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Introduction. General framework.

Gate-level reliability characterization.

Circuit-level reliability characterization -
reliability inference algorithm.

Summary and further development.
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1. I1C design-for-relidbility~ desiderata.

4 VI
I
g

Evaluate and increase the logical masking capability of ICs via
various resiliency techniques (e.g., fault tolerant codecs).

Compare architectures and enable a reliability-
driven Boolean function synthesis process.

Fast, yet accurate reliability estimation mechanism
which is scalable for tera-scale integrated circuits.

Accurate reliability estimation at the gate level —
drastic impact on the circuit reliability estimation.

Fast approximate reliability estimation at the
circuit-level at design-time.




1. Design-for-relia
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2. SC logic gates reliability pre-characterizatjon

SC with reliability
characterization

Monte Carlo analysis

Fault macro-modeling Parameters variations

T

PMOS-BICS process
~ |\ Variations
|

out

|
|
[ _ |
* NMOS-BICS — Flag N =0 |
|

Translate physical defects into equivalent e.g., Vi, to, L W
electrical linear (resistors, capacitors) and
nonlinear devices (scaled transistors).
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3. IC reliability as

Hypothesis:

*  Circuit with given topology and possibly layout;
* Workload, e.g., input vectors and their associated
N _ i probabilities/PDFs;
ggression profile: . . . . _ B
_ anvifonmienial(e.0ikVDD) Input aggression profile (environmental—e.g., T, VDD —and fault

- faultscenarios (e.g., PFeare; -, fault scenarios - e.g., fault types and their expected probabilities).
types and their expected probabilities)

Conclusion:

*  Probabilities/PDFs of obtaining the correct circuit outputs = ?

P(in_1="1) P(out_1= correct) = ?
P(in_2="0’

(in_ o) P(out_2 = correct) = ?
P(in_n="1)

P(out_m = correct) = ?



3. Model formalism 1)
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Probabilistic graphical model — Bayesian network Syntax and semantics:

- Elegant framework , which combines: Directed Acyclic Graph (DAG)
« Graph theory — cope with circuit correlations complexity

Nodes:

 Probability theory — deal with uncertainty . random variables (logic gates, wires)

m
. di .
p(s1,-- - 5m) = | [ plsi| Parents(sy)) . obstrvablear hidden
1=1 Edges: direct dependence between nodes
X
p(z) /\
p(y1| x)
p(@,y1,92) = p(y2 | z,91) p(@,y1) = Y1

=p(y2 | ,y1) p(y2 | ) p()

p(y2 | ,91)
Yo
F F 1.0 0.0
T F 0.1 0.9
F T 0.1 0.9
T T 0.01 0.99




3. Model formalism (‘é),{/
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Probabilistic graphical model — Bayesian network

« Elegant framework , which combines: Directed Acyclic Graph (DAG)
« Graph theory — cope with circuit correlations complexity Nodes:

 Probability theory — deal with uncertainty . random variables (logic gates, wires)

m
« discrete or continuous
p(s1,. .. sm) = | [ p(si| Parents(s;)) . observable or hidden
1=1 Edges: direct dependence between nodes
T
Observable nodes: x, known p(z)
e.g., the circuit primary inputs p(y1 | )
Hidden nodes: y={y1, y2}, unknown n
endowed with a prior, e.g., the
rest of the circuit nodes
p(y2 | z,91)
Y2

p(y| x) =7 (Z M)




3. Inference engine (J) l q
Observable nodes: x, known

e.g., the circuit primary inputs
Hidden nodes: y={y1, y2}, unknown

p(z]y) - p(y) Cdonad aitn e
p(x) \ rest of the circuit nodes

? \ Prior probability

‘, plz) = / p( | y)p(y)dy

Posterior probability

p(ylz) =

Likeli‘i\ood function

p(y| x)

In practice p() is usually intractable to compute, as:
- Closed-form (analytical) solutions are not available;
- Numerical integration is too expensive.
=> necessary to appeal to approximate inference of the posterior.



3. Inference engine (
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There are two most prominent strategies to approximate inference. They are not mutually exclusive, as
they exploit complementary features of the graphical model formalism.

Stochastic inference
in particular sampling

€ Draw samples y(l) . .y(m) from
p(y| z)

@ Inspect sample statistics

IZ' Simplicity of implementation

E Theoretical guarantees of convergence

X| Computationally expensive

X| Convergence hard to diagnose

Deterministic variational
inference

2
V]

%] x K

Find an analytical proxy distribution
q(y) maximally similar to p(y ‘ LU)

Inspect distribution statistics

Can lead to simple and accurate
approximation procedures

Insightful and faster

Harder to derive

Requires sampling for validation

Neither approach scales easily to the kind of settings encountered in circuit reliability inference.



3. Inference engine (é.) )

hypothesis class

true posterior
(exponential family)

ply| =) KL divergence
k b OF U
KL(q||p)

q(1) distribution parameterized
by variational parameters A

Variational approximation

Main idea - cast the posterior inference problem to an optimization problem:

- approximate the posteriply | *)  with a simplerdistriby(tjon that is as close as possible

« Simple = tractable and efficient inference (e.g., factorized distributions typically)
* As close as possible = Kullback-Leibler (KL) divergence (typically)
- choose the setting for the variational parameders that be{tgs)) closeéytor)



3. Inference engine (j) d

What distributions can we make use? Graphical
model as exponential family.

identically ey

« Having a set of independent and .
0548

distributed observations of a random variable (i.e.,

a node in the graph) — many distributions

iy

consistent with the observations — we choose the 0;5 %@g{}‘}\\‘\\\\‘ ;
distribution with maximum Shannon entropy (the 0 = 4 8
distribution in exponential family form). & 3 g e 0 ? Y1

« The exponential family is a parameterized family
of distributions, all sharing a similar functional Mean-field assumption
form, and differing only in choice of particular q(y) — Hq(yz)

parameters.




3.Inference engine (5‘ l Q

ELBO

(Evidence Lower BOund)
(easy to evaluate for given q)

log p(x) = KL(q||p) + L(q)

L J \ J
! |

constant Kullback-Leiblerdivergence
fromthe variational distribution
to the posterior distribution
(unknown and >=0)

w.r.t. q

The ELBO can be rewritten without any reference to the posterior or
the marginal distribution.

L(q) = Eq[logp(z,y)] — Eq [log q(y)]
L )\ J
. . ! 1
objective Expected logjoint Entropy of the
function variational distribution q

[ stwrswa

where B (g()

KL(q||p)

L(q) wgeemnen

initialization
\_

QQQ

QOQ

.

convergence

B Maximize the objective function £ (¢ ) w.r.t. the variational parameters \




3.Inference engine (E‘ l Q

E Maximize the objective function £()\).

The most straightforward way is by using gradient descent.

Stochastic gradient optimization is among the most
effective algorithms as concerns the “predictive

accuracy obtained per unit of computation”. [1] batch updates
(using the set of all data items)
stochastic updates

(using onedata item)

Gradient descent:

A = 2D 4 5 L) L AD =\ 5 L)
VL()\) dependson Zl‘z VL(A) = VL;()) depends solely on z;

: + Follow noisy estimates of the gradient with a
* Follow the true gradient

: decreasing step size
« Expensive to compute

+ Fast; allows us to scale to large networks
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3.Inference engine (#)

Challenges:

« Complex functional landscapes
+ Local saddle points, optima, etc.

« Highly non-isotropic local behavior

.

« Correlation between all dimensions

+ High dimenstionality, e.g., hundreds
« Costly evaluation of L(\)

The natural gradient [2]:

« Fast isotropic convergence

« Very efficient in any space - independent of the model parametrization and of the
dependencies among signals
» Invariant wr.t. change of coordinates A
« Invariant to variable transformations Y



3.Inference engineé (

* The normal gradient doesn’t work:

e Over-aggressive steps onridges;
* Too small stepson plateaus;
* Slow or premature convergence, non-robust performance.

The natural gradient:

@ — _C~l.v with C thecovariance of the gradients

Follow the direction where gradients agree (less variability in the
data).

The standard gradient:

gradient samples
mean gradient

gradient covariance (e-vector x e-value)




3.Inference engine —ébuécting it all together

Initialize \(®)

v

Set the step size schedule Pt

I
-

v

Sample an observation index :

i ~ Uniform(1,..., N)

v

Compute V.L;(\):
VLA = A — ACD

v

Update \(8):
A = AC=D 4 5, VLN

!

NO

Convergence?

Initialize randomly the variational parameters.

Choosing the sequence of step sizes can be difficult:

If it decays too quickly => long time to converge;
If it decays too slowly => \ will oscillate too much.

Choose an index of the observation data,
uniformly at random.

Based on the current sample X;, compute the
noisy (but unbiased) natural gradient of £; .

Set the new estimate of the variational parameter

to be a weighted average of the previous estimate
and the current noisy gradient.



3.Inference engine —putting it all together'(2)<

Initialize \(®)

v

Set the step size schedule Pt

Solution? — adaptive stepsize

Initialize randomly the variational parameters.

Choosing the sequence of step sizes can be difficult:

* Ifit decays too quickly => long time to converge;
* |fit decays too slowly => )\ will oscillate too much.

- Adapt the step size according to the current observation sample L

Specifically: minimize the expected distance between the current stochastic update A

(t)

and the optimal batch update (when processing the entire data:set ). [4]



3.Inference engine ulting it all together(3)

Initialize \(®)

I
L

v

Sample an observation index :
i ~ Uniform(1,...,N)

v

Compute VL;(\):
@Er&()\) = j\t — )\(t_l)

v

Estimate the step size Pt

v

Update \(8):
A = AC=D 4 5, VLN

!

NO

Convergence?

Initialize randomly the variational parameters.

Choose an index of the observation data,
uniformly at random.

Based on the current sample Z;, compute the
noisy (but unbiased) natural gradient of L, .

Estimate the step size for the current stochastic
update.

Set the new estimate of the variational parameter
to be a weighted average of the previous estimate
and the current noisy gradient.

Ao
A
S
\

\
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4. Summary and tu[egglevelopménts

Summary:

Hierarchical reliability assessment framework

Gate-level — more accurate — Monte Carlo estimates

Circuit-level — probability inference

Variational inference to cope with the dimensionality/precision
specific of large circuits.

Future work:

Update the current framework to derive the marginal
probability (the probability of a subset of nodes).
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