Reliability assessment framework for large scale causal logic networks

Nicoleta Cucu Laurenciu & Sorin Cotofana

Computer Engineering Laboratory, Delft University of Technology, The Netherlands

i-RISC Workshop, Bucuresti, September 2013

Outline

Introduction. General framework.

Gate-level reliability characterization.

Circuit-level reliability characterization - reliability inference algorithm.

Summary and further development.

1. IC design-for-reliability impetus

1. IC design-for-reliability-desiderata

Evaluate and increase the logical masking capability of ICs via various resiliency techniques (e.g., fault tolerant codecs).

1

Compare architectures and enable a reliabilitydriven Boolean function synthesis process.

Fast, yet accurate reliability estimation mechanism which is scalable for tera-scale integrated circuits.

Accurate reliability estimation at the gate level – drastic impact on the circuit reliability estimation.

Fast approximate reliability estimation at the circuit-level at design-time.

1. Design-for-reliability framework

2. SC logic gates reliability pre-characterization

Monte Carlo analysis

Fault macro-modeling

Translate physical defects into equivalent electrical linear (resistors, capacitors) and nonlinear devices (scaled transistors).

2. SC logic gates reliability pre-characterization

Monte Carlo analysis

Fault macro-modeling

Parameters variations

3. IC reliability assessment

Aggression profile:

- environmental (e.g., T, VDD)

- fault scenarios (e.g., PF_{GATE i-j}, fault types and their expected probabilities)

Problem statement

Hypothesis:

- Circuit with given topology and possibly layout;
- Workload, e.g., input vectors and their associated probabilities/PDFs;
- Input aggression profile (environmental e.g., T, VDD and fault scenarios e.g., fault types and their expected probabilities).

Conclusion:

• Probabilities/PDFs of obtaining the correct circuit outputs = ?

3. Model formalism (1)

Probabilistic graphical model – Bayesian network

- Elegant framework, which combines:
 - Graph theory cope with circuit correlations complexity
 - Probability theory deal with uncertainty

$$p(s_1, \dots, s_m) = \prod_{i=1}^m p(s_i \mid Parents(s_i))$$

Syntax and semantics:

Directed Acyclic Graph (DAG)

Nodes:

- random variables (logic gates, wires)
- discrete or continuous
- observable or hidden

 \mathcal{X}

Edges: direct dependence between nodes

$$p(x, y_1, y_2) = p(y_2 \mid x, y_1) p(x, y_1) =$$

= $p(y_2 \mid x, y_1) p(y_2 \mid x) p(x_2)$

3. Model formalism (2)

Probabilistic graphical model – Bayesian network

- Elegant framework, which combines:
 - Graph theory cope with circuit correlations complexity
 - Probability theory deal with uncertainty

$$p(s_1, \dots, s_m) = \prod_{i=1}^m p(s_i \mid Parents(s_i))$$

Syntax and semantics:

Directed Acyclic Graph (DAG)

Nodes:

- random variables (logic gates, wires)
- discrete or continuous
- observable or hidden

Edges: direct dependence between nodes

Observable nodes: x, known e.g., the circuit primary inputs Hidden nodes: y={y1, y2}, unknown endowed with a prior, e.g., the rest of the circuit nodes

$$p(y \mid x) = ? \quad \left(=\frac{p(x,y)}{p(x)}\right)$$

3. Inference engine (1)

Bayes Theorem

Evaluating the posterior $p(y \mid x)$

Observable nodes: x, known

In practice p(x) is usually intractable to compute, as:

- Closed-form (analytical) solutions are not available;
- Numerical integration is too expensive.

=> necessary to appeal to approximate inference of the posterior.

3. Inference engine (2)

There are two most prominent strategies to approximate inference. They are not mutually exclusive, as they exploit complementary features of the graphical model formalism.

×

Neither approach scales easily to the kind of settings encountered in circuit reliability inference.

3. Inference engine (3)

Variational approximation

Main idea - cast the posterior inference problem to an optimization problem:

- approximate the posterip $(y \mid x)$ with a <u>simpler</u> distribution that is <u>as close as possible</u>
 - **Simple** = tractable and efficient inference (e.g., factorized distributions typically)
 - As close as possible = Kullback-Leibler (KL) divergence (typically)
- choose the setting for the variational parameters that $br(mgs\lambda)$ closest to $r(mgs\lambda)$ closest to $r(mgs\lambda)$

3. Inference engine (4)

What distributions can we make use? Graphical model as exponential family.

- Having a set of independent and identically distributed observations of a random variable (i.e., a node in the graph) – many distributions consistent with the observations – we choose the distribution with maximum Shannon entropy (the distribution in exponential family form).
- The exponential family is a parameterized family of distributions, all sharing a similar functional form, and differing only in choice of particular parameters.

3.Inference engine (5)

Maximize the objective function $\mathcal{L}(q)$ w.r.t. the variational parameters $\,\lambda$

3.Inference engine (6)

0	
U	

Maximize the objective function $\mathcal{L}(\lambda)$.

The most straightforward way is by using gradient descent.

Stochastic gradient optimization is among the most effective algorithms as concerns the "predictive accuracy obtained per unit of computation". [1]

batch updates

 (using the set of all data items)
 stochastic updates
 (using one data item)

Gradient descent:

$$\lambda^{(t)} = \lambda^{(t-1)} + \rho_t \cdot \nabla \mathcal{L}(\lambda)$$

 $\nabla \mathcal{L}(\lambda)$ depends on $\sum x_i$

- Follow the true gradient
- Expensive to compute

Stochastic gradient descent:

$$\lambda^{(t)} = \lambda^{(t-1)} + \rho_t \cdot \hat{\nabla} \mathcal{L}(\lambda)$$

 $\hat{\nabla}\mathcal{L}(\lambda) = \nabla\mathcal{L}_i(\lambda)$ depends solely on x_i

- Follow noisy estimates of the gradient with a decreasing step size
- Fast; allows us to scale to large networks

3.Inference engine (7)

Challenges:

- Complex functional landscapes
 - · Local saddle points, optima, etc.
 - Highly non-isotropic local behavior

• Correlation between all dimensions

- High dimenstionality, e.g., hundreds
- Costly evaluation of $\mathcal{L}(\lambda)$

The natural gradient [2]:

- Fast isotropic convergence
- Very efficient in any space independent of the model parametrization and of the dependencies among signals
 - Invariant w.r.t. change of coordinates λ
 - Invariant to variable transformations y

3.Inference engine (8)

The standard gradient:

 ∇

- The normal gradient doesn't work:
 - Over-aggressive steps on ridges;
 - Too small steps on plateaus;
 - Slow or premature convergence, non-robust performance.

The natural gradient:

 $ilde{
abla} = -C^{-1} \cdot
abla$ with C the covariance of the gradients

Follow the direction where gradients agree (less variability in the data).

gradient covariance (e-vector x e-value)

3.Inference engine – putting it all together (1)

Initialize randomly the variational parameters.

Choosing the sequence of step sizes can be difficult:

- If it decays too quickly => long time to converge;
- If it decays too slowly => λ will oscillate too much.

Choose an index of the observation data, uniformly at random.

Based on the current sample \mathcal{X}_i , compute the noisy (but unbiased) natural gradient of \mathcal{L}_i .

Set the new estimate of the variational parameter to be a weighted average of the previous estimate and the current noisy gradient.

3.Inference engine – putting it all together (2)

Initialize randomly the variational parameters.

Choosing the sequence of step sizes can be difficult:

- If it decays too quickly => long time to converge;
- If it decays too slowly => λ will oscillate too much.

Solution? – adaptive step size

• Adapt the step size according to the current observation sample x_i Specifically: minimize the expected distance between the current stochastic update $\lambda^{(t)}$ and the optimal batch update (when processing the entire dataset). [4]

3.Inference engine – putting it all together (3)

Initialize randomly the variational parameters.

Choose an index of the observation data, uniformly at random.

Based on the current sample x_i , compute the noisy (but unbiased) natural gradient of \mathcal{L}_i .

Estimate the step size for the current stochastic update.

Set the new estimate of the variational parameter to be a weighted average of the previous estimate and the current noisy gradient.

4. Summary and future developments

Summary:

Hierarchical reliability assessment framework

Gate-level – more accurate – Monte Carlo estimates

Circuit-level – probability inference

Variational inference to cope with the dimensionality/precision specific of large circuits.

Future work:

Update the current framework to derive the marginal probability (the probability of a subset of nodes).

References

- [1] L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Advances in Neural Information Processing Systems, pp. 161-168, 2008
- [2] S. Amari. Natural gradient works efficiently in learning. Neural Computation, pp. 251-276, 1998
- [3] H, Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical Statistics, pp. 404-407, 1051
- [4] T. SchaulS. Zhang, and Y. LeCun. **No more pesky learning rates.** ArXiv e-prints, 2012
- [5] M. Stanisavljevic, A. Schmid, and Y. Leblebici Reliability of nanoscale circuits and systems. Springer, 2011
- [6] Y. Bengio Speeding up stochastic gradient descent. NIPS workshop on efficient machine learning, 2007
- [7] Y. Sun Stochastic search using the natural gradients. 26th International conference on machine learning, 2009
- [8] http://www.fil.ion.ucl.ac.uk/~jdaunize/presentations/Bayes2.pdf
- [9] http://www.eetimes.com/electronics-news/4374306/Imec-looks-at-variability-issue-beyond-10nm-
- [10] F.S. Torres, R.P. Bastos **Robust modular bulk built-in current sensors for detection of transient faults.** 25th Symposium on integrated circuits and systems design, pp. 1-6, 2012

Thank you!