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Modifiez le style du titre Low-powered unreliable components 

 Emerging nanoelectronic devices 
 density integration increases, variations in technological process  

 lower supply voltages (reduction by 20% per technology node)  

 fault tolerance, and in particular soft-error correction, became one of the Top-5 
overall design technology challenges of the ITRS (2010) 

 Sustainability concerns: lower the energy consumption 
 aggressive supply voltage scaling 

 bringing the signal level closer to the noise level reduces noise immunity and 
leads to unreliable computing 

 Unreliable components: subject to transient errors  
 may be due to many different reasons: physical reasons (neutrons and alpha 

particles), timing errors, low noise margin, etc. 

 may be independent or not of the gate/circuit history 

 manifest themselves at particular time steps, but do not necessarily persist for 
later times  probabilistic behavior  
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reliable data storage/transport 
reliable Boolean function synthesis 

Reliable 
circuits 

Unreliable 
components 

error models that 
cover chip sub-

powering effects 

relation energy 
consumption vs. 
error probability   

perform reliable 
computation with 

unreliable 
(probabilistic) 
components 

 

reliable Boolean function synthesis 

Information 
theory 

& coding 
techniques 

Circuit/system 
theory 

& design 
techniques 

Synergistic utilization of: 

 Information theory and coding techniques  
 traditionally utilized to improve the reliability of communication systems 

 exploit the large body of knowledge learned for reliable communication systems in the context of 
reliable computing systems  fault-tolerant error correcting codes  

 Circuit and system theory and design techniques 
 design method able to combine fault-tolerant error correcting codes with the hardware they protect 

 multi-objective optimization of the design with respect to energy consumption, latency, and reliability 
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1. Coding theory: from communication 
systems to computing devices 
For both communications and computing the aim is to design reliable 

systems, while reducing the system power consumption 

2. Circuit design theory 

i-RISC 
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Modifiez le style du titre Coding theory: communication systems 

Combat channel noise 

 Increase signal power 

 Use coding 

 add redundant information to the transmitted message, which can be 
exploited at the receiver side to correct transmission errors 

 transmission rate = useful data / transmitted data 

maximize transmission rate  minimize redundancy 

       redundancy (ratio) = 1 / transmission rate = transmitted data / useful data 

DESTINATION RECEIVER 

RECEIVED 
SIGNAL 

SIGNAL 
MESSAGE MESSAGE 

TRANSMITTER SOURCE 

NOISE 
SOURCE 

Communication system 
(Shannon, 1948) 

Reliable transmission is 
possible at any rate below 

the channel capacity:  

𝑪 = 𝐦𝐚𝐱⁡ 𝑯 𝒙 − 𝑯𝒚 𝒙  
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Modifiez le style du titre Coding theory: communication systems 

 Repetition codes 

 poor compromise between reliability and redundancy 

 to make the bit error probability arbitrarily small, the transmission rate must go 
to zero (i.e. reliable transmission requires infinite redundancy) 

 Linear codes 

 Transmitted message (vector of bits) belongs to a linear codebook: the set of 
solutions of a system of parity-check equations 

 encoder: responsible of computing the redundant information to be transmitted 
along with the useful data over the noisy channel 

 decoder: responsible with the error correction at the receiver side 

 Shannon: there exist linear codes that allow reliable communication at a 
transmission rate arbitrarily close to the channel capacity 

 
parity codes 

cyclic codes Hamming 
codes 

Golay code 
BCH codes 

Reed-Solomon 
codes 

convolution
al codes 

multi-
dimensional 
parity codes 

product 
codes 

Reed-Muller 
codes 

Goppa 
codes 

AG codes 

LDPC codes 

Turbo 
codes 

Hadamard 
codes 

Justensen 
codes 
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Modifiez le style du titre Coding theory: communication systems 

 Repetition codes 

 poor compromise between reliability and redundancy 

 to make the bit error probability arbitrarily small, the transmission rate must go 
to zero (i.e. reliable transmission requires infinite redundancy) 

 Linear codes 

 Transmitted message (vector of bits) belongs to a linear codebook: the set of 
solutions of a system of parity-check equations 

 encoder: responsible of computing the redundant information to be transmitted 
along with the useful data over the noisy channel 

 decoder: responsible with the error correction at the receiver side 

 Shannon: there exist linear codes that allow reliable communication at a 
transmission rate arbitrarily close to the channel capacity 

 LDPC codes: 

 provide error-correction performance very close to the channel capacity 

 iterative message-passing decoding with constant computational complexity per 
decoded bit (i.e. linear complexity in the code length) 
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Modifiez le style du titre Coding theory: from Shanon to Shanon 

Richardson, 2001 

Gallager, 1960 

Shannon, 1948 

Shannon Limit 

Invention of LDPC codes 

Design of LDPC codes closely 
approaching the Shanon Limit 
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 Von Neumann (1956): multiplexing and majority voting 

 Similar to repetition coding  

 Simple, but poor compromise  
 between redundancy and reliability 

 Error probability goes to zero only if 
 redundancy (ratio) goes to infinity 

 

 

 Elias (1958): first attempt to apply more general coding techniques to design 
reliable computing systems  

 Failed to design reliable computing systems with finite redundancy 

 Showed that finite redundancy can be achieved only if the complexity of both 
encoder & decoder grows at most linearly with the code length! 

 LDPC codes invented some years later by Gallager have this property  
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Modifiez le style du titre Reliable computing & storage 

 Taylor (1968): the first to investigate the capacity of storage systems built 
entirely from unreliable components  

 Results refined by Kuznetsov (1973)  Taylor-Kuznetsov (TK) model  

 

 

 

 

 

 

 

 
 

 Information is stored in coded form in a register connected to a correcting circuit; 
values in the register are periodically updates acc. to some decoding scheme 

 Correcting circuit is also assumed to be built from unreliable components 

 Proved that iterative LDPC decoding (introduced a few years earlier by Gallager) 
can achieve non-zero storage capacity 
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Modifiez le style du titre Reliable computing & storage 

 Taylor (1968): “A function computed by a system of k reliable components 
can also be computed by a system of O(k log(k)) unreliable components” 

 Heuristically argued by von Neumann in 1952 

 If an LDPC decoder is used for the correcting circuit, the theoretical log(k) factor 
comes from the asymptotical number of decoding iterations 

 Practical systems: only the computing components corresponding to a single 
decoding iteration have to be actually implemented in hardware (i.e. hardware 
redundancy can be replaced with temporal redundancy) 

 Moreover, practical systems use LDPC codes with finitely many decoding 
iterations, while preserving a very high reliability level 

 Dobrushin and Ortyukov (1977): there exist Boolean functions for which the 
correcting circuit would necessarily require O(k log(k)) computations 

 Logarithmic redundancy is the best that can be done  

 Pippenger (1990): “although some circuits of size k require size k log(k) when 
designed in a fault-tolerant style, almost all don’t” 
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 Propose fault tolerance solutions built upon modern sparse 
graph coding theory 

 LDPC codes already identified as a promising approach  

(but exploited in suboptimal way: only majority-voting decoding was considered) 

 The goal is to exploit the body of knowledge gained in past decade, after 
the rediscovery of graph-based codes and iterative decoding techniques 

 Provide solutions that allow both the encoder and the decoder to 
operate on faulty hardware 

 New paradigm in coding theory 

 Provide a rigorous analysis of iterative LDPC decoders, through the 
generalization of existing information theoretic tools to this new paradigm 

 Propose new encoding/decoding algorithms & architectures that can 
effectively deal with the probabilistic behavior of the circuit 
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 Design of fault tolerant error correcting modules for reliable 
storage & transfer of digital information throughout the chip 

 Rely on fault-tolerant error correcting codes to perform reliable bus 
transfer and memory R/W access (encoded information processing) 

 Combine error-correction and constrained coding for crosstalk avoidance 

 Integrate error correcting modules into the chip design, in a way 
to combine the codec with the hardware it protects 

 Investigate potential links between the graph representation of a digital 
circuit and error correcting codes in order to generate fault tolerant 
implementation of the logical functionality of the circuit 

 Develop a new framework for the synthesis of chips made from unreliable 
components, through the concept of “error-correcting codes driven” 
graph augmentation 
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Modifiez le style du titre 2. Fault-Tolerant Circuits:  Traditional Strategy 

 

 Tolerate Permanent & Temporary Faults  

 Key Ingredient – Redundancy  
 Temporal 

 Spatial 

 Information 

 Suppress Noise  

 Reasonably Well Behaved Devices 

 Mostly Design Time  

 Always Get the Right Result 

 Output is Correct or Faulty 

 No In-Between Situation is Acceptable. 
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Modifiez le style du titre 2. Fault-Tolerant Circuits:  Traditional Methods 

 Logic  
 von Neumann-multiplexing 

 Modular Redundancy, e.g., TMR 

 Averaging Cell 

 Self Diagnosis & Healing 

 Memory  
 Parity Check (CRC) 

 Interconnect  
 Redundancy 

 Serialization 

 Encoding (≈ Transmission Channel) 

 Architecture 
 Multiple Execution w/ Majority Voting (instruction, task) 

Performance Penalty 

 

• Energy 

• Latency/Throughput 

• Area 
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Modifiez le style du titre 2. von Neumann Multiplexing 

 Fault-tolerant computing with highly unreliable devices 

 Concept: Replace the processing unit with parallel working 
replicas 

System failure = number of incorrect outputs larger than a 
defined fraction Δ of the total number of outputs (𝑁)  
 
𝑃𝑓𝑎𝑖𝑙(𝑔𝑎𝑡𝑒) ≤ 0.0107 & high redundancy factor (𝑁) ⇒𝑃𝑓𝑎𝑖𝑙 (𝑣𝑁−𝑀𝑈𝑋) → 0 
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Modifiez le style du titre 2. Modular Redundancy 

 Compute the r-Replicas Fj, j=1,r of F(x1, x2, …, xn) 

 Select F out of Fj   via Majority Voting 

 TMR, k-MR 

 Large Area Overhead 

 Majority Voting is the Weak Point 

 May Fail if Simultaneous Faults Are Present 

 Diversity Helps 
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Modifiez le style du titre 2. Adaptive Averaging Cell (AD-AVG) 
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Modifiez le style du titre 2. Degradation Stochastic Resonance (DSR) 

Optimum weights 

20-input AD-AVG 

with monitor noise 

magnitude σs=0.06V 
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Input noise injectors εi~N(0,σx) to create the DSR peak 

stochastic conditions regardless of the degradation level. 
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20-input AD-AVG 

with monitor noise 

magnitude σs=0.06V 
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Modifiez le style du titre 2. DSR Based Reliability Management 

DSR 

control 

Applying the correct amount of input noise we can move along the involute of the 

colored curves and obtain a yield even higher than that provided by the DSR peak. 
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Modifiez le style du titre 2. Reliability Evaluation 

Given 

 A gate level realization Boolean function F(x1, x2, …, xn), 

 ERRI = {ierr1, err2, …, errk}, 

 ERRg = {gerr1, gerr2, …, gerrl}, 

 ERRPI = {xerr1, xerr2, …, xerrn}, 

find ERRF. 

 Fast & Accurate 

 Design Time 
 Guide the Reliability Aware Synthesis  

 Provide FU Output Error Bounds 

 Enable Evaluation & Optimization of Algorithms on Not Ideal HW  

 Runtime 
 Guide Reliability Aware QoS (Energy vs Error Rate Tradeoffs) 
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Modifiez le style du titre 2. Reliable Function Implementation 

 Redundancy Based FT Computing Solutions Rely on Coding 
(Temporal & Spatial Redundancy = Repetition Coding) 

 Use Telecom Coding Style in Function Implementation – Learn to 
Cohabitate w/ Errors! 

 Overhead 
 Area (Not that Important Nowadays) 

 Energy  

 One Way 
 Encode the Inputs xi  x’i  

 Compute F’(x’1, x’2, …, x’n) Instead of F - Err(F’) < Err(F)! 

 Transform F’ Value in F (Only When Explicitly Needed) 

 F’ is an Acceptable Solution Only If 
 E(F’)AT ≤ E(F)OT & ERR(F’)AT ≤ ERR(F)OT  

  Otherwise Make Use of OT. 
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Opening 

09:00 -09:30 The i-RISC Project: Innovative Reliable Chip Designs from Low- 

  Powered Unreliable Components 

  V. Savin (CEA) and S. Cotofana (TUD) 

Fault Tolerant Algorithms for Error-Correction 

09:30-10:00  Analysis and Design of Min-Sum-based Decoders Running on  

  Noisy Hardware 

  C. Kameni-Ngassa,  V. Savin (CEA), and D. Declercq (ENSEA) 

10:00-10:30  Performance of Finite Alphabet Iterative Decoders (FAID)  

  Under Faulty Hardware 

  D. Declercq, S. Planjery (ENSEA),  and B. Vasic (ELFAK) 

10:30 – 11:00  Coffee Break 
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Modifiez le style du titre Workshop program 

Reliable Data Storage and Transport 

11:00-11:30  Bit-flipping Decoders for Fault-Tolerant Memories 

  B. Vasic, S. Brkic, P. Ivanis, and G. Djordjevic (ELFAK) 

11:30-12:00 The Analysis of Taylor-Kuznetsov Fault-Tolerant Memories  

  Under Correlated Gate Failures 

  S. Brkic, P. Ivanis, G. Djordjevic, and B. Vasic (ELFAK) 

12:00 – 13:30  Lunch 

Error Models & Energy Measures 

13:30-14:00  Gate Level Simulated Fault Injection for Probabilistic CMOS  

  Circuits 
  S. Nimara, A. Amaricai, O. Boncalo (UPT), J. Chen, and E. Popovici (UCC) 

14:00-14:30  Interconnect Crosstalk Analysis in Sub-powered Integrated  

  Circuits 
  A. Amaricai, O. Boncalo, and S. Nimara (UPT) 
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Modifiez le style du titre Workshop program 

14:30-15:00   Delay Relevant Reliability of CMOS Circuits  

  C. Jiaoyan, C. Spagnol, S. Kumar, and E. Popovici (UCC)  

15:00 – 15:30  Coffee Break 

Reliable Function Synthesis and Design 

15:30 – 16:00 A systematic Approach for Reliability Evaluation of  

  Combinational Circuits  

  C. Spagnol, S. Kumar, C. Jiaoyan, and E. Popovici (UCC) 

16:00 – 17:00 Reliability Assessment Framework for Large Scale Causal Logic  

  Networks 

  N. Cucu-Laurenciu and S. Cotofana (TUD) 

17:00 -17:30  Open Discussion and Closing Remarks  

  Moderators: Valentin Savin (CEA) & Sorin Cotofana (TUD) 
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