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1.	IC	design-for-reliability	impetus
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1.IC design-for-reliability	– desiderata

Fast,	yet	accurate	reliability	estimation	mechanism	
which	is	scalable	 for	tera-scale	integrated	circuits.

1 Evaluate	and	increase	the	logical	masking	capability	of	ICs	via	
various	resiliency	techniques	(e.g.,	fault	tolerant	codecs).

2 Compare	architectures	and	enable	a		reliability-
driven	Boolean	function	synthesis	process.

Fast	approximate	reliability	estimation	 at	the	
circuit-level	at	design-time.	

Accurate	reliability	estimation	 at	the	gate	level	–
drastic	impact	on	the	circuit	reliability	estimation.



1.	Design-for-reliability	framework

SC	logic	gates	
library

Function	library

Failure	
models

HDL

RTL	
synthesis

Design	and	
Reliability	specs	&	

constraints

Circuit	
reliability	
assessment

Logic	and	
reliability	

optimization
SC	with	reliability	
characterization

Pre-design	reliability	characterization Reliability-aware	design	
time	flow Designer	space

Layout



PMOS-BICS

0 1
in=‘1’

OFF

ON

out =

NMOS-BICS

Flag_P = 1

Flag_N = 0

IB

Monte	Carlo	analysis

Translate physical defects into equivalent
electrical linear (resistors, capacitors) and
nonlinear devices (scaled transistors).

Fault	macro-modeling Parameters	variations

1.5 𝜎

µ
process 
variations

e.g., Vth , tox, L, W

2.	SC	logic	gates	reliability	pre-characterization

SC	with	reliability	
characterization



Monte	Carlo	analysis

Fault	macro-modeling Parameters	variations

2.	SC	logic	gates	reliability	pre-characterization
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3.	IC	reliability	assessment

Aggression profile:
- environmental (e.g., T, VDD)
- fault scenarios (e.g., PFGATE i - j, fault

types and their expected probabilities)

Combinational 
logic circuit

Problem statement

Hypothesis:

• Circuit	with	given	topology	and	possibly	layout;
• Workload,	e.g.,	input	vectors	and	their	associated	

probabilities/PDFs;
• Input	aggression	profile			(environmental	– e.g.,	T,	VDD	– and	fault	

scenarios	- e.g.,	fault	types	and	their	expected	probabilities).
Conclusion:
• Probabilities/PDFs of obtaining the correct circuit outputs = ?
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3.	Model	formalism	(1)

Probabilistic	graphical	model	– Bayesian	network

• Elegant framework , which combines:

• Graph theory – cope with circuit correlations complexity

• Probability theory – deal with uncertainty

Syntax	and	semantics:

Directed Acyclic Graph (DAG)

Nodes:

• random variables (logic gates, wires)
• discrete or continuous
• observable or hidden

Edges: direct dependence between nodes

x y1 P(y2=T) P(y2=F)

F F 1.0 0.0

T F 0.1 0.9

F T 0.1 0.9

T T 0.01 0.99



Probabilistic	graphical	model	– Bayesian	network

• Elegant framework , which combines:

• Graph theory – cope with circuit correlations complexity

• Probability theory – deal with uncertainty

Syntax	and	semantics:

Directed Acyclic Graph (DAG)

Nodes:

• random variables (logic gates, wires)
• discrete or continuous
• observable or hidden

Edges: direct dependence between nodes

Observable nodes: x, known
e.g., the circuit primary inputs

Hidden nodes: y={y1, y2}, unknown
endowed with a prior, e.g., the
rest of the circuit nodes

3.	Model	formalism	(2)



3.	Inference	engine	(1)

Posterior	probability

Likelihood	function

Evidence

Prior	probability?

Observable nodes: x, known
e.g., the circuit primary inputs

Hidden nodes: y={y1, y2}, unknown
endowed with a prior, e.g., the
rest of the circuit nodes

Bayes	Theorem

Evaluating	the	posterior	

In	practice												is	usually	intractable	to	compute,	as:
- Closed-form	(analytical)	solutions	are	not	available;
- Numerical	 integration	is	too	expensive.

=>	necessary	to	appeal	to	approximate	inference	of	the	posterior.



Stochastic inference
in particular sampling

Deterministic variational 
inference

There are two most prominent strategies to approximate inference. They are not mutually exclusive, as
they exploit complementary features of the graphical model formalism.

1

2

Draw	samples from

Inspect	sample	statistics

1

2

Find	an	analytical	proxy	distribution

Inspect	distribution	statistics

maximally	similar	to	

Computationally	expensive
Harder	to	derive

Simplicity	of	implementation	

Theoretical	guarantees	of	convergence

Convergence	hard	to	diagnose

Can	lead	to	simple	and	accurate		
approximation	procedures

Insightful	and	faster

Requires	sampling	for	validation

Neither	approach	scales	easily	to	the	kind	of	settings	encountered	in	circuit	reliability	inference.Cz

3.	Inference	engine	(2)	



KL	divergence

true	posterior

best	proxy

hypothesis	class
(exponential	 family)

Variational	approximation

Main idea - cast the posterior inference problem to an optimization problem:

• approximate the posterior with a simpler distribution that is as close as possible

• Simple = tractable and efficient inference (e.g., factorized distributions typically)

• As close as possible = Kullback-Leibler (KL) divergence (typically)

• choose the setting for the variational parameters that brings closest to

distribution	parameterized	
by	variational	parameters

3.	Inference	engine	(3)



What	distributions	can	we	make	use?	Graphical	
model	as	exponential	family.

• Having a set of independent and identically

distributed observations of a random variable (i.e.,

a node in the graph) – many distributions

consistent with the observations – we choose the

distribution with maximum Shannon entropy (the

distribution in exponential family form).

• The exponential family is a parameterized family

of distributions, all sharing a similar functional

form, and differing only in choice of particular

parameters.

3.	Inference	engine	(4)

Mean-field	assumption



initialization convergence

Kullback-Leibler	divergence	
from	the	variational	distribution	
to	the	posterior	distribution
(unknown	and	>=	0)

ELBO	
(Evidence	Lower	BOund)
(easy	to	evaluate	for	given	q)

constant
w.r.t.	q

Entropy	of	the	
variational	distribution	q

Expected	log	jointobjective	
function

where

Maximize	the	objective	function												w.r.t.	the	variational	parameters				.G
oa

l

The ELBO can be rewritten without any reference to the posterior or
the marginal distribution.

3.Inference	engine	(5)



Stochastic	gradient	descent:Gradient	descent:

The	most	straightforward	way	is	by	using	gradient	descent.

Maximize	the	objective	function												.G
oa

l

depends on depends solely on

• Follow noisy estimates of the gradient with a

decreasing step size

• Fast; allows us to scale to large networks

• Follow the true gradient

• Expensive to compute

Stochastic gradient optimization is among the most
effective algorithms as concerns the “predictive
accuracyobtained per unit of computation”. [1] batch	updates	

(using	the	set	of	all	data	items)
stochastic	updates
(using	one	data	item)

3.Inference	engine	(6)



Challenges:

• Complex functional landscapes

• Local saddle points, optima, etc.

• Highly non-isotropic local behavior

• Correlation between all dimensions

• High dimenstionality, e.g., hundreds

• Costly evaluation of 

e.g.:

The	natural	gradient	[2]:

• Fast isotropic convergence

• Very efficient in any space - independent of the model parametrization and of the 

dependencies among signals

• Invariant w.r.t. change of coordinates 

• Invariant to variable transformations

3.Inference	engine	(7)



gradient	samples
mean	gradient
natural	gradient
gradient	covariance	(e-vector	x	e-value)

The	standard	gradient:

• The	normal	gradient	doesn’t	work:
• Over-aggressive	steps	on	ridges;
• Too	small	steps	on	plateaus;
• Slow	or	premature	convergence, non-robust	performance.

The	natural	gradient:

with    the covariance of the gradients

Follow the direction where gradients agree (less variability in the 
data).

3.Inference	engine	(8)



Set the new estimate of the variational parameter
to be a weighted average of the previous estimate
and the current noisy gradient.

Based on the current sample , compute the
noisy (butunbiased) natural gradient of .

Update :

Compute :

Sample an observation index : Choose an index of the observation data,
uniformly at random.

Set the step size schedule

Initialize Initialize randomly the variational parameters.

Set the step size ( ; )

e.g., with

Choosing the sequence of step sizes can be difficult:
• If it decays too quickly => long time to converge;
• If it decays too slowly => will oscillate too much.

Convergence?
NO

3.Inference	engine	– putting	it	all	together	(1)



Set the step size schedule

Initialize Initialize randomly the variational parameters.

Set the step size ( ; )

e.g., with

Choosing the sequence of step sizes can be difficult:
• If it decays too quickly => long time to converge;
• If it decays too slowly => will oscillate too much.

Solution?	– adaptive	step	size

• Adapt the step size according to the current observation sample 

Specifically: minimize the expected distance between the current stochastic update          

and the optimal batch update (when processing the entire data set     ). [4]

3.Inference	engine	– putting	it	all	together	(2)



Set the new estimate of the variational parameter
to be a weighted average of the previous estimate
and the current noisy gradient.

Based on the current sample , compute the
noisy (butunbiased) natural gradient of .

Update :

Compute :

Sample an observation index : Choose an index of the observation data,
uniformly at random.

Estimate the step size

Initialize Initialize randomly the variational parameters.

Convergence?
NO

Estimate the step size for the current stochastic
update.

3.Inference	engine	– putting	it	all	together	(3)



4.	Summary	and	future	developments

Hierarchical reliability assessment framework

Variational inference to cope with the dimensionality/precision
specific of large circuits.

Gate-level – more accurate – Monte Carlo estimates

Summary:

Future work:

Update the current framework to derive the marginal
probability (the probability of a subset of nodes).

Circuit-level – probability inference
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