} P(\tilde{c} \neq a \oplus b)$$

Standard Encoding Solutions

- Encoding from Generator matrix
 - $G(n \times m)$ s.t. $H^T G = [0]$
 - Encoding : x = Gu

Encoding error probability, for $pxor = 10^{-3}$

G is not sparse : high error probability

Lower Triangular Encoding

•
$$H_t = [Q, T]^T$$

• $p_j = \sum_{k \in Q_j} u_k + \sum_{i \in T_j} p_i$

Encoding error probability, for $pxor = 10^{-3}$

Error Propagation during the encoding

1 The Encoding Problem

2 Robust Encoding Solution

Codeword Prediction Encoder (CPE)

First solution : decoder at the encoder

• Decoding from $H^T \mathbf{x} = 0$

To go further : Codeword Prediction Encoder (CPE)

- Augmented codeword $\mathbf{x}_a = [\mathbf{x}, \mathbf{e}]^T$
- Decoding from $H_a^T \mathbf{x}_a = 0$
- Only x is transmitted on the channel

Code Construction (Matrix Multiplication)

• Objective : design *H* and *H_a* for good decoding performance from both

- $H_a^T \mathbf{x}_a = 0$ (CPE), with $\mathbf{x}_a = [\mathbf{x}, \mathbf{e}]^T$
- $H^T \mathbf{x} = 0$ (Channel transmission)
- Encoding from Matrix Multiplication, with $H_a^T = [P_a, I]$

CPE Decoding from $H_a^T \mathbf{x}_a = 0$, and then from $H^T \mathbf{x} = 0$

Problems

- $P_a^T G$ has a lot of non-zero components
- Two successive decodings
- Independent construction of H and Ha

Code Construction (Split-Extension)

Objective : design *H* and *H*_e for good decoding performance from both

- $H_e^T \mathbf{x}_a = 0$ (CPE), with $\mathbf{x}_a = [\mathbf{x}, \mathbf{e}]^T$
- $H^T \mathbf{x} = 0$ (Channel transmission)
- Split-Extended codes [Savin10]

Example

- In *H*: $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 0$
- Compute new parity bit $e_1 = x_1 + x_2 + x_3$
- In H_e : $e_1 + x_1 + x_2 + x_3 = 0$ and $e_1 + x_4 + x_5 + x_6 = 0$

Code Construction (Split-Extension)

- Objective : design *H* and *H_e* for good decoding performance from both
 - $H_e^T \mathbf{x}_a = 0$ (CPE), with $\mathbf{x}_a = [\mathbf{x}, \mathbf{e}]^T$
 - $H^T \mathbf{x} = 0$ (Channel transmission)
- Split-Extended codes [Savin10]

- From original code H, construct extended code He
- Use *H_e* at the encoder
- Use *H* after channel transmission

Individual Gate Protection

• With iterative encoding : error propagation

Oritical degree CT(F) of gate F : number of outputs to which it participates

Oriticality Threshold CT : protect any gate such that CT(F) > CT.

1 The Encoding Problem

2 Robust Encoding Solution

Experimental results (1)

- Random (3, 5)-code for H, Random (3, 6)-code for H_a , m = 400
- Faulty Min-Sum decoder (*i.i.d.* errors, error probability $p = 10^{-3}$)

FIGURE: Encoding from Generator Matrix

FIGURE: Encoding from Circuit Design

Experimental Setup (2)

Four QC-LDPC iRisc codes

- dv3-r12, dv4-r12 (m = 975, n = 1296, n_a = 1620)
- dv3-r34, dv4-r34 (m = 650, n = 1296, n_a = 1944)

• Three faulty decoders (*i.i.d.* errors, error probability *p*, perfect APP)

- Gallager B
- Min-Sum
- Self-corrected Min-Sum

Code	Generator matrix	Circuit Design	
dv3-r12	296734	44399	
dv3-r34	170362	28182	
dv4-r12	300205	45175	
dv4-r34	303163	27167	

TABLE: Number of XOR gates

Complexity Analysis

TABLE: Critical Gate count for different codes

Code	Circuit design node count	CT=10	CT=20	CT=50
dv3-r12	44399	3373	1844	833
dv3-r34	28182	2288	1240	537
dv4-r12	45175	3424	1851	824
dv4-r34	27167	2112	1183	488

FIGURE: BER with respect to p_{xor} for dv4-r34 code with Min-Sum decoder ($p = 10^{-3}$)

Reliable LDPC Encoding on Faulty Hardware

E. Dupraz

Performance Comparison

FIGURE: dv3-r34, *p* = 0.001, *CT* = 20

FIGURE: dv4-r12, *p* = 0.001, *CT* = 20

FIGURE: dv3-r12, *p* = 0.01, *CT* = 50

FIGURE: dv4-r12, *p* = 0.001, *CT* = 50

Reliable LDPC Encoding on Faulty Hardware

E. Dupraz

01 September 2015

Conclusions

- OPE consists of computing extra parity bits to protect the encoding
- OPE with Split-Extension provides a robust encoding solution
- More accurate error models to be considered
- Address the issue of critical gates
- Consider other encoding techniques in CPE